JP6149489B2 - Operation method of reverse osmosis membrane device - Google Patents

Operation method of reverse osmosis membrane device Download PDF

Info

Publication number
JP6149489B2
JP6149489B2 JP2013092657A JP2013092657A JP6149489B2 JP 6149489 B2 JP6149489 B2 JP 6149489B2 JP 2013092657 A JP2013092657 A JP 2013092657A JP 2013092657 A JP2013092657 A JP 2013092657A JP 6149489 B2 JP6149489 B2 JP 6149489B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
membrane
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013092657A
Other languages
Japanese (ja)
Other versions
JP2014213261A (en
Inventor
邦洋 早川
邦洋 早川
孝博 川勝
孝博 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013092657A priority Critical patent/JP6149489B2/en
Publication of JP2014213261A publication Critical patent/JP2014213261A/en
Application granted granted Critical
Publication of JP6149489B2 publication Critical patent/JP6149489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、MBR処理水等の、膜に吸着して膜汚染を進行させる高分子有機物を含む水を処理する逆浸透膜装置及びその運転方法に関する。
本発明はまた、この逆浸透膜装置を用いた生物処理水の処理方法に関する。
The present invention relates to a reverse osmosis membrane device for treating water containing a macromolecular organic substance that adsorbs to a membrane and causes membrane contamination, such as MBR-treated water, and an operation method thereof.
The present invention also relates to a method for treating biologically treated water using the reverse osmosis membrane device.

逆浸透膜は、従来、海水淡水化、超純水製造、工業用水処理、排水回収処理などにおいて、原水中のイオン類や有機物などを除去するために用いられている(例えば非特許文献1)。逆浸透膜は膜表面での微生物の繁殖や有機物の吸着により透過流束が低下したり、濁質による閉塞でモジュール差圧が上昇することがあり、定期的に洗浄し、透過流束や、エレメントの原水側と濃縮水側の差圧(以下、エレメント差圧)を回復させる必要がある。   A reverse osmosis membrane is conventionally used for removing ions, organic substances, and the like in raw water in seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, and the like (for example, Non-Patent Document 1). . Reverse osmosis membranes may have reduced permeation flux due to the growth of microorganisms on the membrane surface or adsorption of organic matter, or module differential pressure may increase due to blockage by turbidity. It is necessary to recover the differential pressure between the raw water side and concentrated water side of the element (hereinafter referred to as element differential pressure).

逆浸透膜の構造としてはスパイラル構造と呼ばれる膜構造のエレメントを使用することが一般的に知られている。従来のスパイラル型膜エレメントの一例として、透過水スペーサの両面に逆浸透膜を重ね合わせて3辺を接着することにより袋状膜を形成し、該袋状膜の開口部を透過水集水管に取り付け、網状の原水スペーサと共に、透過水集水管の外周面にスパイラル状に巻回することにより構成されたものが挙げられる。このようなスパイラル型膜エレメントでは、原水はエレメントの一方の端面側から供給され、原水スペーサに沿って流れ、他方の端面側から濃縮水として排出される。原水は原水スペーサに沿って流れる過程で、逆浸透膜を透過して透過水となり、この透過水は透過水スペーサに沿って透過水集水管の内部に流れ込み、透過水集水管の端部から排出される。   As a reverse osmosis membrane structure, it is generally known to use an element having a membrane structure called a spiral structure. As an example of a conventional spiral membrane element, a bag-like membrane is formed by superimposing a reverse osmosis membrane on both sides of a permeate spacer and adhering three sides, and the opening of the bag-like membrane is used as a permeate water collecting pipe. Attached to the outer peripheral surface of the permeate water collecting pipe together with the net-like raw water spacer is one that is formed by spirally winding. In such a spiral membrane element, raw water is supplied from one end face side of the element, flows along the raw water spacer, and is discharged as concentrated water from the other end face side. In the process of flowing along the raw water spacer, the raw water permeates through the reverse osmosis membrane to become permeated water. This permeated water flows along the permeated water spacer into the permeated water collecting pipe and is discharged from the end of the permeated water collecting pipe. Is done.

このように、スパイラル型膜エレメントでは、透過水集水管に巻回された袋状膜間に配設される原水スペーサにより原水経路が形成されることになる。
従って、スパイラル型膜エレメントの原水スペーサの厚みを厚くすることで、濁質が原水流路を閉塞しにくくなり、濁質蓄積によるエレメント差圧の上昇や透過水量、透過水質の低下を回避できることが知られており、近年、濁質による閉塞性を改善するために、原水スペーサの厚みを大きくしたスパイラル型逆浸透膜エレメントが上市されている。
Thus, in the spiral membrane element, the raw water path is formed by the raw water spacers disposed between the bag-like membranes wound around the permeate water collecting pipe.
Therefore, by increasing the thickness of the raw water spacer of the spiral membrane element, it is difficult for turbidity to block the raw water flow path, and it is possible to avoid an increase in element differential pressure due to accumulation of turbidity and a decrease in the amount of permeate and permeate. In recent years, spiral-type reverse osmosis membrane elements in which the thickness of the raw water spacer is increased have been put on the market in order to improve occlusion due to turbidity.

しかし、原水スペーサを厚くすると、エレメントあたりの膜面積が小さくなり、エレメントあたりの透過水量が減少する。市販のスパイラル型逆浸透膜エレメントの膜面積は42m(440ft)以下である。 However, when the raw water spacer is thickened, the membrane area per element is reduced, and the amount of permeated water per element is reduced. The membrane area of the commercially available spiral reverse osmosis membrane element is 42 m 2 (440 ft 2 ) or less.

一方で、原水スペーサの厚みを大きくしても、膜汚染物質の吸着による透過流束の低下に対する改善効果は期待できない。また、エレメントあたりの膜面積を大きくするために、原水スペーサの厚みを薄くすると、濁質による流路の閉塞が問題となる。   On the other hand, even if the thickness of the raw water spacer is increased, an improvement effect on the decrease in permeation flux due to adsorption of membrane contaminants cannot be expected. Further, when the thickness of the raw water spacer is reduced in order to increase the membrane area per element, blockage of the flow path due to turbidity becomes a problem.

ところで、下水などの有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法(MBR:メンブレンバイオリアクター)は、安定した水質の処理水を得ることができ、また、活性汚泥濃度を高めて高負荷処理を行えることから、広く普及しつつある。また、このMBR処理水(浸漬型膜分離装置の膜濾過水)を直接逆浸透膜装置に給水して逆浸透膜分離処理する有機性排水の処理方法も提案されている(例えば、非特許文献2)。   By the way, activated sludge treatment of organic sewage such as sewage in a biological treatment tank, and a membrane separation activated sludge method (MBR: membrane) in which the activated sludge mixed liquid is separated into solid and liquid using an immersion type membrane separation apparatus immersed in the biological treatment tank. Bioreactors) are becoming widespread because they can obtain treated water with stable water quality and can perform high-load treatment by increasing the activated sludge concentration. In addition, a method for treating organic wastewater in which MBR-treated water (membrane filtered water of a submerged membrane separation device) is directly supplied to a reverse osmosis membrane device to perform reverse osmosis membrane separation treatment has also been proposed (for example, non-patent literature). 2).

しかし、MBR処理水は、膜汚染物質となる分子量10,000以上の高分子有機物を多く含み、MBR処理水を処理する逆浸透膜装置では、経時による透過流束の低下あるいは膜間差圧の増加が大きいという問題がある。   However, MBR-treated water contains a large amount of high-molecular organic matter having a molecular weight of 10,000 or more, which becomes a membrane pollutant. In a reverse osmosis membrane device for treating MBR-treated water, the permeation flux decreases with time or the transmembrane pressure difference decreases. There is a problem that the increase is large.

「ユーザーのための実用膜分離技術」(1996年4月30日初版1刷発行、日刊工業新聞社)第6頁"Practical Membrane Separation Technology for Users" (April 30, 1996, first edition, 1st edition, published by Nikkan Kogyo Shimbun), page 6. 「水処理膜の製膜技術と材料評価」(2012年1月30日第1版第1刷発行、サイエンス&テクノロジー株式会社)第11頁"Water Treatment Membrane Technology and Material Evaluation" (January 30, 2012, 1st edition, 1st edition, Science & Technology Co., Ltd.), page 11

本発明は、MBR処理水等の膜汚染物質を多く含む原水を、透過水量の低下を防止して安定に処理することができる逆浸透膜装置及びその運転方法と、この逆浸透膜装置を用いた生物処理水の処理方法を提供することを課題とする。   The present invention uses a reverse osmosis membrane device capable of stably treating raw water containing a large amount of membrane contaminants such as MBR treated water while preventing a reduction in the amount of permeated water, an operating method thereof, and this reverse osmosis membrane device. It is an object of the present invention to provide a method for treating biologically treated water.

逆浸透膜は、通水により膜表面で濃度分極と呼ばれる現象が発生し、濃度分極が大きくなると、膜面の溶質濃度が高くなることが知られているが、本発明者らは、上記課題を解決すべく、スパイラル型逆浸透膜エレメントの流動条件を解析した結果、以下のような知見を得た。
1)膜の透過流束を小さくすると濃度分極は小さくなる。
2)膜表面の通水線速を大きくすると濃度分極は小さくなる。
3)溶質の分子量が大きくなると濃度分極が大きくなる。
本発明者らはまた、膜汚染によるファウリングを引き起こす原因物質が、分子量10,000以上の高分子有機物、特に多糖類、たんぱく質のような生物代謝物であること、それらの高分子有機物が濃度分極によって膜面濃度が上昇した際に、透過流束及び透過水量の低下が顕著になることをつきとめた。
The reverse osmosis membrane is known to cause a phenomenon called concentration polarization on the membrane surface due to water flow, and when the concentration polarization increases, the solute concentration on the membrane surface increases. As a result of analyzing the flow conditions of the spiral type reverse osmosis membrane element, the following knowledge was obtained.
1) When the permeation flux of the membrane is reduced, the concentration polarization is reduced.
2) Concentration polarization decreases when the water passage speed on the membrane surface is increased.
3) The concentration polarization increases as the molecular weight of the solute increases.
The present inventors also confirmed that the causative substance causing fouling due to membrane contamination is a high molecular weight organic substance having a molecular weight of 10,000 or more, particularly a biological metabolite such as a polysaccharide or a protein, and the high molecular weight organic substance has a concentration. It was found that when the membrane surface concentration was increased by polarization, the permeation flux and the permeated water amount decreased significantly.

そこで、上記課題を解決するべく、さらに検討を重ねた結果、逆浸透膜の膜厚を薄くすることでエレメントあたりの膜面積を大きくすることができ、同一透過水量においても従来のスパイラル型逆浸透膜エレメントよりも透過流束を小さくすることができ、さらに、一定値以下の透過流束で運転することにより、濃度分極を小さくして、透過流束及び透過水量の低下を抑制することができることを見出した。
前述のごとく、膜面積を大きくするために原水スペーサの厚みを薄くすると、濁質が多い原水の場合、流路閉塞の懸念が大きくなるが、膜基材の厚みを薄くすることにより原水スペーサを薄くすることなく、エレメントあたりの膜面積を増大させることができる。
Therefore, as a result of further studies to solve the above problems, the membrane area per element can be increased by reducing the film thickness of the reverse osmosis membrane. The permeation flux can be made smaller than that of the membrane element, and further, the concentration polarization can be reduced by operating with a permeation flux of a certain value or less, and the decrease in the permeation flux and the permeated water amount can be suppressed. I found.
As described above, if the thickness of the raw water spacer is reduced in order to increase the membrane area, in the case of raw water with a large amount of turbidity, there is a greater concern about blockage of the flow path, but the raw water spacer is reduced by reducing the thickness of the membrane substrate. The film area per element can be increased without reducing the thickness.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 高分子有機物を含有する水を原水として処理する逆浸透膜装置の運転方法において、該原水が分子量10,000以上の高分子有機物を0.01ppm以上の濃度で含有し、該逆浸透膜装置は、膜厚0.1mm以下の逆浸透膜の一方の面に原水スペーサを設け、他方の面に透過水スペーサを設けた膜ユニットよりなる逆浸透膜エレメントを有し、該逆浸透膜装置を透過流束0.6m/d以下で運転することを特徴とする逆浸透膜装置の運転方法。 [1] In a method for operating a reverse osmosis membrane device in which water containing a polymer organic material is treated as raw water, the raw water contains a polymer organic material having a molecular weight of 10,000 or more at a concentration of 0.01 ppm or more, and the reverse osmosis The membrane device has a reverse osmosis membrane element comprising a membrane unit in which a raw water spacer is provided on one surface of a reverse osmosis membrane having a thickness of 0.1 mm or less and a permeable water spacer is provided on the other surface. A method for operating a reverse osmosis membrane device, wherein the device is operated at a permeation flux of 0.6 m / d or less.

[2] 前記透過流束が0.45m/d以下であることを特徴とする[1]に記載の逆浸透膜装置の運転方法。 [2] The operation method of the reverse osmosis membrane device according to [1], wherein the permeation flux is 0.45 m / d or less.

[3] 前記逆浸透膜エレメントがスパイラル型逆浸透膜エレメントであることを特徴とする[1]又は[2]に記載の逆浸透膜装置の運転方法。 [3] The method of operating a reverse osmosis membrane device according to [1] or [2], wherein the reverse osmosis membrane element is a spiral type reverse osmosis membrane element.

[4] 前記原水が膜分離活性汚泥法処理水であることを特徴とする[1]ないし[3]のいずれかに記載の逆浸透膜装置の運転方法。 [4] The method for operating a reverse osmosis membrane device according to any one of [1] to [3], wherein the raw water is treated water by membrane separation activated sludge method.

本発明によれば、MBR処理水等の膜汚染物質を多く含む原水を、透過水量の低下を防止して安定に逆浸透膜分離処理することができる。
即ち、本発明によれば、逆浸透膜の膜厚を薄くすることでエレメントあたりの膜面積を大きくすることができ、同一透過水量においても従来のスパイラル型逆浸透膜エレメントよりも透過流束を小さくすることができ、さらに、一定値以下の透過流束で運転することにより膜面での濃度分極を小さくして、透過水量の低下を抑制することができるため、長期に亘り安定な処理を継続することができる。
According to the present invention, raw water containing a large amount of membrane contaminants such as MBR treated water can be stably subjected to reverse osmosis membrane separation treatment while preventing a decrease in the amount of permeated water.
That is, according to the present invention, the membrane area per element can be increased by reducing the film thickness of the reverse osmosis membrane, and the permeation flux is higher than that of the conventional spiral type reverse osmosis membrane element even at the same amount of permeate. Furthermore, by operating with a permeation flux below a certain value, the concentration polarization on the membrane surface can be reduced and the decrease in the amount of permeated water can be suppressed. Can continue.

本発明の生物処理水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the biologically treated water of this invention. NaCl水溶液又は平均分子量10,000の高分子有機物を含む水を原水とする逆浸透膜分離処理における透過流束と濃縮倍率との関係を示すグラフである。It is a graph which shows the relationship between the permeation | transmission flux and the concentration rate in the reverse osmosis membrane separation process which uses the water containing NaCl aqueous solution or the water containing the high molecular organic substance of average molecular weight 10,000 as raw water. 実施例において用いた平膜セルの構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the flat film cell used in the Example.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<原水>
本発明において、逆浸透膜装置で逆浸透膜分離処理する原水は、分子量10,000以上の高分子有機物を0.01ppm以上の濃度で含有する水である。分子量10,000以上の高分子有機物、特に多糖類、たんぱく質のような生物代謝物は、膜を汚染し易く、透過流束の低下の原因となり易い。本発明においては、このような高分子有機物を0.01ppm以上、例えば0.05〜0.5ppm含み、通水により逆浸透膜の透過流束を大きく低下させる水を原水とする。
<Raw water>
In the present invention, the raw water subjected to the reverse osmosis membrane separation treatment by the reverse osmosis membrane device is water containing a high molecular weight organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 ppm or more. High-molecular organic substances having a molecular weight of 10,000 or more, particularly biological metabolites such as polysaccharides and proteins, easily contaminate the membrane and easily cause a decrease in permeation flux. In the present invention, water containing 0.01 ppm or more, for example, 0.05 to 0.5 ppm of such a high molecular organic substance and greatly reducing the permeation flux of the reverse osmosis membrane by passing water is used as raw water.

このような高分子有機物含有水としては、各種排水の回収水や生物処理水、特にMBR処理水などが好適に使用される。   As such high molecular organic substance-containing water, recovered water from various wastewaters or biologically treated water, particularly MBR treated water is preferably used.

なお、分子量10,000以上の高分子有機物の水中濃度の測定方法に特に制限はなく、LC−OCD(液体クロマト−有機炭素測定)やHPLC(高速液体クロマトグラフィー)などのクロマトグラフィーで分子量分画してTOCなどを測定する機器を用いたり、事前に分画分子量10,000のUF膜を用いて分子量10,000以上の物質と10,000未満の物質を分離して、TOC分析を行うといった手法を用いたりすることにより測定することができる。   In addition, there is no restriction | limiting in particular in the measuring method of the water concentration of the high molecular weight organic substance more than 10,000, Molecular weight fractionation by chromatography, such as LC-OCD (liquid chromatography-organic carbon measurement) and HPLC (high performance liquid chromatography). Using a device that measures TOC, etc., or separating a substance with a molecular weight of 10,000 or more and a substance with a molecular weight of less than 10,000 using a UF membrane with a molecular weight cut off of 10,000 in advance, and performing a TOC analysis. It can be measured by using a technique.

<逆浸透膜>
本発明で用いる逆浸透膜は、膜厚0.1mm以下のものである。既存の逆浸透膜の膜厚は、通常、0.13mm程度であるので、本発明ではそれよりも薄い逆浸透膜を用いる。逆浸透膜の膜厚が0.1mmを超えると、既存の逆浸透膜と大差がなく、薄い逆浸透膜を用いることによるエレメントあたりの膜面積の増大効果及び透過水量の向上効果を十分に得ることができない。
ただし、逆浸透膜の膜厚が薄過ぎると、膜強度が不足する恐れがあるので、本発明で用いる逆浸透膜の膜厚は0.01〜0.1mm、特に0.03〜0.07mm程度であることが好ましい。
<Reverse osmosis membrane>
The reverse osmosis membrane used in the present invention has a thickness of 0.1 mm or less. Since the thickness of an existing reverse osmosis membrane is usually about 0.13 mm, a thinner reverse osmosis membrane is used in the present invention. When the thickness of the reverse osmosis membrane exceeds 0.1 mm, there is not much difference from the existing reverse osmosis membrane, and the effect of increasing the membrane area per element and the effect of improving the permeated water amount by using a thin reverse osmosis membrane are sufficiently obtained. I can't.
However, if the reverse osmosis membrane is too thin, the membrane strength may be insufficient. Therefore, the reverse osmosis membrane used in the present invention has a thickness of 0.01 to 0.1 mm, particularly 0.03 to 0.07 mm. It is preferable that it is a grade.

逆浸透膜の材質としては特に制限はないが、除去率が高い膜が好ましいため、フェニレンジアミンと酸クロライドを用いて基材上に合成された芳香族ポリアミド膜が好ましい。このような芳香族ポリアミド膜は、例えば、特開平8−224452号公報、特開平9−253455号公報、特開平10−174852号公報、特開2006−95476号公報などに記載の方法で合成することができる。   Although there is no restriction | limiting in particular as a material of a reverse osmosis membrane, Since a membrane with a high removal rate is preferable, the aromatic polyamide membrane synthesize | combined on the base material using phenylenediamine and an acid chloride is preferable. Such an aromatic polyamide film is synthesized, for example, by the method described in JP-A-8-224452, JP-A-9-253455, JP-A-10-174852, JP-A-2006-95476, and the like. be able to.

逆浸透膜の基材についても特に制限はなく、シート状のものであれば、好適に使用することができるが、薄膜での強度を保持し、また、塗工するポリスルホン層等の高分子層を薄くできる点から、長繊維よりなる不織布が好適に使用される。このような基材として、例えば、特開2009−57654号公報、国際公開WO2010/126109号公報、国際公開WO2010/126113号公報などに記載の長繊維不織布を用いることができる。   The substrate of the reverse osmosis membrane is not particularly limited and can be suitably used as long as it is in the form of a sheet. However, the strength of the thin film is maintained, and a polymer layer such as a polysulfone layer to be coated is used. The nonwoven fabric which consists of a long fiber is used suitably from the point which can make thin. As such a base material, for example, a long fiber nonwoven fabric described in JP 2009-57654 A, International Publication WO 2010/126109, International Publication WO 2010/126113, or the like can be used.

上記の好適な膜厚の逆浸透膜とするために、本発明で用いる逆浸透膜が長繊維不織布上にポリスルホン層等の高分子層を介して芳香族ポリアミド系緻密層を形成してなる逆浸透膜である場合、長繊維不織布の厚さは10〜100μmで、高分子層の厚さは1〜40μm、芳香族ポリアミド系緻密層の厚さは0.01〜1μmであることが好ましい。   In order to obtain a reverse osmosis membrane having a suitable thickness as described above, the reverse osmosis membrane used in the present invention is formed by forming an aromatic polyamide dense layer on a long fiber nonwoven fabric through a polymer layer such as a polysulfone layer. In the case of the permeable membrane, it is preferable that the long fiber nonwoven fabric has a thickness of 10 to 100 μm, the polymer layer has a thickness of 1 to 40 μm, and the aromatic polyamide dense layer has a thickness of 0.01 to 1 μm.

<逆浸透膜エレメント>
本発明における逆浸透膜装置に装填する逆浸透膜エレメントとしては、逆浸透膜の平膜の一次側(一方の面)に原水を通水するための原水スペーサを配置し、二次側(他方の面)に透過水を通水するための透過水スペーサを配置した膜ユニット、或いはこの膜ユニットを複数枚積層したもの、或いはこの膜ユニットを巻回してスパイラル状にしたもの、即ち、スパイラル型逆浸透膜エレメントを用いることができる。空間利用効率を考慮すると、スパイラル型逆浸透膜エレメントを好適に用いることができる。
スパイラル型逆浸透膜エレメントの直径としては特に制限がなく、4インチ、8インチ、16インチと言ったものが通常用いられる。エレメントの長さとしては通常1m程度である。
<Reverse osmosis membrane element>
As a reverse osmosis membrane element to be loaded in the reverse osmosis membrane device in the present invention, a raw water spacer for passing raw water is arranged on the primary side (one surface) of the flat membrane of the reverse osmosis membrane, and the secondary side (the other side) A membrane unit having a permeated water spacer for passing permeated water on the surface thereof, or a laminate of a plurality of membrane units, or a spiral shape formed by winding this membrane unit, that is, a spiral type A reverse osmosis membrane element can be used. In consideration of space utilization efficiency, a spiral type reverse osmosis membrane element can be suitably used.
There is no restriction | limiting in particular as a diameter of a spiral type reverse osmosis membrane element, What was called 4 inches, 8 inches, and 16 inches is usually used. The length of the element is usually about 1 m.

原水スペーサ、透過水スペーサの形状に特に制限はないが、ポリエチレンやポリプロピレン等の樹脂で構成される、同一、あるいは異なる直径を有する複数の線材が等間隔に並べられ、45度から90度の角度で互いに交差するように重ねられたメッシュ状のスペーサが一般的である。   The shape of the raw water spacer and the permeated water spacer is not particularly limited, but a plurality of wires having the same or different diameters made of resin such as polyethylene or polypropylene are arranged at equal intervals, and an angle of 45 to 90 degrees. In general, mesh spacers stacked so as to cross each other are generally used.

原水スペーサの厚みは、薄過ぎると濁質による流路閉塞の問題を起こし易く、厚過ぎるとエレメントあたりの膜面積が小さくなり透過流束が低下することから、0.6〜0.9mmの範囲とすることが好ましい。現在、一般的に採用されている原水スペーサとして、厚みが0.69mm(26mil)、0.71mm(28mil)、0.86mm(34mil)のもの等がある。
透過水スペーサの厚みとして、特に制限はないが、0.1〜0.25mmが好適に使用される。透過水スペーサの厚みが厚過ぎると原水スペーサと同様にエレメントあたりの膜面積が小さくなり、薄過ぎると差圧が大きくなって、透過水量が小さくなる。
If the thickness of the raw water spacer is too thin, it is likely to cause a problem of blockage due to turbidity, and if it is too thick, the membrane area per element becomes small and the permeation flux decreases, so the range of 0.6 to 0.9 mm. It is preferable that Currently, raw water spacers that are generally employed include 0.69 mm (26 mil), 0.71 mm (28 mil), and 0.86 mm (34 mil) thicknesses.
Although there is no restriction | limiting in particular as thickness of a permeated water spacer, 0.1-0.25 mm is used suitably. If the thickness of the permeated water spacer is too thick, the membrane area per element becomes small as in the case of the raw water spacer, and if it is too thin, the differential pressure increases and the amount of permeated water decreases.

<透過流束>
本発明においては、上述のような膜厚0.1mm以下の逆浸透膜を用いた逆浸透膜装置を透過流束0.6m/d以下で運転する。
<Permeation flux>
In the present invention, a reverse osmosis membrane device using a reverse osmosis membrane having a thickness of 0.1 mm or less as described above is operated at a permeation flux of 0.6 m / d or less.

一般に、逆浸透膜装置の標準操作圧での純水透過流束は0.7〜0.85m/dであり、無機塩類や有機物を含む原水を通水する場合は、0.5〜0.7m/d程度に設定することが通常である。
本発明者らは分子量10,000以上の高分子有機物が逆浸透膜を汚染させる物質であること、その高分子有機物濃度の膜面濃度が1ppmを超えると透過流束の低下が顕著になることを実験的に確認し、分子量10,000以上の高分子有機物が0.01ppm以上含まれる原水において、膜面濃度の濃縮倍率が100倍を超えると透過流束の低下が顕著になることを見出した。濃縮倍率が100倍を超えないようにするためには、透過流束が0.6m/d以下であることが必要である。従って、本発明では、透過流束0.6m/d以下、好ましくは0.45m/d以下で逆浸透膜装置を運転する。しかし、透過流束を下げすぎると、必要とする膜本数が多くなり、経済的でないため、透過流束は0.2m/d以上であることが好ましい。
なお、濃縮水量については、例えば、8インチスパイラル型逆浸透膜エレメントの場合2.0〜8.0m/hが適当である。このときの線速としては0.05〜0.15m/sである。
In general, the pure water permeation flux at the standard operating pressure of the reverse osmosis membrane device is 0.7 to 0.85 m / d, and when raw water containing inorganic salts and organic substances is passed, 0.5 to 0. Usually, it is set to about 7 m / d.
The inventors of the present invention indicate that a polymer organic substance having a molecular weight of 10,000 or more is a substance that contaminates a reverse osmosis membrane, and that the permeation flux decreases significantly when the membrane surface concentration of the polymer organic substance concentration exceeds 1 ppm. Experimentally confirmed that, in raw water containing 0.01 ppm or more of a high molecular weight organic material having a molecular weight of 10,000 or more, the permeation flux decreases significantly when the concentration ratio of the membrane surface concentration exceeds 100 times. It was. In order to prevent the concentration rate from exceeding 100 times, the permeation flux needs to be 0.6 m / d or less. Therefore, in the present invention, the reverse osmosis membrane device is operated at a permeation flux of 0.6 m / d or less, preferably 0.45 m / d or less. However, if the permeation flux is too low, the required number of membranes increases, which is not economical. Therefore, the permeation flux is preferably 0.2 m / d or more.
In addition, about the amount of concentrated water, 2.0-8.0 m < 3 > / h is suitable in the case of an 8-inch spiral type reverse osmosis membrane element, for example. The linear velocity at this time is 0.05 to 0.15 m / s.

<生物処理水の処理>
本発明の逆浸透膜装置は、特に生物処理水の逆浸透膜分処理に好適に用いられる。
<Treatment of biologically treated water>
Especially the reverse osmosis membrane apparatus of this invention is used suitably for the reverse osmosis membrane part process of biologically treated water.

図1は、本発明の逆浸透膜装置を用いる本発明の生物処理水の処理方法の実施の形態を示す系統図である。
本発明の生物処理水の処理方法の処理手順としては、例えば、図1(a)に示すように、好気及び/又は嫌気性生物処理手段1、凝集処理手段2、加圧浮上等の固液分離手段3、濾過手段4で処理した生物処理水を保安フィルター5を通して逆浸透膜装置6に導入して逆浸透膜分離処理する方法、図1(b)に示すように、生物処理手段1の処理水を直接膜濾過装置等の濾過手段4で固液分離した水を逆浸透膜装置6に導入して逆浸透膜分離処理する方法、或いは、図1(c)に示すように、MBR(浸漬型膜分離装置)7の処理水を直接逆浸透膜装置6に導入して処理する方法などが挙げられるが、何らこれらの方法に限定されるものではない。
FIG. 1 is a system diagram showing an embodiment of the biological treatment water treatment method of the present invention using the reverse osmosis membrane device of the present invention.
As a treatment procedure of the treatment method of the biologically treated water of the present invention, for example, as shown in FIG. 1 (a), aerobic and / or anaerobic biological treatment means 1, agglomeration treatment means 2, and solidification such as pressure levitation A method of introducing the biologically treated water treated by the liquid separating means 3 and the filtering means 4 into the reverse osmosis membrane device 6 through the safety filter 5 and performing the reverse osmosis membrane separation treatment, as shown in FIG. A method in which water obtained by solid-liquid separation of the treated water directly by filtration means 4 such as a membrane filtration device is introduced into a reverse osmosis membrane device 6 and subjected to a reverse osmosis membrane separation treatment, or as shown in FIG. (Immersion type membrane separation apparatus) The method of introducing the treated water of 7 directly into the reverse osmosis membrane apparatus 6 and the like can be mentioned, but it is not limited to these methods.

以下に検証例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to verification examples, examples, and comparative examples.

[検証例1]
原水スペーサの厚さが0.71mmで、透過水スペーサの厚さが0.23mmの8インチスパイラル型逆浸透膜エレメントにおいて、逆浸透膜の厚みを変更した場合のエレメントあたりの膜面積と、透過水量1.1m/hとした場合の透過流束を計算により求めた結果を下記表1に示す。
[Verification Example 1]
In an 8-inch spiral reverse osmosis membrane element with a raw water spacer thickness of 0.71 mm and a permeate spacer thickness of 0.23 mm, the membrane area per element when the thickness of the reverse osmosis membrane is changed, and the permeation The results obtained by calculating the permeation flux when the amount of water is 1.1 m 3 / h are shown in Table 1 below.

Figure 0006149489
Figure 0006149489

表1より、逆浸透膜の膜厚を薄くすることにより、エレメントあたりの膜面積を大きくし、同一の透過水量を維持しながら、透過流束を低くすることができることが分かる。   From Table 1, it can be seen that by reducing the thickness of the reverse osmosis membrane, the membrane area per element can be increased, and the permeation flux can be lowered while maintaining the same amount of permeate.

[検証例2]
逆浸透膜分離処理において、NaCl水溶液、又は平均分子量10,000の高分子有機物を含む水を原水とする場合の透過流束と濃縮倍率(膜面濃度/平均バルク濃度)の関係を解析した結果、図2に示す関係が得られた。
図2より、高分子の種類によって多少の差異はあるものの、総じてNaClなどの分子量の小さい物質と比較して、高分子有機物の膜面濃度は、透過流束の増大、平均線速度の低下により、著しく増加することが分かる。
[Verification Example 2]
Results of analyzing the relationship between the permeation flux and the concentration ratio (membrane surface concentration / average bulk concentration) in the case of reverse osmosis membrane separation treatment using NaCl aqueous solution or water containing a high molecular weight organic material with an average molecular weight of 10,000 as raw water The relationship shown in FIG. 2 was obtained.
As shown in FIG. 2, although there are some differences depending on the type of polymer, the membrane surface concentration of the polymer organic material is generally increased by increasing the permeation flux and decreasing the average linear velocity as compared with substances having a low molecular weight such as NaCl. It can be seen that it increases significantly.

[実施例1]
<不織布の製造>
特開2009−57654号公報に記載の方法に従って、以下の通り、長繊維不織布を作製した。
酸化チタンを含むポリエチレンテレフタレートと、イソフタル酸共重合率10モル%の酸化チタンを含む共重合ポリエステルを、それぞれ295℃と280℃で溶融し、ポリエチレンテレフタレートを芯成分、共重合ポリエステルを鞘成分とし、口金温度300℃、芯:鞘=80:20の重量比率で細孔より紡出した後、エジェクターにより紡糸して芯鞘型フィラメントとし、移動するネットコンベアー上に繊維ウエブとして捕集した。捕集した繊維ウエブを、上下1対のフラットロールで熱圧着し、厚さ70μmのスパンボンド長繊維不織布を得た。
[Example 1]
<Manufacture of non-woven fabric>
According to the method described in JP2009-57654A, a long fiber nonwoven fabric was produced as follows.
Polyethylene terephthalate containing titanium oxide and copolymerized polyester containing titanium oxide having an isophthalic acid copolymerization ratio of 10 mol% were melted at 295 ° C. and 280 ° C., respectively, and polyethylene terephthalate was used as the core component and the copolymer polyester was used as the sheath component. After spinning from the pores at a base temperature of 300 ° C. and a weight ratio of core: sheath = 80: 20, it was spun by an ejector to obtain a core-sheath filament, which was collected as a fiber web on a moving net conveyor. The collected fiber web was thermocompression bonded with a pair of upper and lower flat rolls to obtain a spunbond long fiber nonwoven fabric having a thickness of 70 μm.

<高分子層の形成>
ポリスルホン18重量部をジメチルホルムアミド82重量部に80℃で加熱溶解した後、濾過・脱泡することにより高分子層成膜用のポリスルホン溶液を得た。このポリスルホン溶液を上記の長繊維不織布の一方の面に塗布した後、35℃の凝固水中で相分離させ、その後水洗して膜中に残存する溶媒を洗浄除去することによって、厚さが30μmのポリスルホン層を形成した。
<Formation of polymer layer>
After heating and dissolving 18 parts by weight of polysulfone in 82 parts by weight of dimethylformamide at 80 ° C., filtration and defoaming were performed to obtain a polysulfone solution for forming a polymer layer. After applying this polysulfone solution to one side of the above-mentioned long-fiber non-woven fabric, it is phase-separated in coagulated water at 35 ° C., and then washed with water to remove the solvent remaining in the membrane, thereby removing the thickness of 30 μm. A polysulfone layer was formed.

<芳香族ポリアミド系緻密層の形成>
次に、下記手順により、上記のポリスルホン層上にポリアミド系緻密層を形成した。
m−フェニレンジアミン3.0重量%、ラウリル硫酸ナトリウム0.15重量%を含有した水溶液を、上記で得られた長繊維不織布上のポリスルホン層上に厚さ5mmに塗布した後、余分の溶液をゴムブレードワイパーにより除去した。次いで、トリメシン酸クロライド0.15重量%を含むパラフィン系炭化水素油の溶液に5秒間接触させ、その後125℃の乾燥炉に搬送して約2分間乾燥、キュアすることによって、厚さ0.2μmの芳香族ポリアミド系緻密層を形成した。
<Formation of an aromatic polyamide dense layer>
Next, a polyamide-based dense layer was formed on the polysulfone layer by the following procedure.
An aqueous solution containing 3.0% by weight of m-phenylenediamine and 0.15% by weight of sodium lauryl sulfate was applied to the polysulfone layer on the long-fiber nonwoven fabric obtained above to a thickness of 5 mm. It was removed with a rubber blade wiper. Next, it was brought into contact with a solution of paraffinic hydrocarbon oil containing 0.15% by weight of trimesic acid chloride for 5 seconds, and then transported to a drying furnace at 125 ° C., dried and cured for about 2 minutes, thereby having a thickness of 0.2 μm. An aromatic polyamide dense layer was formed.

このようにして長繊維不織布上に高分子層及び芳香族ポリアミド系緻密層を形成して得た逆浸透膜の膜厚(総厚さ)は0.10mmで、評価圧力0.75MPaにおいて、除去率99.3%、透過流束1.2m/dであった。   The film thickness (total thickness) of the reverse osmosis membrane obtained by forming the polymer layer and the aromatic polyamide dense layer on the long fiber nonwoven fabric in this way was 0.10 mm, and was removed at an evaluation pressure of 0.75 MPa. The rate was 99.3% and the permeation flux was 1.2 m / d.

<通水試験>
膜面積44.0mの8インチスパイラル型逆浸透膜エレメントを想定し、上記の逆浸透膜を幅50mm×長さ800mmに切り抜き、厚み0.71mmのポリプロピレン製原水スペーサ及び厚み3mmのセラミックス(多孔質セラミックス焼結体)製透過水スペーサとともに図3に示す試験用平膜セルに取り付けた。
図3に示す平膜セルは、アクリル製の流路形成部材21,22,23、SUS製耐圧補強部材24,25を組み合わせて形成された空間内に、原水スペーサ11と透過水スペーサ12を逆浸透膜10を介して積層した膜ユニットを保持する構成とされている。
原水は、原水流入口13から逆浸透膜10の一次側に流入して原水スペーサ11に沿って流れ、その間に逆浸透膜10を透過した透過水は、透過水スペーサ12を経て透過水流出口15から取り出される。また、濃縮水は濃縮水流出口14から取り出される。
<Water flow test>
Assuming an 8-inch spiral reverse osmosis membrane element with a membrane area of 44.0 m 2 , the above reverse osmosis membrane is cut into a width of 50 mm × length of 800 mm, a polypropylene raw water spacer with a thickness of 0.71 mm and a ceramic with a thickness of 3 mm (porous A sintered ceramic material) and a permeated water spacer were attached to the test flat membrane cell shown in FIG.
In the flat membrane cell shown in FIG. 3, the raw water spacer 11 and the permeated water spacer 12 are reversed in a space formed by combining the flow path forming members 21, 22, 23 made of acrylic and the pressure-resistant reinforcing members 24, 25 made of SUS. The laminated membrane unit is held via the osmotic membrane 10.
The raw water flows into the primary side of the reverse osmosis membrane 10 from the raw water inlet 13 and flows along the raw water spacer 11, and the permeated water that has permeated the reverse osmosis membrane 10 in the meantime passes through the permeated water spacer 12 and passes through the permeated water outlet 15. Taken from. The concentrated water is taken out from the concentrated water outlet 14.

原水として生物処理水を凝集濾過した水を用い、透過流束を0.6m/d、濃縮水流量を線速として0.11m/sで通水し、500時間後の透過水量を調べた。
なお、8インチエレメント換算の初期透過水量は1.04m/hであった。
また、原水中の分子量10,000以上の高分子有機物の濃度は0.05ppmであった。
Water that was obtained by coagulating and filtering biologically treated water as raw water was passed through at a permeation flux of 0.6 m / d and a flow rate of concentrated water at a linear velocity of 0.11 m / s, and the permeated water amount after 500 hours was examined.
The initial permeated water amount in terms of an 8-inch element was 1.04 m 3 / h.
Moreover, the density | concentration of the high molecular organic substance of molecular weight 10,000 or more in raw | natural water was 0.05 ppm.

[実施例2]
WO2010/126113号公報に記載の方法に従って、以下の通り、長繊維不織布を作製した。
第1の表層として、ポリエチレンテレフタレートを用いスパンボンド法により紡糸温度300℃でフィラメント群を移動するネット面に向けて押し出し、長繊維ウェブを捕集ネット上に作製した。次いで、中間層としてポリエチレンテレフタレートを用いメルトブロウン法により紡糸温度300℃で紡糸し、メルトブロウン長繊維層を上記のスパンボンド法による長繊維ウェブ上に吹きつけた。更に上記で得た積層ウェブ上に直接、第1の表層の長繊維ウェブと同様の方法で第2の表層となる長繊維ウェブ層を積層した後、加熱したフラットカレンダーロールにて熱圧着し、スパンボンド長繊維層/メルトブロウン長繊維層/スパンボンド長繊維層からなる積層ウェブを得た。続いて、得られた積層ウェブをカレンダーロールにて第2の表層側を熱圧着し、その直後に水冷ロールにて急冷した後、同条件のカレンダーロールにて第1の表層側を熱圧着することにより表裏から熱圧着を行って長繊維不織布を得た。
[Example 2]
According to the method described in WO2010 / 126113, a long fiber nonwoven fabric was produced as follows.
As a first surface layer, polyethylene terephthalate was extruded by a spunbond method at a spinning temperature of 300 ° C. toward the moving net surface, and a long fiber web was produced on the collection net. Next, polyethylene terephthalate was used as an intermediate layer, and spinning was performed at a spinning temperature of 300 ° C. by a melt blown method, and the meltblown long fiber layer was sprayed onto the long fiber web by the above spunbond method. Furthermore, after laminating the long fiber web layer as the second surface layer in the same manner as the long fiber web of the first surface layer directly on the laminated web obtained above, thermocompression bonding with a heated flat calender roll, A laminated web comprising a spunbond long fiber layer / meltblown long fiber layer / spunbond long fiber layer was obtained. Subsequently, the obtained laminated web is thermocompression bonded to the second surface layer side with a calender roll, and immediately after that, quenched with a water-cooled roll, and then the first surface layer side is thermocompression bonded with a calender roll under the same conditions. Thus, thermocompression bonding was performed from the front and back sides to obtain a long fiber nonwoven fabric.

得られた長繊維不織布は、繊維径1.7μmの長繊維不織布層よりなる中間層の両面に、第1の表層及び第2の表層として、それぞれ繊維径9μm、10μmの長繊維よりなる、総厚さ50μmの長繊維不織布であった。
得られた長繊維不織布に、実施例1と同様に、厚さ10μmの高分子層と、厚さ0.2μmの芳香族ポリアミド系緻密層を形成して逆浸透膜を得た。
この逆浸透膜は膜厚(総厚さ)0.06mmで、評価圧力0.75MPaにおいて、除去率99.3%、透過流束1.2m/dであった。
The obtained long fiber nonwoven fabric is composed of long fibers having a fiber diameter of 9 μm and 10 μm as the first surface layer and the second surface layer, respectively, on both surfaces of the intermediate layer composed of a long fiber nonwoven fabric layer having a fiber diameter of 1.7 μm. It was a long fiber nonwoven fabric with a thickness of 50 μm.
A reverse osmosis membrane was obtained by forming a polymer layer having a thickness of 10 μm and an aromatic polyamide dense layer having a thickness of 0.2 μm on the obtained long fiber nonwoven fabric in the same manner as in Example 1.
This reverse osmosis membrane had a film thickness (total thickness) of 0.06 mm, an evaluation rate of 0.75 MPa, a removal rate of 99.3%, and a permeation flux of 1.2 m / d.

膜面積47.3mの8インチスパイラル型逆浸透膜エレメントを想定し、上記の逆浸透膜を幅50mm×長さ800mmに切り抜き、実施例1と同様に原水スペーサ及び透過水スペーサとともに試験用平膜セルに充填し、実施例1と同様の通水試験を行って、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は1.18m/hであった。 Assuming an 8-inch spiral reverse osmosis membrane element with a membrane area of 47.3 m 2 , the above reverse osmosis membrane is cut into a width of 50 mm and a length of 800 mm, and the test flat is used together with the raw water spacer and the permeated water spacer in the same manner as in Example 1. The membrane cell was filled, and a water passage test similar to that in Example 1 was performed to examine the amount of permeated water after 500 hours. The initial permeated water amount in terms of 8 inch elements was 1.18 m 3 / h.

[実施例3]
WO2010/126109号公報に記載の方法に従って、以下の通り、長繊維不織布を作製した。
第1の表層として、ポリエチレンテレフタレートを用い、スパンボンド法により、紡糸温度310℃でフィラメント群を移動する捕集ネット面に向けて押し出し、コロナ帯電の帯電で十分に開繊させて長繊維ウェブを捕集ネット上に作製した。次いで、中間層として、ポリエチレンテレフタレートを、紡糸温度300℃でメルトブロウン法により紡糸し、上記の長繊維ウェブ上に吹き付けた。さらに上記で得た積層ウェブ上に第1の表層の長繊維ウェブと同様の方法で長繊維ウェブを積層して、スパンボンド長繊維層/メルトブロウン長繊維層/スパンボンド長繊維層からなる長繊維不織布を得た。続いて実施例2と同様にして熱圧着を行った。
[Example 3]
According to the method described in WO2010 / 126109, a long fiber nonwoven fabric was produced as follows.
As the first surface layer, polyethylene terephthalate is used and extruded by a spunbond method toward the collection net surface where the filament group is moved at a spinning temperature of 310 ° C., and is sufficiently opened by corona charging to form a long fiber web. Prepared on a collection net. Next, as an intermediate layer, polyethylene terephthalate was spun by a melt blown method at a spinning temperature of 300 ° C. and sprayed on the long fiber web. Further, a long fiber web is laminated on the laminated web obtained as described above in the same manner as the long fiber web of the first surface layer, and a length consisting of a spunbond long fiber layer / meltblown long fiber layer / spunbond long fiber layer is formed. A fiber nonwoven fabric was obtained. Subsequently, thermocompression bonding was performed in the same manner as in Example 2.

得られた長繊維不織布は、繊維径1.7μmの長繊維不織布層よりなる中間層の両面に、第1の表層及び第2の表層として、それぞれ繊維径9μm、10μmの長繊維よりなる、総厚さ20μmの長繊維不織布であった。
得られた長繊維不織布に、実施例1と同様に、厚さ10μmの高分子層と、厚さ0.2μmの芳香族ポリアミド系緻密層を形成して逆浸透膜を得た。
この逆浸透膜は膜厚(総厚さ)0.03mmで、評価圧力0.75MPaにおいて、除去率99.3%、透過流束1.2m/dであった。
The obtained long fiber nonwoven fabric is composed of long fibers having a fiber diameter of 9 μm and 10 μm as the first surface layer and the second surface layer, respectively, on both surfaces of the intermediate layer composed of a long fiber nonwoven fabric layer having a fiber diameter of 1.7 μm. It was a long fiber nonwoven fabric with a thickness of 20 μm.
A reverse osmosis membrane was obtained by forming a polymer layer having a thickness of 10 μm and an aromatic polyamide dense layer having a thickness of 0.2 μm on the obtained long fiber nonwoven fabric in the same manner as in Example 1.
This reverse osmosis membrane had a film thickness (total thickness) of 0.03 mm, a removal rate of 99.3%, and a permeation flux of 1.2 m / d at an evaluation pressure of 0.75 MPa.

膜面積50.2mの8インチスパイラル型逆浸透膜エレメントを想定し、上記の逆浸透膜を幅50mm×長さ800mmに切り抜き、実施例1と同様に原水スペーサ及び透過水スペーサとともに試験用平膜セルに充填し、実施例1と同様の通水試験を行って、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は1.26m/hであった。 Assuming an 8-inch spiral reverse osmosis membrane element having a membrane area of 50.2 m 2 , the above reverse osmosis membrane is cut into a width of 50 mm and a length of 800 mm, and the test flat is used together with the raw water spacer and the permeated water spacer in the same manner as in Example 1. The membrane cell was filled, and a water passage test similar to that in Example 1 was performed to examine the amount of permeated water after 500 hours. In addition, the initial permeate flow rate in terms of 8 inch elements was 1.26 m 3 / h.

[実施例4]
透過流束を0.5m/dとしたこと以外は実施例3と同様の試験を行い、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は1.05m/hであった。
[Example 4]
Except that the permeation flux was 0.5 m / d, the same test as in Example 3 was performed, and the permeated water amount after 500 hours was examined. The initial permeated water amount in terms of an 8-inch element was 1.05 m 3 / h.

[実施例5]
透過流束を0.45m/dとしたこと以外は実施例3と同様の試験を行い、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は0.94m/hであった。
[Example 5]
Except that the permeation flux was 0.45 m / d, the same test as in Example 3 was performed, and the permeated water amount after 500 hours was examined. The initial permeated water amount in terms of an 8-inch element was 0.94 m 3 / h.

[実施例6]
透過流束を0.4m/dとしたこと以外は実施例3と同様の試験を行い、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は0.84m/hであった。
[Example 6]
Except that the permeation flux was 0.4 m / d, the same test as in Example 3 was performed, and the amount of permeated water after 500 hours was examined. In addition, the initial permeated water amount in terms of 8 inch elements was 0.84 m 3 / h.

[比較例1]
東レ製ROエレメント「SUL−G20」から平膜を幅50mm×長さ800mmに切り抜き、実施例1と同様に原水スペーサ(厚み0.71mm)及び透過水スペーサとともに試験用平膜セルに充填した。SUL−G20は評価圧力0.75MPaにおいて、除去率99.7、透過流束0.85m/dであり、膜厚は0.13mmであった。透過流束を0.7m/dとして、実施例1と同様の通水試験を行い、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は1.22m/hであった。
[Comparative Example 1]
A flat membrane was cut out from Toray RO element “SUL-G20” into a width of 50 mm and a length of 800 mm, and filled into a test flat membrane cell together with a raw water spacer (thickness: 0.71 mm) and a permeated water spacer in the same manner as in Example 1. SUL-G20 had a removal rate of 99.7, a permeation flux of 0.85 m / d, and a film thickness of 0.13 mm at an evaluation pressure of 0.75 MPa. The permeation amount after 500 hours was examined by conducting the same water flow test as in Example 1 with a permeation flux of 0.7 m / d. The initial permeate flow rate in terms of 8 inch elements was 1.22 m 3 / h.

[比較例2]
厚み0.86mmのポリプロピレン製原水スペーサを用いた以外は比較例1と同様の通水試験を行い、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は1.08m/hであった。
[Comparative Example 2]
Except for using a polypropylene raw water spacer having a thickness of 0.86 mm, a water flow test was performed in the same manner as in Comparative Example 1, and the amount of permeated water after 500 hours was examined. The initial permeated water amount in terms of 8-inch element was 1.08 m 3 / h.

[比較例3]
分子量10,000以上の高分子有機物が0.005ppmである原水を使用したこと以外は、比較例1と同様の試験を行い、500時間後の透過水量を調べた。なお、8インチエレメント換算の初期透過水量は比較例1と同様1.22m/hである。
[Comparative Example 3]
A test similar to Comparative Example 1 was performed except that raw water having a molecular weight of 10,000 or more of high molecular organic material of 0.005 ppm was used, and the amount of permeated water after 500 hours was examined. The initial permeated water amount in terms of an 8-inch element is 1.22 m 3 / h as in Comparative Example 1.

上記の実施例1〜6及び比較例1〜3の通水試験結果を以下の表2に示す。   The water flow test results of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in Table 2 below.

Figure 0006149489
Figure 0006149489

表2から明らかなように、実施例1〜6では500時間経過しても安定して高い透過水量を得ることができた。特に実施例5、6は500時間経過しても透過水量の低下がなかった。
一方、比較例1、2は初期の透過水量は高いが、500時間後の透過水量の低下が大きかった。比較例3のように、原水中の分子量10,000以上の高分子有機物が低い場合は、透過流束の低下が緩やかであった。
As is clear from Table 2, in Examples 1 to 6, a high permeated water amount could be stably obtained even after 500 hours had passed. In particular, in Examples 5 and 6, the permeated water amount did not decrease even after 500 hours.
On the other hand, in Comparative Examples 1 and 2, the initial amount of permeated water was high, but the amount of permeated water decreased significantly after 500 hours. As in Comparative Example 3, when the organic polymer having a molecular weight of 10,000 or more in the raw water was low, the permeation flux decreased slowly.

本発明は、海水淡水化、超純水製造、工業用水処理、排水回収処理等に使用される各種の逆浸透膜装置に適用することができるが、特に生物処理水、とりわけMBR処理水を処理する逆浸透膜装置に好適に適用される。   The present invention can be applied to various reverse osmosis membrane devices used for seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, etc., and in particular, treats biologically treated water, especially MBR treated water. It is suitably applied to a reverse osmosis membrane device.

1 生物処理手段
2 凝集処理手段
3 固液分離手段
4 濾過手段
5 保安フィルター
6 逆浸透膜装置
7 MBR(浸漬型膜分離装置)
10 逆浸透膜
11 原水スペーサ
12 透過水スペーサ
DESCRIPTION OF SYMBOLS 1 Biological treatment means 2 Aggregation treatment means 3 Solid-liquid separation means 4 Filtration means 5 Security filter 6 Reverse osmosis membrane apparatus 7 MBR (immersion type membrane separation apparatus)
10 Reverse osmosis membrane 11 Raw water spacer 12 Permeated water spacer

Claims (4)

高分子有機物を含有する水を原水として処理する逆浸透膜装置の運転方法において、該原水が分子量10,000以上の高分子有機物を0.01ppm以上の濃度で含有し、該逆浸透膜装置は、膜厚0.1mm以下の逆浸透膜の一方の面に原水スペーサを設け、他方の面に透過水スペーサを設けた膜ユニットよりなる逆浸透膜エレメントを有し、該逆浸透膜装置を透過流束0.6m/d以下で運転することを特徴とする逆浸透膜装置の運転方法。   In a method for operating a reverse osmosis membrane device in which water containing a polymer organic material is treated as raw water, the raw water contains a polymer organic material having a molecular weight of 10,000 or more at a concentration of 0.01 ppm or more, and the reverse osmosis membrane device comprises: A reverse osmosis membrane element comprising a membrane unit in which a raw water spacer is provided on one surface of a reverse osmosis membrane having a thickness of 0.1 mm or less and a permeable water spacer is provided on the other surface, and passes through the reverse osmosis membrane device. A method for operating a reverse osmosis membrane device, wherein the operation is performed at a flux of 0.6 m / d or less. 前記透過流束が0.45m/d以下であることを特徴とする請求項1に記載の逆浸透膜装置の運転方法。   The method of operating a reverse osmosis membrane device according to claim 1, wherein the permeation flux is 0.45 m / d or less. 前記逆浸透膜エレメントがスパイラル型逆浸透膜エレメントであることを特徴とする請求項1又は2に記載の逆浸透膜装置の運転方法。   The method of operating a reverse osmosis membrane device according to claim 1, wherein the reverse osmosis membrane element is a spiral type reverse osmosis membrane element. 前記原水が膜分離活性汚泥法処理水であることを特徴とする請求項1ないし3のいずれか1項に記載の逆浸透膜装置の運転方法。 The method of operating a reverse osmosis membrane device according to any one of claims 1 to 3, wherein the raw water is membrane-separated activated sludge process water.
JP2013092657A 2013-04-25 2013-04-25 Operation method of reverse osmosis membrane device Active JP6149489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092657A JP6149489B2 (en) 2013-04-25 2013-04-25 Operation method of reverse osmosis membrane device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092657A JP6149489B2 (en) 2013-04-25 2013-04-25 Operation method of reverse osmosis membrane device

Publications (2)

Publication Number Publication Date
JP2014213261A JP2014213261A (en) 2014-11-17
JP6149489B2 true JP6149489B2 (en) 2017-06-21

Family

ID=51939556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092657A Active JP6149489B2 (en) 2013-04-25 2013-04-25 Operation method of reverse osmosis membrane device

Country Status (1)

Country Link
JP (1) JP6149489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344800A (en) * 2017-08-22 2017-11-14 贵阳台农种养殖有限公司 A kind of aquaculture wastewater processing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240902A (en) * 2008-03-31 2009-10-22 Toray Ind Inc Water treating method and water treating apparatus
KR101364341B1 (en) * 2009-04-30 2014-02-18 닛토덴코 가부시키가이샤 Composite film substrate and composite film using same

Also Published As

Publication number Publication date
JP2014213261A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
Singh et al. Introduction to membrane processes for water treatment
Kim et al. Experimental study of a 4040 spiral-wound forward-osmosis membrane module
JP5828328B2 (en) Operation method of reverse osmosis membrane device and reverse osmosis membrane device
US8915378B2 (en) Hollow fiber type reverse osmosis membrane and method for manufacturing the same
US20150060360A1 (en) Systems and methods of membrane separation
Nataraj et al. Cellulose acetate-coated α-alumina ceramic composite tubular membranes for wastewater treatment
TWI579245B (en) Multi - stage reverse osmosis membrane device and its manipulation method
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
JP7172987B2 (en) MEMBRANE SEPARATION SYSTEM AND METHOD OF OPERATING MEMBRANE SEPARATION SYSTEM
Zhao et al. A novel composite microfiltration membrane: Structure and performance
KR102235424B1 (en) Reverse osmosis membrane device and method for operating same
TW200914382A (en) Filtering device and water treatment method
JP6183213B2 (en) Fresh water generation method and fresh water generation apparatus
JP6149489B2 (en) Operation method of reverse osmosis membrane device
WO2017159303A1 (en) Method for treating waste water having high hardness
CN106232211B (en) Filter element
Guclu et al. Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions
Zoka Effect of Surface Modification with Electrospun Nanofibers on the Performance of the Ultrafiltration Membrane
WO2023048052A1 (en) Separation membrane element
WO2023008251A1 (en) Separation membrane element and separation membrane system
JP2005034723A (en) Method for modifying reverse osmosis membrane and regenerated separation membrane
Zeytuncu et al. Electrospun membranes for microfiltration
JP2024049759A (en) Separation Membrane Element
JP2023033785A (en) Separation membrane element
Hazah Fabrication of Nf Membrane Using Phase Inversion Method for Dye Removal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6149489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250