JP2023033785A - Separation membrane element - Google Patents

Separation membrane element Download PDF

Info

Publication number
JP2023033785A
JP2023033785A JP2021139687A JP2021139687A JP2023033785A JP 2023033785 A JP2023033785 A JP 2023033785A JP 2021139687 A JP2021139687 A JP 2021139687A JP 2021139687 A JP2021139687 A JP 2021139687A JP 2023033785 A JP2023033785 A JP 2023033785A
Authority
JP
Japan
Prior art keywords
separation membrane
fibrous
channel material
fibrous material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021139687A
Other languages
Japanese (ja)
Inventor
秀 谷口
Shu Taniguchi
健太朗 高木
Kentaro Takagi
剛士 誉田
Takeshi Konda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021139687A priority Critical patent/JP2023033785A/en
Publication of JP2023033785A publication Critical patent/JP2023033785A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a separation membrane element capable of suppressing fouling in long term operation while reducing the flow resistance of a supply side flow passage when operating the separation membrane element.SOLUTION: A separation membrane element in the present invention comprises a water collecting pipe, a separation membrane, a supply side flow passage material and a permeation side flow passage material. The supply side flow passage material forms a supply side flow passage by being disposed between two surfaces of the separation membrane and is constituted with a fibrous raw X composed of a plurality of fibrous materials A arranged in one direction and a fibrous raw Y composed of a plurality of fibrous materials B arranged in a direction different from the fibrous raw X. In at least any one of the fibrous material A or the fibrous material B, a large diameter part and a small diameter part exist, and any one of the fibrous material A or the fibrous material B at an intersection part P has a gap part V with the separation membrane by forming the intersection part P where the small diameter part of the fibrous material A or the fibrous material B crosses the other fibrous material.SELECTED DRAWING: Figure 2

Description

本発明は、不純物を含む種々の液体から不純物を分離するため、特に海水の淡水化、かん水の脱塩、超純水の製造または排水処理などに用いるための分離膜エレメントに関するものである。 TECHNICAL FIELD The present invention relates to a separation membrane element for separating impurities from various liquids containing impurities, particularly for desalination of seawater, desalination of brackish water, production of ultrapure water, or wastewater treatment.

海水およびかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギーおよび省資源のためのプロセスとして、分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜は、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜および正浸透膜に分類される。これらの膜は、例えば海水、かん水および有害物を含んだ水などからの飲料水の製造、工業用超純水の製造、並びに排水処理および有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。 In the technology for removing ionic substances contained in seawater, brackish water, etc., the use of a separation method using a separation membrane element has been expanding in recent years as a process for saving energy and resources. Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes and forward osmosis membranes in terms of pore size and separation function. These membranes are used, for example, for the production of drinking water from seawater, brackish water, and water containing hazardous substances, the production of industrial ultrapure water, wastewater treatment, and the recovery of valuables. It is used properly depending on the separation component and separation performance.

分離膜エレメントとしては様々な形態があるが、分離膜の一方の面に原水を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで、1個の分離膜エレメントあたりの膜面積が大きくなるように、つまり1個の分離膜エレメントあたりに得られる透過流体の量が大きくなるように形成されている。分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種の形状が提案されている。 Although there are various forms of separation membrane elements, they all have in common that raw water is supplied to one surface of the separation membrane and permeated fluid is obtained from the other surface. The separation membrane element is provided with a large number of bundled separation membranes so that the membrane area per separation membrane element is large, that is, the amount of permeated fluid obtained per separation membrane element is large. It is formed to be As the separation membrane element, various shapes such as a spiral type, a hollow fiber type, a plate and frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to uses and purposes.

例えば、逆浸透ろ過には、スパイラル型分離膜エレメントが広く用いられる。スパイラル型分離膜エレメントは、集水管と、集水管の周囲に巻き付けられた分離膜ユニットとを備える。分離膜ユニットは、供給水としての原水(つまり被処理水)を分離膜表面へ供給する供給側流路材、原水に含まれる成分を分離する分離膜、及び分離膜を透過し供給側流体から分離された透過流体を集水管へと導くための透過側流路材が積層されることで形成される。スパイラル型分離膜エレメントは、原水に圧力を付与することができるので、透過流体を多く取り出すことができる点で好ましく用いられている。 For example, spiral separation membrane elements are widely used for reverse osmosis filtration. A spiral separation membrane element includes a water collection tube and a separation membrane unit wound around the water collection tube. The separation membrane unit consists of a feed-side channel material that supplies raw water (that is, water to be treated) as feed water to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a separation membrane that permeates the feed-side fluid. It is formed by laminating a permeate-side channel material for guiding the separated permeate fluid to the water collecting pipe. A spiral separation membrane element is preferably used because it can apply pressure to raw water and can extract a large amount of permeated fluid.

分離膜エレメントを用いて供給水を処理する際に、長期間分離膜エレメントを運転していると、供給水中の有機物やゴミなどの汚れ物質(ファウラント)が分離膜や供給側流路材に詰まっていくことがある(ファウリング)。ファウリングが生じると、圧力損失の増大やそれに伴う造水量の低下が引き起こされる。このようなファウリングによるエレメント性能低下を抑制するためには、例えば供給側流路材の厚さを厚くし、供給側流路を広くすることでファウラントが詰まる箇所を少なくすれば良い。しかし、供給側流路材の厚さを厚くするだけでは、供給側流路材の構成繊維が膜面に接しているため、繊維の周囲に汚れが堆積していき、ファウリングは進行していってしまう。また、エレメント性能を高めるためには圧力損失ができるだけ低い方が好ましく、供給側流路が広いほど圧力損失が低くなり、エレメント性能が向上するという傾向がある。そこで、供給側流路材による分離膜エレメントの性能向上が提案されている。 When the separation membrane element is used to treat feed water, if the separation membrane element is operated for a long period of time, foulants such as organic substances and dust in the feed water clog the separation membrane and the channel material on the feed side. (fouling). The occurrence of fouling causes an increase in pressure loss and a corresponding decrease in water production. In order to suppress the deterioration of the element performance due to such fouling, for example, the thickness of the supply-side channel material may be increased to widen the supply-side channel, thereby reducing locations clogged with foulant. However, if the thickness of the channel material on the supply side is increased, the constituent fibers of the channel material on the supply side are in contact with the membrane surface, so dirt accumulates around the fibers, and fouling progresses. I will. In addition, in order to improve the element performance, it is preferable that the pressure loss is as low as possible, and there is a tendency that the wider the supply-side passage, the lower the pressure loss and the higher the element performance. Therefore, it has been proposed to improve the performance of the separation membrane element by means of a channel material on the supply side.

具体的には、特許文献1および2では、供給側流路材中の繊維状物の交点と交点の厚みを細くすることで、流動抵抗を低減させたネットが提案されている。また、特許文献3では供給側流路材の交点部に摺動部を設けることで、供給水の流動によって摺動部が動き、汚れが付着しにくい流路材が考案されている。 Specifically, Patent Literatures 1 and 2 propose nets in which the flow resistance is reduced by thinning the thickness of the crossing points of the fibrous materials in the channel material on the supply side. Further, in Patent Document 3, by providing a sliding portion at the intersection of the channel material on the supply side, the sliding portion moves with the flow of the supply water, thereby devising a channel material to which dirt is less likely to adhere.

日本国特表2006-507919号公報Japanese Patent Publication No. 2006-507919 日本国特許第4587937号公報Japanese Patent No. 4587937 日本国特開2006-305556号公報Japanese Patent Application Laid-Open No. 2006-305556

しかし、上記した分離膜エレメントは、供給側流路の交点部に最も汚れが溜まりやすく、流動抵抗の低減とファウリングの抑制のバランスが十分とは言えず、分離膜エレメントを長期間運転したときに供給側流路が部分的に閉塞する場合があった。そこで、本発明は、供給側流路の流動抵抗を低減しながら、長期間の運転においても、ファウリングを抑制できる分離膜エレメントを提供することを課題とする。 However, in the separation membrane element described above, dirt tends to accumulate most easily at the intersection of the supply-side channel, and the balance between the reduction of flow resistance and the suppression of fouling cannot be said to be sufficient. In some cases, the supply side channel was partially clogged. Accordingly, an object of the present invention is to provide a separation membrane element capable of suppressing fouling even during long-term operation while reducing the flow resistance in the feed-side channel.

上記目的を達成するため、本発明によれば、少なくとも集水管と、分離膜と、供給側流路材と、透過側流路材とを備える分離膜エレメントであって、前記供給側流路材は、前記分離膜の二つの面の間に配置されて供給側流路を形成しており、前記供給側流路材は一方向に並んだ複数の繊維状物Aから構成される繊維状列Xおよび前記繊維状列Xとは異なる方向に並んだ複数の繊維状物Bから構成される繊維状列Yから構成され、前記繊維状物Aもしくは前記繊維状物Bの少なくともいずれかは、太径部と細径部が存在し、前記繊維状物Aもしくは前記繊維状物Bの細径部ともう一方の繊維状物と交差して交点部Pを形成することで、少なくともいずれかの前記交点部Pにおける前記繊維状物Aもしくは前記繊維状物Bの少なくともいずれかは分離膜との間に空隙部Vを有し、前記空隙部Vの割合が、供給側流路材中の交点数に対して25%以上存在することを特徴とする分離膜エレメントが提供される。 In order to achieve the above object, according to the present invention, there is provided a separation membrane element comprising at least a collection tube, a separation membrane, a feed side channel material, and a permeate side channel material, wherein the feed side channel material is disposed between the two surfaces of the separation membrane to form a feed-side channel, and the feed-side channel material is a fibrous array composed of a plurality of fibrous materials A arranged in one direction. X and a fibrous row Y composed of a plurality of fibrous substances B arranged in a direction different from that of the fibrous row X, and at least one of the fibrous substances A and the fibrous substances B is thick. A diameter portion and a small diameter portion are present, and the small diameter portion of the fibrous material A or the fibrous material B and the other fibrous material are crossed to form an intersection point P, so that at least one of the above At least one of the fibrous material A and the fibrous material B at the intersection point P has a void V between itself and the separation membrane, and the ratio of the void V is the number of intersection points in the channel material on the supply side. There is provided a separation membrane element characterized by having a content of 25% or more with respect to the

また、本発明の好ましい形態によれば、前記供給側流路材の前記繊維状物Aと前記繊維状物Bがいずれも太径部及び細径部を有し、前記繊維状物Aと前記繊維状物Bの細径部で交差して交点部Pを形成することで、前記交点部Pにおける前記繊維状物A、前記繊維状物Bは分離膜との間に空隙部Vを有する分離膜エレメントが提供される。 Further, according to a preferred embodiment of the present invention, both the fibrous material A and the fibrous material B of the supply side channel material have a large-diameter portion and a small-diameter portion, and the fibrous material A and the fibrous material A By crossing the fibrous material B at the small diameter portion to form the intersection point P, the fibrous material A and the fibrous material B at the intersection part P have the gap V between the separation membrane and the separation. A membrane element is provided.

また、本発明の好ましい形態によれば、前記細径部の厚みD1が0.1mm以上である分離膜エレメントが提供される。 Moreover, according to a preferred embodiment of the present invention, there is provided a separation membrane element in which the thickness D1 of the small diameter portion is 0.1 mm or more.

また、本発明の好ましい形態によれば、前記供給側流路材の前記空隙部Vが供給側流路材中に75%以上存在する分離膜エレメントが提供される。
また、本発明の好ましい形態によれば、細径部の長さをL、太径部の長さをLとしたとき、長さの比L/Lが、0.1~15の範囲である分離膜エレメントが提供される。
Further, according to a preferred embodiment of the present invention, there is provided a separation membrane element in which 75% or more of the voids V of the feed-side channel material are present in the feed-side channel material.
Further, according to a preferred embodiment of the present invention, when the length of the small diameter portion is L 1 and the length of the large diameter portion is L 2 , the length ratio L 1 /L 2 is 0.1 to 15. A separation membrane element is provided that ranges from


本発明によって、ファウリングが生じやすい交点部に空隙を有するため、供給側流路が閉塞することによる差圧上昇や造水量低下を抑制できるため、運転安定性に優れた分離膜エレメントを得ることができる。

According to the present invention, a separation membrane element having excellent operational stability can be obtained because it has gaps at intersections where fouling is likely to occur, and can suppress an increase in differential pressure and a decrease in water production due to clogging of the supply-side channel. can be done.

図1は、分離膜エレメントの一例を示す一部展開斜視図である。FIG. 1 is a partially exploded perspective view showing an example of a separation membrane element. 図2は、本発明の供給側流路材の一例を示す平面図である。FIG. 2 is a plan view showing an example of the supply side channel material of the present invention. 図3は、本発明の供給側流路材の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of the supply-side channel material of the present invention. 図4は、本発明の供給側流路材の例を示す斜視図である。FIG. 4 is a perspective view showing an example of the supply side channel material of the present invention. 図5(a)~(f)は、本発明の供給側流路材の例を示す断面図である。5(a) to 5(f) are cross-sectional views showing examples of the supply-side channel material of the present invention. 図6は、本発明の供給側流路材の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of the supply-side channel material of the present invention. 図7は、本発明の供給側流路材の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of the supply side channel material of the present invention. 図8は、本発明の供給側流路材の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of the supply side channel material of the present invention.

以下、本発明の実施の形態について、詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

尚、本明細書において、「質量」は「重量」と同義である。また、本明細書において、「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。 In this specification, "mass" is synonymous with "weight". Also, in this specification, "-" means that the numerical values before and after it are included as lower and upper limits.

<分離膜エレメント>
本発明の分離膜エレメントは、少なくとも集水管と、分離膜と、供給側流路材と、透過側流路材とを備える。
<Separation membrane element>
The separation membrane element of the present invention includes at least a collection tube, a separation membrane, a feed-side channel material, and a permeate-side channel material.

図1に示すスパイラル型分離膜エレメント1では、供給側の流路を形成する供給側流路材2としては、高分子製のネットが使用されている。また、透過側流路材4としては、分離膜3の落ち込みを防ぎ、かつ透過側の流路を形成させる目的で、供給側流路材2よりも間隔が細かいトリコットが使用されている。透過側流路材4と該透過側流路材4の両面に重ね合わせて封筒状に接着された分離膜3とにより、封筒状膜5が形成される。封筒状膜5の内側が透過側流路を構成している。供給側流路材2と交互に積層された封筒状膜5は、開口部側の所定部分を集水管6の外周面に接着しスパイラル状に巻囲される。図1に示すx軸の方向が集水管6の長手方向である。またy軸の方向が集水管6の長手方向と垂直な方向である。 In the spiral separation membrane element 1 shown in FIG. 1, a polymer net is used as the feed-side channel material 2 that forms the feed-side channel. As the channel material 4 on the permeate side, tricot with finer spacing than the channel material 2 on the supply side is used for the purpose of preventing the separation membrane 3 from sagging and forming the channel on the permeate side. An envelope-like membrane 5 is formed by the permeate-side channel material 4 and the separation membranes 3 laminated on both sides of the permeate-side channel material 4 and adhered in an envelope shape. The inner side of the envelope-like membrane 5 constitutes a permeate-side channel. The envelope-like membranes 5 alternately laminated with the supply-side channel material 2 are spirally wound by adhering a predetermined portion on the opening side to the outer peripheral surface of the water collecting pipe 6 . The direction of the x-axis shown in FIG. 1 is the longitudinal direction of the water collecting pipe 6 . Also, the direction of the y-axis is the direction perpendicular to the longitudinal direction of the water collecting pipe 6 .

スパイラル型分離膜エレメント1では、通常一方の側面から、供給水7が供給され、供給水7は、集水管6と平行に流れながら、透過水8と濃縮水9とに徐々に分離される。透過水8は、供給水7が供給される反対の側面からスパイラル型分離膜エレメント1の外部へと出ていく。 The spiral separation membrane element 1 is normally supplied with feed water 7 from one side, and the feed water 7 is gradually separated into a permeate 8 and a concentrate 9 while flowing parallel to the water collecting pipe 6 . The permeated water 8 exits the spiral separation membrane element 1 from the opposite side to which the feed water 7 is supplied.

この方式においては、供給水7がスパイラル型分離膜エレメント1の一方の側面から他方の側面へ流れるため必然的に膜に接している距離が十分にあり、それにより供給水7が、透過水8と濃縮水9とに十分に分離されるという特徴がある。分離膜エレメントとしては様々な形態があるが、分離膜の一方の面に供給水を供給し、他方の面から透過水を得る点では共通している。本発明の分離膜エレメントとしては、用途や目的に合わせて、スパイラル型以外にも、プレート・アンド・フレーム型や平膜集積型等の平膜を使用する各種形状の分離膜エレメントに採用することができる。 In this method, since the feed water 7 flows from one side of the spiral separation membrane element 1 to the other side, there is inevitably a sufficient distance in contact with the membrane. and the concentrated water 9 are sufficiently separated. There are various forms of separation membrane elements, but they all have in common that feed water is supplied to one side of the separation membrane and permeated water is obtained from the other side. As the separation membrane element of the present invention, in addition to the spiral type, various shapes of separation membrane elements using flat membranes such as the plate and frame type and the flat membrane integrated type may be adopted according to the application and purpose. can be done.

<供給側流路>
(供給側流路材)
本実施形態の供給側流路材は、図2に示すように、一方向に並んだ、繊維状物A(21)から構成される複数の繊維状列X、および繊維状列Xとは異なる方向に並んだ、繊維状物B(22)から構成される複数の繊維状列Yから構成され、繊維状列Xと繊維状列Yとが互いに交差して複数の地点で交点を形成したネット形状をしている。交差は、繊維状物Aと繊維状物Bが立体交差していても、平面交差していてもいずれでも良い。
<Supply side channel>
(Supply side channel material)
As shown in FIG. 2, the supply-side channel material of this embodiment is different from the plurality of fibrous rows X composed of the fibrous materials A (21) arranged in one direction and the fibrous rows X The net is composed of a plurality of fibrous rows Y composed of fibrous materials B (22) arranged in a direction, and the fibrous rows X and the fibrous rows Y intersect each other to form intersections at a plurality of points. have a shape. The crossing may be a three-dimensional crossing between the fibrous material A and the fibrous material B, or a plane crossing.

分離膜エレメントにおいて、分離膜表面や供給側流路材に堆積する汚れの付着(ファウリング)を抑制するには、供給水の滞留箇所すなわち供給側流路の閉塞箇所を低減し、繊維状物の後方に水の流れを生み出すことが重要である。供給水が滞留する箇所に汚れが溜まりやすく、滞留箇所を減らすことで汚れが排出されやすくなるからである。また、汚れが付着したとしても、水の流れがあることで汚れが押し出され、ファウリングの進行を抑制することができる。従来の供給側流路材では繊維状物の太径部と太径部が交差することで交点を形成し、そこが供給側流路材において最も厚みが大きくなるため、太径部と太径部の交点によって膜と膜の間のスペースを確保していた。しかし、太径部と太径部によって形成される交点は交点の周囲に滞留箇所が多くなり、汚れが溜まりやすい構造になっていた。 In the separation membrane element, in order to suppress the deposition of dirt (fouling) that accumulates on the separation membrane surface and the supply side channel material, it is necessary to reduce the stagnant points of the supply water, that is, the clogging points of the supply side channel, It is important to create a water flow behind the This is because dirt tends to accumulate in places where the supply water stagnates, and the dirt can be easily discharged by reducing the stagnant places. Moreover, even if dirt adheres, the dirt is pushed out by the flow of water, and the progress of fouling can be suppressed. In the conventional supply-side channel material, the large-diameter part and the large-diameter part of the fibrous material intersect to form an intersection point, which is the thickest in the supply-side channel material. The intersection of the parts ensured the space between the membranes. However, the intersection formed by the large-diameter portion and the large-diameter portion has a structure in which many stagnation points occur around the intersection, and dirt tends to accumulate.

また、分離膜エレメントにおいて、透過の駆動力は膜間差圧であるため、造水量を向上させるためには膜間差圧を増加させることが有効である。膜間差圧は、分離膜エレメントへの印加圧力から流動抵抗と浸透圧を差し引いたもので表される。よって、膜間差圧を増加させるには、印加圧力を大きくする、流動抵抗を下げる又は膜面浸透圧を下げることが必要である。印加圧力と膜面浸透圧が同じ場合を考えると、造水量向上のためには流動抵抗を下げればよい。 In the separation membrane element, since the driving force for permeation is the transmembrane pressure difference, it is effective to increase the transmembrane pressure difference in order to improve the amount of fresh water produced. The transmembrane pressure difference is expressed by subtracting the flow resistance and the osmotic pressure from the pressure applied to the separation membrane element. Therefore, in order to increase the transmembrane pressure, it is necessary to increase the applied pressure, decrease the flow resistance, or decrease the transmembrane osmotic pressure. Considering the case where the applied pressure and the membrane surface osmotic pressure are the same, the flow resistance should be lowered in order to improve the amount of fresh water produced.

供給水は供給側流路材の繊維状物の間に沿って広がりながら流れるため、供給水の流れ方向と平行でない繊維状物は流路を塞ぎ、供給水の流れを妨げることになるため流動抵抗が高くなる傾向にある。そこで、繊維状物Aおよび繊維状物Bのいずれかは、任意の繊維状列を含む、当該繊維状列の長手方向に沿って、太径部と細径部が存在する。これにより、空隙率が上がり、流動抵抗が改善される。 Since the supply water flows while spreading along the fibrous material of the channel material on the supply side, the fibrous material that is not parallel to the flow direction of the supply water blocks the flow channel and hinders the flow of the supply water. resistance tends to be higher. Therefore, either fibrous material A or fibrous material B has a large-diameter portion and a small-diameter portion along the longitudinal direction of the fibrous row, including an arbitrary fibrous row. This increases porosity and improves flow resistance.

本実施形態では、繊維状物Aもしくは繊維状物Bの少なくともいずれかは、太径部と細径部が存在し、繊維状物Aもしくは繊維状物Bの細径部ともう一方の繊維状物と交差して交点部Pを形成することで、少なくともいずれかの交点部Pにおける繊維状物Aもしくは繊維状物Bの少なくともいずれかは分離膜との間に空隙部Vを有し、空隙部Vの割合が、供給側流路材中の交点数に対して25%以上存在する。 In this embodiment, at least one of the fibrous material A and the fibrous material B has a large diameter portion and a small diameter portion, and the small diameter portion of the fibrous material A or the fibrous material B and the other fibrous material By forming the intersection point P by intersecting with the material, at least one of the fibrous material A or the fibrous material B at at least one of the intersection points P has a gap V between the separation membrane and the gap The proportion of part V is 25% or more of the number of intersections in the channel material on the supply side.

繊維状物A、Bの少なくとも一方に太径部と細径部が存在することで、空隙率を大きくして流動抵抗を低減することができ、さらに、交点部Pにおいて空隙部Vを25%以上有することで、滞留部を減らし、ファウリングの進行を抑制することができ、流動抵抗の増大を抑制し、造水量低下を低減することができる。
(繊維形状)
本実施形態における繊維形状は、繊維状物Aと繊維状物Bが同様の形状をしていても、異なる形状をしていても良い。図4は供給側流路材の一例を示した斜視図であるが、矢印の方向から観察したとき、図5に示した側面図が挙げられる。例えば、図5(a)のように、太径部と細径部が明確に分かれていてもよいし、図5(b)のように糸径がなだらかに変化してもよい。図5(c)のように繊維状物Aと繊維状物Bが立体交差していてもよいし、図5(d)のように細径部と寸胴糸と交差していてもよい。図5(e)のように太径部と細径部が交差していても良いし、図5(f)のように細径部の太さが違う2種の糸が交差していてもよい。これらの図面上には表れていないが、図面奥行き方向に太径が存在し、その箇所が膜面と接することができる。
(交点部)
本実施形態における交点部Pとは、繊維状物Aと繊維状物Bが交差する箇所を指す。交点部Pを観察したい場合は、図6に示したように、任意の繊維状物Aもしくは繊維状物Bを抽出し選択する。そして、もう一方(繊維状物Aを選択している場合は繊維状物B)の繊維状物Bを繊維状物Aと平行かつ繊維状物Aに近い箇所でカットし、繊維状物Aに対して垂直な方向から観察する。このとき、繊維状物Bの断面において、供給側流路材の平面方向に垂直な方向に、断面の両端に垂線Lを下ろし、供給側流路材の平面方向に平行な方向に、垂線L間の繊維状物Aと繊維状物Bによって形成される図形の上端及び下端に、接線Lを引く。垂線Lと接線Lによって形成される四角形を交点部Pと定義する。
(空隙部)
本実施形態における空隙部Vとは、図6に示したように、交点部Pの上部又は下部に空間が存在するとき、その箇所を空隙部と定義する。交点部Pの上下両側に空隙部が存在する必要はないが、交点部の上又は下の片側に存在するよりも、両側に存在する方が、滞留部が減少するため好ましい。供給側流路材を10×10cmに切り出し、同じ切り出し面積の均一な厚みを持つ厚さ3mmのアルミ板を用意して、供給側流路材の上下に置き、供給側流路材に均一に荷重が加わるように、供給側流路材の上に置いたアルミ板の上に重さ1kgのアルミブロックを置いてマイクロスコープなどで観察したとき、平板との間に空間が存在すればよい。交点部Pと平板間の距離Lは0.01mm以上が好ましく、より好ましくは0.05 mm以上である。Lがこの距離以上であれば、排濁性を高め、汚れの付着を抑制することができる。交点部Pの上下に空間が存在する場合、平板間の距離Lは2つ存在することになるが、この時、上下の距離LをそれぞれLV1、LV2と定義する。このとき、距離が大きい方をLV1、距離が小さい方をLV2とする。空隙部Vは供給側流路材全体に対して、25%以上存在する。50%以上存在することがより好ましく、75%以上存在することがさらに好ましい。空隙部がこの範囲であれば、排濁性を高め、汚れの付着を抑制することができる。
At least one of the fibrous materials A and B has a large-diameter portion and a small-diameter portion, so that the porosity can be increased and the flow resistance can be reduced. By having the above, it is possible to reduce the stagnant part, suppress the progress of fouling, suppress the increase in flow resistance, and reduce the decrease in the amount of fresh water produced.
(fiber shape)
Regarding the shape of fibers in this embodiment, the fibrous material A and the fibrous material B may have the same shape or different shapes. FIG. 4 is a perspective view showing an example of the channel material on the supply side, and when observed from the direction of the arrow, the side view shown in FIG. 5 can be mentioned. For example, the large-diameter portion and the small-diameter portion may be clearly separated as shown in FIG. 5(a), or the thread diameter may change gently as shown in FIG. 5(b). The fibrous material A and the fibrous material B may intersect each other as shown in FIG. 5(c), or may intersect the small-diameter portion and the length yarn as shown in FIG. 5(d). The large diameter portion and the small diameter portion may intersect as shown in FIG. good. Although not shown in these drawings, there is a large diameter in the depth direction of the drawing, and that portion can come into contact with the film surface.
(Intersection)
The intersection point P in the present embodiment refers to a location where the fibrous material A and the fibrous material B intersect. When it is desired to observe the intersection point P, as shown in FIG. 6, an arbitrary fibrous material A or B is extracted and selected. Then, the fibrous material B of the other (if the fibrous material A is selected, the fibrous material B) is cut parallel to the fibrous material A and close to the fibrous material A, and the fibrous material A is cut. Observe from a direction perpendicular to the object. At this time, in the cross section of the fibrous material B, a perpendicular line LP is drawn at both ends of the cross section in a direction perpendicular to the planar direction of the supply side channel material, and a perpendicular line is drawn in a direction parallel to the planar direction of the supply side channel material A tangent line LT is drawn at the top and bottom of the figure formed by filament A and filament B between LP . A quadrangle formed by a perpendicular line LP and a tangent line LT is defined as an intersection point P.
(Gap)
As shown in FIG. 6, the gap V in this embodiment is defined as a gap when there is a space above or below the intersection point P. As shown in FIG. Although it is not necessary to have gaps on both the top and bottom sides of the intersection P, it is preferable to have gaps on both sides rather than on one side above or below the intersection, because the stagnant part is reduced. Cut the channel material on the supply side into 10 x 10 cm pieces, prepare aluminum plates with a thickness of 3 mm and a uniform thickness of the same cut area, place them on the top and bottom of the channel material on the supply side, and spread them evenly on the channel material on the supply side. When an aluminum block with a weight of 1 kg is placed on the aluminum plate placed on the channel material on the supply side so that a load is applied, and observed with a microscope or the like, there should be a space between the plate and the plate. The distance LV between the intersection point P and the flat plate is preferably 0.01 mm or more, more preferably 0.05 mm or more. If the LV is this distance or more, the turbidity can be improved and the adhesion of dirt can be suppressed. When there are spaces above and below the intersection point P, there are two distances LV between the flat plates. At this time, the upper and lower distances LV are defined as LV1 and LV2 , respectively. At this time, the longer distance is L V1 , and the shorter distance is L V2 . Voids V occupy 25% or more of the entire channel material on the supply side. It is more preferably present in an amount of 50% or more, and even more preferably in an amount of 75% or more. If the voids are within this range, the turbidity can be improved and the adhesion of dirt can be suppressed.

供給側流路材中の空隙部の割合の測定は、市販のマイクロスコープやX線CT測定装置を用いて、交点部Pの上下に空隙部が存在するかを観察することで求めることができる。交点部Pの上下に存在する場合、2つと数えることができ、測定モードを用いて繊維状物Aに沿った方向の交点部を少なくとも50箇所、繊維状物Bに沿った方向の交点部を少なくとも50箇所、合計100箇所観察して空隙部が存在する個数と観察個数の割合で算出することができる。 The ratio of voids in the channel material on the supply side can be determined by observing whether there are voids above and below the intersection point P using a commercially available microscope or X-ray CT measurement device. . If it exists above and below the intersection point P, it can be counted as two. It can be calculated by observing at least 50 locations (100 locations in total) and calculating the ratio of the number of voids present and the number of observations.

空隙部の割合、交点部Pと平板間の距離Lvは観察方法によって変化し得る。供給側流路材の剛性が低いと、交点部の糸がたわみ、平板との距離が近づく。アルミ板で挟んで上から載せる重りが重すぎると供給側流路材が変形し、交点部と平板との距離が近づき、場合によっては空隙部が無くなってしまう。そのため、アルミ板で供給側流路材を挟み、決められた重さ(1kg)の重りを乗せて観察することが重要である。
(交点部及び供給側流路材の厚み)
交点部の厚みDは、垂線Lが接線Lによって切り取られる長さLP’で表される。交点部の厚みDは、0.1mm以上あることが好ましい。交点部の厚みがこの範囲であれば、供給側流路材の剛性を確保することができる。供給側流路材の厚みDはLP’とLV1、LV2の合計で表される。本実施形態において、供給側流路材の平均厚さは、好ましくは0.50mm以上4.0mm以下、より好ましくは0.7mm以上2.0mm以下である。供給側流路材の平均厚さがこの範囲であれば、圧力損失が大きくなりすぎず、膜面や供給側流路材に堆積し得るファウラントなどの物質が詰まりにくい十分な供給側流路を確保でき、供給水中の不純物や、微生物などのファウラントによる供給側流路の閉塞を抑制し、ポンプの必要動力を大きくすることなく、長期にわたり安定的に分離膜エレメントの運転を行うことが可能となる。この範囲よりも供給側流路材が薄くなると、圧力損失が大きくなったり、ファウリングが進行しやすくなる原因になる。この範囲よりも供給側流路材が厚くなると、ハンドリング性の観点で好ましくないが、交点ピッチや素材を適当なものを選ぶことで、適切な剛性に調整することができる。
なお、交点部及び供給側流路材の厚みの測定には市販のマイクロスコープやX線CT測定装置を用いて、繊維状列に平行な縦断面を観察し、その距離を測定することで求めることができ、測定モードを用いて交点部または供給側流路材の厚みの任意の30カ所の径を抽出して測定し、その平均値とすることができる。
The ratio of the voids and the distance Lv between the intersection point P and the flat plate may vary depending on the observation method. If the rigidity of the channel material on the supply side is low, the threads at the crossing point bend and the distance from the flat plate becomes closer. If the weight sandwiched between the aluminum plates is too heavy, the channel material on the supply side will be deformed, the distance between the intersection and the flat plate will be reduced, and in some cases the gap will disappear. Therefore, it is important to sandwich the channel material on the supply side between aluminum plates and place a predetermined weight (1 kg) on it for observation.
(Thickness of intersection and supply side channel material)
The thickness D C of the intersection is represented by the length L P′ of the perpendicular line L P cut by the tangent line L T . The thickness D C of the intersection is preferably 0.1 mm or more. If the thickness of the intersection portion is within this range, the rigidity of the channel material on the supply side can be ensured. The thickness D of the channel material on the supply side is represented by the sum of L P' , L V1 and L V2 . In this embodiment, the average thickness of the channel material on the supply side is preferably 0.50 mm or more and 4.0 mm or less, more preferably 0.7 mm or more and 2.0 mm or less. If the average thickness of the channel material on the supply side is within this range, the pressure loss does not become too large, and a sufficient amount of material such as foulant that can accumulate on the membrane surface and the channel material on the supply side does not clog easily. It is possible to ensure stable operation of the separation membrane element for a long period of time without increasing the power required for the pump by suppressing clogging of the supply side channel by impurities in the supply water and foulants such as microorganisms. Become. If the feed-side channel material is thinner than this range, pressure loss increases and fouling tends to progress. If the channel material on the supply side is thicker than this range, it is not preferable from the standpoint of handling, but it is possible to adjust the rigidity to an appropriate value by selecting an appropriate intersection pitch and material.
In addition, the thickness of the crossing point and the channel material on the supply side is measured using a commercially available microscope or X-ray CT measurement device, observing a longitudinal section parallel to the fibrous row, and measuring the distance. The measurement mode can be used to extract and measure diameters at arbitrary 30 locations in the thickness of the channel material on the supply side or at intersections, and the average value can be obtained.

また、供給側流路材の厚さのばらつきは、供給側流路材の平均厚さの0.85倍以上1.15倍以下であることが好ましい。供給側流路材の厚さのばらつきがこの範囲であれば、分離膜エレメントに均一に供給水を供給できるため、分離膜の性能を均一に発揮させることができる。
(太径部・細径部)
本実施形態において、太径部は繊維状物Aもしくは繊維状物Bを供給側流路材の側面から観察したとき、図7のように、任意の隣接する2つの交点部Pを抽出し、それらの中央に垂線を引き、その垂線間を20等分する。20等分したそれぞれの区間において、繊維径を10点測定し、平均値を算出する。20等分した区間における、平均値の最大と最小を出し、それらの平均値Avを算出する。なお、ここでは交点部における別の繊維状物(例えば繊維状物Aを観察しているときは、繊維状物B)は無視して、図8のように、Lと繊維状物Aが交差する2点を結び、仮想線を引く。この仮想線を利用して繊維径を測定することができる。
例えば、20等分した区間の最大値が0.1mm、最小値が0.05mmであった場合、平均値Avは0.075となる。このAvが臨界値となり、20等分したそれぞれの平均値がAvよりも大きい区間を太径部とする。一方、細径部は太径部の算出に使用した2つの交点部Pのいずれか一方を含み、選択した交点部Pと同一繊維状に存在し、かつ隣接する交点部Pについて、同様に太径部を定義し、定義された二つの太径部の間に存在する区間が細径部と定義される。
細径部の厚みは0.1mm以上であることが好ましい。細径部の厚みがこの範囲であれば、供給側流路材の剛性を確保することができ、エレメント製造時の装置搬送性や定長カット性が向上できる。
細径部長さLと太径部長さLは太径部、細径部の長さを測定することで算出することができる。細径部Lと太径部Lの比L/Lは、0.1~15の範囲であることが好ましく、0.5~10の範囲であることがより好ましく、1~7の範囲であることがさらに好ましい。L/Lがこの範囲であれば、供給側流路材の剛性を確保しつつ、空隙率を高め、圧力損失を低くし、排濁性を高めることができる。細径部長さLと太径部長さLの測定方法としては、供給側流路材を厚み方向の上部(すなわち、供給側流路材の平面)から観察し、例えばマイクロスコープにより測定することができる。
(太径部と細径部の厚さの割合)
細径部の厚みDと太径部の厚みDは定義した細径部と太径部の径を平均した値を用いる。太径部と細径部の厚みの比D/Dは、好ましくは0.1~0.8の範囲であり、より好ましくは0.2~0.7の範囲である。D/Dがこの範囲であれば、供給側流路材の剛性を確保しつつ、空隙率を高め、圧力損失を低くし、排濁性を高めることができる。
(交点部間隔)
本実施形態では、図2に示す、供給側流路材2の供給水流れ方向(原水流れ方向)に対して垂直方向の交点部間隔(交点部周期)cが3~5mmの範囲であることが好ましく、さらに好ましくは3.5~4.5mmの範囲である。供給側流路材の供給水流れ方向に対して垂直方向の交点部間隔cがこの範囲であれば、分離膜エレメントの作製時に分離膜が供給側流路材の空隙部分に落ち込む現象を抑制でき、特に供給水流入端面部分の流路を安定に形成することが可能となる。
Further, the variation in the thickness of the channel material on the supply side is preferably 0.85 to 1.15 times the average thickness of the channel material on the supply side. If the variation in the thickness of the channel material on the feed side is within this range, the feed water can be uniformly supplied to the separation membrane element, so that the performance of the separation membrane can be exhibited uniformly.
(large diameter part/small diameter part)
In this embodiment, when the fibrous material A or the fibrous material B is observed from the side surface of the supply side channel material, as shown in FIG. Draw a vertical line in the middle of them and divide the distance between the vertical lines into 20 equal parts. The fiber diameter is measured at 10 points in each of the 20 equally divided sections, and the average value is calculated. The maximum and minimum average values are obtained in the 20 equally divided sections, and the average value Av is calculated. Here, another fibrous material (for example, fibrous material B when observing fibrous material A) at the intersection is ignored, and LP and fibrous material A are shown in FIG. Connect the two intersecting points and draw an imaginary line. Using this virtual line, the fiber diameter can be measured.
For example, if the maximum value of 20 equally divided sections is 0.1 mm and the minimum value is 0.05 mm, the average value Av is 0.075. This Av becomes a critical value, and the section where the average value of each of the 20 equal divisions is larger than Av is defined as the large-diameter portion. On the other hand, the small-diameter portion includes either one of the two intersection points P used to calculate the large-diameter portion, exists in the same fibrous form as the selected intersection point P, and the adjacent intersection point P is similarly thick. A diameter portion is defined, and a section existing between two defined large diameter portions is defined as a small diameter portion.
The thickness of the small diameter portion is preferably 0.1 mm or more. If the thickness of the small-diameter portion is within this range, the rigidity of the channel material on the supply side can be ensured, and the device transportability and the constant-length cutting property during element production can be improved.
The small-diameter portion length L1 and the large-diameter portion length L2 can be calculated by measuring the lengths of the large-diameter portion and the small-diameter portion. The ratio L 1 /L 2 between the small diameter portion L 1 and the large diameter portion L 2 is preferably in the range of 0.1 to 15, more preferably in the range of 0.5 to 10, and more preferably 1 to 7. is more preferably in the range of If L 1 /L 2 is within this range, the porosity can be increased, the pressure loss can be reduced, and the turbidity can be improved while ensuring the rigidity of the channel material on the supply side. As a method for measuring the length L1 of the small diameter portion and the length L2 of the large diameter portion, the supply side channel material is observed from above in the thickness direction (that is, the plane of the supply side channel material), and measured using, for example, a microscope. be able to.
(ratio of thickness of large diameter part and small diameter part)
As the thickness D1 of the small diameter portion and the thickness D2 of the large diameter portion, a value obtained by averaging the diameters of the defined small diameter portion and large diameter portion is used. The thickness ratio D 1 /D 2 of the large-diameter portion and the small-diameter portion is preferably in the range of 0.1 to 0.8, more preferably in the range of 0.2 to 0.7. If D 1 /D 2 is within this range, it is possible to increase the porosity, reduce the pressure loss, and improve the turbidity discharge while ensuring the rigidity of the channel material on the supply side.
(intersection interval)
In this embodiment, the intersecting point interval (intersecting point period) c in the direction perpendicular to the supply water flow direction (raw water flow direction) of the supply side channel material 2 shown in FIG. 2 is in the range of 3 to 5 mm. is preferred, and more preferably in the range of 3.5 to 4.5 mm. If the intersecting point interval c of the channel material on the supply side in the direction perpendicular to the flow direction of the feed water is within this range, it is possible to suppress the phenomenon that the separation membrane falls into the gaps of the channel material on the supply side during the production of the separation membrane element. In particular, it is possible to stably form the flow path of the supply water inflow end face portion.

また、供給側流路材の供給水流れ方向に対して平行方向の交点部間隔dは4~9mmの範囲であることが好ましく、更に好ましくは4.5~7.0mmの範囲である。供給側流路材の供給水流れ方向に対して平行方向の交点部間隔dがこの範囲であれば、供給水の乱流強度と流動抵抗のバランスを両立できるため、分離膜エレメントの脱塩率および造水性の向上が可能となる。 Further, the intersecting point interval d in the direction parallel to the flow direction of the supply water of the channel material on the supply side is preferably in the range of 4 to 9 mm, more preferably in the range of 4.5 to 7.0 mm. If the intersecting point interval d in the direction parallel to the flow direction of the feed water of the channel material on the feed side is within this range, the balance between the turbulent intensity of the feed water and the flow resistance can be achieved at the same time. And it becomes possible to improve the water-forming property.

交点部間隔の測定方法としては、供給側流路材を厚み方向の上部(すなわち、供給側流路材の平面)から観察し、例えばマイクロスコープにより距離を測定することができる。
(供給水流れ方向と繊維状物との角度)
供給側流路材を平面から観察したとき、供給水流れ方向(すなわち集水管の長手方向)と繊維状物との角度が大きくなるにつれて乱流強度が増すものの、流動抵抗が増す傾向にある。よって、前記角度は10°以上50°以下が好ましく、20°以上45°以下が更に好ましい。
(繊維の断面形状)
供給側流路材の繊維の断面形状としては、特に形状は限定されず、円形、楕円形、流線形など様々な形態が考えられる。また、これらの形態の一部が欠けている形状であっても構わない。
(素材)
供給側流路材の素材は特に限定されないが、成形性の観点から熱可塑性樹脂が好ましく、特にポリエチレンおよびポリプロピレンは分離膜の表面を傷つけにくく、また安価であるので好適である。また、供給側流路材は、繊維状物Aと繊維状物Bが同じ素材で形成されても構わないし、異なる素材で形成されていても構わない。
(製造方法)
ネット状の供給側流路材の成形は、一般的に内側と外側の2つの円周上に多数の孔を配置した内側と外側の2つの口金を逆方向に回転させながら、押出機から溶融させた樹脂を供給して、樹脂が口金から出る時または出た直後に内側と外側の口金から出る糸を溶融状態で交差させて溶融し網状構造を形成する。この段階ではネットは筒状の形状を取る。その後筒状のネットは冷却固化により厚みや糸径、交点部間隔を決定後、切開されてシート状ネットとして引き取られる。
As a method for measuring the intersecting point interval, the channel material on the supply side is observed from above in the thickness direction (that is, the plane of the channel material on the supply side), and the distance can be measured, for example, with a microscope.
(Angle between supply water flow direction and fibrous material)
When observing the channel material on the supply side from a plane, as the angle between the direction of flow of the supply water (that is, the longitudinal direction of the water collecting pipe) and the fibrous material increases, the turbulence strength increases, but the flow resistance tends to increase. Therefore, the angle is preferably 10° or more and 50° or less, more preferably 20° or more and 45° or less.
(Cross-sectional shape of fiber)
The cross-sectional shape of the fibers of the channel material on the supply side is not particularly limited, and various shapes such as circular, elliptical, and streamlined are conceivable. Moreover, it may be a shape in which a part of these forms is lacking.
(material)
The material of the channel material on the supply side is not particularly limited, but thermoplastic resins are preferable from the viewpoint of moldability, and polyethylene and polypropylene are particularly preferable because they are less likely to damage the surface of the separation membrane and are inexpensive. In addition, the fibrous material A and the fibrous material B of the supply-side channel material may be made of the same material, or may be made of different materials.
(Production method)
In forming the net-like supply side channel material, generally, the inner and outer 2 nozzles, which have many holes arranged on the inner and outer circumferences, are rotated in opposite directions, and the material is melted from the extruder. When or immediately after the resin comes out of the spinnerets, the threads coming out of the inner and outer spinnerets are crossed in a molten state and melted to form a network structure. At this stage, the net assumes a cylindrical shape. After that, the cylindrical net is cooled and solidified to determine the thickness, thread diameter, and intersecting point intervals, and then cut to obtain a sheet-like net.

本実施形態のように、繊維状物Aもしくは繊維状物Bに太径部と細径部が存在し、繊維状物Aもしくは繊維状物Bの細径部ともう一方の繊維状物と交点を形成する供給側流路材を製造するには、多数の孔を配置した内側と外側の2つの口金を逆方向に回転させながら、所定の樹脂吐出圧で樹脂を供給し、網状構造を有する筒状ネットを成形し、冷却固化させた後に加熱炉内で縦延伸次いで横延伸を逐次で行う方法を採用することができる。 As in this embodiment, the fibrous material A or the fibrous material B has a large diameter portion and a small diameter part, and the small diameter portion of the fibrous material A or the fibrous material B and the other fibrous material intersect. In order to manufacture the supply-side channel material that forms It is possible to employ a method in which a cylindrical net is molded, cooled and solidified, and then longitudinally stretched and then transversely stretched successively in a heating furnace.

なお、本実施形態のネットを製造する方法はこれらに限定されず、エンボス加工やインプリント加工、プレス法などにより交点部間の繊維状物を圧縮変形させる方法、金型に溶融樹脂を流延し取り出す方法、3Dプリンターを用いて製造しても構わない。
<透過側流路>
(透過側流路材)
封筒状膜5において、分離膜3は透過側の面を対向させて重ね合わされており、分離膜3同士の間には透過側流路材4が配置され、透過側流路材4によって透過側流路が形成される。透過側流路材の材料としては限定されず、トリコットや不織布、突起物を固着させた多孔性シート、凹凸成形し、穿孔加工を施したフィルム、凹凸不織布を用いることができる。また、透過側流路材として機能する突起物を分離膜の透過側に固着させてもよい。
<分離膜リーフの形成>
分離膜リーフは、供給側の面が内側を向くように分離膜を折りたたむことで形成されてもよいし、別々の2枚の分離膜を、供給側の面が向かい合うようにして重ね合わせ、分離膜の周囲を封止することで形成されてもよい。
The method of manufacturing the net of the present embodiment is not limited to these, and includes a method of compressing and deforming the fibrous material between the intersections by embossing, imprinting, pressing, etc., and casting a molten resin in a mold. It may be manufactured using a method of taking out and a 3D printer.
<Permeate side channel>
(permeation side channel material)
In the envelope-shaped membrane 5 , the separation membranes 3 are superimposed with their permeate-side surfaces facing each other. A flow path is formed. The material of the channel material on the permeate side is not limited, and tricot, nonwoven fabric, porous sheet with protrusions fixed thereto, film formed with unevenness and perforation, and uneven nonwoven fabric can be used. Also, projections functioning as permeate-side channel materials may be fixed to the permeate side of the separation membrane.
<Formation of Separation Membrane Leaf>
The separation membrane leaf may be formed by folding the separation membrane so that the supply-side surface faces inward, or by stacking two separate separation membranes so that the supply-side surfaces face each other. It may be formed by sealing the perimeter of the membrane.

なお、「封止」する方法としては、接着剤またはホットメルトなどによる接着、加熱またはレーザなどによる融着、およびゴム製シートを挟みこむ方法が挙げられる。接着による封止は、最も簡便で効果が高いために特に好ましい。
<分離膜エレメントの利用>
分離膜エレメントは、直列または並列に接続して圧力容器に収納されることで、分離膜モジュールとして使用されてもよい。
Methods of "sealing" include bonding with an adhesive or hot melt, fusion bonding with heat or laser, and sandwiching a rubber sheet. Sealing by adhesion is particularly preferred because it is the simplest and most effective.
<Use of separation membrane element>
Separation membrane elements may be used as a separation membrane module by being connected in series or in parallel and housed in a pressure vessel.

また、上記の分離膜エレメント、分離膜モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、例えば供給水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。 Further, the separation membrane element and the separation membrane module described above can be combined with a pump that supplies fluid to them, a device that pre-processes the fluid, and the like to constitute a fluid separation device. By using this separator, for example, feed water can be separated into permeated water such as drinking water and concentrated water that has not permeated the membrane, so that desired water can be obtained.

流体分離装置の操作圧力は高い方が除去率は向上するが、運転に必要なエネルギーも増加すること、また、分離膜エレメントの供給流路、透過流路の保持性を考慮すると、分離膜モジュールに供給水を透過する際の操作圧力は、0.2MPa以上6MPa以下が好ましい。 The higher the operating pressure of the fluid separation device, the higher the removal rate, but the energy required for operation also increases. The operating pressure at which the feed water permeates is preferably 0.2 MPa or more and 6 MPa or less.

供給水温度は、高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5℃以上45℃以下が好ましい。 The higher the feed water temperature, the lower the salt removal rate, but the lower the feed water temperature, the lower the membrane permeation flux.

また、原水のpHが中性領域にある場合、原水が海水などの高塩濃度の液体であっても、マグネシウムなどのスケールの発生が抑制され、また、膜の劣化も抑制される。
(供給水)
本実施形態の分離膜エレメントへの供給水は特に限定されず、予め処理された水道水でもよく、海水やかん水、下廃水のように溶液中の不純物が多いものでもよい。例えば、水処理に使用する場合、原水(供給水)としては、海水、かん水、排水等の500mg/L以上100g/L以下のTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」で表されるが、1Lを1kgと見なして「重量比」で表されることもある。定義によれば、0.45μmのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
Further, when the pH of the raw water is in the neutral region, even if the raw water is a high salt concentration liquid such as seawater, the generation of scale such as magnesium is suppressed, and deterioration of the membrane is also suppressed.
(supply water)
The water supplied to the separation membrane element of the present embodiment is not particularly limited, and may be tap water that has been treated in advance, or water containing a large amount of impurities such as seawater, brackish water, or sewage water. For example, when used for water treatment, the raw water (supply water) is a liquid mixture containing 500 mg / L or more and 100 g / L or less of TDS (Total Dissolved Solids) such as seawater, brackish water, and waste water. mentioned. In general, TDS refers to the total amount of dissolved solids and is expressed as "mass/volume", but may also be expressed as "weight ratio" assuming that 1 L is 1 kg. According to the definition, it can be calculated from the weight of the residue after evaporating the solution filtered through a 0.45 μm filter at a temperature of 39.5 to 40.5 ° C., but more easily converted from the practical salinity (S) .

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
(交点部および供給側流路材の厚み測定)
ネット状サンプルを10×10cmに切り出し、同じ切り出し面積の均一な厚みを持つ厚さ3mmのアルミ板を用意して、供給側流路材の上下に置いた。供給側流路材に均一に荷重が加わるように、供給側流路材の上に置いたアルミ板の上に重さ1kgのアルミブロックを置いた。キーエンス社製高精度形状測定システムKS-1100を用い、繊維状列に平行な縦断面を倍率20倍で観察し、交点部Pおよび供給側流路材の厚みをそれぞれ確認した。具体的には、交点部Pについては任意の交点部Pを30カ所抽出し、供給側流路材の厚みについては任意の交点部Pの上下のLを計測し、その平均値を算出した。
(交点部間隔)
キーエンス社製高精度形状測定システムKS-1100を用い、ネット状サンプルを厚み方向上部から倍率20倍で観察し、供給側流路材の供給水流れ方向に対して垂直方向の交点部間隔と供給側流路材の供給水流れ方向に対して平行方向の交点部間隔について、任意の交点部間隔を30カ所抽出して測定し、その平均値を算出した。
(空隙部の測定)
供給側流路材中の空隙部の割合は、交点部Pを観察したときに交点部Pの少なくとも上下のいずれかにLが存在する、つまりLが0よりも大きい場合、空隙部Vが存在するとカウントする。交点部Pの上下にLが存在する場合、空隙部Vは2つ存在するとカウントする。
キーエンス社製高精度形状測定システムKS-1100を用い、繊維状列に平行な縦断面を倍率20倍で観察し、任意の交点部Pを100箇所抽出して観察し、200箇所の空隙部Vについて個数を数えた。空隙部Vの個数と、交点部観察個数の割合を算出し、空隙部Vの割合とした。
EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(Thickness measurement of crossing point and supply side channel material)
A net-shaped sample was cut into 10×10 cm, and 3 mm-thick aluminum plates having the same cut-out area and uniform thickness were prepared and placed above and below the channel material on the supply side. An aluminum block having a weight of 1 kg was placed on an aluminum plate placed on the supply-side channel material so that a load was uniformly applied to the supply-side channel material. Using a high-precision shape measuring system KS-1100 manufactured by Keyence Corporation, a longitudinal section parallel to the fibrous rows was observed at a magnification of 20 times to confirm the thickness of the intersection point P and the channel material on the supply side. Specifically, 30 arbitrary intersection points P were extracted for the intersection point P, the LV above and below the arbitrary intersection point P was measured for the thickness of the channel material on the supply side, and the average value was calculated. .
(intersection interval)
Using a high-precision shape measurement system KS-1100 manufactured by Keyence Corporation, the net-shaped sample is observed from the top in the thickness direction at a magnification of 20 times, and the intersecting point interval in the direction perpendicular to the flow direction of the supply water of the channel material on the supply side and the supply With respect to the intersecting point intervals in the direction parallel to the supply water flow direction of the side channel material, 30 arbitrary intersecting point intervals were extracted and measured, and the average value was calculated.
(Measurement of voids)
The ratio of voids in the channel material on the supply side is such that LV exists at least above or below the intersection P when observing the intersection P, that is, when LV is greater than 0, the void V is counted as present. If there are LVs above and below the intersection point P, two gaps V are counted.
Using a high-precision shape measurement system KS-1100 manufactured by Keyence Corporation, a longitudinal section parallel to the fibrous row is observed at a magnification of 20 times, and 100 arbitrary intersection points P are extracted and observed, 200 voids V We counted the number of The ratio of the number of voids V and the number of intersections observed was calculated and used as the ratio of voids V. FIG.

Figure 2023033785000002
Figure 2023033785000002

(太径部・細径部の測定)
繊維状物Aもしくは繊維状物Bを選び、例えば、繊維状物Aを選んだとき、ネット状サンプルを液体窒素で凍結させ、繊維状物Aと平行な方向かつ繊維状物A近傍で繊維状物Bをカットした。キーエンス社製高精度形状測定システムKS-1100を用い、ネット状サンプルの平面に対して平行かつ、任意の繊維状物Aまたは繊維状物Bに垂直な方向から倍率20倍で観察し、任意の隣接する交点Pを3つ抽出し、そのうち隣接する2つの交点Pを選んだ。選択した2つの交点Pの中央に垂線を引き、その垂線間を20等分した。20等分した区間それぞれについて、繊維径を10箇所ずつ測定し、平均値を算出した。20等分した区間における平均値の最大と最小を算出し、それらの平均値Avを算出した。平均値Av以上の区間を太径部とした。太径部の厚みD2は太径部と定義した区間の繊維径の平均値を用いた。一方、細径部は太径部の算出時に選択した3つの交点部Pの真ん中と、太径部の算出に使用しなかった交点部について、同様に太径部を算出し、二つの太径部の間に存在する区間を細径部とした。細径部の厚みD1は細径部と定義した区間の繊維径を少なくとも任意の30カ所を抽出して測定し、その平均値を用いた。これらの操作を供給側流路材について少なくとも10カ所行い、その平均値を太径部厚み、細径部厚みとし、また、太径部の長さ、細径部の長さも定義された太径部と細径部について算出し、平均値を細径部長さ及び太径部長さとした。
<実施例>
(供給側流路材Qの作製)
ポリプロピレンを材料として、多数の小さい孔を配置した内側と外側の2つの口金を逆方向に回転させながら、押出機から溶融させた樹脂を所定の吐出圧で供給して、網状構造を有する筒状ネットを成形した。冷却固化させた後に加熱炉内で縦延伸次いで横延伸を逐次で行う方法により、表1~表2に示す供給側流路材を作製した。なお、押出機からの溶融樹脂吐出圧、引き取り速度、縦延伸・横延伸倍率、加熱炉内温度を変更し、最終的に表1~表2の供給側流路材形状となるよう構造制御を行った。
(スパイラル型分離膜エレメントの作製)
ポリエチレンテレフタレート繊維からなる不織布(繊度:1デシテックス、厚み:約90μm、通気度:1cc/cm/sec、密度0.80g/cm)上にポリスルホンの16.0質量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚さ130μm)ロールを作製した。
(Measurement of large diameter part/small diameter part)
A fibrous material A or a fibrous material B is selected. Cut item B. Using a high-precision shape measurement system KS-1100 manufactured by Keyence Corporation, parallel to the plane of the net-like sample and perpendicular to any fibrous material A or fibrous material B Observation at a magnification of 20 times, any Three adjacent intersections P were extracted, and two adjacent intersections P were selected. A perpendicular line was drawn in the center of the two selected points of intersection P, and the interval between the perpendicular lines was divided into 20 equal parts. The fiber diameter was measured at 10 points for each of the 20 equally divided sections, and the average value was calculated. The maximum and minimum of the average values in the 20 equal sections were calculated, and the average value Av was calculated. A section having an average value Av or more was defined as a large-diameter portion. As the thickness D2 of the large-diameter portion, the average value of the fiber diameters in the section defined as the large-diameter portion was used. On the other hand, for the small-diameter portion, the large-diameter portion is similarly calculated for the middle of the three intersection points P selected when calculating the large-diameter portion and the intersection portion that was not used for calculating the large-diameter portion, and two large-diameter portions are calculated. A section existing between the portions was defined as a small-diameter portion. The thickness D1 of the small-diameter portion was obtained by extracting and measuring the fiber diameters of at least 30 arbitrary points in the section defined as the small-diameter portion, and using the average value thereof. These operations are performed at least 10 places on the supply side channel material, and the average value is used as the thickness of the large diameter portion and the thickness of the small diameter portion, and the length of the large diameter portion and the length of the small diameter portion are also defined. The length of the small diameter portion and the small diameter portion were calculated, and the average value was used as the length of the small diameter portion and the large diameter portion.
<Example>
(Preparation of supply side channel material Q)
Polypropylene is used as the material, and while the inner and outer mouthpieces with many small holes are rotated in opposite directions, molten resin is supplied from the extruder at a predetermined discharge pressure to produce a cylindrical shape with a network structure. molded the net. After cooling and solidifying, the feed side channel materials shown in Tables 1 and 2 were produced by a method in which longitudinal stretching and then transverse stretching were successively performed in a heating furnace. In addition, the molten resin discharge pressure from the extruder, the take-up speed, the longitudinal and transverse stretching ratios, and the temperature in the heating furnace were changed, and the structure was controlled so that the shape of the channel material on the supply side was finally obtained as shown in Tables 1 and 2. gone.
(Preparation of Spiral Separation Membrane Element)
A 16.0% by mass DMF solution of polysulfone was applied to a thickness of 180 μm on a non-woven fabric made of polyethylene terephthalate fiber (fineness: 1 decitex, thickness: about 90 μm, air permeability: 1 cc/cm 2 /sec, density: 0.80 g/cm 3 ). A porous support layer (thickness (thickness 130 μm) rolls were produced.

その後、多孔性支持膜のポリスルホンからなる層の表面をm-PDAの1.5質量%およびε-カプロラクタム1.0重量%を含む水溶液中に2分間浸漬してから、垂直方向にゆっくりと引き上げた。さらに、エアーノズルから窒素を吹き付けることで、支持膜表面から余分な水溶液を取り除いた。 After that, the surface of the polysulfone layer of the porous support membrane was immersed in an aqueous solution containing 1.5% by weight of m-PDA and 1.0% by weight of ε-caprolactam for 2 minutes, and then slowly pulled up vertically. rice field. Furthermore, excess aqueous solution was removed from the support film surface by blowing nitrogen from an air nozzle.

その後、トリメシン酸クロリド0.08質量%を含むn-デカン溶液を、膜の表面が完全に濡れるように塗布してから、1分間静置した。その後、膜から余分な溶液をエアブローで除去し、80℃の熱水で1分間洗浄して、複合分離膜ロールを得た。 After that, an n-decane solution containing 0.08% by mass of trimesic acid chloride was applied so that the surface of the film was completely wetted, and then left to stand for 1 minute. Thereafter, excess solution was removed from the membrane by blowing air, and the membrane was washed with hot water at 80° C. for 1 minute to obtain a composite separation membrane roll.

このように得られた分離膜を、分離膜エレメントでの有効面積が6.42mとなるように折り畳み断裁加工し、表1に示すポリプロピレン製ネット(厚み:1.0mm)を供給水側流路材として挟み込んで分離膜リーフを作製した。 The separation membrane thus obtained was folded and cut so that the effective area of the separation membrane element was 6.42 m 2 . Separation membrane leaves were prepared by sandwiching them as road materials.

得られた分離膜リーフの透過側面に透過側流路材として表1に示すトリコット(厚み:0.26mm)を積層し、リーフ接着剤を塗布して、PVC(ポリ塩化ビニル)製集水管(幅:1016mm、径:19mm、孔数23個×直線状1列)にスパイラル状に巻き付け、巻囲体の外周面をテープで固定後、両端のエッジカットと端板取り付けを行い、一方の側面から供給水が供給され濃縮水が排出される、直径が4インチの分離膜エレメントを作製した。
(造水量)
分離膜エレメントを圧力容器に入れて、供給水として、濃度500ppmの食塩水、pH6.5のNaCl水溶液を用い、運転圧力0.7MPa、温度25℃の条件下で30分間運転した後に1分間のサンプリングを行い、1日あたりの透水量(ガロン)を造水量(GPD(ガロン/日))として表した。なお、回収率は8%とした。
(除去率(TDS除去率))
造水量の測定における1分間の運転で用いた供給水およびサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式からTDS除去率を算出した。
A tricot (thickness: 0.26 mm) shown in Table 1 was laminated on the permeation side of the obtained separation membrane leaf as a channel material on the permeation side, a leaf adhesive was applied, and a PVC (polyvinyl chloride) water collection tube ( Width: 1016 mm, diameter: 19 mm, 23 holes x 1 linear row), and after fixing the outer peripheral surface of the winding body with tape, cut the edges on both ends and attach the end plate, and one side A 4-inch diameter separation membrane element was prepared to which the feed water was supplied and the concentrated water was discharged from.
(Amount of fresh water produced)
The separation membrane element was placed in a pressure vessel, and a saline solution with a concentration of 500 ppm and an aqueous NaCl solution with a pH of 6.5 were used as feed water. Sampling was performed, and the water permeation rate (gallon) per day was expressed as the water production rate (GPD (gallon/day)). Note that the recovery rate was set to 8%.
(Removal rate (TDS removal rate))
The TDS concentration of the feed water used in the 1-minute operation and the sampled permeate water used in the measurement of the amount of fresh water produced was determined by conductivity measurement, and the TDS removal rate was calculated from the following equation.

TDS除去率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
(エレメント差圧)
分離膜エレメントを装填する円筒状圧力容器の上流側(供給水側)と下流側(濃縮水側)を長野計器製差圧計(型式DG16)を介して配管で接続し、運転中のエレメント差圧を計測した。運転条件は、供給水流量は9L/分、運転圧力は1.0MPaとし、供給水には逆浸透膜処理水を用いた。また、エレメント内部の気泡が抜けた後は透過水配管のコックを閉じ、実質的に膜ろ過が行えない状態、つまり供給水が全量濃縮水として排出される状態で運転を行いエレメント差圧(kPa)の測定を行った。
(分離膜表面及び供給側流路材のファウラント付着割合)
分離膜と供給側流路材、透過側流路材を透明なアクリルセルに入れて、供給水として蛍光物質を標識したウシ血清アルブミン100ppmの水溶液を用い、運転圧力0.5MPa、温度25℃の条件下で12時間運転した後に、蛍光物質が標識されていないウシ血清アルブミン100ppmの水溶液でフラッシングを行った。
TDS removal rate (%) = 100 × {1-(TDS concentration in permeate water/TDS concentration in feed water)}
(element differential pressure)
The upstream side (feed water side) and the downstream side (concentrated water side) of the cylindrical pressure vessel loaded with the separation membrane element are connected by piping via a Nagano Keiki differential pressure gauge (model DG16), and the element differential pressure during operation is measured. was measured. As for the operating conditions, the feed water flow rate was 9 L/min, the operating pressure was 1.0 MPa, and reverse osmosis membrane treated water was used as the feed water. In addition, after the air bubbles inside the element are removed, the cock of the permeated water piping is closed, and the operation is performed in a state in which membrane filtration cannot be performed substantially, that is, in a state in which all the feed water is discharged as concentrated water, and the element differential pressure (kPa ) was measured.
(Proportion of foulant adhesion on separation membrane surface and supply side channel material)
The separation membrane, the channel material on the feed side, and the channel material on the permeate side were placed in a transparent acrylic cell. After 12 hours of operation under these conditions, flushing was performed with an aqueous solution of 100 ppm of bovine serum albumin, which is not labeled with a fluorescent substance.

その後、オプトサイエンス社製デジタルマイクロスコープDino-Liteを用いて蛍光観察し、膜面及び供給側流路材に堆積した蛍光物質の付着面積割合(%)をImageJを用いて算出した。
(ファウリング試験)
分離膜エレメントを圧力容器に入れて、供給水として、硬度46ppm、アルカリ度42ppm、TDS95.89ppm、TOC2ppm、pH7.0の琵琶湖水を用い、運転圧力0.5MPa、温度25℃の条件下で30分間運転した後に1分間のサンプリングを行い、その時の1日あたりの透水量(ガロン)を初期造水量(GPD(ガロン/日))を得た。その後、4週間連続運転を行い、通水後造水量(GPD)を得た。初期造水量と通水後造水量から、
Thereafter, fluorescence observation was performed using a digital microscope Dino-Lite manufactured by Optoscience, and the adhesion area ratio (%) of the fluorescent substance deposited on the film surface and the channel material on the supply side was calculated using ImageJ.
(Fouling test)
The separation membrane element was placed in a pressure vessel, and using Lake Biwa water with a hardness of 46 ppm, an alkalinity of 42 ppm, a TDS of 95.89 ppm, a TOC of 2 ppm, and a pH of 7.0 as the feed water, the operating pressure was 0.5 MPa, and the temperature was 25°C. After running for 1 minute, sampling was performed for 1 minute, and the water permeation rate (gallon) per day at that time was obtained as the initial water production rate (GPD (gallon/day)). After that, continuous operation was performed for 4 weeks, and the amount of water produced after passing water (GPD) was obtained. From the initial amount of fresh water produced and the amount of fresh water produced after passing water,

Figure 2023033785000003
Figure 2023033785000003

とした。なお、回収率は50%とした。
(実施例1)
作製した供給側流路材について評価セルを用い、また分離膜エレメントを圧力容器に入れて、上述の条件で評価したところ、結果は表1の通りであった。
(実施例2~8)
供給側流路材を表1、2の通りにした以外は全て実施例1と同様にして、分離膜エレメントを作製した。
and Note that the recovery rate was set to 50%.
(Example 1)
An evaluation cell was used for the prepared channel material on the supply side, and the separation membrane element was placed in a pressure vessel and evaluated under the conditions described above.
(Examples 2-8)
A separation membrane element was produced in the same manner as in Example 1, except that the channel materials on the supply side were as shown in Tables 1 and 2.

分離膜エレメントを圧力容器に入れて、実施例1と同条件で各性能を評価したところ、結果は表1、2の通りであった。
<比較例>
(供給側流路材Rの作製)
ポリプロピレンを材料として、多数の孔を配置した内側と外側の2つの口金を逆方向に回転させながら、押出機から溶融させた樹脂を供給して、網状構造を有する筒状ネットを成形し、繊維形状が寸胴であるネットを製造した。なお、押出機からの溶融樹脂吐出圧、引き取り速度を変更し、最終的に表2の供給側流路材形状となるよう構造制御を行った。
(比較例1)
供給側流路材を表2の通りにした以外は全て実施例1と同様にして、分離膜エレメントを作製した。
When the separation membrane element was placed in a pressure vessel and each performance was evaluated under the same conditions as in Example 1, the results are shown in Tables 1 and 2.
<Comparative example>
(Preparation of supply side channel material R)
Polypropylene is used as a material, and molten resin is supplied from an extruder while rotating two spinnerets on which a large number of holes are arranged, one on the inside and the other on the outside. A net having a rectangular shape was manufactured. By changing the molten resin discharge pressure from the extruder and the take-up speed, the structure was controlled so that the shape of the channel material on the supply side shown in Table 2 was finally obtained.
(Comparative example 1)
A separation membrane element was produced in the same manner as in Example 1, except that the channel material on the supply side was as shown in Table 2.

分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表2の通りであった。
(比較例2、3)
供給側流路材を表2の通りにした以外は全て実施例1と同様にして、分離膜エレメントを作製した。
分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表2の通りであった。
The separation membrane element was placed in a pressure vessel and each performance was evaluated under the conditions described above. Table 2 shows the results.
(Comparative Examples 2 and 3)
A separation membrane element was produced in the same manner as in Example 1, except that the channel material on the supply side was as shown in Table 2.
The separation membrane element was placed in a pressure vessel and each performance was evaluated under the conditions described above. Table 2 shows the results.

Figure 2023033785000004
Figure 2023033785000004

Figure 2023033785000005
Figure 2023033785000005

表1、2に示す結果から明らかなように、実施例1~8の分離膜エレメントは、供給水の流動を阻害せずに優れた分離性能を安定して備えているといえる。 As is clear from the results shown in Tables 1 and 2, it can be said that the separation membrane elements of Examples 1 to 8 stably have excellent separation performance without impeding the flow of feed water.

一方、比較例1では供給側流路材の供給水流れ方向に対して垂直方向および平行方向の交点部間隔は実施例1、2と同様であるが、中央部の糸径が太いため供給側流路面積率が低く、エレメント差圧が高くなり、エレメント造水量と除去率の低下が生じた。また、淀み箇所が多いため、ファウラント付着量が多くなり、造水量低下率が大きくなった。 On the other hand, in Comparative Example 1, although the intersecting point intervals in the direction perpendicular to and parallel to the flow direction of the supply water of the channel material on the supply side are the same as in Examples 1 and 2, the thread diameter at the central portion is large, so the supply side The flow area ratio was low, the element differential pressure was high, and the element water production and removal rate decreased. In addition, since there were many stagnation points, the amount of foulant adhered increased, and the rate of decrease in fresh water production increased.

本発明の膜エレメントは、特に、RO浄水器としての利用や、かん水や海水の脱塩に好適に用いることができる。 The membrane element of the present invention is particularly suitable for use as an RO water purifier and for desalting brackish water and seawater.

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.

1 スパイラル型分離膜エレメント
2 供給側流路材
2a~2e 供給側流路材
21 繊維状物A
22 繊維状物B
3 分離膜
4 透過側流路材
5 封筒状膜
6 集水管
7 供給水
8 透過水
9 濃縮水
10 10cm×10cm×3mmのアルミ板
c 供給側流路材の供給水流れ方向に対して垂直方向の交点部間隔
d 供給側流路材の供給水流れ方向に対して平行方向の交点部間隔
P 交点部
V 空隙部
D 供給側流路材の厚み
交点部厚み
垂線
接線
交点部と平板間の距離
V1- 交点部と平板間の大きい方の距離
V2 交点部と平板間の小さい方の距離
細径部厚み
太径部厚み
細径部長さ
太径部長さ
1 spiral separation membrane element 2 supply side channel material 2a to 2e supply side channel material 21 fibrous material A
22 fibrous material B
3 Separation membrane 4 Permeate-side channel material 5 Envelope-shaped membrane 6 Water collection pipe 7 Feed water 8 Permeate water 9 Concentrated water 10 10 cm × 10 cm × 3 mm aluminum plate c Vertical direction to the feed water flow direction of the feed-side channel material Intersection interval d Intersection interval P in the direction parallel to the supply water flow direction of the supply side channel material Intersection V Gap D Thickness of supply side channel material D C Intersection thickness L P perpendicular line L T tangent line L V Distance between the intersection point and the flat plate L V1 - Larger distance between the intersection point and the flat plate L V2 Smaller distance between the intersection point and the flat plate D 1 Small diameter part thickness D 2 Large diameter part thickness L 1 Small diameter part Length L 2 Large diameter part length

Claims (5)

少なくとも集水管と、分離膜と、供給側流路材と、透過側流路材とを備える分離膜エレメントであって、
前記供給側流路材は、前記分離膜の二つの面の間に配置されて供給側流路を形成しており、前記供給側流路材は一方向に並んだ複数の繊維状物Aから構成される繊維状列Xおよび前記繊維状列Xとは異なる方向に並んだ複数の繊維状物Bから構成される繊維状列Yから構成され、
前記繊維状物Aもしくは前記繊維状物Bの少なくともいずれかは、太径部と細径部が存在し、前記繊維状物Aもしくは前記繊維状物Bの細径部ともう一方の繊維状物と交差して交点部Pを形成することで、少なくともいずれかの前記交点部Pにおける前記繊維状物Aもしくは前記繊維状物Bの少なくともいずれかは分離膜との間に空隙部Vを有し、前記空隙部Vの割合が、供給側流路材中の交点数に対して25%以上存在することを特徴とする分離膜エレメント。
A separation membrane element comprising at least a collection tube, a separation membrane, a feed-side channel material, and a permeate-side channel material,
The feed-side channel material is arranged between two surfaces of the separation membrane to form a feed-side channel, and the feed-side channel material is composed of a plurality of fibrous materials A arranged in one direction. Composed of a fibrous row X and a fibrous row Y composed of a plurality of fibrous materials B arranged in a direction different from the fibrous row X,
At least one of the fibrous material A and the fibrous material B has a large diameter part and a small diameter part, and the small diameter part of the fibrous material A or the fibrous material B and the other fibrous material At least one of the fibrous material A or the fibrous material B at at least one of the intersection points P has a gap V between the separation membrane and the separation membrane. 2. A separation membrane element, wherein the proportion of the voids V is 25% or more with respect to the number of intersections in the channel material on the supply side.
前記供給側流路材の前記繊維状物Aと前記繊維状物Bがいずれも太径部及び細径部を有し、前記繊維状物Aと前記繊維状物Bの細径部で交差して交点部Pを形成することで、前記交点部Pにおける前記繊維状物A、前記繊維状物Bは分離膜との間に空隙部Vを有することを特徴とする請求項1に記載の分離膜エレメント。 Both the fibrous material A and the fibrous material B of the supply side channel material have a large diameter part and a small diameter part, and the fibrous material A and the fibrous material B intersect at the small diameter part. 2. The separation according to claim 1, wherein the fibrous material A and the fibrous material B at the intersecting point P have a void V between them and the separation membrane. membrane element. 前記細径部の厚みD1が0.1mm以上であることを特徴とする請求項1または2に記載の分離膜エレメント。 3. The separation membrane element according to claim 1, wherein the thickness D1 of the small diameter portion is 0.1 mm or more. 前記供給側流路材の前記空隙部Vが供給側流路材中の交点数に対して75%以上存在することを特徴とする請求項1~3のいずれか1項に記載の分離膜エレメント。 4. The separation membrane element according to any one of claims 1 to 3, wherein the voids V of the feed-side channel material are present at 75% or more of the number of intersections in the feed-side channel material. . 細径部の長さをL、太径部の長さをLとしたとき、長さの比L/Lが、0.1~15の範囲であることを特徴とする請求項1~4のいずれか1項に記載の分離膜エレメント。 A length ratio L 1 /L 2 is in the range of 0.1 to 15, where L 1 is the length of the small diameter portion and L 2 is the length of the large diameter portion. The separation membrane element according to any one of 1 to 4.
JP2021139687A 2021-08-30 2021-08-30 Separation membrane element Pending JP2023033785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021139687A JP2023033785A (en) 2021-08-30 2021-08-30 Separation membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021139687A JP2023033785A (en) 2021-08-30 2021-08-30 Separation membrane element

Publications (1)

Publication Number Publication Date
JP2023033785A true JP2023033785A (en) 2023-03-13

Family

ID=85504909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021139687A Pending JP2023033785A (en) 2021-08-30 2021-08-30 Separation membrane element

Country Status (1)

Country Link
JP (1) JP2023033785A (en)

Similar Documents

Publication Publication Date Title
EP1371409B1 (en) Separating film, separating film element, separating film module, sewage and waste water treatment device, and separating film manufacturing method
JP6136269B2 (en) Separation membrane element for water treatment
KR102326947B1 (en) Separator element and its operation method
JP7172987B2 (en) MEMBRANE SEPARATION SYSTEM AND METHOD OF OPERATING MEMBRANE SEPARATION SYSTEM
EP4023325A1 (en) Separation membrane element
JP5623984B2 (en) Spiral type filtration module and liquid processing method using the same
JP2017047417A (en) Separation membrane module, separation membrane element and telescope prevention sheet
JP2018015735A (en) Separation membrane element
JP2021090952A (en) Separation membrane element
KR102235424B1 (en) Reverse osmosis membrane device and method for operating same
US11123691B2 (en) Separation membrane element
JP2023033785A (en) Separation membrane element
JP2018086638A (en) Spiral type separation membrane element
WO2023048052A1 (en) Separation membrane element
JP2022024469A (en) Separation membrane element and method for operating the same
WO2024095643A1 (en) Separation membrane element
JP2024049759A (en) Separation Membrane Element
WO2018021387A1 (en) Separation membrane element
WO2023008251A1 (en) Separation membrane element and separation membrane system
JP2019205954A (en) Separation membrane element and operation method thereof
JP2018034089A (en) Separation membrane element
JP2020011231A (en) Supply side channel material and separation membrane element
JPWO2020262290A1 (en) Separation membrane element and its usage, and water treatment equipment
JP2014213261A (en) Operation method of reverse osmosis membrane apparatus and reverse osmosis membrane apparatus