JP6153341B2 - Method for producing saccharification solution - Google Patents

Method for producing saccharification solution Download PDF

Info

Publication number
JP6153341B2
JP6153341B2 JP2013028190A JP2013028190A JP6153341B2 JP 6153341 B2 JP6153341 B2 JP 6153341B2 JP 2013028190 A JP2013028190 A JP 2013028190A JP 2013028190 A JP2013028190 A JP 2013028190A JP 6153341 B2 JP6153341 B2 JP 6153341B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
saccharification
thermostable
xylosidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013028190A
Other languages
Japanese (ja)
Other versions
JP2014155464A (en
Inventor
智 新川
智 新川
茂信 光澤
茂信 光澤
麻衣子 福浦
麻衣子 福浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013028190A priority Critical patent/JP6153341B2/en
Publication of JP2014155464A publication Critical patent/JP2014155464A/en
Application granted granted Critical
Publication of JP6153341B2 publication Critical patent/JP6153341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、糖化溶液の製造方法に関する。   The present invention relates to a method for producing a saccharified solution.

稲藁等のリグノセルロース系バイオマスを基質として、該基質を糖化酵素により糖化し、得られた糖を発酵させることによりエタノールを製造する方法が知られている。   There is known a method for producing ethanol by using lignocellulosic biomass such as rice straw as a substrate, saccharifying the substrate with a saccharifying enzyme, and fermenting the obtained sugar.

前記リグノセルロース系バイオマスは、セルロース又はヘミセルロースにリグニンが強固に結合した構成を備えている。そこで前記糖化に当たっては、まず、前記リグノセルロース系バイオマスを前処理し、該リグノセルロース系バイオマスに含まれるリグニンが解離され、又は該リグノセルロース系バイオマスが膨潤された糖化前処理物を得る。   The lignocellulosic biomass has a structure in which lignin is firmly bound to cellulose or hemicellulose. Therefore, in the saccharification, first, the lignocellulosic biomass is pretreated, and a saccharification pretreated product in which the lignin contained in the lignocellulosic biomass is dissociated or the lignocellulosic biomass is swollen is obtained.

尚、本願では、「解離」との用語は、セルロース又はヘミセルロースとリグニンとの結合の少なくとも一部を切断することを意味する。又、「膨潤」との用語は、液体の浸入によって結晶性セルロースを構成するセルロース若しくはヘミセルロースに空隙を生じ、又はセルロース繊維の内部に空隙を生じて、該結晶性セルロースを膨張させることを意味する。   In the present application, the term “dissociation” means that at least a part of the bond between cellulose or hemicellulose and lignin is broken. Further, the term “swelling” means that a void is formed in cellulose or hemicellulose constituting the crystalline cellulose by intrusion of the liquid, or a void is formed inside the cellulose fiber to expand the crystalline cellulose. .

前記リグノセルロース系バイオマスの前処理は、例えば基質としての前記リグノセルロース系バイオマスにアンモニア水を混合して基質混合物とし、該基質混合物を例えば25℃の温度に100時間保持することにより行う。前記前処理の終了後、前記基質混合物をアンモニアの沸点以上の温度、例えば80℃の温度に加熱することにより、アンモニアを気化させて分離し、前記糖化前処理物を得ることができる。   The pretreatment of the lignocellulosic biomass is performed, for example, by mixing ammonia water with the lignocellulosic biomass as a substrate to form a substrate mixture, and holding the substrate mixture at a temperature of, for example, 25 ° C. for 100 hours. After completion of the pretreatment, the substrate mixture is heated to a temperature equal to or higher than the boiling point of ammonia, for example, 80 ° C., thereby vaporizing and separating ammonia to obtain the pre-saccharification product.

前記糖化前処理物の糖化の際には、より多くの糖を得るために、前記セルロースの糖化によりグルコースを得るのみならず、前記ヘミセルロースの糖化によりキシロースをも得ることが望ましい。そこで、従来、前記ヘミセルロースの糖化のための糖化酵素として、耐熱性キシラナーゼ及び耐熱性β−キシロシダーゼを用いて糖化溶液を得る方法が知られている(特許文献1参照)。   In saccharification of the pre-saccharification product, it is desirable to obtain not only glucose by saccharification of cellulose but also xylose by saccharification of hemicellulose in order to obtain more sugar. Therefore, conventionally, a method of obtaining a saccharified solution using a thermostable xylanase and a thermostable β-xylosidase as a saccharifying enzyme for saccharification of the hemicellulose is known (see Patent Document 1).

特開2012−10638号公報JP 2012-10638 A

しかしながら、前記前処理後、アンモニアを気化させて分離することにより得られた前記糖化前処理物に、耐熱性キシラナーゼ及び耐熱性β−キシロシダーゼを同時に添加すると、十分な量のキシロースを得ることができないという不都合がある。   However, a sufficient amount of xylose cannot be obtained by adding a thermostable xylanase and a thermostable β-xylosidase simultaneously to the saccharification pretreatment product obtained by vaporizing and separating ammonia after the pretreatment. There is an inconvenience.

本発明は、かかる不都合を解消して、前記リグノセルロース系バイオマスから、高収率でキシロースを得ることができる糖化溶液の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a saccharified solution capable of eliminating such disadvantages and obtaining xylose in a high yield from the lignocellulosic biomass.

本発明者らは、アンモニア分離後の前記糖化前処理物に、耐熱性キシラナーゼ及び耐熱性β−キシロシダーゼを同時に添加したときに、十分な量のキシロースを得ることができない理由について鋭意検討した。この結果、前記糖化前処理物は、前記前処理の終了直後にはアンモニアを気化させて分離することが可能な程度の温度となっており、該温度の前記糖化前処理物に該耐熱性β−キシロシダーゼを添加すると、糖化阻害反応が急激に進行することが判明した。そして、前記糖化阻害反応が急激に進行する結果として、前記基質の一部が失われるものと考えられる。   The present inventors diligently studied why a sufficient amount of xylose cannot be obtained when a thermostable xylanase and a thermostable β-xylosidase are simultaneously added to the pre-saccharification product after ammonia separation. As a result, the saccharification pretreatment product has a temperature at which ammonia can be vaporized and separated immediately after completion of the pretreatment, and the saccharification pretreatment product at the temperature has the heat resistant β -It was found that when xylosidase was added, the glycation inhibition reaction proceeded rapidly. And it is thought that a part of said substrate is lost as a result of the said saccharification inhibition reaction advancing rapidly.

また、前記糖化阻害反応を回避するために、該糖化阻害反応の影響を無視できる温度まで前記糖化前処理物の温度が降下した後、前記耐熱性キシラナーゼ及び該耐熱性β−キシロシダーゼを同時に添加することが考えられる。しかし、このようにするときには、前記耐熱性キシラナーゼが十分に機能することができず、十分な量のキシロースを得ることができない。   Further, in order to avoid the saccharification inhibition reaction, after the temperature of the pre-saccharification product is lowered to a temperature at which the influence of the saccharification inhibition reaction can be ignored, the thermostable xylanase and the thermostable β-xylosidase are added simultaneously. It is possible. However, when this is done, the thermostable xylanase cannot function sufficiently, and a sufficient amount of xylose cannot be obtained.

そこで、前記目的を達成するために、本発明は、基質としてのリグノセルロース系バイオマスにアンモニア水を混合してなる基質混合物を所定温度に所定時間保持して前処理した後、アンモニアを気化させて分離することにより糖化前処理物を得る工程と、該糖化前処理物に糖化酵素を添加してなる基質・糖化酵素混合物を糖化処理することにより糖化溶液を得る工程とを備える糖化溶液の製造方法において、該アンモニアを分離した後、該糖化前処理物の温度が耐熱性β−キシロシダーゼを添加することによる糖化阻害反応を無視できる温度に降下するまでの第1の温度範囲にある間に、該糖化前処理物に耐熱性キシラナーゼを添加して第1の基質・糖化酵素混合物を得た後、該基質の少なくとも一部を糖化処理してオリゴ糖を生成させる工程と、該第1の基質・糖化酵素混合物の温度が該糖化阻害反応を無視できる温度から該耐熱性β−キシロシダーゼが機能不能となる温度に降下するまでの第2の温度範囲にある間に、該第1の基質・糖化酵素混合物に該耐熱性β−キシロシダーゼを添加して第2の基質・糖化酵素混合物を得た後、該基質及び該オリゴ糖を糖化処理して単糖を生成させる工程とを備えることを特徴とする。   Therefore, in order to achieve the above-mentioned object, the present invention maintains a substrate mixture obtained by mixing ammonia water with lignocellulosic biomass as a substrate at a predetermined temperature for a predetermined time, and then vaporizes ammonia. A method for producing a saccharification solution comprising: a step of obtaining a pre-saccharification product by separation; and a step of obtaining a saccharification solution by saccharifying a substrate / saccharification enzyme mixture obtained by adding a saccharification enzyme to the pre-saccharification product In the first temperature range after the ammonia is separated, until the temperature of the saccharification pretreatment product falls to a temperature at which the saccharification inhibition reaction due to the addition of thermostable β-xylosidase falls to a negligible temperature. A thermostable xylanase is added to the pre-saccharification product to obtain a first substrate / saccharification enzyme mixture, and then at least a part of the substrate is saccharified to generate an oligosaccharide. As long as the temperature of the first substrate / saccharifying enzyme mixture falls within a second temperature range from a temperature at which the saccharification inhibiting reaction can be ignored to a temperature at which the thermostable β-xylosidase becomes incapable of functioning. Then, after adding the thermostable β-xylosidase to the first substrate / saccharifying enzyme mixture to obtain a second substrate / saccharifying enzyme mixture, the substrate and the oligosaccharide are saccharified to produce a monosaccharide. And a step of causing the step to occur.

本発明の糖化溶液の製造方法では、まず、前記前処理後、アンモニアを気化させて分離することにより糖化前処理物を得る。前記糖化前処理物はアンモニアを気化させて分離することが可能な程度の温度となっており、該温度は前記耐熱性β−キシロシダーゼを添加すると糖化阻害反応が急激に進行する温度であるが、前記耐熱性キシラナーゼは該糖化阻害反応を起こすことなく機能することができる。   In the method for producing a saccharified solution of the present invention, first, after pre-treatment, ammonia is vaporized and separated to obtain a pre-saccharification product. The pre-saccharification product has a temperature at which ammonia can be vaporized and separated, and the temperature is a temperature at which the saccharification inhibition reaction proceeds rapidly when the heat-resistant β-xylosidase is added, The thermostable xylanase can function without causing the saccharification inhibition reaction.

そこで、前記アンモニアを分離した後、前記糖化前処理物の温度が耐熱性β−キシロシダーゼを添加することによる糖化阻害反応を無視できる温度に降下するまでの第1の温度範囲にある間に、該糖化前処理物に耐熱性キシラナーゼを添加して第1の基質・糖化酵素混合物を得る。前記耐熱性キシラナーゼは、前記糖化前処理物の温度が前記第1の温度範囲にある間の高温域においても、前記糖化阻害反応を起こすことなく基質を糖化することができる。また、前記耐熱性キシラナーゼは、機能可能な温度範囲内であればより高温である方がより効率よく基質を糖化することができるので、前記糖化前処理物の温度が前記糖化阻害反応を無視できる温度まで降下する間の時間及び熱を有効に利用することができる。   Therefore, after separating the ammonia, while the temperature of the pre-saccharification product is in the first temperature range until the saccharification inhibition reaction due to the addition of the thermostable β-xylosidase falls to a temperature at which it can be ignored, A thermostable xylanase is added to the pre-saccharification product to obtain a first substrate / saccharification enzyme mixture. The thermostable xylanase can saccharify the substrate without causing the saccharification inhibiting reaction even in a high temperature range while the temperature of the pre-saccharification product is in the first temperature range. In addition, since the thermostable xylanase can saccharify the substrate more efficiently at a higher temperature as long as it is within a functional temperature range, the temperature of the pre-saccharification product can ignore the saccharification inhibition reaction. The time and heat during the temperature drop can be used effectively.

この結果、前記基質の少なくとも一部を、前記耐熱性キシラナーゼにより糖化処理して、効率よくオリゴ糖を生成させることができる。   As a result, at least a part of the substrate can be saccharified with the thermostable xylanase to efficiently generate oligosaccharides.

次に、前記第1の基質・糖化酵素混合物の温度が前記糖化阻害反応を無視できる温度から前記耐熱性β−キシロシダーゼが機能不能となる温度に降下するまでの第2の温度範囲にある間に、該第1の基質・糖化酵素混合物に該耐熱性β−キシロシダーゼを添加して第2の基質・糖化酵素混合物を得る。   Next, while the temperature of the first substrate / saccharifying enzyme mixture is in the second temperature range from the temperature at which the saccharification inhibiting reaction can be ignored to the temperature at which the thermostable β-xylosidase becomes incapable of functioning In addition, the thermostable β-xylosidase is added to the first substrate / saccharifying enzyme mixture to obtain a second substrate / saccharifying enzyme mixture.

前記第2の基質・糖化酵素混合物は、前記オリゴ糖と共に前記基質の残部を含む一方、前記糖化酵素として、前記耐熱性キシラナーゼと前記耐熱性β−キシロシダーゼとの両方を含んでいる。ここで、前記耐熱性キシラナーゼは、前記第2の温度範囲においても機能することができる。   The second substrate / saccharifying enzyme mixture contains the remainder of the substrate together with the oligosaccharide, while the saccharifying enzyme includes both the thermostable xylanase and the thermostable β-xylosidase. Here, the thermostable xylanase can also function in the second temperature range.

そこで、前記第2の基質・糖化酵素混合物では、前記第1の温度範囲において前記耐熱性キシラナーゼにより生成された前記オリゴ糖を前記耐熱性β−キシロシダーゼが糖化して単糖としてのキシロースを生成する。また、前記耐熱性キシラナーゼが前記基質の残部を糖化して新たなオリゴ糖を生成し、該オリゴ糖も前記耐熱性β−キシロシダーゼにより糖化されて単糖としてのキシロースが生成される。   Therefore, in the second substrate / saccharifying enzyme mixture, the thermostable β-xylosidase saccharifies the oligosaccharide produced by the thermostable xylanase in the first temperature range to produce xylose as a monosaccharide. . The thermostable xylanase saccharifies the remainder of the substrate to produce a new oligosaccharide, and the oligosaccharide is also saccharified by the thermostable β-xylosidase to produce xylose as a monosaccharide.

この結果、本発明の製造方法によれば、前記リグノセルロース系バイオマスから、高収率でキシロースを得ることができる。   As a result, according to the production method of the present invention, xylose can be obtained in high yield from the lignocellulosic biomass.

本発明の製造方法において、前記第1の温度範囲は例えば80〜50℃の範囲であり、前記第2の温度範囲は例えば50〜30℃の範囲である。   In the production method of the present invention, the first temperature range is, for example, 80 to 50 ° C, and the second temperature range is, for example, 50 to 30 ° C.

また、本発明の製造方法では、前記耐熱性キシラナーゼとしては、例えば、好熱菌Thermoascus aurantiacus由来の耐熱性キシラナーゼを用いることができる。また、前記耐熱性β−キシロシダーゼとしては、例えば、好熱菌Thermotoga maritima由来の耐熱性β−キシロシダーゼを用いることができる。   In the production method of the present invention, as the thermostable xylanase, for example, a thermostable xylanase derived from a thermophilic bacterium Thermoascus aurantiacus can be used. In addition, as the thermostable β-xylosidase, for example, a thermostable β-xylosidase derived from a thermophilic bacterium Thermotoga maritima can be used.

耐熱性キシラナーゼ及び耐熱性β−キシロシダーゼを用いてキシランを糖化することにより得られた糖化溶液の濃度を示すグラフ。The graph which shows the density | concentration of the saccharification solution obtained by saccharifying xylan using a thermostable xylanase and a thermostable beta-xylosidase. 本発明の製造方法により得られた糖化溶液の濃度を示すグラフ。The graph which shows the density | concentration of the saccharification solution obtained by the manufacturing method of this invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態の糖化溶液の製造方法では、まず、稲藁を目開き3mmのメッシュを通過する大きさに粉砕し、基質としてのリグノセルロース系バイオマスとする。   In the method for producing a saccharified solution of the present embodiment, first, rice straw is pulverized to a size that passes through a mesh with an opening of 3 mm to obtain lignocellulosic biomass as a substrate.

次に、前記リグノセルロース系バイオマスの乾燥質量に対し、25質量%の濃度のアンモニア水を、1:1の質量比となるように混合して基質混合物を得る。そして、前記基質混合物を例えば25℃の温度に100時間保持することにより、前記リグノセルロース系バイオマスの前処理を行う。前記前処理の結果、前記リグノセルロース系バイオマスに含まれるリグニンが解離され、又は該リグノセルロース系バイオマスが膨潤される。   Next, ammonia water having a concentration of 25% by mass is mixed with the dry mass of the lignocellulosic biomass in a mass ratio of 1: 1 to obtain a substrate mixture. And the said lignocellulosic biomass is pre-processed by hold | maintaining the said substrate mixture at the temperature of 25 degreeC for 100 hours, for example. As a result of the pretreatment, lignin contained in the lignocellulosic biomass is dissociated or the lignocellulosic biomass is swollen.

前記前処理が終了したならば、次に前記基質混合物をアンモニアの沸点以上の温度、例えば80℃の温度に加熱することにより、アンモニアを気化させて分離し、糖化前処理物を得る。前記糖化前処理物は、その全量に対し例えば10〜26質量%の濃度の前記基質を含んでいる。   When the pretreatment is completed, the substrate mixture is then heated to a temperature not lower than the boiling point of ammonia, for example, a temperature of 80 ° C., thereby vaporizing and separating the ammonia to obtain a pre-saccharification product. The pre-saccharification product contains the substrate at a concentration of, for example, 10 to 26% by mass with respect to the total amount.

次に、前記糖化前処理物の温度が、前記80℃の温度から、耐熱性β−キシロシダーゼを添加することによる糖化阻害反応を無視できる温度、例えば50℃の温度に降下するまでの第1の温度範囲にある間に、該糖化前処理物に耐熱性キシラナーゼを添加して第1の基質・糖化酵素混合物を得る。前記第1の基質・糖化酵素混合物は、その全量に対し例えば0.015〜0.5質量%の濃度の前記耐熱性キシラナーゼを含んでいる。   Next, the first pre-saccharification product temperature is lowered from the temperature of 80 ° C. to a temperature at which saccharification-inhibiting reaction caused by addition of heat-resistant β-xylosidase can be ignored, for example, 50 ° C. While in the temperature range, a thermostable xylanase is added to the pre-saccharification product to obtain a first substrate / saccharification enzyme mixture. The first substrate / saccharifying enzyme mixture contains the thermostable xylanase at a concentration of, for example, 0.015 to 0.5% by mass with respect to the total amount thereof.

前記耐熱性キシラナーゼとしては、例えば、好熱菌Thermoascus aurantiacus由来のものを用いることができる。また、前記耐熱性β−キシロシダーゼとしては、例えば、好熱菌Thermotoga maritima由来のものを用いることができる。   As the thermostable xylanase, for example, those derived from a thermophilic bacterium Thermoascus aurantiacus can be used. Moreover, as said thermostable (beta) -xylosidase, the thing derived from a thermophilic bacterium Thermotoga maritima can be used, for example.

耐熱性キシラナーゼは、その機能可能な温度範囲内であれば温度が高いほど活発に機能するので、前記糖化前処理物の温度が前記第1の温度範囲のうち、できるだけ高い温度にあるときに該糖化前処理物に添加することが好ましい。   Since the thermostable xylanase functions more actively as the temperature is higher than the functional temperature range, when the temperature of the pre-saccharification product is as high as possible in the first temperature range, It is preferable to add to the pre-saccharification product.

次に、前記第1の基質・糖化酵素混合物を、前記第1の温度範囲に12〜36時間の範囲の時間、例えば24時間保持する。このようにすることにより、前記第1の基質・糖化酵素混合物に含まれる基質の一部を前記耐熱性キシラナーゼにより糖化し、オリゴ糖としてのキシロビオースを生成させる。   Next, the first substrate / saccharifying enzyme mixture is held in the first temperature range for a time in the range of 12 to 36 hours, for example, 24 hours. By doing so, a part of the substrate contained in the first substrate / saccharifying enzyme mixture is saccharified with the thermostable xylanase to generate xylobiose as an oligosaccharide.

次に、前記第1の基質・糖化酵素混合物の温度が前記糖化阻害反応を無視できる温度、例えば50℃の温度に降下したならば、該第1の基質・糖化酵素混合物に該耐熱性β−キシロシダーゼを添加して第2の基質・糖化酵素混合物を得る。前記耐熱性β−キシロシダーゼは、前記第1の基質・糖化酵素混合物の温度が該耐熱性β−キシロシダーゼが機能不能となる温度、例えば30℃の温度に降下するまでの第2の温度範囲にある間に、該第1の基質・糖化酵素混合物に添加する。   Next, when the temperature of the first substrate / saccharifying enzyme mixture falls to a temperature at which the saccharification inhibiting reaction can be ignored, for example, 50 ° C., the thermostable β- Xylosidase is added to obtain a second substrate / saccharifying enzyme mixture. The thermostable β-xylosidase is in a second temperature range until the temperature of the first substrate / saccharifying enzyme mixture falls to a temperature at which the thermostable β-xylosidase becomes inoperable, for example, a temperature of 30 ° C. In the meantime, it is added to the first substrate / saccharifying enzyme mixture.

次に、前記第2の基質・糖化酵素混合物を、前記第2の温度範囲に24〜72時間の範囲の時間、例えば48時間保持する。このようにすることにより、前記第2の基質・糖化酵素混合物に含まれるオリゴ糖としてのキシロビオースを前記耐熱性β−キシロシダーゼにより糖化し、単糖としてのキシロースを生成させる。   Next, the second substrate / saccharifying enzyme mixture is held in the second temperature range for a time in the range of 24 to 72 hours, for example, 48 hours. By doing so, xylobiose as an oligosaccharide contained in the second substrate / saccharifying enzyme mixture is saccharified by the thermostable β-xylosidase to produce xylose as a monosaccharide.

また、前記第2の基質・糖化酵素混合物は、前記第1の基質・糖化酵素混合物に含まれていた基質のうち、前記耐熱性キシラナーゼによりオリゴ糖に糖化されなかった基質の残部と、該耐熱性キシラナーゼとを含んでいる。そこで、前記基質の残部は、前記第2の基質・糖化酵素混合物が前記第2の温度範囲に保持されている間に、前記耐熱性キシラナーゼによりオリゴ糖に糖化され、さらに該オリゴ糖が前記耐熱性β−キシロシダーゼにより糖化され、単糖としてのキシロースが生成される。   In addition, the second substrate / saccharifying enzyme mixture includes the remainder of the substrate that has not been saccharified into oligosaccharides by the thermostable xylanase among the substrates contained in the first substrate / saccharifying enzyme mixture, Contains xylanase. Therefore, the remainder of the substrate is saccharified into oligosaccharides by the thermostable xylanase while the second substrate / saccharifying enzyme mixture is maintained in the second temperature range, and the oligosaccharides are further converted into the thermostable compounds. Saccharified by sex β-xylosidase to produce xylose as a monosaccharide.

従って、本実施形態の糖化溶液の製造方法によれば、前記リグノセルロース系バイオマスから、高収率でキシロースを得ることができ、高濃度のキシロースを含む糖化溶液を得ることができる。   Therefore, according to the method for producing a saccharified solution of the present embodiment, xylose can be obtained in a high yield from the lignocellulosic biomass, and a saccharified solution containing a high concentration of xylose can be obtained.

次に、本発明の実施例及び比較例を示す。   Next, examples and comparative examples of the present invention are shown.

〔実施例1〕
本実施例では、前記糖化前処理物のモデルとして、5質量%の濃度のキシラン(シグマアルドリッチ社製)水溶液を用いて糖化溶液を製造した。
[Example 1]
In this example, a saccharification solution was produced using a 5% by mass xylan (Sigma Aldrich) aqueous solution as a model of the pre-saccharification product.

本実施例では、まず、前記キシラン水溶液を第1の温度範囲に相当する75℃の温度に加熱し、終濃度が0.1質量%となるように好熱菌Thermoascus aurantiacus由来の耐熱性キシラナーゼを添加し、該温度に24時間保持した。前記耐熱性キシラナーゼは自社内で構築したキシラナーゼ生産麹菌の培養液を濃縮して作製した。前記耐熱性キシラナーゼの構築は次のようにして行った。   In this example, first, the aqueous xylan solution is heated to a temperature of 75 ° C. corresponding to the first temperature range, and a thermostable xylanase derived from a thermophilic bacterium Thermoascus aurantiacus is added so that the final concentration becomes 0.1% by mass. Added and held at temperature for 24 hours. The thermostable xylanase was prepared by concentrating a culture solution of xylanase-producing koji mold constructed in-house. The thermostable xylanase was constructed as follows.

まず、配列番号1の好熱菌Thermoascus aurantiacus由来のエンドキシラナーゼ遺伝子を、好熱菌Thermoascus aurantiacus由来のエンドキシラナーゼ遺伝子(タカラバイオ株式会社製)を鋳型とし、配列番号2,3のプライマーとDNAポリメラーゼ(東洋紡績株式会社製、商品名:KOD−plus)とを用いてPCR増幅した。得られたPCR増幅産物をPCR精製キット(QIAGEN社製、商品名:QIAquick PCR purification kit)を用いて精製し、エンドキシラナーゼ遺伝子EXを得た。   First, using the endoxylanase gene derived from the thermophilic bacterium Thermoascus aurantiacus of SEQ ID NO: 1 and the endoxylanase gene derived from the thermophilic bacterium Thermoascus aurantiacus (manufactured by Takara Bio Inc.) as a template, the primer of SEQ ID NO: 2 and DNA polymerase ( PCR amplification was performed using Toyobo Co., Ltd. (trade name: KOD-plus). The obtained PCR amplification product was purified using a PCR purification kit (trade name: QIAquick PCR purification kit, manufactured by QIAGEN) to obtain an endoxylanase gene EX.

次に、麹菌Aspergillus oryzae由来の硝酸還元酵素遺伝子を、麹菌RIB40株のゲノムDNA遺伝子を鋳型とし、配列番号4,5のプライマーと前記DNAポリメラーゼとを用いてPCR増幅した。得られたPCR増幅産物とプラスミドベクターpBR322(タカラバイオ株式会社製)とを、制限酵素AvaI、NdeIを用いて37℃で処理した後、アガロースゲル電気泳動で切り出した。切り出しは、ゲル抽出キット(QIAGEN社製、商品名:QIAquick Gel Extraction Kit)を用いて行った。   Next, a nitrate reductase gene derived from Aspergillus oryzae was PCR-amplified using the genomic DNA gene of Aspergillus oryzae RIB40 strain as a template and the primers of SEQ ID NOs: 4 and 5 and the DNA polymerase. The obtained PCR amplification product and plasmid vector pBR322 (manufactured by Takara Bio Inc.) were treated with restriction enzymes AvaI and NdeI at 37 ° C., and then cut out by agarose gel electrophoresis. The cutting was performed using a gel extraction kit (trade name: QIAquick Gel Extraction Kit, manufactured by QIAGEN).

次に、前記PCR増幅産物と前記プラスミドベクターpBR322とを、DNA ligation Kit(タカラバイオ株式会社製)を用いてライゲーションし、大腸菌E.coli JM109株に形質転換した。この結果、プラスミドpBR−niaDを得た。   Next, the PCR amplification product and the plasmid vector pBR322 were ligated using a DNA ligation kit (manufactured by Takara Bio Inc.). E. coli strain JM109 was transformed. As a result, plasmid pBR-niaD was obtained.

次に、麹菌由来のagdAターミネーター遺伝子を、麹菌RIB40株のゲノムDNA遺伝子を鋳型とし、配列番号6,7のプライマーと前記DNAポリメラーゼとを用いてPCR増幅した。得られたPCR増幅産物と前記プラスミドpBR−niaDとを、制限酵素SalI、AvaIを用いて37℃で処理した後、アガロースゲル電気泳動で切り出した。切り出しは、前記ゲル抽出キットを用いて行った。   Next, the agdA terminator gene derived from Aspergillus was PCR amplified using the genomic DNA gene of Aspergillus oryzae RIB40 strain as a template and using the primers of SEQ ID NOs: 6 and 7 and the DNA polymerase. The obtained PCR amplification product and the plasmid pBR-niaD were treated with restriction enzymes SalI and AvaI at 37 ° C., and then cut out by agarose gel electrophoresis. The excision was performed using the gel extraction kit.

次に、前記PCR増幅産物と前記プラスミドpBR−niaDとを、前記DNA ligation Kitを用いてライゲーションし、大腸菌E.coli JM109株に形質転換した。この結果、プラスミドpBR−TagdA−niaDを得た。   Next, the PCR amplification product and the plasmid pBR-niaD were ligated using the DNA ligation kit. E. coli strain JM109 was transformed. As a result, plasmid pBR-TagdA-niaD was obtained.

次に、麹菌由来のenoAプロモーター遺伝子を、麹菌RIB40株のゲノムDNA遺伝子を鋳型とし、配列番号8,9のプライマーと前記DNAポリメラーゼとを用いてPCR増幅した。得られたPCR増幅産物と前記プラスミドpBR−TagdA−niaDとを、制限酵素NheI、SalIを用いて37℃で処理した後、アガロースゲル電気泳動で切り出した。切り出しは、前記ゲル抽出キットを用いて行った。   Next, the enoA promoter gene derived from Neisseria gonorrhoeae was PCR amplified using the genomic DNA gene of Neisseria gonorrhoeae RIB40 as a template and using the primers of SEQ ID NOs: 8 and 9 and the DNA polymerase. The obtained PCR amplification product and the plasmid pBR-TagdA-niaD were treated with restriction enzymes NheI and SalI at 37 ° C., and then cut out by agarose gel electrophoresis. The excision was performed using the gel extraction kit.

次に、前記PCR増幅産物と前記プラスミドpBR−TagdA−niaDとを、前記DNA ligation Kitを用いてライゲーションし、大腸菌E.coli JM109株に形質転換した。この結果、プラスミドpBR−PenoA−TagdA−niaDを得た。   Next, the PCR amplification product and the plasmid pBR-TagdA-niaD were ligated using the DNA ligation kit. E. coli strain JM109 was transformed. As a result, plasmid pBR-PenoA-TagdA-niaD was obtained.

次に、前記プラスミドpBR−PenoA−TagdA−niaDを、制限酵素SmaIを用いて30℃で処理した後、アガロースゲル電気泳動で切り出した。切り出しは、前記ゲル抽出キットを用いて行った。この結果、前記プラスミドpBR−PenoA−TagdA−niaDの制限酵素SmaI処理断片を得た。   Next, the plasmid pBR-PenoA-TagdA-niaD was treated with the restriction enzyme SmaI at 30 ° C. and then cut out by agarose gel electrophoresis. The excision was performed using the gel extraction kit. As a result, a restriction enzyme SmaI-treated fragment of the plasmid pBR-PenoA-TagdA-niaD was obtained.

次に、前記プラスミドpBR−PenoA−TagdA−niaDの制限酵素SmaI処理断片と前記エンドキシラナーゼ遺伝子EXとを、ディレクショナルクローニングキット(Clontech社製、商品名:In−Fusion HD Cloning Kit)を用いて連結し、エンドキシラナーゼ麹菌発現用ベクターとして配列番号10のプラスミドpBR−PenoA−EX−TagdA−niaDを得た。次に、前記プラスミドpBR−PenoA−EX−TagdA−niaDを、Stellar Competent Cells(Clontech社製)に形質転換し、エンドキシラナーゼ大腸菌形質転換株を得た。次に、得られたエンドキシラナーゼ大腸菌形質転換株を、100μg/mLアンピシリン含有LB培地で37℃、180rpmで1晩培養し、得られた培養物からミニプレップキット(QIAGEN社製、商品名:QIAquick Miniprep Kit)を用いて、前記プラスミドpBR−PenoA−EX−TagdA−niaDを大量調整した。   Next, the restriction enzyme SmaI-treated fragment of the plasmid pBR-PenoA-TagdA-niaD and the endoxylanase gene EX were ligated using a directional cloning kit (Clontech, trade name: In-Fusion HD Cloning Kit). As a result, the plasmid pBR-PenoA-EX-TagdA-niaD of SEQ ID NO: 10 was obtained as a vector for expressing the endoxylanase bacilli. Next, the plasmid pBR-PenoA-EX-TagdA-niaD was transformed into Stellar Competent Cells (manufactured by Clontech) to obtain an endoxylanase Escherichia coli transformed strain. Next, the obtained endoxylanase E. coli transformed strain was cultured overnight at 37 ° C. and 180 rpm in an LB medium containing 100 μg / mL ampicillin, and a miniprep kit (trade name: QIAquick, manufactured by QIAGEN) was obtained from the resulting culture. The plasmid pBR-PenoA-EX-TagdA-niaD was prepared in a large amount using Miniprep Kit).

次に、PEG−カルシウム法により定法に従って、前記プラスミドpBR−PenoA−EX−TagdA−niaDを用い、独立行政法人酒類総合研究所から入手した麹菌Aspergillus oryzaeniaD300株を形質転換した。次に、ツアペクドックス(Czapek−Dox)培地(3質量/容量%デキストリン、0.1質量/容量%リン酸2水素カリウム、0.2質量/容量%塩化カリウム、0.05質量/容量%硫酸マグネシウム、0.001質量/容量%硫酸鉄、0.3質量/容量%硝酸ナトリウム)で生育できる株を選択し、エンドキシラナーゼ麹菌形質転換株を得た。   Next, the Aspergillus oryzaenia D300 strain obtained from the National Liquor Research Institute was transformed using the plasmid pBR-PenoA-EX-TagdA-niaD according to a standard method by the PEG-calcium method. Next, a Czapek-Dox medium (3 mass / volume% dextrin, 0.1 mass / volume% potassium dihydrogen phosphate, 0.2 mass / volume% potassium chloride, 0.05 mass / volume%) A strain capable of growing with magnesium sulfate (0.001 mass / volume% iron sulfate, 0.3 mass / volume% sodium nitrate) was selected to obtain an endoxylanase bacilli transformed strain.

次に、前記エンドキシラナーゼ麹菌形質転換株を、前記ツアペクドックス培地で胞子形成させ、滅菌水で胞子を回収した。次に、500mL三角フラスコにPD液体培地(2質量/容量%デキストリン、1質量/容量%ポリペプトン、0.1質量/容量%カザミノ酸、0.5質量/容量%リン酸2水素カリウム、0.05質量/容量%硫酸マグネシウム、0.1質量/容量%硝酸ナトリウム)100mLを取り、これに前記胞子を最終胞子濃度1×10/mLとなるように植菌した。次に、30℃で3日間の液体培養を行って、目的遺伝子であるエンドキシラナーゼが培地中に分泌発現されたキシラナーゼ生産麹菌の培養液を得た。 Next, the endoxylanase bacilli transformed strain was sporulated in the tourpex medium, and the spores were collected with sterile water. Next, in a 500 mL Erlenmeyer flask, PD liquid medium (2 mass / volume% dextrin, 1 mass / volume% polypeptone, 0.1 mass / volume% casamino acid, 0.5 mass / volume% potassium dihydrogen phosphate,. (05 mass / volume% magnesium sulfate, 0.1 mass / volume% sodium nitrate) (100 mL) was taken, and the spores were inoculated to a final spore concentration of 1 × 10 4 / mL. Next, liquid culture was performed at 30 ° C. for 3 days to obtain a culture solution of xylanase-producing gonococci in which endoxylanase, the target gene, was secreted and expressed in the medium.

次に、前記耐熱性キシラナーゼを添加したキシラン水溶液を冷却し、その温度を、75℃から第2の温度範囲に相当する30℃に、30分かけて降下させた。そして、前記30℃の温度で、終濃度が0.1質量%となるように好熱菌Thermotoga maritima由来の耐熱性β−キシロシダーゼを添加し、該温度に47.5時間保持して、糖化溶液を得た。   Next, the xylan aqueous solution to which the thermostable xylanase was added was cooled, and the temperature was lowered from 75 ° C. to 30 ° C. corresponding to the second temperature range over 30 minutes. Then, a thermostable β-xylosidase derived from the thermophilic bacterium Thermotoga maritima is added at the temperature of 30 ° C. so that the final concentration is 0.1% by mass, and the saccharified solution is maintained at the temperature for 47.5 hours. Got.

前記耐熱性β−キシロシダーゼは自社内で構築したβ−キシロシダーゼ生産大腸菌の培養液をタンパク質抽出試薬(メルク社製、商品名:BugBuster)で処理し、得られたタンパク質抽出液を濃縮して作製した。前記耐熱性β−キシロシダーゼの構築は次のようにして行った。   The thermostable β-xylosidase was prepared by treating a culture solution of β-xylosidase-producing Escherichia coli constructed in-house with a protein extraction reagent (trade name: BugBuster, manufactured by Merck) and concentrating the obtained protein extract. . The thermostable β-xylosidase was constructed as follows.

まず、配列番号11の好熱菌Thermotoga maritima由来のβ−キシロシダーゼ遺伝子BXを、American Type Culture Collection(ATCC)から入手した好熱菌Thermotoga maritimaのゲノムDNAを鋳型とし、配列番号12,13のプライマーとDNAポリメラーゼ(東洋紡績株式会社製、商品名:KOD−plus)とを用いてPCR増幅した。得られたPCR増幅産物をPCR精製キット(QIAGEN社製、商品名:QIAquick PCR purification kit)を用いて精製した。   First, a β-xylosidase gene BX derived from the thermophilic bacterium Thermotoga maritima of SEQ ID NO: 11 was used as a template with the genomic DNA of the thermophilic bacterium Thermotoga maritima obtained from American Type Culture Collection (ATCC), and primers of SEQ ID NOS: 12 and 13; PCR amplification was performed using DNA polymerase (manufactured by Toyobo Co., Ltd., trade name: KOD-plus). The obtained PCR amplification product was purified using a PCR purification kit (QIAGEN, trade name: QIAquick PCR purification kit).

次に、得られたPCR増幅産物とプラスミドベクターpET28(a)(Novagen社製)とを、制限酵素NcoI、NotIを用いて37℃で処理した後、アガロースゲル電気泳動で切り出した。切り出しは、ゲル抽出キット(QIAGEN社製、商品名:QIAquick Gel Extraction Kit)を用いて行った。この結果、前記プラスミドベクターpET28(a)と好熱菌Thermotoga maritima由来のβ−キシロシダーゼ遺伝子BXとの制限酵素処理断片である配列番号14のプラスミドpET28(a)−BXを得た。   Next, the obtained PCR amplification product and plasmid vector pET28 (a) (manufactured by Novagen) were treated with restriction enzymes NcoI and NotI at 37 ° C., and then cut out by agarose gel electrophoresis. The cutting was performed using a gel extraction kit (trade name: QIAquick Gel Extraction Kit, manufactured by QIAGEN). As a result, plasmid pET28 (a) -BX of SEQ ID NO: 14, which is a restriction enzyme-treated fragment of the plasmid vector pET28 (a) and the β-xylosidase gene BX derived from the thermophilic bacterium Thermotoga maritima, was obtained.

次に、前記プラスミドpET28(a)−BXを、DNA ligation Kit(タカラバイオ株式会社製)を用いて連結し、大腸菌E.coli BL21株に形質転換した。この結果、プラスミドpET28(a)−BX−pET28(a)の制限酵素NcoI、NotI間に好熱菌Thermotoga maritima由来のβ−キシロシダーゼ遺伝子BXが導入された形質転換体を得た。   Next, the plasmid pET28 (a) -BX was ligated using DNA ligation Kit (manufactured by Takara Bio Inc.). E. coli strain BL21 was transformed. As a result, a transformant was obtained in which the β-xylosidase gene BX derived from the thermophilic bacterium Thermotoga maritima was introduced between the restriction enzymes NcoI and NotI of the plasmid pET28 (a) -BX-pET28 (a).

次に、前記形質転換体を、カナマイシン30μg/mLとクロラムフェニコール50μg/mLとを含むLB培地で1晩培養し、得られた培養物100μLをLB培地に植菌し、37℃で2時間培養した。次に、培養液にイソプロピル−β−チオガラクトピラノシド(IPTG)を終濃度1mMになるように加え、さらに2時間培養し、前記β−キシロシダーゼ生産大腸菌の培養液を得た。   Next, the transformant was cultured overnight in an LB medium containing 30 μg / mL kanamycin and 50 μg / mL chloramphenicol, and 100 μL of the obtained culture was inoculated into the LB medium, and 2 ° C. at 37 ° C. Incubate for hours. Next, isopropyl-β-thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM and further cultured for 2 hours to obtain a culture solution of the β-xylosidase-producing Escherichia coli.

次に、本実施例で得られた糖化溶液中のキシロビオース及びキシロースの濃度を高速液体クロマトグラフィによって定量した。結果を図1に示す。   Next, the concentrations of xylobiose and xylose in the saccharified solution obtained in this example were quantified by high performance liquid chromatography. The results are shown in FIG.

〔比較例1〕
本比較例では、前記キシラン水溶液を第1の温度範囲に相当する75℃の温度に加熱し、前記耐熱性キシラナーゼと前記耐熱性β−キシロシダーゼを同時に添加し、該温度に72時間保持した以外は実施例1と全く同一にして糖化溶液を得た。
[Comparative Example 1]
In this comparative example, except that the xylan aqueous solution was heated to a temperature of 75 ° C. corresponding to the first temperature range, the thermostable xylanase and the thermostable β-xylosidase were added simultaneously, and the temperature was maintained for 72 hours. A saccharification solution was obtained in exactly the same manner as in Example 1.

次に、本比較例で得られた糖化溶液中のキシロビオース及びキシロースの濃度を高速液体クロマトグラフィによって定量した。結果を図1に示す。   Next, the concentrations of xylobiose and xylose in the saccharified solution obtained in this comparative example were quantified by high performance liquid chromatography. The results are shown in FIG.

〔比較例2〕
本比較例では、前記キシラン水溶液を第2の温度範囲に相当する30℃の温度に加熱し、前記耐熱性キシラナーゼと前記耐熱性β−キシロシダーゼを同時に添加し、該温度に72時間保持した以外は実施例1と全く同一にして糖化溶液を得た。
[Comparative Example 2]
In this comparative example, except that the aqueous xylan solution was heated to a temperature of 30 ° C. corresponding to the second temperature range, the thermostable xylanase and the thermostable β-xylosidase were added simultaneously, and the temperature was maintained for 72 hours. A saccharification solution was obtained in exactly the same manner as in Example 1.

次に、本比較例で得られた糖化溶液中のキシロビオース及びキシロースの濃度を高速液体クロマトグラフィによって定量した。結果を図1に示す。   Next, the concentrations of xylobiose and xylose in the saccharified solution obtained in this comparative example were quantified by high performance liquid chromatography. The results are shown in FIG.

図1から、本実施例の製造方法によれば、高収率でキシロースを得ることができ、高濃度のキシロースを含む糖化溶液を得ることができることが明らかである。これに対し、第1の温度範囲に相当する75℃の温度で前記耐熱性キシラナーゼと前記耐熱性β−キシロシダーゼを同時に添加した比較例1の製造方法では、実施例1で得られた糖化溶液に対し、キシロースの濃度が著しく低いことが明らかである。これは、前記第1の温度範囲に相当する温度で前記耐熱性β−キシロシダーゼを添加したために、糖化阻害反応が起きて前記基質(キシラン)の一部が失われたためと考えられる。   FIG. 1 clearly shows that according to the production method of this example, xylose can be obtained in a high yield and a saccharification solution containing a high concentration of xylose can be obtained. In contrast, in the production method of Comparative Example 1 in which the thermostable xylanase and the thermostable β-xylosidase were simultaneously added at a temperature of 75 ° C. corresponding to the first temperature range, the saccharification solution obtained in Example 1 In contrast, the xylose concentration is clearly lower. This is presumably because the heat-resistant β-xylosidase was added at a temperature corresponding to the first temperature range, so that a saccharification inhibition reaction occurred and a part of the substrate (xylan) was lost.

また、第2の温度範囲に相当する30℃の温度で前記耐熱性キシラナーゼと前記耐熱性β−キシロシダーゼを同時に添加した比較例2の製造方法では、キシロースの濃度は比較例1で得られた糖化溶液に比較すれば高いものの、実施例1で得られた糖化溶液には及ばないことが明らかである。これは、前記糖化阻害反応は回避し得るものの、前記第2の温度範囲に相当する温度で前記耐熱性キシラナーゼを添加したために、該耐熱性キシラナーゼが十分に機能しなかったためと考えられる。   Further, in the production method of Comparative Example 2 in which the thermostable xylanase and the thermostable β-xylosidase were simultaneously added at a temperature of 30 ° C. corresponding to the second temperature range, the saccharification concentration obtained in Comparative Example 1 was used as the xylose concentration. Although it is high compared with the solution, it is clear that it does not reach the saccharification solution obtained in Example 1. This is presumably because the thermostable xylanase did not function sufficiently because the thermostable xylanase was added at a temperature corresponding to the second temperature range, although the saccharification inhibition reaction could be avoided.

〔実施例2〕
本実施例では、まず、稲藁を目開き3mmのメッシュを通過する大きさに粉砕し、基質としてのリグノセルロース系バイオマスを調製した。次に、前記リグノセルロース系バイオマスの乾燥質量に対し、25質量%の濃度のアンモニア水を、1:1の質量比となるように混合して基質混合物を得た。そして、前記基質混合物を25℃の温度に100時間保持して、前記リグノセルロース系バイオマスの前処理を行い、該リグノセルロース系バイオマスに含まれるリグニンを解離させ、又は該リグノセルロース系バイオマスを膨潤させた。
[Example 2]
In this example, first, rice straw was pulverized to a size passing through a mesh with an opening of 3 mm to prepare lignocellulosic biomass as a substrate. Next, with respect to the dry mass of the lignocellulosic biomass, ammonia water having a concentration of 25% by mass was mixed at a mass ratio of 1: 1 to obtain a substrate mixture. Then, the substrate mixture is kept at a temperature of 25 ° C. for 100 hours to pretreat the lignocellulosic biomass, dissociate lignin contained in the lignocellulosic biomass, or swell the lignocellulosic biomass. It was.

次に、前記前処理後の前記基質混合物をアンモニアの沸点以上の80℃の温度に加熱することにより、アンモニアを気化させて分離し、糖化前処理物を得た。前記糖化前処理物は、その全量に対し例えば20質量%の濃度の前記基質を含んでいた。   Next, the substrate mixture after the pretreatment was heated to a temperature of 80 ° C. that is equal to or higher than the boiling point of ammonia to vaporize and separate the ammonia to obtain a pre-saccharification product. The saccharification pretreatment product contained the substrate at a concentration of, for example, 20% by mass relative to the total amount.

次に、前記基質混合物の温度が、第1の温度範囲に相当する75℃の温度に降下した時点で、終濃度が0.15質量%となるように実施例1で用いたものと同一の耐熱性キシラナーゼを添加して、第1の基質・糖化酵素混合物を得た。そして、前記第1の基質・糖化酵素混合物を前記75℃の温度に24時間保持した。   Next, when the temperature of the substrate mixture drops to a temperature of 75 ° C. corresponding to the first temperature range, the same as that used in Example 1 so that the final concentration is 0.15% by mass. Thermostable xylanase was added to obtain a first substrate / saccharifying enzyme mixture. The first substrate / saccharifying enzyme mixture was held at the temperature of 75 ° C. for 24 hours.

次に、第1の基質・糖化酵素混合物を冷却し、その温度を、75℃から第2の温度範囲に相当する30℃に、30分かけて降下させた。そして、前記30℃の温度で、終濃度が0.15質量%となるように実施例1で用いたものと同一の耐熱性β−キシロシダーゼを添加した。また、同時に終濃度が0.5質量%となるように、セルロース分解酵素としてアクレモニウム・セルロリティカスの培養液を添加して、第2の基質・糖化酵素混合物を得た。そして、前記第2の基質・糖化酵素混合物を前記30℃の温度に47.5時間保持した糖化溶液を得た。   Next, the first substrate / saccharifying enzyme mixture was cooled, and the temperature was lowered from 75 ° C. to 30 ° C. corresponding to the second temperature range over 30 minutes. Then, at the temperature of 30 ° C., the same thermostable β-xylosidase as that used in Example 1 was added so that the final concentration was 0.15% by mass. At the same time, a culture solution of Acremonium cellulolyticus was added as a cellulolytic enzyme so that the final concentration was 0.5% by mass to obtain a second substrate / saccharifying enzyme mixture. And the saccharification solution which hold | maintained the said 2nd substrate and saccharifying enzyme mixture for 47.5 hours at the said 30 degreeC temperature was obtained.

次に、本実施例で得られた糖化溶液中のセルロース及びキシロースの濃度を高速液体クロマトグラフィによって定量した。結果を図2に示す。   Next, the cellulose and xylose concentrations in the saccharified solution obtained in this example were quantified by high performance liquid chromatography. The results are shown in FIG.

図2から、本実施例の製造方法によれば、単糖としてグルコースと共に高濃度のキシロースを含む糖化溶液を得ることができることが明らかである。   From FIG. 2, it is clear that according to the production method of this example, a saccharification solution containing high concentration of xylose together with glucose as a monosaccharide can be obtained.

Claims (1)

基質としてのリグノセルロース系バイオマスにアンモニア水を混合してなる基質混合物を所定温度に所定時間保持して前処理した後、アンモニアを気化させて分離することにより糖化前処理物を得る工程と、
該糖化前処理物に糖化酵素を添加してなる基質・糖化酵素混合物を糖化処理することにより糖化溶液を得る工程とを備える糖化溶液の製造方法において、
該アンモニアを分離した後、該糖化前処理物の温度が耐熱性β−キシロシダーゼを添加することによる糖化阻害反応を無視できる温度に降下するまでの第1の温度範囲にある間に、該糖化前処理物に耐熱性キシラナーゼを添加して第1の基質・糖化酵素混合物を得た後、該基質の少なくとも一部を糖化処理してオリゴ糖を生成させる工程と、
該第1の基質・糖化酵素混合物の温度が該糖化阻害反応を無視できる温度から該耐熱性β−キシロシダーゼが機能不能となる温度に降下するまでの第2の温度範囲にある間に、該第1の基質・糖化酵素混合物に該耐熱性β−キシロシダーゼを添加して第2の基質・糖化酵素混合物を得た後、該基質及び該オリゴ糖を糖化処理して単糖を生成させる工程とを備え
前記第1の温度範囲は80〜75℃の範囲であり、前記第2の温度範囲は50〜30℃の範囲であり、
前記耐熱性キシラナーゼは、好熱菌Thermoascus aurantiacus由来であり、
前記耐熱性β−キシロシダーゼは、好熱菌Thermotoga maritima由来であることを特徴とする糖化溶液の製造方法。
A step of obtaining a pre-saccharification product by vaporizing and separating ammonia after pre-treating a substrate mixture obtained by mixing ammonia water with lignocellulosic biomass as a substrate at a predetermined temperature for a predetermined time;
In a method for producing a saccharification solution, comprising a step of saccharifying a substrate / saccharification enzyme mixture obtained by adding a saccharification enzyme to the pre-saccharification product,
After the ammonia is separated, the temperature of the pre-saccharification product is within the first temperature range until the saccharification inhibition reaction due to the addition of thermostable β-xylosidase falls to a temperature at which it can be ignored. Adding a thermostable xylanase to the treated product to obtain a first substrate / saccharifying enzyme mixture, and then saccharifying at least a part of the substrate to produce an oligosaccharide;
While the temperature of the first substrate / saccharifying enzyme mixture is in a second temperature range from a temperature at which the saccharification inhibiting reaction can be ignored to a temperature at which the thermostable β-xylosidase becomes inoperable, Adding the thermostable β-xylosidase to the first substrate / saccharifying enzyme mixture to obtain a second substrate / saccharifying enzyme mixture, and then saccharifying the substrate and the oligosaccharide to produce a monosaccharide; equipped with a,
The first temperature range is in the range of 80-75 ° C, the second temperature range is in the range of 50-30 ° C,
The thermostable xylanase is derived from a thermophilic bacterium Thermoascus aurantiacus,
The heat-resistant β- xylosidase method of manufacturing a glycosylated solution characterized in origin der Rukoto thermophile Thermotoga maritima.
JP2013028190A 2013-02-15 2013-02-15 Method for producing saccharification solution Expired - Fee Related JP6153341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028190A JP6153341B2 (en) 2013-02-15 2013-02-15 Method for producing saccharification solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028190A JP6153341B2 (en) 2013-02-15 2013-02-15 Method for producing saccharification solution

Publications (2)

Publication Number Publication Date
JP2014155464A JP2014155464A (en) 2014-08-28
JP6153341B2 true JP6153341B2 (en) 2017-06-28

Family

ID=51576811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028190A Expired - Fee Related JP6153341B2 (en) 2013-02-15 2013-02-15 Method for producing saccharification solution

Country Status (1)

Country Link
JP (1) JP6153341B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869202B1 (en) * 2005-04-12 2018-02-14 E. I. du Pont de Nemours and Company Treatment of biomass to obtain fermentable sugars
NZ593541A (en) * 2008-12-22 2012-12-21 Univ California Acidothermus cellulolyticus xylanase
MY171749A (en) * 2009-05-26 2019-10-27 Arvind Mallinath Lali Method for production of fermentable sugars from biomass

Also Published As

Publication number Publication date
JP2014155464A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
AU2016329090B2 (en) Enzymatic synthesis of D-tagatose
Gao et al. Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides
US20190161772A1 (en) Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
AU2017376628B2 (en) Enzymatic production of D-allulose
Li et al. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor
JP6087854B2 (en) Method for producing ethanol using recombinant yeast
Cheng et al. Integrated production of xylitol and ethanol using corncob
Santos et al. Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse
Hasunuma et al. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses
WO2010009515A1 (en) Enzyme hydrolysis method
Das et al. Statistical optimization of fermentation process parameters by Taguchi orthogonal array design for improved bioethanol production
JP5745237B2 (en) Method for producing sugar and alcohol from cellulosic biomass
Chen et al. Cascade synthesis of rare ketoses by whole cells based on L-rhamnulose-1-phosphate aldolase
JP6153341B2 (en) Method for producing saccharification solution
Sun et al. Heterologous expression of Talaromyces emersonii cellobiohydrolase Cel7A in Trichoderma reesei increases the efficiency of corncob residues saccharification
Kim et al. Enhanced saccharification of reed and rice straws by the addition of β-1, 3-1, 4-glucanase with broad substrate specificity and calcium ion
Shaibani et al. Ethanol production from sugarcane bagasse by means of on-site produced and commercial enzymes; a comparative study
Tang et al. Development of a sugar isomerase cascade to convert D-xylose to rare sugars
KR20230012047A (en) Enzymatic production of allulose
AU2015261652B2 (en) Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
JP6447583B2 (en) Recombinant yeast and method for producing ethanol using the same
US20220235386A1 (en) Enzymatic production of fructose
PH12018000137A1 (en) Use of thermo-acidstable endoglucanase in the high temperature-acid hydrolysis of lignocellulosic materials
ONDÁŠ et al. Conversion of Corn Fiber into Fuel Ethanol
Bae et al. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R150 Certificate of patent or registration of utility model

Ref document number: 6153341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees