JP6150493B2 - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP6150493B2
JP6150493B2 JP2012239683A JP2012239683A JP6150493B2 JP 6150493 B2 JP6150493 B2 JP 6150493B2 JP 2012239683 A JP2012239683 A JP 2012239683A JP 2012239683 A JP2012239683 A JP 2012239683A JP 6150493 B2 JP6150493 B2 JP 6150493B2
Authority
JP
Japan
Prior art keywords
type semiconductor
thermoelectric conversion
conversion element
semiconductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012239683A
Other languages
Japanese (ja)
Other versions
JP2014090101A (en
Inventor
重行 鶴見
重行 鶴見
幸雄 霜
霜  幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012239683A priority Critical patent/JP6150493B2/en
Publication of JP2014090101A publication Critical patent/JP2014090101A/en
Application granted granted Critical
Publication of JP6150493B2 publication Critical patent/JP6150493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、温度差を利用して発電を行う熱電変換素子に関するものである。   The present invention relates to a thermoelectric conversion element that generates power using a temperature difference.

熱電変換素子が用いられることにより、熱源を囲む構造物である例えば焼却炉、金属溶解炉等の炉からの廃熱を利用した発電が行われることがある。   When the thermoelectric conversion element is used, power generation may be performed using waste heat from a furnace such as an incinerator or a metal melting furnace that is a structure surrounding the heat source.

このような発電においては、例えば特許文献1に示すように、炉で用いられる高温用の耐火煉瓦等に熱電変換素子を固定する技術が考えられる。耐火煉瓦等に孔を開け、その孔の中にシリサイド系、テルル系、ゲルマニウム系などの熱電変換素子を埋め込む方法であり、埋め込み剤には耐火耐熱キャスタブルとセラミックス繊維の混合物が用いられる。   In such power generation, for example, as shown in Patent Document 1, a technique of fixing a thermoelectric conversion element to a high-temperature refractory brick used in a furnace is conceivable. A hole is formed in a refractory brick or the like, and a silicide, tellurium or germanium-based thermoelectric conversion element is embedded in the hole, and a refractory heat-resistant castable and ceramic fiber mixture is used as the filling agent.

特開平10−94278号公報JP-A-10-94278

しかしながら、上述の耐火煉瓦等に固定した熱電変換素子では、焼却炉等の高温・低温のヒートサイクル時に、耐火煉瓦等と埋め込み剤の熱膨張率の差によって生じる応力により熱電変換素子に亀裂が生じてしまい、十分な熱電変換効率を維持できなくなってしまう場合があった。   However, in the thermoelectric conversion element fixed to the above-mentioned refractory brick, etc., cracks occur in the thermoelectric conversion element due to the stress caused by the difference in thermal expansion coefficient between the refractory brick and the embedding agent during high-temperature and low-temperature heat cycles such as incinerators. In some cases, sufficient thermoelectric conversion efficiency cannot be maintained.

本発明は、上記実情に鑑みてなされたものであり、良好な熱電変換効率を維持することができる熱電変換素子を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the thermoelectric conversion element which can maintain favorable thermoelectric conversion efficiency.

上記目的を達成するため、本発明の熱電変換素子は、
p型半導体と、n型半導体と、前記p型半導体と前記n型半導体とにより挟持された絶縁層とを有し、前記p型半導体と前記n型半導体とをpn接合して構成され熱電変換素子であって、
前記絶縁層は、シリコン酸化物及びアルミニウム酸化物を主成分とし、鉄酸化物及びチタン酸化物のうち少なくとも1種が添加された耐火煉瓦層からなり
前記p型半導体は、p型の半導体を15〜70体積%混合した前記耐火煉瓦層からなり
前記n型半導体は、n型の半導体を15〜70体積%混合した前記耐火煉瓦層からなることを特徴とする。
In order to achieve the above object, the thermoelectric conversion element of the present invention comprises:
and p-type semiconductor layer, and the n-type semiconductor layer, the p-type semiconductor layer and the n-type semiconductor layer and has a sandwiched insulating layer by, pn junction and the n-type semiconductor layer and the p-type semiconductor layer a thermoelectric conversion element configured to,
The insulating layer is mainly composed of silicon oxide and aluminum oxide, and consists of a refractory brick layer to which at least one of iron oxide and titanium oxide is added,
The p-type semiconductor layer is composed of the refractory brick layer mixed with 15 to 70% by volume of a p-type semiconductor,
The n-type semiconductor layer is composed of the refractory brick layer mixed with 15 to 70% by volume of an n-type semiconductor.

また、上記目的を達成するため、本発明の熱電変換素子は、
p型半導体層と、n型半導体層と、前記p型半導体層と前記n型半導体層とにより挟持された絶縁層とを有し、前記p型半導体層と前記n型半導体層とをpn接合して構成された熱電変換素子であって、
前記絶縁層は、シリコン酸化物を主成分とし、アルミニウム酸化物、ホウ素酸化物及び亜鉛酸化物のうち少なくとも1種が添加された耐熱ガラス層からなり
前記p型半導体は、p型の半導体を15〜70体積%混合した前記耐熱ガラス層からなり
前記n型半導体は、n型の半導体を15〜70体積%混合した前記耐熱ガラス層からなることを特徴とする。
In order to achieve the above object, the thermoelectric conversion element of the present invention is
a p-type semiconductor layer; an n-type semiconductor layer; an insulating layer sandwiched between the p-type semiconductor layer and the n-type semiconductor layer; and a pn junction between the p-type semiconductor layer and the n-type semiconductor layer A thermoelectric conversion element configured as follows:
The insulating layer is mainly composed of silicon oxide, and includes a heat-resistant glass layer to which at least one of aluminum oxide, boron oxide, and zinc oxide is added,
The p-type semiconductor layer is composed of the heat-resistant glass layer mixed with 15 to 70% by volume of a p-type semiconductor,
The n-type semiconductor layer is composed of the heat-resistant glass layer mixed with 15 to 70% by volume of an n-type semiconductor.

前記耐熱ガラスは、MgO、CaO、SrO及びBaOのうち少なくとも1種、または、LiO、NaO及びKOのうち少なくとも1種がさらに添加されるようにしてもよい。 The heat-resistant glass layer may be further added with at least one of MgO, CaO, SrO, and BaO, or at least one of Li 2 O, Na 2 O, and K 2 O.

前記p型の半導体及び前記n型の半導体は、SiとGeからなる合金であり、前記Siの重量比が75〜85%、前記Geの重量比が15〜25%であるようにしてもよい。   The p-type semiconductor and the n-type semiconductor may be an alloy composed of Si and Ge, and the weight ratio of Si may be 75 to 85% and the weight ratio of Ge may be 15 to 25%. .

前記熱電変換素子は、形状が角形であり、積み重ね可能であるようにしてもよい。   The thermoelectric conversion element may have a square shape and can be stacked.

前記熱電変換素子は、
前記絶縁層を第1の絶縁層とし、シリコン酸化物及びアルミニウム酸化物を主成分とし、鉄酸化物及びチタン酸化物のうち少なくとも1種が添加された耐火煉瓦層からなる第2の絶縁層をさらに有し、
前記第2の絶縁層を介して長手方向に並設され、積み重ね可能な直方体形状を構成するようにしてもよい。
The thermoelectric conversion element is
The insulating layer and the first insulating layer, a silicon oxide and aluminum oxide as a main component, a second insulating layer made of refractory brick layer at least one is added of the iron oxide and titanium oxide In addition,
You may make it comprise the parallelepiped shape parallel to a longitudinal direction via the said 2nd insulating layer, and can be stacked | stacked.

前記熱電変換素子は、
前記絶縁層を第1の絶縁層とし、シリコン酸化物を主成分とし、アルミニウム酸化物、ホウ素酸化物及び亜鉛酸化物のうち少なくとも1種が添加された耐熱ガラス層からなる第2の絶縁層をさらに有し、
前記第2の絶縁層を介して長手方向に並設され、積み重ね可能な直方体形状を構成する
ようにしてもよい。
The thermoelectric conversion element is
A second insulating layer comprising a heat-resistant glass layer comprising the insulating layer as a first insulating layer, silicon oxide as a main component, and at least one of aluminum oxide, boron oxide and zinc oxide added; In addition,
You may make it comprise the parallelepiped shape parallel to a longitudinal direction via the said 2nd insulating layer, and can be stacked | stacked.

前記熱電変換素子は、
熱源を囲む構造物の壁として積み重ねて用いられ、pn接合部が前記壁の内面側に配置され、前記pn接合部側と反対側の端面に設けられるとともに前記熱電変換素子間を直列に接続する金属板が前記壁の外面側に配置されるようにしてもよい。
The thermoelectric conversion element is
Stacked and used as a wall of a structure surrounding a heat source, a pn junction is disposed on the inner surface side of the wall, and provided on an end surface opposite to the pn junction, and the thermoelectric conversion elements are connected in series. A metal plate may be arranged on the outer surface side of the wall.

前記金属板側は、送風又は注水により冷却されるようにしてもよい。   The metal plate side may be cooled by blowing or water injection.

本発明によれば、良好な熱電変換効率を維持することが可能な熱電変換素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion element which can maintain favorable thermoelectric conversion efficiency can be provided.

本発明の実施形態に係る熱電変換素子の構成を表わす斜視図である。It is a perspective view showing the structure of the thermoelectric conversion element which concerns on embodiment of this invention. 本発明の実施形態に係る熱電変換素子を形成するための金型の構成を表す斜視図である。It is a perspective view showing the structure of the metal mold | die for forming the thermoelectric conversion element which concerns on embodiment of this invention. 図2に示した金型の使用方法を説明するための斜視図である。It is a perspective view for demonstrating the usage method of the metal mold | die shown in FIG. 図1に示した熱電変換素子を構造物の壁に用いた場合の概略説明図である。It is a schematic explanatory drawing at the time of using the thermoelectric conversion element shown in FIG. 1 for the wall of a structure. 本発明の実施形態の変形例に係る熱電変換素子の構成を表わす斜視図である。It is a perspective view showing the structure of the thermoelectric conversion element which concerns on the modification of embodiment of this invention. 本発明の実施形態の変形例に係る熱電変換素子を形成するための金型の構成を表す斜視図である。It is a perspective view showing the structure of the metal mold | die for forming the thermoelectric conversion element which concerns on the modification of embodiment of this invention. 図5に示した熱電変換素子を構造物の壁に用いた場合の概略説明図である。It is a schematic explanatory drawing at the time of using the thermoelectric conversion element shown in FIG. 5 for the wall of a structure.

本発明の実施の形態に係る熱電変換素子について、以下図面を参照して説明する。本実施の形態の熱電変換素子は、熱源を囲む構造物である例えば、焼却炉、金属溶解炉、溶融炉等の壁に用いることができる。   A thermoelectric conversion element according to an embodiment of the present invention will be described below with reference to the drawings. The thermoelectric conversion element of this Embodiment can be used for walls, such as an incinerator, a metal melting furnace, a melting furnace, etc. which are structures surrounding a heat source.

熱電変換素子1は、図1に示すように、p型半導体11と、n型半導体12と、p型半導体11とn型半導体12とにより挟持された絶縁層13とを有し、p型半導体11とn型半導体12とをpn接合して構成される。p型半導体11とn型半導体12の境界はpn接合部14を構成する。熱電変換素子1の形状は角型で直方体形状であり、熱源を囲む構造物の壁として用いるのに積層可能な形状になっている。pn接合部14は、直方体形状の熱電変換素子1の短手方向の面側に形成されている。 As shown in FIG. 1, the thermoelectric conversion element 1 includes a p-type semiconductor layer 11, an n-type semiconductor layer 12, and an insulating layer 13 sandwiched between the p-type semiconductor layer 11 and the n-type semiconductor layer 12. The p-type semiconductor layer 11 and the n-type semiconductor layer 12 are formed by pn junction. The boundary between the p-type semiconductor layer 11 and the n-type semiconductor layer 12 forms a pn junction 14. The thermoelectric conversion element 1 has a rectangular shape and a rectangular parallelepiped shape, and can be stacked for use as a wall of a structure surrounding a heat source. The pn junction portion 14 is formed on the surface side of the rectangular parallelepiped thermoelectric conversion element 1 in the short direction.

絶縁層13は、耐火煉瓦の成分の層であり、シリコン酸化物(SiO)及びアルミニウム酸化物(Al)を主成分とし、鉄酸化物(Fe)及びチタン酸化物(TiO)のうち少なくとも1種が添加された耐火煉瓦の粉末から形成される。 The insulating layer 13 is a component layer of refractory bricks, mainly composed of silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), and titanium oxide ( It is formed from refractory brick powder to which at least one of TiO 2 ) is added.

絶縁層13に用いられる主な耐火煉瓦材料について、それぞれの耐火度と対応する代表的な組成及び軟化温度を表1に示す。表1において、耐火煉瓦材料の耐火度はゼーゲルコーンによる測定方法を用いて示し(SK32〜SK40)、組成は重量パーセントで示す。   Table 1 shows typical compositions and softening temperatures corresponding to the respective fire resistances of the main fire brick materials used for the insulating layer 13. In Table 1, the fire resistance of the refractory brick material is shown by using a measuring method with Zegel cone (SK32 to SK40), and the composition is shown in weight percent.

p型半導体11は、上記の耐火煉瓦の粉末に、p型にドープされ粉末化したゲルマニウム及びシリコンのうち少なくとも1種からなるp型の半導体の粉末を15〜70体積%混合した粉末から形成される。即ち、p型半導体層11は、p型の半導体を15〜70体積%混合した耐火煉瓦層からなる。また、n型半導体12は、上記の耐火煉瓦の粉末に、n型にドープされ粉末化したゲルマニウム及びシリコンのうち少なくとも1種からなるn型の半導体の粉末を15〜70体積%混合した粉末から形成される。即ち、n型半導体層12は、n型の半導体を15〜70体積%混合した耐火煉瓦層からなる。 The p-type semiconductor layer 11 is formed from a powder obtained by mixing 15 to 70% by volume of a p-type semiconductor powder composed of at least one of germanium and silicon doped into p-type powder into the above refractory brick powder. Is done. That is, the p-type semiconductor layer 11 is composed of a refractory brick layer in which a p-type semiconductor is mixed in an amount of 15 to 70% by volume. The n-type semiconductor layer 12 is a powder obtained by mixing 15 to 70% by volume of the above-mentioned refractory brick powder with an n-type semiconductor powder composed of at least one of germanium and silicon doped into n-type powder. Formed from. That is, the n-type semiconductor layer 12 is composed of a refractory brick layer in which an n-type semiconductor is mixed in an amount of 15 to 70% by volume.

p型半導体11におけるp型の半導体の粉末の添加量、または、n型半導体12におけるn型の半導体の粉末の添加量は、15体積%より少ないと、p型半導体11またはn型半導体12の電気抵抗が大きくなって導電性を失ってしまい、70体積%より多いと、p型半導体11またはn型半導体12と絶縁層13の組成の違いによる熱膨張率の差が大きくなり、例えば焼却炉に用いられた場合には炉の高温・低温のヒートサイクルにより熱電変換素子1に亀裂などの劣化が生じてしまう。したがって、p型半導体11におけるp型の半導体の粉末の添加量、または、n型半導体12におけるn型の半導体の粉末の添加量は、15〜70体積%の量とするのが適切であり、良好な熱電変換素子を得ることができる。 When the addition amount of the p-type semiconductor powder in the p-type semiconductor layer 11 or the addition amount of the n-type semiconductor powder in the n-type semiconductor layer 12 is less than 15% by volume, the p-type semiconductor layer 11 or the n-type semiconductor layer 11 is added. If the electrical resistance of the semiconductor layer 12 increases and the conductivity is lost, and if it exceeds 70% by volume, the difference in thermal expansion coefficient due to the difference in the composition of the p-type semiconductor layer 11 or n-type semiconductor layer 12 and the insulating layer 13 is caused. For example, when it is used in an incinerator, the thermoelectric conversion element 1 deteriorates due to a high-temperature / low-temperature heat cycle of the furnace. Therefore, it is appropriate that the addition amount of the p-type semiconductor powder in the p-type semiconductor layer 11 or the addition amount of the n-type semiconductor powder in the n-type semiconductor layer 12 is 15 to 70% by volume. Yes, a good thermoelectric conversion element can be obtained.

また、絶縁層13は、シリコン酸化物(SiO)を主成分とし、アルミニウム酸化物(Al)、ホウ素酸化物(B)及び亜鉛酸化物(ZnO)のうち少なくとも1種が添加された、高軟化点を有する耐熱ガラス材料の粉末から形成されるようにしてもよい。さらに、この耐熱ガラス材料の粉末に、MgO、アルカリ土類金属の酸化物であるCaO、SrO及びBaOのうち少なくとも1種、または、軟化点が少し低下するがアルカリ金属の酸化物であるLiO、NaO及びKO等のうち少なくとも1種を添加するようにしてもよい。 The insulating layer 13 is mainly composed of silicon oxide (SiO 2 ), and at least one of aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and zinc oxide (ZnO). May be formed from powder of a heat-resistant glass material having a high softening point. Furthermore, MgO, at least one of CaO, SrO, and BaO, which are oxides of alkaline earth metals, or Li 2 which is an oxide of alkali metals with a slight decrease in softening point. O, it may be added at least one of 2 O such as Na 2 O and K.

絶縁層13を上記の耐熱ガラス材料の粉末から形成するようにした場合には、p型半導体11は、上記の耐熱ガラス材料の粉末に、p型にドープされ粉末化したゲルマニウム及びシリコンのうち少なくとも1種からなるp型の半導体の粉末を15〜70体積%混合した粉末から形成される。即ち、p型半導体層11は、p型の半導体を15〜70体積%混合した耐熱ガラス層からなる。また、n型半導体12は、上記の耐熱ガラス材料の粉末に、n型にドープされ粉末化したゲルマニウム及びシリコンのうち少なくとも1種からなるn型の半導体の粉末を15〜70体積%混合した粉末から形成される。即ち、n型半導体層12は、n型の半導体を15〜70体積%混合した耐熱ガラス層からなる。 When the insulating layer 13 is formed from the powder of the above heat-resistant glass material, the p-type semiconductor layer 11 is composed of germanium and silicon doped into the above heat-resistant glass material and powdered into the p-type. It is formed from a powder in which 15 to 70% by volume of at least one p-type semiconductor powder is mixed. That is, the p-type semiconductor layer 11 is made of a heat-resistant glass layer in which a p-type semiconductor is mixed at 15 to 70% by volume. Further, the n-type semiconductor layer 12 is a mixture of the above heat-resistant glass material powder mixed with 15 to 70% by volume of an n-type semiconductor powder made of at least one of germanium and silicon doped into n-type powder. Formed from powder. That is, the n-type semiconductor layer 12 is composed of a heat-resistant glass layer in which an n-type semiconductor is mixed by 15 to 70% by volume.

なお、p型半導体11、n型半導体12及び絶縁層13の材料として上記の耐熱ガラス材料の粉末を用いる場合にも、p型半導体11におけるp型の半導体の粉末の添加量、または、n型半導体12におけるn型の半導体の粉末の添加量を15〜70体積%の量とするのが適切であり、良好な熱電変換素子を得ることができるが、その理由は上記の耐火煉瓦の粉末を用いる場合と同様である。 Even when the above heat-resistant glass material powder is used as the material of the p-type semiconductor layer 11, the n-type semiconductor layer 12, and the insulating layer 13, the amount of p-type semiconductor powder added to the p-type semiconductor layer 11, or It is appropriate that the amount of n-type semiconductor powder added to the n-type semiconductor layer 12 is 15 to 70% by volume, and a good thermoelectric conversion element can be obtained. This is the same as when using brick powder.

p型の半導体の粉末として、p型にドープされ粉末化したシリコン(Si)とゲルマニウム(Ge)からなる合金の粉末を用いるようにしてもよく、Siの重量比を75〜85%、Geの重量比を15〜25%とするとよい。また、n型の半導体の粉末として、n型にドープされ粉末化したシリコン(Si)とゲルマニウム(Ge)からなる合金の粉末を用いるようにしてもよく、Siの重量比を75〜85%、Geの重量比を15〜25%とするとよい。   As p-type semiconductor powder, p-type doped powdered silicon (Si) and germanium (Ge) alloy powder may be used. The weight ratio of Si is 75 to 85%, Ge The weight ratio is preferably 15 to 25%. Further, as an n-type semiconductor powder, an n-type doped and powdered silicon (Si) and germanium (Ge) alloy powder may be used, with a Si weight ratio of 75 to 85%, The weight ratio of Ge is preferably 15 to 25%.

SiとGeからなる合金は、どのような組成でも混ざり合う全率固溶体を形成し、電気抵抗、熱伝導、熱起電力等の物理的特性は組成変化に対して連続的に変化する。p型半導体11またはn型半導体12は、Siが重量比で75〜85%、Geが重量比で15〜25%とする合金の粉末材料を用いて形成すれば、熱電材料として性能指数が大きくなる。 An alloy composed of Si and Ge forms a solid solution having a mixed ratio of any composition, and physical characteristics such as electric resistance, heat conduction, and thermoelectromotive force continuously change with composition change. If the p-type semiconductor layer 11 or the n-type semiconductor layer 12 is formed using a powder material of an alloy in which Si is 75 to 85% by weight and Ge is 15 to 25% by weight, the figure of merit is used as a thermoelectric material. Becomes larger.

次に、熱電変換素子1を形成する方法について説明する。熱電変換素子1の形成には図2及び図3に示す金型2が用いられる。この金型2は、上方が開口した角形の箱状の基体21と仕切部材22とを備えている。仕切部材22は、仕切板22aと仕切枠22bとを有する。   Next, a method for forming the thermoelectric conversion element 1 will be described. A mold 2 shown in FIGS. 2 and 3 is used to form the thermoelectric conversion element 1. The mold 2 includes a rectangular box-shaped base body 21 having an opening at the top and a partition member 22. The partition member 22 includes a partition plate 22a and a partition frame 22b.

仕切部材22を上方から基体21の短手方向中央に差し込むことにより、図3に示すように、基体21内の空間が3つの領域A〜Cに区画される。仕切枠22bにより構成される領域Aは領域B及び領域Cに挟まれて配置される。仕切板22aは領域Bと領域Cとを仕切る。   By inserting the partition member 22 from above into the center of the base 21 in the short direction, the space in the base 21 is divided into three regions A to C as shown in FIG. The area A constituted by the partition frame 22b is disposed between the area B and the area C. The partition plate 22a partitions the region B and the region C.

領域Aには耐火煉瓦の粉末が充填され、領域Bには耐火煉瓦の粉末とn型の半導体の粉末を均一に混合した粉末が充填され、領域Cには耐火煉瓦の粉末とp型の半導体の粉末を均一に混合した粉末が充填される。   Region A is filled with refractory brick powder, region B is filled with powder that is uniformly mixed with refractory brick powder and n-type semiconductor powder, and region C is filled with refractory brick powder and p-type semiconductor. The powder is uniformly mixed.

それぞれの粉末の領域A〜Cへの充填が完了した後に、仕切部材22を基体21から引き抜く。この後、金型2の上部から粉末に所定の圧力を加えて固める。そして、加圧成形した粉末を耐火煉瓦の作製温度で加熱すると、図1に示した角型の熱電変換素子1が完成する。すなわち、熱電変換素子1を作製する焼成工程で、pn接合部14、導通部であるp型半導体11及びn型半導体12、および、絶縁層13を一挙に容易に形成することができる。また、耐熱ガラス材料を用いる場合にも同様な方法で熱電変換素子1を形成することができる。 After the filling of the respective powder areas A to C is completed, the partition member 22 is pulled out from the base 21. Thereafter, the powder is hardened by applying a predetermined pressure to the powder from the upper part of the mold 2. Then, when the pressure-molded powder is heated at the production temperature of the refractory brick, the square thermoelectric conversion element 1 shown in FIG. 1 is completed. That is, the pn junction part 14, the p-type semiconductor layer 11 and the n-type semiconductor layer 12, which are conductive parts, and the insulating layer 13 can be easily formed at a time in the firing step for producing the thermoelectric conversion element 1. Moreover, when using a heat resistant glass material, the thermoelectric conversion element 1 can be formed by the same method.

耐火煉瓦の粉末または耐熱ガラス材料の粉末を用いて形成された角形の熱電変換素子1は、熱電変換素子として発電をする役割を果たすだけではなく、熱源を囲む構造物の壁としての役割を果たすことができる。   The square thermoelectric conversion element 1 formed using refractory brick powder or heat resistant glass material powder not only plays a role of generating electricity as a thermoelectric conversion element, but also serves as a wall of a structure surrounding a heat source. be able to.

熱電変換素子1を熱源を囲む構造物の壁に用いた場合の一例を図4に示す。複数の直方体形状の熱電変換素子1は、各熱電変換素子1間を接続しかつ絶縁するための耐火モルタル15を介在させて、短手方向の面が表側に配置される小口積みで積み重ねられる。なお、熱電変換素子1を横方向に接続させることももちろん可能であり、その場合にも耐火モルタル15が用いられる。   An example in the case of using the thermoelectric conversion element 1 for the wall of the structure surrounding the heat source is shown in FIG. The plurality of rectangular parallelepiped-shaped thermoelectric conversion elements 1 are stacked in a small stack with the short-side surfaces arranged on the front side, with a refractory mortar 15 interposed between the thermoelectric conversion elements 1 for insulation. Of course, it is possible to connect the thermoelectric conversion elements 1 in the lateral direction, and in that case, the refractory mortar 15 is also used.

上下に耐火モルタル15を介して重なり合う一方の熱電変換素子1のp型半導体11と他方の熱電変換素子1のn型半導体12は金属板16により連結され、金属板16により各熱電変換素子1は直列に接続される。 The p-type semiconductor layer 11 of one thermoelectric conversion element 1 and the n-type semiconductor layer 12 of the other thermoelectric conversion element 1 that are overlapped with each other via a refractory mortar 15 are connected by a metal plate 16, and each thermoelectric conversion element is connected by the metal plate 16. 1 are connected in series.

熱電変換素子1のpn接合部14側が壁の内面側に配置され、熱源からの大量の熱エネルギーを受ける高温側となる。pn接合部14側と反対側の端面に設けられた金属板16側は壁の外面側に配置され低温側となる。熱電変換素子1は、高温側と低温側の温度差により発電する。熱電変換効率を向上させるために、低温側となる金属板16側に向けて図示しない送風機から送風することにより強制冷却するようにしてもよいし、金属板16側に図示しない注水器から冷却水を注水して強制冷却するようにしてもよい。   The pn junction 14 side of the thermoelectric conversion element 1 is disposed on the inner surface side of the wall, and becomes a high temperature side that receives a large amount of heat energy from the heat source. The metal plate 16 side provided on the end surface opposite to the pn junction 14 side is disposed on the outer surface side of the wall and becomes the low temperature side. The thermoelectric conversion element 1 generates power due to a temperature difference between the high temperature side and the low temperature side. In order to improve the thermoelectric conversion efficiency, forced cooling may be performed by blowing air from a blower (not shown) toward the metal plate 16 side which is a low temperature side, or cooling water from a water injector (not shown) on the metal plate 16 side. Water may be injected to forcibly cool.

次に、上記の実施の形態の変形例について図5〜図7を参照して説明する。なお、図5及び図7において、上記の実施の形態とほぼ同様の構成には同一の符号を付し、その説明を省略する。熱電変換素子10は、積み重ね可能な角形で直方体形状である。熱電変換素子10は、長手方向に上記の実施の形態とほぼ同様な構成の熱電変換素子1が第2の絶縁層17を介して並設されて構成されている。なお、並設された熱電変換素子1は、pn接合部14が熱電変換素子10の長手方向の面側に形成されている。第2の絶縁層17は、上述の絶縁層(第1の絶縁層)13と同様の材料である耐火煉瓦の粉末または耐熱ガラス材料の粉末により形成される。   Next, a modification of the above embodiment will be described with reference to FIGS. In FIGS. 5 and 7, the same reference numerals are given to substantially the same components as those in the above embodiment, and the description thereof is omitted. The thermoelectric conversion element 10 has a rectangular parallelepiped shape that can be stacked. The thermoelectric conversion element 10 is configured by juxtaposing the thermoelectric conversion elements 1 having substantially the same configuration as that of the above-described embodiment in the longitudinal direction via the second insulating layer 17. The thermoelectric conversion elements 1 arranged in parallel have a pn junction 14 formed on the surface side in the longitudinal direction of the thermoelectric conversion element 10. The second insulating layer 17 is formed of a refractory brick powder or a heat-resistant glass material powder, which is the same material as the insulating layer (first insulating layer) 13 described above.

次に、熱電変換素子10を形成する方法について説明する。熱電変換素子10の形成には、図6に示す金型20が用いられる。この金型20は、上方が開口した角形の箱状の基体23と仕切部材24とを備えている。仕切部材24は4つの仕切枠24aを有する。   Next, a method for forming the thermoelectric conversion element 10 will be described. A mold 20 shown in FIG. 6 is used to form the thermoelectric conversion element 10. The mold 20 includes a rectangular box-shaped base body 23 having an opening at the top and a partition member 24. The partition member 24 has four partition frames 24a.

仕切部材24を上方から基体23に差し込むことにより、基体23内の空間が、各熱電変換素子1を構成するp型半導体11、n型半導体12、第1の絶縁層13、および、第2の絶縁層17の材料である粉末がそれぞれ充填される領域に区画される。 By inserting the partition member 24 into the base body 23 from above, the space in the base body 23 becomes the p-type semiconductor layer 11, the n-type semiconductor layer 12, the first insulating layer 13, and the first insulating layer 13 constituting each thermoelectric conversion element 1. Each of the two insulating layers 17 is divided into regions filled with powder.

その後は、上記の実施の形態と同様に、材料である粉末を金型20の各領域に充填し、仕切部材24を基体23から引き抜き、金型20の上部から粉末に所定の圧力を加えて固めて、加圧成形した粉末を耐火煉瓦または耐熱ガラス材料の作製温度で加熱する。これにより図5に示した熱電変換素子10が完成する。   Thereafter, as in the above embodiment, each region of the mold 20 is filled with the material powder, the partition member 24 is pulled out from the base 23, and a predetermined pressure is applied to the powder from the upper part of the mold 20. The compacted and pressure-formed powder is heated at the production temperature of the refractory brick or heat-resistant glass material. Thereby, the thermoelectric conversion element 10 shown in FIG. 5 is completed.

熱電変換素子10を熱源を囲む構造物の壁に用いた場合の一例を図7に示す。複数の直方体形状の熱電変換素子10は、各熱電変換素子10間を接続しかつ絶縁するための耐火モルタル15を介在させて、長手方向の面が表側に配置される長手積みで積み重ねられる。また、熱電変換素子10は横方向に接続させることも可能であり、その場合にも耐火モルタル15が用いられる。   An example in the case of using the thermoelectric conversion element 10 for the wall of the structure surrounding the heat source is shown in FIG. The plurality of rectangular parallelepiped-shaped thermoelectric conversion elements 10 are stacked in a longitudinal stack in which the surfaces in the longitudinal direction are arranged on the front side, with refractory mortars 15 for connecting and insulating the thermoelectric conversion elements 10 interposed therebetween. Moreover, the thermoelectric conversion element 10 can also be connected to a horizontal direction, and the refractory mortar 15 is used also in that case.

熱電変換素子10を構成する一方の熱電変換素子1のp型半導体11と他方の熱電変換素子1のn型半導体12との間、および、横方向に接続した隣り合う熱電変換素子10の一方の熱電変換素子10のp型半導体11と他方の熱電変換素子10のn型半導体12との間は、金属板18により連結され、金属板18により各熱電変換素子10間は直列に接続される。 Between the p-type semiconductor layer 11 of one thermoelectric conversion element 1 constituting the thermoelectric conversion element 10 and the n-type semiconductor layer 12 of the other thermoelectric conversion element 1, and between adjacent thermoelectric conversion elements 10 connected in the lateral direction. The p-type semiconductor layer 11 of one thermoelectric conversion element 10 and the n-type semiconductor layer 12 of the other thermoelectric conversion element 10 are connected by a metal plate 18, and the thermoelectric conversion elements 10 are connected in series by the metal plate 18. Connected.

熱電変換素子10を構成する各熱電変換素子1のpn接合部14側が壁の内面側に配置され、熱源からの大量の熱エネルギーを受ける高温側となる。pn接合部14側と反対側の端面に設けられた金属板18側は壁の外面側に配置され低温側となる。熱電変換素子10は、高温側と低温側の温度差により発電する。熱電変換効率を向上させるために、金属板18側を送風または注水により強制冷却してもよいのは上記の実施の形態と同様である。   The pn junction 14 side of each thermoelectric conversion element 1 constituting the thermoelectric conversion element 10 is arranged on the inner surface side of the wall, and becomes a high temperature side that receives a large amount of heat energy from the heat source. The metal plate 18 side provided on the end surface opposite to the pn junction 14 side is disposed on the outer surface side of the wall and becomes the low temperature side. The thermoelectric conversion element 10 generates power due to a temperature difference between the high temperature side and the low temperature side. In order to improve the thermoelectric conversion efficiency, the metal plate 18 side may be forcibly cooled by air blowing or water injection as in the above embodiment.

このように本実施の形態の熱電変換素子では、耐火煉瓦層または耐熱ガラス層により構成するようにしたので、熱源を囲む構造物の壁材そのものとして利用することができ、従来のように高温・低温のヒートサイクル時に熱膨張率の差によって生じる応力により亀裂が生じるようなことがなく、良好な熱電変換効率を維持することができる。加えて、本実施の形態の熱電変換素子では、形状が角形であるようにしたので、積み重ねが可能であり、壁材として用いやすい。 Thus, in the thermoelectric conversion element of the present embodiment, since it is configured by a refractory brick layer or a heat-resistant glass layer, it can be used as the wall material of the structure surrounding the heat source itself, It is possible to maintain good thermoelectric conversion efficiency without causing cracks due to stress caused by a difference in thermal expansion coefficient during a low-temperature heat cycle. In addition, since the thermoelectric conversion element of the present embodiment has a rectangular shape, it can be stacked and easily used as a wall material.

また、本実施の形態の熱電変換素子では、金型2,20を用いることにより容易に形成することができるので、製造に特に大きな設備は必要とせず、製造コストを低減することができる。   In addition, since the thermoelectric conversion element of the present embodiment can be easily formed by using the molds 2 and 20, a particularly large facility is not required for manufacturing, and the manufacturing cost can be reduced.

また、本実施の形態の熱電変換素子では、熱源から熱エネルギーを受ける面積が大きいので、高い熱電変換効率を得ることができる。 Moreover, in the thermoelectric conversion element of this Embodiment, since the area which receives heat energy from a heat source is large, high thermoelectric conversion efficiency can be obtained.

太陽電池は太陽が出ている間しか発電できないが、本実施の形態の熱電変換素子では昼夜にかかわらず発電できる。また、本実施の形態の熱電変換素子は、作製価格が太陽電池より安く、ほぼメンテナンスフリーでもあり、本格的に大量に使われれば電力コストの節約に大いに寄与できる。また、本実施の形態の熱電変換素子では、太陽電池と同様に電力を得るのに炭酸ガスが発生せず、大気汚染を引き起こすことがない。   A solar cell can generate electricity only while the sun is out, but the thermoelectric conversion element of this embodiment can generate electricity regardless of day or night. In addition, the thermoelectric conversion element of this embodiment is cheaper than a solar cell and is almost maintenance-free. If it is used in large quantities in earnest, it can greatly contribute to power cost saving. Further, in the thermoelectric conversion element of the present embodiment, carbon dioxide gas is not generated to obtain electric power in the same manner as the solar cell, and air pollution is not caused.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では角形の熱電変換素子について説明したが、形状は角型である必要は必ずしもない。所望の形状に応じた金型を用いれば、所望の形状の熱電変換素子を形成することができる。   While the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment, and various modifications can be made. For example, although the rectangular thermoelectric conversion element has been described in the above embodiment, the shape is not necessarily rectangular. If a mold corresponding to a desired shape is used, a thermoelectric conversion element having a desired shape can be formed.

また、本発明において、p型半導体11、n型半導体12、第1の絶縁層13または第2の絶縁層17を気泡を分散させて形成することにより、熱電変換素子の断熱性を向上させるようにしてもよい。 In the present invention, the p-type semiconductor layer 11, the n-type semiconductor layer 12, the first insulating layer 13, or the second insulating layer 17 is formed by dispersing bubbles, thereby improving the heat insulation of the thermoelectric conversion element. You may make it make it.

また、本発明の熱電変換素子は、熱源を囲む構造物であればどのような構造物にも適用することができ、焼却炉、金属溶解炉、溶融炉等には限定されず、例えば、工場、高レベル核廃棄物を冷却する施設などにも用いることができる。   Further, the thermoelectric conversion element of the present invention can be applied to any structure as long as it surrounds a heat source, and is not limited to an incinerator, a metal melting furnace, a melting furnace, etc. It can also be used in facilities that cool high-level nuclear waste.

また、上記実施の形態では、2つの並設された熱電変換素子1を有する熱電変換素子10について説明したが、3つ以上の熱電変換素子1を有するようにしてもよい。   Moreover, although the said embodiment demonstrated the thermoelectric conversion element 10 which has the two thermoelectric conversion elements 1 arranged in parallel, you may make it have three or more thermoelectric conversion elements 1. FIG.

また、上記実施の形態では、表1において絶縁層13などに用いられる主な耐火煉瓦材料の組成について示したが、これらの組成はあくまでも例示であり、これらの組成を多少変化させても耐火性能は変わらず、耐火煉瓦材料として用いることができる。   Moreover, in the said embodiment, although shown about the composition of the main refractory brick materials used for the insulating layer 13 etc. in Table 1, these compositions are an illustration to the last, Even if these compositions are changed a little, refractory performance Can be used as a refractory brick material.

以下に実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.

[実施例1]
熱電変換素子1を作製するのに、絶縁層13の材料としてSK36の耐火煉瓦の粉末を用いた。p型半導体11の材料としては、SK36の耐火煉瓦の粉末にp型シリコン結晶の粉末を体積比率で40体積%添加して均一に混合した粉末を用いた。このp型シリコン結晶の粉末にはシリコンにホウ素0.3原子%を添加して溶解し粉砕したものを用いた。n型半導体12の材料としては、SK36の耐火煉瓦の粉末にn型シリコン結晶の粉末を体積比率で40体積%添加して均一に混合した粉末を用いた。このn型シリコン結晶の粉末にはシリコンにリン0.3原子%を添加して溶解し粉砕したものを用いた。
[Example 1]
In order to produce the thermoelectric conversion element 1, SK36 refractory brick powder was used as the material of the insulating layer 13. As a material of the p-type semiconductor layer 11, a powder obtained by uniformly adding 40% by volume of p-type silicon crystal powder to a refractory brick powder of SK36 in a volume ratio was used. The p-type silicon crystal powder was obtained by adding 0.3 atomic% boron to silicon and dissolving and pulverizing it. As a material of the n-type semiconductor layer 12, a powder obtained by uniformly adding 40% by volume of n-type silicon crystal powder to SK36 refractory brick powder and mixing them uniformly was used. As this n-type silicon crystal powder, 0.3 atomic% of phosphorus was added to silicon and dissolved and pulverized.

上述の各材料を金型2に充填して、加圧して固化した後に耐火煉瓦の作製温度である1200℃程度で加熱することで、図1に示した構造の熱電変換素子1を作製した。熱電変換素子1を作製する焼成工程で、pn接合部14、導通部であるp型半導体11及びn型半導体12、絶縁層13を一挙に形成することができた。作製した熱電変換素子1の構造は、従来と比較して熱エネルギーを受ける面積が大きく、良好な熱電変換効率を得ることができた。また、作製した熱電変換素子1は、耐火煉瓦と同様の強度を有しており、構造物の壁材として利用することができた。 Each material described above was filled in the mold 2 and solidified by pressurization, and then heated at about 1200 ° C., which is the temperature for producing a refractory brick, to produce the thermoelectric conversion element 1 having the structure shown in FIG. In the baking process for producing the thermoelectric conversion element 1, the pn junction part 14, the p-type semiconductor layer 11 and the n-type semiconductor layer 12, and the insulating layer 13 which are conductive parts could be formed all at once. The structure of the produced thermoelectric conversion element 1 has a larger area for receiving heat energy than the conventional one, and good thermoelectric conversion efficiency could be obtained. Moreover, the produced thermoelectric conversion element 1 had the same intensity | strength as a refractory brick, and was able to be utilized as a wall material of a structure.

[実施例2]
実施例1の熱電変換素子1を50個作製し、耐火モルタルを用いて直列に接続した。この結果、pn接合部14側の高温側と金属板16側の低温側との温度差が800℃である場合には、20Vの起電力を得ることが出来た。熱電変換素子1は高温側に金属板(金属電極)を有さないことにより、熱による高温側の劣化を防げることがわかった。また、p型半導体11、n型半導体12および絶縁層13間の熱膨張率の差による劣化は生じなかった。
[Example 2]
Fifty thermoelectric conversion elements 1 of Example 1 were produced and connected in series using refractory mortar. As a result, when the temperature difference between the high temperature side on the pn junction 14 side and the low temperature side on the metal plate 16 side is 800 ° C., an electromotive force of 20 V can be obtained. It has been found that the thermoelectric conversion element 1 can prevent deterioration on the high temperature side due to heat by not having a metal plate (metal electrode) on the high temperature side. In addition, deterioration due to the difference in coefficient of thermal expansion among the p-type semiconductor layer 11, the n-type semiconductor layer 12, and the insulating layer 13 did not occur.

[実施例3]
熱電変換素子1を作製するのに、絶縁層13の材料として、耐熱ガラス材料の粉末であり、シリコン酸化物、ホウ素酸化物などを成分とするASF102X(旭硝子株式会社製)を用いた。この耐熱ガラス材料の粉末は850℃程度に加熱すると透明なガラスになる。
[Example 3]
To produce the thermoelectric conversion element 1, ASF102X (manufactured by Asahi Glass Co., Ltd.), which is a powder of a heat-resistant glass material and contains silicon oxide, boron oxide or the like as a material, was used as the material of the insulating layer 13. When the heat-resistant glass material powder is heated to about 850 ° C., it becomes transparent glass.

p型半導体11の材料としては、上述の耐熱ガラス材料の粉末に体積比率45%のp型シリコン結晶の粉末と5%のp型ゲルマニウム結晶の粉末を添加して均一に混合した粉末を用いた。このp型シリコン結晶の粉末にはシリコンにホウ素0.2原子%を添加して溶解し粉砕したものを用いた。また、p型ゲルマニウム結晶の粉末にはゲルマニウムにホウ素0.2原子%を添加して溶解し粉砕したものを用いた。 As a material of the p-type semiconductor layer 11, a powder obtained by adding a powder of p-type silicon crystal having a volume ratio of 45% and a powder of p-type germanium crystal having a volume ratio of 45% to the powder of the above-described heat-resistant glass material and uniformly mixing is used. It was. As the p-type silicon crystal powder, 0.2 atomic% of boron was added to silicon and dissolved and pulverized. The p-type germanium crystal powder was prepared by adding 0.2 atomic% of boron to germanium, dissolving and grinding.

n型半導体12の材料としては、上述の耐熱ガラス材料の粉末に体積比率45%のn型シリコン結晶の粉末と5%のn型ゲルマニウム結晶の粉末を添加して均一に混合した粉末を用いた。このn型シリコン結晶の粉末にはシリコンにリン0.2原子%を添加して溶解し粉砕したものを用いた。また、n型ゲルマニウム結晶の粉末にはゲルマニウムにリン0.2原子%を添加して溶解し粉砕したものを用いた。 As a material for the n-type semiconductor layer 12, a powder obtained by adding a powder of n-type silicon crystal having a volume ratio of 45% and a powder of n-type germanium crystal having a volume ratio of 45% to the powder of the above-described heat-resistant glass material and uniformly mixing the powder is used. It was. The n-type silicon crystal powder used was dissolved and pulverized by adding 0.2 atomic% of phosphorus to silicon. The n-type germanium crystal powder used was dissolved and pulverized by adding 0.2 atomic% of phosphorus to germanium.

このような材料により作製した熱電変換素子1は、実施例1及び実施例2で作製した耐火煉瓦の粉末を用いて作製した熱電変換素子1と熱電特性はほとんど変わらなかった。   The thermoelectric conversion element 1 made of such a material had almost the same thermoelectric characteristics as the thermoelectric conversion element 1 produced using the refractory brick powder produced in Example 1 and Example 2.

実施例3においても、p型半導体11、n型半導体12および絶縁層13間の熱膨張率の差による劣化は生じなかった。 Also in Example 3, deterioration due to the difference in thermal expansion coefficient among the p-type semiconductor layer 11, the n-type semiconductor layer 12, and the insulating layer 13 did not occur.

[実施例4]
図5に示した熱電変換素子10を作製するのに、第1の絶縁層13及び第2の絶縁層17として、熱的な特性の安定しているシリコン酸化物(SiO)にアルミニウム酸化物(Al)及びマグネシウム酸化物(MgO)が添加された耐熱ガラス材料の粉末を用いた。
[Example 4]
In order to manufacture the thermoelectric conversion element 10 shown in FIG. 5, as the first insulating layer 13 and the second insulating layer 17, aluminum oxide is used as silicon oxide (SiO 2 ) having stable thermal characteristics. A heat-resistant glass material powder to which (Al 2 O 3 ) and magnesium oxide (MgO) were added was used.

p型半導体11の材料としては、ホウ素を0.2原子%添加した重量比で80%のSiと20%のGeからなる合金の粉末と、上述の耐熱ガラス材料の粉末を体積比1:1で混合した粉末を用いた。n型半導体12の材料としては、リンを0.2原子%添加した重量比で80%のSiと20%のGeからなる合金の粉末と、上述の耐熱ガラス材料の粉末を体積比1:1で混合した粉末を用いた。 As a material of the p-type semiconductor layer 11, an alloy powder composed of 80% Si and 20% Ge in a weight ratio to which 0.2 atomic% of boron is added and a powder of the above-described heat-resistant glass material are in a volume ratio of 1: The powder mixed in 1 was used. As a material for the n-type semiconductor layer 12, an alloy powder composed of 80% Si and 20% Ge in a weight ratio to which 0.2 atomic% of phosphorus is added and a powder of the above-described heat-resistant glass material are in a volume ratio of 1: The powder mixed in 1 was used.

上述の各材料を金型20に充填して、加圧して固化した後に1250℃で1時間程度加熱することで、図5に示した構造の熱電変換素子10を作製した。   The thermoelectric conversion element 10 having the structure shown in FIG. 5 was produced by filling the above-described materials into the mold 20 and pressurizing and solidifying it, followed by heating at 1250 ° C. for about 1 hour.

なお、p型半導体11及びn型半導体12の材料は、耐熱ガラス材料の粉末に、重量比で80%のSiと20%のGeからなる合金の粉末を15〜70体積%の範囲で混合する材料とすることが望ましい。この合金の粉末が15体積%より少ないと、熱電変換素子において導電性を失ってしまう。この合金の粉末が70体積%を超えると、熱電変換素子10を構成するp型半導体11、n型半導体12、第1の絶縁層13及び第2の絶縁層17の各境界面は同じ成分のガラスが溶け合って強固なものになっても、熱膨張率の差から発生する応力によりヒートサイクルに耐えられなくなってしまう。 The material of the p-type semiconductor layer 11 and the n-type semiconductor layer 12 is a heat-resistant glass material powder, and an alloy powder composed of 80% Si and 20% Ge in a weight ratio of 15 to 70% by volume. It is desirable to use a material to be mixed. When the alloy powder is less than 15% by volume, the thermoelectric conversion element loses conductivity. When the alloy powder exceeds 70% by volume, the boundary surfaces of the p-type semiconductor layer 11, the n-type semiconductor layer 12, the first insulating layer 13, and the second insulating layer 17 constituting the thermoelectric conversion element 10 are the same. Even if the glass components are melted and become strong, they cannot withstand the heat cycle due to the stress generated from the difference in coefficient of thermal expansion.

この熱電変換素子10全体の寸法を65mm×114mm×230mmとし、中央の第2の絶縁層17の寸法は65mm×114mm×15mmとした。第1の絶縁層13の寸法を65mm×84mm×15mmとし、pn接合部14の面の寸法は65mm×30mmとした。このように作製した熱電変換素子10の低温側の両端のp極とn極の電極間の電気抵抗は0.01Ωとなった。   The overall dimension of the thermoelectric conversion element 10 was 65 mm × 114 mm × 230 mm, and the dimension of the second insulating layer 17 at the center was 65 mm × 114 mm × 15 mm. The dimension of the first insulating layer 13 was 65 mm × 84 mm × 15 mm, and the dimension of the surface of the pn junction 14 was 65 mm × 30 mm. The electrical resistance between the p-pole and n-pole electrodes at both ends on the low temperature side of the thus produced thermoelectric conversion element 10 was 0.01Ω.

この熱電変換素子10の1個につき配置された2個の熱電変換素子1について、高温側を750℃とし、低温側を100℃として650℃の温度差を与え、両端のp極とn極の電極間の起電力を測定したところ0.3Vの起電力が得られた。また、この熱電変換素子10を10個作製し、これらを直列に連結し、外部抵抗として0.01Ωの外部抵抗を接続することにより約150Wの電力を得ることができた。   About two thermoelectric conversion elements 1 arranged per one of the thermoelectric conversion elements 10, a high temperature side is set to 750 ° C., a low temperature side is set to 100 ° C., and a temperature difference of 650 ° C. is given. When the electromotive force between the electrodes was measured, an electromotive force of 0.3 V was obtained. Further, ten thermoelectric conversion elements 10 were manufactured, connected in series, and an external resistance of 0.01Ω was connected as an external resistance, so that electric power of about 150 W could be obtained.

[実施例5]
実施例4において耐熱ガラス材料の粉末の代わりに、重量比が13%のシリコン酸化物(SiO)、85%のアルミニウム酸化物(Al)、2%の鉄酸化物(Fe)の混合物からなる耐火煉瓦の粉末を用いて熱電変換素子10を作製した。
[Example 5]
Instead of the heat-resistant glass material powder in Example 4, the weight ratio of silicon oxide (SiO 2 ) of 13%, aluminum oxide (Al 2 O 3 ) of 85%, iron oxide (Fe 2 O of 2%) The thermoelectric conversion element 10 was produced using the powder of the refractory brick which consists of a mixture of 3 ).

実施例4と同様に熱電変換素子10全体の寸法を65mm×114mm×230mmとし、10個の熱電変換素子10を金属溶解炉の側壁に配置し、熔解炉の廃熱を利用した発電を行った。熔解炉の発熱は1100℃を越え、高温側と低温側との温度差が1000℃程度と大きくなるので発電出力も大きくなり、0.01Ωの外部抵抗を接続することにより約200Wの電力を得ることができた。   As in Example 4, the overall dimensions of the thermoelectric conversion element 10 were 65 mm × 114 mm × 230 mm, 10 thermoelectric conversion elements 10 were arranged on the side wall of the metal melting furnace, and power generation was performed using the waste heat of the melting furnace. . The heat generated in the melting furnace exceeds 1100 ° C, and the temperature difference between the high temperature side and the low temperature side becomes as large as about 1000 ° C, so the power generation output also increases, and an electric resistance of about 200 W is obtained by connecting an external resistance of 0.01Ω. I was able to.

[実施例6]
実施例2、実施例4及び実施例5において、低温側の金属板16,18側を送風機による送風により強制冷却すると発電出力が5〜10%向上する結果が得られた。また、金属板16,18側に注水器により冷却水を流して強制冷却を行うと更に発電出力が向上し、8〜15%向上する結果が得られた。
[Example 6]
In Example 2, Example 4, and Example 5, when the low-temperature side metal plates 16 and 18 side were forcibly cooled by blowing air from a blower, the result that power generation output was improved by 5 to 10% was obtained. Moreover, when forced cooling was performed by supplying cooling water to the metal plates 16 and 18 side with a water injector, the power generation output was further improved, and a result of 8 to 15% improvement was obtained.

1,10 熱電変換素子
11 p型半導体
12 n型半導体
13 絶縁層(第1の絶縁層)
14 pn接合部
15 耐火モルタル
16,18 金属板
17 第2の絶縁層
2,20 金型

1,10 thermoelectric conversion element 11 p-type semiconductor layer 12 n-type semiconductor layer 13 insulating layer (first insulating layer)
14 pn junction 15 Refractory mortar 16,18 Metal plate 17 Second insulating layer 2,20 Mold

Claims (9)

p型半導体と、n型半導体と、前記p型半導体と前記n型半導体とにより挟持された絶縁層とを有し、前記p型半導体と前記n型半導体とをpn接合して構成され熱電変換素子であって、
前記絶縁層は、シリコン酸化物及びアルミニウム酸化物を主成分とし、鉄酸化物及びチタン酸化物のうち少なくとも1種が添加された耐火煉瓦層からなり
前記p型半導体は、p型の半導体を15〜70体積%混合した前記耐火煉瓦層からなり
前記n型半導体は、n型の半導体を15〜70体積%混合した前記耐火煉瓦層からなることを特徴とする熱電変換素子。
and p-type semiconductor layer, and the n-type semiconductor layer, the p-type semiconductor layer and the n-type semiconductor layer and has a sandwiched insulating layer by, pn junction and the n-type semiconductor layer and the p-type semiconductor layer a thermoelectric conversion element configured to,
The insulating layer is mainly composed of silicon oxide and aluminum oxide, and consists of a refractory brick layer to which at least one of iron oxide and titanium oxide is added,
The p-type semiconductor layer is composed of the refractory brick layer mixed with 15 to 70% by volume of a p-type semiconductor,
The n-type semiconductor layer is composed of the refractory brick layer in which 15 to 70% by volume of an n-type semiconductor is mixed.
p型半導体層と、n型半導体層と、前記p型半導体層と前記n型半導体層とにより挟持された絶縁層とを有し、前記p型半導体層と前記n型半導体層とをpn接合して構成された熱電変換素子であって、
前記絶縁層は、シリコン酸化物を主成分とし、アルミニウム酸化物、ホウ素酸化物及び亜鉛酸化物のうち少なくとも1種が添加された耐熱ガラス層からなり
前記p型半導体は、p型の半導体を15〜70体積%混合した前記耐熱ガラス層からなり
前記n型半導体は、n型の半導体を15〜70体積%混合した前記耐熱ガラス層からなることを特徴とする熱電変換素子。
a p-type semiconductor layer; an n-type semiconductor layer; an insulating layer sandwiched between the p-type semiconductor layer and the n-type semiconductor layer; and a pn junction between the p-type semiconductor layer and the n-type semiconductor layer A thermoelectric conversion element configured as follows:
The insulating layer is mainly composed of silicon oxide, and includes a heat-resistant glass layer to which at least one of aluminum oxide, boron oxide, and zinc oxide is added,
The p-type semiconductor layer is composed of the heat-resistant glass layer mixed with 15 to 70% by volume of a p-type semiconductor,
The n-type semiconductor layer is composed of the heat-resistant glass layer mixed with 15 to 70% by volume of an n-type semiconductor.
前記耐熱ガラスは、MgO、CaO、SrO及びBaOのうち少なくとも1種、または、LiO、NaO及びKOのうち少なくとも1種がさらに添加されたものであることを特徴とする請求項2に記載の熱電変換素子。 The heat resistant glass layer is characterized in that at least one of MgO, CaO, SrO and BaO or at least one of Li 2 O, Na 2 O and K 2 O is further added. The thermoelectric conversion element according to claim 2. 前記p型の半導体及び前記n型の半導体は、SiとGeからなる合金であり、前記Siの重量比が75〜85%、前記Geの重量比が15〜25%であることを特徴とする請求項1乃至3のいずれか1項に記載の熱電変換素子。   The p-type semiconductor and the n-type semiconductor are an alloy composed of Si and Ge, wherein the weight ratio of Si is 75 to 85%, and the weight ratio of Ge is 15 to 25%. The thermoelectric conversion element according to any one of claims 1 to 3. 形状が角形であり、積み重ね可能であることを特徴とする請求項1乃至4のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 4, wherein the thermoelectric conversion element has a square shape and can be stacked. 前記絶縁層を第1の絶縁層とし、シリコン酸化物及びアルミニウム酸化物を主成分とし、鉄酸化物及びチタン酸化物のうち少なくとも1種が添加された耐火煉瓦層からなる第2の絶縁層をさらに有し、
前記第2の絶縁層を介して長手方向に並設され、積み重ね可能な直方体形状を構成することを特徴とする請求項1に記載の熱電変換素子。
The insulating layer and the first insulating layer, a silicon oxide and aluminum oxide as a main component, a second insulating layer made of refractory brick layer at least one is added of the iron oxide and titanium oxide In addition,
2. The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion elements are arranged in parallel with each other in the longitudinal direction via the second insulating layer to form a stackable rectangular parallelepiped shape.
前記絶縁層を第1の絶縁層とし、シリコン酸化物を主成分とし、アルミニウム酸化物、ホウ素酸化物及び亜鉛酸化物のうち少なくとも1種が添加された耐熱ガラス層からなる第2の絶縁層をさらに有し、
前記第2の絶縁層を介して長手方向に並設され、積み重ね可能な直方体形状を構成することを特徴とする請求項2または3に記載の熱電変換素子。
A second insulating layer comprising a heat-resistant glass layer comprising the insulating layer as a first insulating layer, silicon oxide as a main component, and at least one of aluminum oxide, boron oxide and zinc oxide added; In addition,
4. The thermoelectric conversion element according to claim 2, wherein the thermoelectric conversion elements are arranged in parallel in the longitudinal direction via the second insulating layer and constitute a stackable rectangular parallelepiped shape. 5.
熱源を囲む構造物の壁として積み重ねて用いられ、pn接合部が前記壁の内面側に配置され、前記pn接合部側と反対側の端面に設けられるとともに前記熱電変換素子間を直列に接続する金属板が前記壁の外面側に配置されることを特徴とする請求項5乃至7のいずれか1項に記載の熱電変換素子。   Stacked and used as a wall of a structure surrounding a heat source, a pn junction is disposed on the inner surface side of the wall, and provided on an end surface opposite to the pn junction, and the thermoelectric conversion elements are connected in series. The thermoelectric conversion element according to claim 5, wherein a metal plate is disposed on an outer surface side of the wall. 前記金属板側は、送風又は注水により冷却されることを特徴とする請求項8に記載の熱電変換素子。   The thermoelectric conversion element according to claim 8, wherein the metal plate side is cooled by air blowing or water injection.
JP2012239683A 2012-10-30 2012-10-30 Thermoelectric conversion element Expired - Fee Related JP6150493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239683A JP6150493B2 (en) 2012-10-30 2012-10-30 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239683A JP6150493B2 (en) 2012-10-30 2012-10-30 Thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2014090101A JP2014090101A (en) 2014-05-15
JP6150493B2 true JP6150493B2 (en) 2017-06-21

Family

ID=50791777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239683A Expired - Fee Related JP6150493B2 (en) 2012-10-30 2012-10-30 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6150493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378381A (en) * 2018-10-19 2019-02-22 包头稀土研究院 High temperature thermoelectric unit and its manufacturing method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205777A (en) * 1983-05-09 1984-11-21 Sanyo Electric Co Ltd Thermoelectric generating element
JPH03129782A (en) * 1989-07-18 1991-06-03 Mitsubishi Materials Corp Manufacture of thermoelectric element
JPH03293783A (en) * 1990-04-11 1991-12-25 Mitsubishi Materials Corp Thermoelectric element and manufacture thereof
JPH05343752A (en) * 1992-06-09 1993-12-24 Mitsubishi Materials Corp Thermoelectric generating element
JPH0832128A (en) * 1994-07-12 1996-02-02 Mitsubishi Materials Corp Thermoelectric element
JPH08196094A (en) * 1995-01-11 1996-07-30 Tokyo Yogyo Co Ltd Fire brick for power generation
JPH08335722A (en) * 1995-06-08 1996-12-17 Ngk Insulators Ltd Thermoelectric conversion module
JPH1082509A (en) * 1996-09-09 1998-03-31 Nanahoshi Kagaku Kenkyusho:Kk Small-sized incinerator
JPH1094278A (en) * 1996-09-18 1998-04-10 Tokyo Yogyo Co Ltd Securing method for thermoelectric element
JPH1154808A (en) * 1997-08-07 1999-02-26 Science & Tech Agency Laminatedly integrated molded thermoelectric element and its manufacture
JP3509572B2 (en) * 1998-08-28 2004-03-22 住友金属工業株式会社 Porous thermoelectric conversion element
JP2001044520A (en) * 1999-08-03 2001-02-16 Unitika Ltd Thermoelectric semiconductor and manufacture thereof
JP2001284661A (en) * 2000-03-30 2001-10-12 Unitika Ltd n-TYPE THERMOELECTRIC ELEMENT COMPOSITION FOR HIGH TEMPERATURE
JP4277506B2 (en) * 2002-10-24 2009-06-10 株式会社村田製作所 ZnO-based thin film for thermoelectric material of thermoelectric conversion element, thermoelectric conversion element using the ZnO-based thin film, and infrared sensor
US7309830B2 (en) * 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
JP4882855B2 (en) * 2007-05-01 2012-02-22 Tdk株式会社 Thermoelectric conversion module and manufacturing method thereof
JP4983920B2 (en) * 2007-06-22 2012-07-25 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP5098589B2 (en) * 2007-11-16 2012-12-12 株式会社村田製作所 Thermoelectric conversion module
JP4715953B2 (en) * 2008-10-10 2011-07-06 トヨタ自動車株式会社 Nanocomposite thermoelectric conversion material, thermoelectric conversion element using the same, and method for producing nanocomposite thermoelectric conversion material
WO2010058464A1 (en) * 2008-11-20 2010-05-27 株式会社村田製作所 Thermoelectric conversion module
TW201042789A (en) * 2009-04-02 2010-12-01 Basf Se Thermoelectric material coated with a protective layer
JP5333202B2 (en) * 2009-12-25 2013-11-06 株式会社デンソー Thermoelectric conversion element and manufacturing method thereof
JP2011134988A (en) * 2009-12-25 2011-07-07 Denso Corp Method for manufacturing thermoelectric conversion element

Also Published As

Publication number Publication date
JP2014090101A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
CN101313421B (en) Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
US8039728B2 (en) Glass-ceramic thermoelectric module
US20100193001A1 (en) Thermoelectric conversion module, and heat exchanger, thermoelectric temperature control device and thermoelectric generator employing the same
JP5526104B2 (en) Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same
CN103390721B (en) Thermoelectric material and the thermoelectric element, electrothermal module and thermoelectric device for including it
CN102969443B (en) A kind of internal and external electrode is the thermoelectrical conversion battery of metal wire
JP6150493B2 (en) Thermoelectric conversion element
CN103378767A (en) Direct thermoelectric conversion based power supply unit used after nuclear power station accident
CN106159077B (en) Bismuth telluride-based thermoelectric power generation element and preparation method thereof
JP2017500728A (en) Thermoelectric material and manufacturing method thereof
CN105577034B (en) The preparation method of multistage coupling high temperature sensible heat latent heat phase-change accumulation energy temperature difference electricity generation device
CN103123221A (en) Device used for sintering sodium-sulfur battery ceramic pipes
JP7314927B2 (en) Thermoelectric conversion module member, thermoelectric conversion module, and method for manufacturing thermoelectric conversion module member
JP2009088457A (en) Thermoelectric conversion device and method of manufacturing the same
KR101629509B1 (en) Thermoelectric materials and their manufacturing method
CN104362249A (en) Layered electrode matched with Mg-Si-Sn-based thermoelectric element and connecting technology thereof
CN108004589A (en) A kind of manufacture method and its manufacturing equipment of octagon polycrystalline silicon ingot casting
KR20140011668A (en) Buffer layer formed mg-si base thermoelectric materials
JP5851537B2 (en) Joining method of beta alumina and alpha alumina using alumina and calcium oxide and unit heat conversion generator using the same
JP4882855B2 (en) Thermoelectric conversion module and manufacturing method thereof
CN207294940U (en) For casting the graphite heater device of chamfering G7 polysilicons
CN102625502B (en) Heater for vacuum hot-pressing furnace
JP5061706B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric conversion module
JP2014043370A (en) Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment
JP2002289929A (en) Thermoelectric conversion module and heat exchanger using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees