JP6151601B2 - Mounting device - Google Patents

Mounting device Download PDF

Info

Publication number
JP6151601B2
JP6151601B2 JP2013165525A JP2013165525A JP6151601B2 JP 6151601 B2 JP6151601 B2 JP 6151601B2 JP 2013165525 A JP2013165525 A JP 2013165525A JP 2013165525 A JP2013165525 A JP 2013165525A JP 6151601 B2 JP6151601 B2 JP 6151601B2
Authority
JP
Japan
Prior art keywords
film member
mounting apparatus
thermocompression bonding
temperature
bonding tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013165525A
Other languages
Japanese (ja)
Other versions
JP2015035493A (en
Inventor
新井 義之
義之 新井
進平 青木
進平 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2013165525A priority Critical patent/JP6151601B2/en
Publication of JP2015035493A publication Critical patent/JP2015035493A/en
Application granted granted Critical
Publication of JP6151601B2 publication Critical patent/JP6151601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、封止用の樹脂が予め形成された基板にチップ部品を実装する、実装装置に関する。   The present invention relates to a mounting apparatus for mounting a chip component on a substrate on which a sealing resin is previously formed.

半導体チップ等のチップ部品を基板に実装するフリップチップ実装の方法の一つに、基板に液状の樹脂を塗布するかフィルム状の樹脂を貼り付けた後にチップ部品を熱圧着ツールにより加熱圧着する実装方法がある。この実装方法では、基板とチップ部品の接合と、封止樹脂の硬化が一括で行える等のメリットがあるが、チップ部品からはみ出した樹脂が熱圧着ツールを汚す可能性がある。このため、熱圧着ツールとチップ部品の間に、フィルム部材を挟んで加熱圧着を行い、フィルム部材はチップ部品を順次実装する度に更新する方法が知られている。この方法では、フィルム部材を介して、チップ部品が熱圧着ツールに吸着保持される必要があるため、熱圧着ツールのチップ吸着穴に対向する位置のフィルム部材には通気孔が開いている必要がある。   One method of flip chip mounting in which chip components such as semiconductor chips are mounted on a substrate is a method in which a liquid resin is applied to the substrate or a film-like resin is applied and then the chip components are heated and bonded by a thermocompression bonding tool. There is a way. This mounting method has the merit that the substrate and the chip component can be bonded together and the sealing resin can be cured at once. However, the resin protruding from the chip component may contaminate the thermocompression bonding tool. For this reason, a method is known in which a film member is sandwiched between a thermocompression bonding tool and a chip component, and the film member is updated each time the chip components are sequentially mounted. In this method, since the chip component needs to be sucked and held by the thermocompression bonding tool via the film member, the film member at a position facing the chip suction hole of the thermocompression bonding tool needs to have a vent hole. is there.

このために、特許文献1では熱圧着ツールのチップ吸着穴に対向する位置のフィルム部材に通気孔を形成する穿孔手段を設けた実装装置が記載されている。また、特許文献2では、予め通気孔の開いているフィルム部材を用い、通気孔が熱圧着チップの吸着穴に対向する位置となるように位置合わせを行う実装装置が記載されている。   For this purpose, Patent Document 1 describes a mounting apparatus provided with a punching means for forming a vent hole in a film member at a position facing a chip suction hole of a thermocompression bonding tool. Further, Patent Document 2 describes a mounting device that uses a film member having a vent hole in advance and performs alignment so that the vent hole faces a suction hole of a thermocompression bonding chip.

特開2003−7771号公報Japanese Patent Laid-Open No. 2003-7771 特開2006−66767号公報JP 2006-66767 A

ところで、特許文献1に記載されているような実装装置においては、フィルム部材を更新して通気孔を形成する際に熱圧着ツールが高温であると、フィルム部材が延伸し易くなっているため、穿孔し難くなる。すなわち、図11に示すように、穿孔手段の針によって、通常なら貫通するような針の押し込み量LPであっても、高温であるとフィルム部材が伸びて貫通しなくなる。このため、フィルム部材に確実に貫通孔を形成するために、熱圧着ツールの温度が低下するのを待ってから、穿孔を行っている。この熱圧着ツールの温度が低下するのを待つ時間は実装装置のタクトタイムのロスとなり、生産性向上を妨げている。一方、特許文献2のような実装装置においては、フィルム部材の更新の度に、熱圧着ツールのチップ吸着穴とフィルム部材の通気孔との位置合わせに時間を要する。更に、熱によるフィルム部材の変形等により位置合わせに時間を要する可能性もある。   By the way, in the mounting apparatus as described in Patent Document 1, when the thermocompression bonding tool is at a high temperature when the film member is updated to form the vent hole, the film member is easily stretched. It becomes difficult to drill. That is, as shown in FIG. 11, even if the needle push-in amount LP is normally penetrated by the needle of the perforating means, the film member does not penetrate and penetrate at a high temperature. For this reason, in order to form a through-hole reliably in a film member, it waits for the temperature of a thermocompression-bonding tool to fall, Then, it perforates. The time for waiting for the temperature of the thermocompression bonding tool to decrease is a loss of tact time of the mounting apparatus, which hinders productivity improvement. On the other hand, in the mounting apparatus as in Patent Document 2, it takes time to align the chip suction hole of the thermocompression bonding tool and the air hole of the film member every time the film member is updated. Furthermore, it may take time to align the film member due to heat deformation.

そこで、本発明は、熱圧着ツールとチップ部品の間に挟むフィルム部材に通気孔を形成するのに際して、実装プロセスのタクトタイムロスを極力生じさせない実装装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a mounting apparatus that does not cause a tact time loss of a mounting process as much as possible when forming a vent hole in a film member sandwiched between a thermocompression bonding tool and a chip component.

以上の課題を解決するために、請求項1に記載の発明は、耐熱性のフィルム部材を介してチップ部品を保持する熱圧着ツールにより、前記チップ部品を基板に加熱圧着する実装装置において、
前記熱圧着ツールは、前記チップ部品を吸着保持するための吸着穴を有し、
前記チップ部品を前記フィルム部材を介して前記熱圧着ツールに吸着するために、前記吸着穴に対向する位置の前記フィルム部材に針を押し込んで通気孔を形成する穿孔手段を備えた実装装置であって、
前記フィルム部材の伸び率の最大値がCEmaxであれば、
前記吸着穴の直径D(単位はmm)に対して、前記針の前記フィルム部材表面からの押し込み量LP(単位はmm)が、0.5×D×(CEmax+1)<LP<0.8×D×(CEmax+1)
の範囲に設定されることを特徴とする実装装置である。
In order to solve the above problems, the invention according to claim 1 is a mounting apparatus in which the chip component is thermocompression bonded to a substrate by a thermocompression tool that holds the chip component via a heat-resistant film member.
The thermocompression bonding tool has a suction hole for sucking and holding the chip component,
In order to adsorb the chip component to the thermocompression bonding tool through the film member, the mounting device includes a punching unit that forms a vent hole by pushing a needle into the film member at a position facing the adsorption hole. And
If the maximum elongation of the film member is CEmax,
The pressing amount LP (unit: mm) of the needle from the surface of the film member is 0.5 × D × (CEmax + 1) <LP <0.8 × with respect to the diameter D (unit: mm) of the suction hole. D × (CEmax + 1)
It is the mounting apparatus characterized by being set to the range of.

請求項2に記載の発明は、請求項1に記載の実装装置であって、
前記フィルム部材の伸び率の最大値がCEmaxであれば、
前記吸着穴の直径D(単位はmm)に対して、前記針の前記フィルム部材表面からの押し込み量LP(単位はmm)が、0.55×D×(CEmax+1)≦LP≦0.7×D×(CEmax+1)
の範囲に設定されることを特徴とする実装装置である。
Invention of Claim 2 is the mounting apparatus of Claim 1, Comprising:
If the maximum elongation of the film member is CEmax,
The pressing amount LP (unit: mm) of the needle from the surface of the film member is 0.55 × D × (CEmax + 1) ≦ LP ≦ 0.7 × with respect to the diameter D (unit: mm) of the suction hole. D × (CEmax + 1)
It is the mounting apparatus characterized by being set to the range of.

請求項3に記載の発明は、請求項1または請求項2に記載の実装装置であって、
前記熱圧着ツールを冷却する空冷手段と、熱圧着ツールの温度を測定する温度センサーを有し、
前記チップ部品を前記基板に加熱圧着後に前記熱圧着ツールを冷却する過程で、前記フィルム部材を搬送するフィルム部材搬送機構を有し、
前記熱圧着ツールの温度の測定値が所定の値に下がった段階で、前記穿孔手段が動作を開始することを特徴とする実装装置である。
Invention of Claim 3 is the mounting apparatus of Claim 1 or Claim 2, Comprising:
Air cooling means for cooling the thermocompression bonding tool, and a temperature sensor for measuring the temperature of the thermocompression bonding tool,
In the process of cooling the thermocompression bonding tool after thermocompression bonding the chip component to the substrate, it has a film member transport mechanism for transporting the film member ,
The mounting device is characterized in that, when the measured value of the temperature of the thermocompression bonding tool is lowered to a predetermined value, the punching means starts operating.

請求項4に記載の発明は、請求項3に記載の実装装置であって、
前記穿孔手段が動作を開始する前記熱圧着ツールの温度測定値が、前記フィルム部材の連続使用耐熱温度より30℃低い温度から、前記フィルム部材の連続使用耐熱温度より100℃低い温度範囲にあることを特徴とする実装装置である。


Invention of Claim 4 is the mounting apparatus of Claim 3, Comprising:
Temperature measurements of the thermal pressure bonding tool, wherein the perforation means starts operation, the continuous use heat resistant temperature than 30 ° C. lower temperature of the film member, the range of the film used continuously from 100 ° C. lower heat resistance temperature temperature member It is the mounting apparatus characterized by this.


請求項5に記載の発明は、請求項1〜4の何れかに記載の実装装置であって、
前記フィルム部材にフッ素樹脂を用いることを特徴とする実装装置である。
Invention of Claim 5 is the mounting apparatus in any one of Claims 1-4, Comprising:
A mounting apparatus using a fluororesin for the film member.

請求項6に記載の発明は、請求項1〜5の何れかに記載の実装装置であって、
前記熱圧着ツールが複数の吸着穴を有し、それぞれの吸着穴に対向する位置の前記フィルム部材に同時に通気孔を形成する穿孔手段を備えたことを特徴とする実装装置である。
Invention of Claim 6 is the mounting apparatus in any one of Claims 1-5, Comprising:
The thermocompression bonding tool includes a plurality of suction holes, and includes a punching unit that simultaneously forms a vent hole in the film member at a position facing each suction hole.

請求項7に記載の発明は、請求項6に記載の実装装置であって、
前記熱圧着ツールの複数の吸着穴の一部が真空排気機能に連通する貫通穴であって、残りの吸着穴は前記貫通穴と溝で連結された非貫通穴であることを特徴とする実装装置である。
Invention of Claim 7 is the mounting apparatus of Claim 6, Comprising:
Mounting wherein a part of the plurality of suction holes of the thermocompression bonding tool is a through hole communicating with a vacuum exhaust function, and the remaining suction holes are non-through holes connected to the through hole and a groove. Device.

請求項1の発明によれば、チップ部品を耐熱性のフィルム部材を介して保持する熱圧着ツールにより、前記チップ部品を基板に加熱圧着する実装装置において、前記熱圧着ツールは、前記チップ部品を吸着保持するための吸着穴を有し、前記チップ部品を前記フィルム部材を介して前記熱圧着ツールに吸着するために、前記吸着穴に対向する位置の前記フィルム部材に針を押し込んで通気孔を形成する穿孔手段を備えた実装装置であって、
前記フィルム部材の伸び率の最大値がCEmaxであれば、前記吸着穴の直径Dに対して、前記針の前記フィルム部材表面からの押し込み量LPを、0.5×D×(CEmax+1)<LP<0.8×D×(CEmax+1)の範囲に設定することにより、フィルム部材が延伸性を持った材質であったとしても通気孔を形成することができる。すなわち、フィルム部材に針を押し込んで孔を開ける場合において、フィルム部材が熱を受けて伸びやすくなっていたとしても貫通させることができる。このため、熱圧着ツールの温度が高い状態においても穿孔が可能となり、熱圧着ツールの温度低下を待つ時間を大幅に短縮できる。
According to the first aspect of the present invention, in the mounting apparatus for thermocompression bonding the chip component to the substrate by a thermocompression tool that holds the chip component via a heat-resistant film member, the thermocompression tool includes the chip component. A suction hole for holding by suction is provided, and in order to suck the chip component to the thermocompression bonding tool through the film member, a needle is pushed into the film member at a position facing the suction hole to form a vent hole. A mounting device provided with punching means to form,
If the maximum value of the elongation rate of the film member is CEmax, the pressing amount LP of the needle from the surface of the film member with respect to the diameter D of the suction hole is set to 0.5 × D × (CEmax + 1) <LP By setting it in the range of <0.8 × D × (CEmax + 1), the air hole can be formed even if the film member is a stretchable material. That is, when a hole is made by pushing a needle into the film member, the film member can be penetrated even if it is easily stretched by receiving heat. For this reason, drilling is possible even when the temperature of the thermocompression bonding tool is high, and the time for waiting for the temperature reduction of the thermocompression bonding tool can be greatly shortened.

請求項2の発明によれば、前記吸着穴の直径Dに対して、前記針の前記フィルム部材表面からの押し込み量LPが、0.55×D×(CEmax+1)≦LP≦0.7×D×(CEmax+1)の範囲に設定することにより、熱圧着ツールの温度が高い状態でフィルム部材に確実に通気孔が形成できるとともに、熱圧着ツールの厚みを必要以上に増すことがないので、熱圧着ツールの昇温および冷却時のエネルギーを低減することが出来る。   According to the invention of claim 2, the pressing amount LP of the needle from the surface of the film member with respect to the diameter D of the suction hole is 0.55 × D × (CEmax + 1) ≦ LP ≦ 0.7 × D. By setting in the range of × (CEmax + 1), the air pressure hole can be surely formed in the film member at a high temperature of the thermocompression bonding tool, and the thickness of the thermocompression bonding tool is not increased more than necessary. Energy during heating and cooling of the tool can be reduced.

請求項3の発明によれば、熱圧着ツールの温度が高い状態でもフィルム部材に穿孔が可能であるものの、高温の穿孔で生じる弊害を防ぐため、所定の温度まで熱圧着ツールの温度が下がってから穿孔を行うものであり、熱圧着ツールの温度を測定する機能と、冷却機能を持たせたものである。これにより、高温過ぎる状態での穿孔を防ぐとともに、所定の温度まで低下させる時間を短縮できる。   According to the invention of claim 3, although the film member can be perforated even when the temperature of the thermocompression bonding tool is high, the temperature of the thermocompression bonding tool is lowered to a predetermined temperature in order to prevent the adverse effects caused by high temperature perforation. The drilling is performed from above, and it has a function to measure the temperature of the thermocompression bonding tool and a cooling function. As a result, it is possible to prevent perforation in a state where the temperature is too high, and to shorten the time for lowering to a predetermined temperature.

請求項4の発明によれば、穿孔を開始する温度をフィルム部材の材料に適した値に決めることが出来る。   According to the invention of claim 4, the temperature at which perforation is started can be determined to a value suitable for the material of the film member.

請求項5の発明によれば、耐熱性に優れ防着性にも優れているものの、熱を受けて伸びやすくなる特徴が顕著なフッ素樹脂を用いたフィルム部材を、有効に活かすことが出来る。   According to the invention of claim 5, although it is excellent in heat resistance and adhesion resistance, it is possible to effectively utilize a film member using a fluororesin having a remarkable feature of being easily stretched by receiving heat.

請求項6および請求項7の発明では、フィルム部材を介しても、複数箇所で吸着するので、チップ部品を熱圧着ツールに確実に保持することが可能になる。   According to the sixth and seventh aspects of the present invention, the chip component can be securely held by the thermocompression-bonding tool because it is adsorbed at a plurality of locations even through the film member.

本発明の実施の形態である実装装置の構成を示す図である。It is a figure which shows the structure of the mounting apparatus which is embodiment of this invention. 図1の実装装置の熱圧着ツール周辺部を説明するための図である。It is a figure for demonstrating the periphery part of the thermocompression-bonding tool of the mounting apparatus of FIG. 本発明の実施の形態である実装装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the mounting apparatus which is embodiment of this invention. 本発明の実施の形態である実装装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the mounting apparatus which is embodiment of this invention. 本発明の実施の形態である実装装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the mounting apparatus which is embodiment of this invention. 本発明の実施の形態である実装装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the mounting apparatus which is embodiment of this invention. 本発明の実施の形態である実装装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the mounting apparatus which is embodiment of this invention. 本発明の実施の形態である実装装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the mounting apparatus which is embodiment of this invention. フィルム部材に孔を開けるための押し込み量を幾何学的な観点から説明する図である。It is a figure explaining the pushing amount for making a hole in a film member from a geometrical viewpoint. 幾何学的な検討による押し込み量でフィルム部材に孔が空かない例を示す図である。It is a figure which shows the example which does not have a hole in a film member by the pushing amount by geometric examination. フィルム部材が高温では孔が空きにくいことを説明する図である。It is a figure explaining that a hole is hard to be vacant when a film member is high temperature.

本発明を実施するための形態について、図を用いながら説明する。
まず、図1〜図8はは本発明の一実施形態である実装装置1の構成および動作を示す図である。図1では、後述の図3に示すチップ部品11を、液状の樹脂13が塗られた基板12にフリップチップ接合するのに際して、テープ状のフィルム部材14に通気孔を形成するための工程を示している。ここで、フィルム部材14としては、耐熱性に優れチップ部品等に対する防着性にも優れている材料が選ばれ、この特性を備えた材料として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂が好適である。また、厚みとしては、機械的強度を保持しつつもチップ部品への熱伝導性も考慮して20〜50μm程度が好ましい。
DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings.
First, FIGS. 1-8 is a figure which shows the structure and operation | movement of the mounting apparatus 1 which is one Embodiment of this invention. FIG. 1 shows a process for forming a vent hole in a tape-like film member 14 when a chip component 11 shown in FIG. 3 to be described later is flip-chip bonded to a substrate 12 coated with a liquid resin 13. ing. Here, as the film member 14, a material having excellent heat resistance and excellent adhesion to chip parts and the like is selected, and polytetrafluoroethylene (PTFE), tetrafluoroethylene A fluororesin such as a perfluoroalkyl vinyl ether copolymer (PFA) is preferred. Further, the thickness is preferably about 20 to 50 μm in consideration of the thermal conductivity to the chip component while maintaining the mechanical strength.

図1において、ボンディングヘッド2は、熱圧着ツール21、断熱ブロック22、ホルダ23、ヘッド本体24いよび加圧機構25によって構成されている。フィルム部材14を搬送するためのフィルム部材搬送機構3は、搬送系フレーム31に巻き出しロール32、巻き取りロール33などが取り付けられ構成されている。また、基板12は基板ステージ51により吸着保持されるとともに、図示しない基板ステージ移動手段により、XYおよびθ方向に基板の位置を移動させることが出来る。   In FIG. 1, the bonding head 2 includes a thermocompression bonding tool 21, a heat insulating block 22, a holder 23, a head body 24, and a pressure mechanism 25. The film member transport mechanism 3 for transporting the film member 14 is configured by attaching a winding roll 32, a winding roll 33, and the like to a transport system frame 31. Further, the substrate 12 is held by suction by the substrate stage 51, and the position of the substrate can be moved in the XY and θ directions by a substrate stage moving means (not shown).

穿孔手段4に関しては、熱圧着ツール21周辺との関係も含めて、詳しい内容を図2に示す。図2において、熱圧着ツール21は、チップ部品11を吸着保持するためのアタッチメントツール21A、ヒータ21Hおよび温度センサー21Tによって構成されている。なお、アタッチメントツール21A、ヒータ21Hおよび温度センサー21Tによって構成される熱圧着ツールは吸着保持するチップ部品11の形状に応じて交換できるように、断熱ブロック22に吸着保持されている。なお、熱圧着ツール21を吸着するための真空系は図示しないが、後述するチップ部品11を吸着保持するための真空系とは異なっている。   The details of the punching means 4 are shown in FIG. 2 including the relationship with the periphery of the thermocompression bonding tool 21. In FIG. 2, the thermocompression bonding tool 21 is composed of an attachment tool 21A for attracting and holding the chip component 11, a heater 21H, and a temperature sensor 21T. The thermocompression bonding tool constituted by the attachment tool 21A, the heater 21H, and the temperature sensor 21T is sucked and held by the heat insulating block 22 so that it can be exchanged according to the shape of the chip part 11 to be sucked and held. Although a vacuum system for adsorbing the thermocompression bonding tool 21 is not shown, it is different from a vacuum system for adsorbing and holding a chip component 11 described later.

アタッチメントツール21Aには複数の吸着穴20が形成されているが、吸着穴20には、図示しない真空源に直接つながっている貫通吸着穴20Hと、貫通吸着穴20Hと溝20Cを介してつながっている非貫通吸着穴20Bによって構成されている。なお、吸着穴20の数は、吸着保持するチップ部品11の大きさによっても異なるが9個から25個の範囲で選ばれる。穿孔手段4を構成する針41の本数も吸着穴20と同数ある。また、アタッチメントツール21Aを冷却する際は、ヒータ21Hをオフするのみではなく、空気流路200に外部の空気を流通させる機能を有している。   A plurality of suction holes 20 are formed in the attachment tool 21A. The suction holes 20 are connected to a through suction hole 20H that is directly connected to a vacuum source (not shown), and through the through suction hole 20H and the groove 20C. The non-penetrating suction hole 20B is formed. The number of suction holes 20 is selected in the range of 9 to 25, although it depends on the size of the chip component 11 to be sucked and held. The number of needles 41 constituting the punching means 4 is the same as that of the suction holes 20. Further, when cooling the attachment tool 21A, the heater 21H is not only turned off, but also has a function of circulating external air through the air flow path 200.

フィルム部材14に通気孔を形成するのに際しては、吸着穴20と針41の位置を合わせた後に、針41がアタッチメントツール21Aの表面に密接したフィルム部材14を押し込むように、穿孔手段4を上方向(Z方向)に移動させるか、またはアタッチメントツール21Aを含む係を下に移動させて、フィルム部材14を貫通させる。その際の、針41の押し込み量をどのようにするかについては後述する。   When forming the air hole in the film member 14, after the suction hole 20 and the needle 41 are aligned, the perforating means 4 is moved upward so that the needle 41 pushes the film member 14 in close contact with the surface of the attachment tool 21A. The film member 14 is penetrated by moving in the direction (Z direction) or by moving the engagement member including the attachment tool 21A downward. How to push the needle 41 at that time will be described later.

フィルム部材14に通気孔が形成された後に、図3に示すように、チップ部品11はチップチップ部品搬送ツール61によりボンディングツール2の直下に配置され、フィルム部材14を介して熱圧着ツール21に吸着保持される。その後、図4のように、2視野カメラ71によりチップ部品11と基板12の位置合わせが行われる。位置合わせに際しては、基板12を吸着保持する基板ステージ51がXY方向およびθ方向に移動して調整が行われる。図4における位置合わせが終わると、図5、図6のように、フィルム部材搬送機構3とともにボンディングヘッド2が下降し、フリップチップ接合が行われる。図6に示す接合工程においては、熱圧着ツール21を構成するヒータ21Hが昇温され、その熱がチップ部品11と基板12の接合面まで伝わって、液状であった樹脂13は加熱硬化され、接合は完了する。この過程においてヒータ21は昇温を止め、接合完了後は図2に示した空気流路200に外部の空気を導入してアタッチメントツール21Aの冷却を開始する。   After the air holes are formed in the film member 14, as shown in FIG. 3, the chip component 11 is arranged immediately below the bonding tool 2 by the chip chip component conveying tool 61, and is attached to the thermocompression bonding tool 21 via the film member 14. Adsorbed and held. Thereafter, as shown in FIG. 4, the two-view camera 71 aligns the chip component 11 and the substrate 12. At the time of alignment, the substrate stage 51 that holds the substrate 12 by suction moves in the XY direction and the θ direction and is adjusted. When the alignment in FIG. 4 is completed, the bonding head 2 is lowered together with the film member transport mechanism 3 as shown in FIGS. 5 and 6, and the flip chip bonding is performed. In the joining step shown in FIG. 6, the heater 21H constituting the thermocompression bonding tool 21 is heated, and the heat is transmitted to the joining surface between the chip component 11 and the substrate 12, and the resin 13 that has been liquid is heat-cured, Joining is complete. In this process, the heater 21 stops the temperature rise, and after joining is completed, external air is introduced into the air flow path 200 shown in FIG. 2 to start cooling the attachment tool 21A.

接合が完了すると、図7に示すように、アタッチメントツール21Aによるチップ11の吸着は解除され、フィルム部材搬送機構3およびボンディングヘッド2は上昇する。この段階において、ボンディングヘッド2とフィルム部材搬送機構3と相対位置が、それまでとは異なり、アタッチメントツール21Aの表面とフィルム部材14の間に隙間を生じさせる。この状態において、チップ部品11とアタッチメントツール21Aの間に挟まれていたフィルム部材14は巻き取りロール33側に移動するとともに、巻き出しロール32側から新たなフィルム部材14が供給され、アタッチメントツール21Aの直下に配置される。新たなフィルム部材14がアタッチメントツール21Aの直下に配置されたら、図8に示すように、フィルム部材14をアタッチメントツール21Aで吸着保持できるように、ボンディングヘッド2と穿孔手段4の相対位置を合わせる。   When the joining is completed, as shown in FIG. 7, the suction of the chip 11 by the attachment tool 21A is released, and the film member transport mechanism 3 and the bonding head 2 are raised. At this stage, the relative positions of the bonding head 2 and the film member transport mechanism 3 are different from those before, and a gap is generated between the surface of the attachment tool 21 </ b> A and the film member 14. In this state, the film member 14 sandwiched between the chip component 11 and the attachment tool 21A moves to the take-up roll 33 side, and a new film member 14 is supplied from the unwind roll 32 side to attach the attachment tool 21A. It is placed immediately below. When the new film member 14 is disposed immediately below the attachment tool 21A, the relative positions of the bonding head 2 and the punching means 4 are adjusted so that the film member 14 can be sucked and held by the attachment tool 21A as shown in FIG.

このようにフィルム部材14の更新を行うとともに、穿孔手段4のアタッチメントツール21Aの直下への配置や、基板を移動させて次にチップ部品を実装する位置をボンディングヘッドの下への配置を行う。一方において、アタッチメントツール21Aの冷却を続け、温度センサ21Tで測定する温度が所定の温度範囲まで下がったら、穿孔手段4の針41をフィルム部材14に押し込んで、通気孔を形成する。   In this way, the film member 14 is updated, and the punching means 4 is disposed immediately below the attachment tool 21A, and the position where the chip component is mounted next by moving the substrate is disposed below the bonding head. On the other hand, when the attachment tool 21A continues to be cooled and the temperature measured by the temperature sensor 21T falls to a predetermined temperature range, the needle 41 of the punching means 4 is pushed into the film member 14 to form a vent hole.

以上が、本発明の実施形態における実装装置1の構成と動作の説明である。次に、この実装装置1により、アタッチメントツール21Aの吸着穴20に対向するフィルム部材14に確実に通気孔を形成する条件について述べる。   The above is description of the structure and operation | movement of the mounting apparatus 1 in embodiment of this invention. Next, conditions for reliably forming a vent hole in the film member 14 facing the suction hole 20 of the attachment tool 21A by the mounting apparatus 1 will be described.

まず、簡単な幾何学的な検討を図9を用いて説明する。この検討においては吸着穴20に対してフィルム部材14の厚さは無視できる条件と仮定している。また、フィルム部材の伸び率CEの最大値をCEmaxとする。なお、ここで言う伸び率とは、(伸びた分の長さ)/(伸びる前の元の長さ)であり、元の長さの2倍に伸びる場合は「伸びた分の長さ」が「伸びる前の元の長さ」と同じであるので、伸び率は1となる。したがって、伸び率の最大値がCEmaxの場合は、元の長さの(CEmax+1)倍の長さにまでなる可能性がある。そこで、吸着穴の直径をDとすると、図9(a)は直径がDのロッド状のものでフィルム部材14を押し込んだ場合であるが、押し込み量が(CEmax×D/2)で、伸びが上限に達する。また、図9(b)は直径がDに比べて無視できるロッドでフィルム部材14を押し込んだ場合であるが、2等辺三角形の2辺の長さが、(CEmax+1)×D/2 となるため、押し込み量が(CEmax+1)×D/2 に達する前に、フィルム部材の伸びは上限に達する。また、実際にはフィルム部材は2次元方向に伸びるので、2次元の両方向で伸び率上限まで伸びることは考えられない。したがって、図9(a)と図9(b)の何れの場合においても、押し込み量が(CEmax+1)×D/2あれば、フィルム部材14の伸びの上限を超えるために、確実に孔が開くことが予想される。   First, a simple geometric study will be described with reference to FIG. In this examination, it is assumed that the thickness of the film member 14 is negligible with respect to the suction hole 20. Further, the maximum value of the elongation rate CE of the film member is defined as CEmax. The elongation rate mentioned here is (length of stretched) / (original length before stretched). When stretched twice the original length, “length of stretched” Is the same as the “original length before being stretched”, so the stretch rate is 1. Therefore, when the maximum value of the elongation rate is CEmax, there is a possibility that the length becomes (CEmax + 1) times the original length. Therefore, when the diameter of the suction hole is D, FIG. 9A shows a case where the film member 14 is pushed in with a rod-shaped one having a diameter D, but the push-in amount is (CEmax × D / 2) and the elongation is increased. Reaches the upper limit. FIG. 9B shows the case where the film member 14 is pushed in with a rod whose diameter is negligible compared to D, but the length of the two sides of the isosceles triangle is (CEmax + 1) × D / 2. The elongation of the film member reaches the upper limit before the pressing amount reaches (CEmax + 1) × D / 2. Further, since the film member actually extends in the two-dimensional direction, it cannot be considered that the film member extends to the upper limit of elongation in both two-dimensional directions. Therefore, in both cases of FIG. 9A and FIG. 9B, if the push-in amount is (CEmax + 1) × D / 2, the upper limit of the elongation of the film member 14 is exceeded, so the hole is surely opened. It is expected that.

しかし、図10における、針41の押し込み量LPが、(CEmax+1)×D/2 の場合においても、頻度は低いものの通気孔が形成されない例が希に現れた。このような現象の原因としては、針41を押し込む際に、吸着穴20周辺のフィルム部材14が伸びて吸着穴20内に入り込むことがあるためと考える。   However, even in the case where the pushing amount LP of the needle 41 in FIG. 10 is (CEmax + 1) × D / 2, there are rare cases in which the vent hole is not formed although the frequency is low. The cause of such a phenomenon is considered to be that when the needle 41 is pushed in, the film member 14 around the suction hole 20 extends and enters the suction hole 20.

このため、針41の押し込み量LPは、少なくとも(CEmax+1)×D/2を上回る必要があり、好ましくは、(CEmax+1)×D/2の1.1倍以上であることが望ましい。一方において、押し込み量LPを大きくするためには、図2におけるアタッチメントツール21Aの厚みを増す必要があり、厚みが増すとヒータ21Hから発せられる熱の伝達が妨げられるので好ましくない。このため、押し込み量LPは(CEmax+1)×D/2の1.6倍未満、好ましくは1.4倍以下にすることが望ましい。   For this reason, the pushing amount LP of the needle 41 needs to exceed at least (CEmax + 1) × D / 2, and is preferably 1.1 times or more of (CEmax + 1) × D / 2. On the other hand, in order to increase the pushing amount LP, it is necessary to increase the thickness of the attachment tool 21A in FIG. 2. If the thickness is increased, transmission of heat generated from the heater 21H is hindered. Therefore, it is desirable that the pushing amount LP is less than 1.6 times (CEmax + 1) × D / 2, and preferably 1.4 times or less.

すなわち、0.5×D×(CEmax+1)<LP<0.8×D×(CEmax+1)であって、好ましくは、0.55×D×(CEmax+1)≦LP≦0.7×D×(CEmax+1)であることが望ましい。   That is, 0.5 × D × (CEmax + 1) <LP <0.8 × D × (CEmax + 1), and preferably 0.55 × D × (CEmax + 1) ≦ LP ≦ 0.7 × D × (CEmax + 1) ) Is desirable.

次に、針41をフィルム部材14に押し込む穿孔作業を開始する際のアタッチメント21Aの温度であるが、前記のように、フィルム部材14の伸び率が最大の状態でも通気孔が形成できることから、フィルム部材14の耐熱温度以下であれば良いと思われた。しかし、フィルム部材14の温度が高い状態で穿孔作業を続けることにより、フィルム部材14の組成物が針41に転写されて積層し、積層物が穿孔作業の妨げになることが判った。そこで、穿孔作業の開始温度について検討したところ、フィルム部材14の耐熱温度より30℃以上低ければ積層物が形成されないことが判った。当然のことながら、穿孔作業の開始温度を更に下げることは可能だが、100℃より下げると本発明以外の方法でも通気孔は形成できる。なお、前述の耐熱温度とは連続使用耐熱温度であり、フィルム部材14の温度を光学的手段等を利用して直接測定しても良いが、本発明は熱圧着ツール21内に設置した温度センサ21Tの測定温度でフィルム部材14の温度に代替している。   Next, the temperature of the attachment 21A at the time of starting the perforating operation for pushing the needle 41 into the film member 14, but as described above, since the vent hole can be formed even when the elongation rate of the film member 14 is maximum, the film It seemed that it should be below the heat resistance temperature of the member 14. However, it has been found that by continuing the perforation work while the temperature of the film member 14 is high, the composition of the film member 14 is transferred to the needle 41 and laminated, and the laminate hinders the perforation work. Therefore, when the start temperature of the drilling operation was examined, it was found that a laminate was not formed if the temperature was lower by 30 ° C. or more than the heat resistance temperature of the film member 14. As a matter of course, it is possible to further lower the starting temperature of the drilling operation, but if the temperature is lower than 100 ° C., the vent hole can be formed by a method other than the present invention. In addition, although the above-mentioned heat-resistant temperature is a continuous use heat-resistant temperature and may measure the temperature of the film member 14 directly using an optical means etc., this invention is a temperature sensor installed in the thermocompression-bonding tool 21. Instead of the temperature of the film member 14 at a measurement temperature of 21T.

アタッチメントツール21Aとして9個の吸着穴20が形成され、各吸着穴20の直径Dが0.5mmであるものを用いた。フィルム部材14としては厚みが30μのポリテトラフルオロエチレン(PTFE)樹脂であるテフロン(登録商標)を用いた。テフロン(登録商標)の伸び率は2〜4(200%〜400%)であるので、CEmaxは4となる。また、テフロン(登録商標)の連続使用耐熱温度は260℃である。 ボンディングに際しては、アタッチメントツール21Aをヒータ21Hにより、テフロン(登録商標)の融点に近い320℃まで昇温し、その後冷却を行った。   Nine suction holes 20 were formed as the attachment tool 21A, and each suction hole 20 had a diameter D of 0.5 mm. As the film member 14, Teflon (registered trademark) which is a polytetrafluoroethylene (PTFE) resin having a thickness of 30 μm was used. Since the elongation of Teflon (registered trademark) is 2 to 4 (200% to 400%), CEmax is 4. Further, the heat resistance temperature for continuous use of Teflon (registered trademark) is 260 ° C. At the time of bonding, the attachment tool 21A was heated to 320 ° C. close to the melting point of Teflon (registered trademark) by the heater 21H, and then cooled.

冷却の過程において、針41をフィルム部材に押し込んで、通気孔が形成できるか否かすなわち貫通するかどうかを9個の吸着穴20について調べた。針41の押し込み量LPとしては、α×D×(CEmax+1)のαを変えて実施した。
(実施例1)
上で述べた前提において、D×(CEmax+1)は、0.5×(4+1)=2.5(mm)となるので、α=0.56となる押し込み量LP=1.4(mm)において、アタッチメントツール21A温度と針41の押し込み量LPの関係を調べた結果を表1に示す。表1において、「アタッチメントツールの温度」の右側の括弧内に記された数値はボンディング後のアタッチメントツールが各温度まで下がるのに要する時間である。230℃においては、アタッチメントツールの冷却時間が1.1secであるが、吸着穴20に対向する位置全てに通気孔が開けることが出来ることが判る。
(実施例2)
押し込み量LP=1.7(mm)でα=0.68となる以外は実施例1と同じであり、実施例1と同様な結果が得られた。
In the course of cooling, the needle 41 was pushed into the film member, and whether or not the air holes could be formed, that is, whether or not the nine suction holes 20 were penetrated was examined. The pushing amount LP of the needle 41 was performed by changing α of α × D × (CEmax + 1).
Example 1
In the premise described above, D × (CEmax + 1) is 0.5 × (4 + 1) = 2.5 (mm), and therefore, when the pushing amount LP = 1.4 (mm) where α = 0.56. Table 1 shows the results of examining the relationship between the temperature of the attachment tool 21A and the pressing amount LP of the needle 41. In Table 1, the numerical value described in parentheses on the right side of “Attachment tool temperature” is the time required for the attachment tool after bonding to drop to each temperature. At 230 ° C., the cooling time of the attachment tool is 1.1 sec, but it can be seen that vent holes can be opened at all positions facing the suction holes 20.
(Example 2)
The same result as in Example 1 was obtained except that the pushing amount LP = 1.7 (mm) and α = 0.68, and the same result as in Example 1 was obtained.

(比較例1)
押し込み量LP=0.9でα=0.36の場合の結果であり、吸着穴20に対向する位置全てに通気孔が開けることが出来る上限温度は150℃まで低くなっており、このため、アタッチメントツールがこの温度にまで下がるのに要する時間は2.7secとなり、前記実施例1および実施例2に比べて1.6sec長くなった。
(Comparative Example 1)
This is the result when the pushing amount LP = 0.9 and α = 0.36, and the upper limit temperature at which the vent holes can be opened at all positions facing the suction holes 20 is as low as 150 ° C. The time required for the attachment tool to drop to this temperature was 2.7 sec, which was 1.6 sec longer than those in Examples 1 and 2.

以上のように実施例1および実施例2においては、比較例1に比べてアタッチメント冷却時間が1.6sec短縮されているが、本実施例の場合、チップ部品1つを実装するタクトタイムでのアタッチメント冷却以外の時間は10秒弱であったことから、タクトタイムを10%以上短縮できており、生産性において有効であることが判る。   As described above, in Example 1 and Example 2, the attachment cooling time is shortened by 1.6 sec as compared with Comparative Example 1, but in this example, the tact time for mounting one chip component is reduced. Since the time other than the attachment cooling is less than 10 seconds, the tact time can be shortened by 10% or more, which proves effective in productivity.

本発明は、熱圧着ツールとチップ部品の間にフィルム部材を挟んでボンディングを行う実装装置、特にチップ部品を吸着保持するために、フィルム部材に通気孔を形成する必要がある実装装置に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for a mounting apparatus that performs bonding by sandwiching a film member between a thermocompression bonding tool and a chip component, and particularly for a mounting apparatus that needs to form air holes in the film member in order to suck and hold the chip component. is there.

1 実装装置
2 ボンディングヘッド
3 フィルム部材搬送機構
4 穿孔手段
11 チップ部品
12 基板
13 樹脂
14 フィルム部材
20 吸着穴
20B 非貫通吸着穴
20C 溝
20H 貫通吸着穴
21 熱圧着ツール
21A アタッチメントツール
21H ヒータ
21T 温度センサー
22 断熱ブロック
23 ホルダ
24 ヘッド本体
25 加圧機構
31 搬送系フレーム
32 巻き出しロール
33 巻き取りロール
41 針
51 基板ステージ
61 チップ部品搬送ツール
71 2視野カメラ
200 空気流路
DESCRIPTION OF SYMBOLS 1 Mounting apparatus 2 Bonding head 3 Film member conveyance mechanism 4 Perforation means 11 Chip component 12 Substrate 13 Resin 14 Film member 20 Suction hole 20B Non-through suction hole 20C Groove 20H Through suction hole 21 Thermocompression bonding tool 21A Attachment tool 21H Heater 21T Temperature sensor 22 Heat insulation block 23 Holder 24 Head body 25 Pressure mechanism 31 Transport system frame 32 Unwinding roll 33 Winding roll 41 Needle 51 Substrate stage 61 Chip component transport tool 71 Two-field camera 200 Air flow path

Claims (7)

耐熱性のフィルム部材を介してチップ部品を保持する熱圧着ツールにより、前記チップ部品を基板に加熱圧着する実装装置において、
前記熱圧着ツールは、前記チップ部品を吸着保持するための吸着穴を有し、
前記チップ部品を前記フィルム部材を介して前記熱圧着ツールに吸着するために、前記吸着穴に対向する位置の前記フィルム部材に針を押し込んで通気孔を形成する穿孔手段を備えた実装装置であって、
前記フィルム部材の伸び率の最大値がCEmaxであれば、
前記吸着穴の直径D(単位はmm)に対して、前記針の前記フィルム部材表面からの押し込み量LP(単位はmm)が、0.5×D×(CEmax+1)<LP<0.8×D×(CEmax+1)
の範囲に設定されることを特徴とする実装装置。
In a mounting apparatus for thermocompression bonding the chip component to a substrate by a thermocompression bonding tool that holds the chip component via a heat-resistant film member,
The thermocompression bonding tool has a suction hole for sucking and holding the chip component,
In order to adsorb the chip component to the thermocompression bonding tool through the film member, the mounting device includes a punching unit that forms a vent hole by pushing a needle into the film member at a position facing the adsorption hole. And
If the maximum elongation of the film member is CEmax,
The pressing amount LP (unit: mm) of the needle from the surface of the film member is 0.5 × D × (CEmax + 1) <LP <0.8 × with respect to the diameter D (unit: mm) of the suction hole. D × (CEmax + 1)
A mounting apparatus characterized by being set in a range of
請求項1に記載の実装装置であって、
前記フィルム部材の伸び率の最大値がCEmaxであれば、
前記吸着穴の直径D(単位はmm)に対して、前記針の前記フィルム部材表面からの押し込み量LP(単位はmm)が、0.55×D×(CEmax+1)≦LP≦0.7×D×(CEmax+1)
の範囲に設定されることを特徴とする実装装置。
The mounting apparatus according to claim 1,
If the maximum elongation of the film member is CEmax,
The pressing amount LP (unit: mm) of the needle from the surface of the film member is 0.55 × D × (CEmax + 1) ≦ LP ≦ 0.7 × with respect to the diameter D (unit: mm) of the suction hole. D × (CEmax + 1)
A mounting apparatus characterized by being set in a range of
請求項1または請求項2に記載の実装装置であって、
前記熱圧着ツールを冷却する空冷手段と、熱圧着ツールの温度を測定する温度センサーを有し、
前記チップ部品を前記基板に加熱圧着後に前記熱圧着ツールを冷却する過程で、前記フィルム部材を搬送するフィルム部材搬送機構を有し、
前記熱圧着ツールの温度の測定値が所定の値に下がった段階で、前記穿孔手段が動作を開始することを特徴とする実装装置。
The mounting apparatus according to claim 1 or 2,
Air cooling means for cooling the thermocompression bonding tool, and a temperature sensor for measuring the temperature of the thermocompression bonding tool,
In the process of cooling the thermocompression bonding tool after thermocompression bonding the chip component to the substrate, it has a film member transport mechanism for transporting the film member ,
The mounting apparatus, wherein the punching means starts operating when a measured value of the temperature of the thermocompression bonding tool is lowered to a predetermined value.
請求項3に記載の実装装置であって、
前記穿孔手段が動作を開始する前記熱圧着ツールの温度測定値が、前記フィルム部材の連続使用耐熱温度より30℃低い温度から、前記フィルム部材の連続使用耐熱温度より100℃低い温度範囲にあることを特徴とする実装装置。
The mounting apparatus according to claim 3,
Temperature measurements of the thermal pressure bonding tool, wherein the perforation means starts operation, the continuous use heat resistant temperature than 30 ° C. lower temperature of the film member, the range of the film used continuously from 100 ° C. lower heat resistance temperature temperature member A mounting apparatus characterized by that.
請求項1〜4の何れかに記載の実装装置であって、
前記フィルム部材にフッ素樹脂を用いることを特徴とする実装装置。
The mounting apparatus according to any one of claims 1 to 4,
A mounting apparatus using a fluororesin for the film member.
請求項1〜5の何れかに記載の実装装置であって、
前記熱圧着ツールが複数の吸着穴を有し、それぞれの吸着穴に対向する位置の前記フィルム部材に同時に通気孔を形成する穿孔手段を備えたことを特徴とする実装装置。
The mounting device according to any one of claims 1 to 5,
A mounting apparatus comprising: a thermo-compression tool having a plurality of suction holes, and a perforating means for simultaneously forming a vent hole in the film member at a position facing each suction hole.
請求項6に記載の実装装置であって、
前記熱圧着ツールの複数の吸着穴の一部が真空排気機能に連通する貫通穴であって、残りの吸着穴は前記貫通穴と溝で連結された非貫通穴であることを特徴とする実装装置。
The mounting apparatus according to claim 6,
Mounting wherein a part of the plurality of suction holes of the thermocompression bonding tool is a through hole communicating with a vacuum exhaust function, and the remaining suction holes are non-through holes connected to the through hole and a groove. apparatus.
JP2013165525A 2013-08-08 2013-08-08 Mounting device Active JP6151601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165525A JP6151601B2 (en) 2013-08-08 2013-08-08 Mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165525A JP6151601B2 (en) 2013-08-08 2013-08-08 Mounting device

Publications (2)

Publication Number Publication Date
JP2015035493A JP2015035493A (en) 2015-02-19
JP6151601B2 true JP6151601B2 (en) 2017-06-21

Family

ID=52543828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165525A Active JP6151601B2 (en) 2013-08-08 2013-08-08 Mounting device

Country Status (1)

Country Link
JP (1) JP6151601B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639915B2 (en) * 2016-01-08 2020-02-05 東レエンジニアリング株式会社 Semiconductor mounting apparatus and semiconductor mounting method
US11373975B2 (en) 2017-03-28 2022-06-28 Shinkawa Ltd. Electronic component mounting device
TWI685905B (en) 2017-07-12 2020-02-21 日商新川股份有限公司 Joining device and joining method
WO2019107395A1 (en) 2017-12-01 2019-06-06 株式会社新川 Mounting device
TWI703662B (en) * 2017-12-15 2020-09-01 日商新川股份有限公司 Packaging device and perforating needle
CN112106178A (en) * 2018-04-26 2020-12-18 株式会社新川 Mounting device and film supply device
TWI743726B (en) * 2019-04-15 2021-10-21 日商新川股份有限公司 Package device
CN114787979A (en) 2020-08-05 2022-07-22 株式会社新川 Packaging device and packaging method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289647A (en) * 2001-03-26 2002-10-04 Sony Corp Thermocompression bonding apparatus
JP2003007771A (en) * 2001-06-19 2003-01-10 Sony Corp Mounting device
JP4229888B2 (en) * 2004-08-30 2009-02-25 富士通マイクロエレクトロニクス株式会社 Electronic component mounting equipment
JP5646899B2 (en) * 2010-07-26 2014-12-24 新光電気工業株式会社 Electronic component mounting apparatus and electronic component mounting method

Also Published As

Publication number Publication date
JP2015035493A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6151601B2 (en) Mounting device
KR102497661B1 (en) Mounting device and mounting method
US11024596B2 (en) Bonding apparatus and bonding method
TWI727006B (en) Solder bonding apparatus and solder bonding method
KR20120023515A (en) Electronic packaging apparatus and electronic packaging method
JP2014036103A (en) Mounting method
JP2017123423A (en) Semiconductor mounting device and semiconductor mounting method
CN110709971B (en) Electronic component packaging device
JP2010212274A (en) Chip mounting machine and chip mounting method
JP5662855B2 (en) Printed circuit board manufacturing apparatus and manufacturing method
US11069651B2 (en) Method of mounting die
KR102614211B1 (en) Mounting method and mounting device
JP6916104B2 (en) Mounting method and mounting device
JP6411316B2 (en) Electronic component mounting equipment
JP6842567B2 (en) PTFE sheet for preventing creeping used for mounting dies and mounting method for dies
JP6044776B2 (en) Solder transfer device and solder transfer method
JP2008270359A (en) Die bonder and bonding method
TW201938003A (en) Member connection method and adhesive tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170525

R150 Certificate of patent or registration of utility model

Ref document number: 6151601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250