JP6149241B2 - Heater for bonding apparatus and cooling method thereof - Google Patents

Heater for bonding apparatus and cooling method thereof Download PDF

Info

Publication number
JP6149241B2
JP6149241B2 JP2015127628A JP2015127628A JP6149241B2 JP 6149241 B2 JP6149241 B2 JP 6149241B2 JP 2015127628 A JP2015127628 A JP 2015127628A JP 2015127628 A JP2015127628 A JP 2015127628A JP 6149241 B2 JP6149241 B2 JP 6149241B2
Authority
JP
Japan
Prior art keywords
capillary
heater
cooling
insulating material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015127628A
Other languages
Japanese (ja)
Other versions
JP2015165602A (en
Inventor
耕平 瀬山
耕平 瀬山
恭弘 千田
恭弘 千田
角谷 修
修 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Ltd
Original Assignee
Shinkawa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Ltd filed Critical Shinkawa Ltd
Priority to JP2015127628A priority Critical patent/JP6149241B2/en
Publication of JP2015165602A publication Critical patent/JP2015165602A/en
Application granted granted Critical
Publication of JP6149241B2 publication Critical patent/JP6149241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ボンディング装置用ヒータの構造及びその冷却方法に関する。   The present invention relates to a structure of a bonding apparatus heater and a cooling method thereof.

半導体チップを基板上に実装する方法として電極にはんだバンプを形成した、はんだバンプ付電子部品を熱圧着によって基板に実装する方法や、電子部品の電極に金バンプを成形し、基板の銅電極の表面に薄いはんだの皮膜を設け、金バンプの金とはんだとを熱溶融接合する金はんだ溶融接合や、熱可塑樹脂や異方性導電膜(AFC)等の樹脂系の接着材を使用した接合方法が用いられている。このような接合方法は、いずれも、電子部品を加熱して電極上のはんだや接着剤を溶融させた状態で圧着ツールによって電子部品を基板に押圧した後、はんだや接着材を冷却して固着させて、基板に電子部品を接合するものである。このような接合に用いられる電子部品実装装置では、はんだを溶融状態まで加熱或いは接着剤を軟化状態まで加熱するためのヒータと、接合後にはんだや接着剤を冷却する冷却手段を備え、急加熱、急速冷却を行うことが要求される。   As a method of mounting a semiconductor chip on a substrate, solder bumps are formed on the electrodes, a method of mounting electronic components with solder bumps on a substrate by thermocompression bonding, or forming gold bumps on the electrodes of electronic components, A thin solder film is provided on the surface, and gold solder fusion bonding, in which gold and solder of gold bumps are bonded by heat melting, or bonding using a resin adhesive such as thermoplastic resin or anisotropic conductive film (AFC) The method is used. In any of these joining methods, the electronic component is heated to melt the solder or adhesive on the electrode and the electronic component is pressed against the substrate with a crimping tool, and then the solder or adhesive is cooled and fixed. Thus, the electronic component is bonded to the substrate. The electronic component mounting apparatus used for such joining includes a heater for heating the solder to a molten state or heating the adhesive to a softened state, and a cooling means for cooling the solder and the adhesive after joining, rapid heating, Rapid cooling is required.

タクトタイムを短くする上では、急加熱よりも、いかに短時間で冷却するかが問題となってくる。このため、板状のセラミックスヒータに重ね合わされる断熱材に空気流路を設け、冷却空気をセラミックスヒータの表面に流してヒータ及びヒータに取り付けられたボンディングツールを冷却する方法が提案されている(例えば、特許文献1参照)。   In order to shorten the tact time, the problem is how to cool in a short time rather than rapid heating. For this reason, a method has been proposed in which an air flow path is provided in a heat insulating material superimposed on a plate-shaped ceramic heater, and cooling air is caused to flow on the surface of the ceramic heater to cool the heater and the bonding tool attached to the heater ( For example, see Patent Document 1).

また、パルスヒータとパルスヒータに重ねあわされるベース部材の間に空間を設け、ベース部材に設けた冷却孔から吹き出す空気をパルスヒータの断熱材側の面に吹き付けてパルスヒータを急速冷却する方法が提案されている(例えば、特許文献2参照)。   In addition, there is a method in which a space is provided between the pulse heater and the base member overlapped with the pulse heater, and the air blown out from the cooling hole provided in the base member is blown to the heat insulating material side of the pulse heater to rapidly cool the pulse heater. It has been proposed (see, for example, Patent Document 2).

特開2002―16091号公報Japanese Patent Laid-Open No. 2002-16091 特開平10―275833号公報JP-A-10-275833

ところで、一般に狭い平行平板間に流体を流した場合、平行平板の表面から冷却媒体への熱伝達は、流れに垂直な方向の熱伝導が支配的で、乱流のような物資移動を伴う熱移動は非常に小さい。このため、平行平板の表面と冷却媒体との間の熱移動量を大きくするためには、平行平板間の距離、すなわち、冷却媒体中での熱伝導の距離を短くすることが重要となってくる。特に、冷却媒体に熱伝導率が小さい空気を使用した場合(例えば、0.1〜0.5Mpa空気の熱伝導率は0.026W/(m・K)であり、水の0.6W/(m・K)に比べて非常に小さい)には、平行平板間の距離をより狭くすることが必要となってくる。このため、特許文献1に記載された従来技術のように、平行平板間の距離が0.5mm〜2mm程度の矩形流路に空気を流して冷却しても、効果的にヒータを冷却することができないという問題がある。また、特許文献2に記載された従来技術のようにヒータの表面に空気を吹き付けることによってヒータを冷却しようとした場合には、大量の空気をベース部材に吹き付ける必要があるので、吹き出した空気によってボンディング雰囲気が乱されてしまうという問題があった。   By the way, in general, when fluid is flowed between narrow parallel plates, heat transfer from the surface of the parallel plates to the cooling medium is dominated by heat conduction in the direction perpendicular to the flow, and heat accompanied by material movement such as turbulent flow. The movement is very small. For this reason, in order to increase the amount of heat transfer between the surface of the parallel plate and the cooling medium, it is important to shorten the distance between the parallel plates, that is, the distance of heat conduction in the cooling medium. come. In particular, when air having a low thermal conductivity is used as the cooling medium (for example, the thermal conductivity of 0.1 to 0.5 Mpa air is 0.026 W / (m · K) and the water is 0.6 W / ( In order to be very small compared to m · K), it is necessary to further reduce the distance between the parallel plates. For this reason, as in the prior art described in Patent Document 1, the heater is effectively cooled even if air is passed through a rectangular channel having a distance between parallel plates of about 0.5 mm to 2 mm to cool it. There is a problem that can not be. Moreover, when it is going to cool a heater by spraying air on the surface of a heater like the prior art described in patent document 2, since it is necessary to spray a large amount of air on a base member, There was a problem that the bonding atmosphere was disturbed.

本発明は、ボンディング装置用ヒータをより効果的に冷却することを目的とする。   An object of this invention is to cool the heater for bonding apparatuses more effectively.

本発明のボンディング装置用ヒータは、セラミックス製でボンディングツールが取り付けられる第一の面と、第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形のボンディング装置用ヒータであって、第二の面に設けられ、第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、多数の毛細スリットと第二の面に取り付けられる断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、第二の面は、中央近傍に窪みが設けられ、窪みと第二の面に取り付けられる断熱材の合わせ面とは、冷却空気が流入するキャビティを形成し、多数の毛細スリットは、キャビティから側面に延びること、を特徴とする。 The heater for the bonding apparatus according to the present invention has a first surface made of ceramics to which a bonding tool is attached, and a second surface to which a heat insulating material is attached on the side opposite to the first surface, and current flows. A flat plate-type bonding apparatus heater that generates heat, the width of the direction along the second surface being in the range of 0.1 mm to 0.02 mm, and the second heater A plurality of capillary slits whose width in the direction along the surface is smaller than the depth in the direction perpendicular to the second surface, and a plurality of capillary slits and a mating surface of the heat insulating material attached to the second surface The bonding device heater that generated heat by forming the capillary cooling flow path is directly cooled by cooling air, and the second surface is provided with a recess in the vicinity of the center, and a heat insulating material attached to the recess and the second surface. The mating surface is the cooling air There is formed a cavity which flows, a number of capillary slits, extend to the side surface of the cavity, characterized by.

また、本発明のボンディング装置用ヒータは、セラミックス製でボンディングツールが取り付けられる第一の面と、第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形のボンディング装置用ヒータであって、第二の面に設けられ、第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、多数の毛細スリットと第二の面に取り付けられる断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、断熱材は、合わせ面の中央近傍に第二の窪みが設けられ、第二の窪みと第二の面とは、冷却空気が流入するキャビティを形成し、多数の毛細スリットは、キャビティに連通し、対向する各側面の間に延びること、を特徴とする。 The heater for a bonding apparatus according to the present invention has a first surface made of ceramics to which a bonding tool is attached and a second surface to which a heat insulating material is attached on the side opposite to the first surface, and current flows. A heater for a flat-plate bonding apparatus that generates heat by being provided on the second surface, the width in the direction along the second surface being in the range of 0.1 mm to 0.02 mm, and the first A plurality of capillary slits whose width in the direction along the second surface is smaller than the depth in the direction perpendicular to the second surface, and a plurality of capillary slits and a mating surface of the heat insulating material attached to the second surface The bonding device heater that has generated heat by forming a number of capillary cooling channels is directly cooled by cooling air, and the heat insulating material is provided with a second depression near the center of the mating surface, and the second depression and the first depression. The second side is where cooling air flows. The cavities are formed, a number of capillary slit communicates with the cavity, extend between each opposing side surfaces, and wherein.

本発明のボンディング装置用ヒータにおいて、毛細スリットの幅に対する毛細スリットの深さの比率は、3から10の範囲であること、としても好適である。 In the heater for a bonding apparatus of the present invention, the ratio of the depth of the capillary slit to the width of the capillary slit is preferably in the range of 3 to 10.

本発明のボンディング装置用ヒータの冷却方法は、セラミックス製でボンディングツールが取り付けられる第一の面と、第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形状で、第二の面に設けられ、第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、多数の毛細スリットと第二の面に取り付けられる断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、第二の面は、中央近傍に窪みが設けられ、窪みと第二の面に取り付けられる断熱材の合わせ面とは、冷却空気が流入するキャビティを形成し、多数の毛細スリットは、キャビティから側面に延びるボンディング装置用ヒータの冷却方法であって、毛細冷却流路の出口から流出する冷却空気の温度が、毛細スリットの壁面の温度よりも所定の閾値だけ低い温度となるように、毛細冷却流路に流入する冷却空気の流量を調整すること、を特徴とする。また、本発明のボンディング装置用ヒータの冷却方法は、セラミックス製でボンディングツールが取り付けられる第一の面と、第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形状で、第二の面に設けられ、第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、多数の毛細スリットと第二の面に取り付けられる断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、断熱材は、合わせ面の中央近傍に第二の窪みが設けられ、第二の窪みと第二の面とは、冷却空気が流入するキャビティを形成し、多数の毛細スリットは、キャビティに連通し、対向する各側面の間に延びるボンディング装置用ヒータの冷却方法であって、毛細冷却流路の出口から流出する冷却空気の温度が、毛細スリットの壁面の温度よりも所定の閾値だけ低い温度となるように、毛細冷却流路に流入する冷却空気の流量を調整すること、を特徴とする。 The method for cooling a heater for a bonding apparatus according to the present invention has a first surface made of ceramics to which a bonding tool is attached, and a second surface to which a heat insulating material is attached on the side opposite to the first surface. It is a flat plate shape that generates heat by flowing, is provided on the second surface, and the width in the direction along the second surface is in the range of 0.1 mm to 0.02 mm and along the second surface. A plurality of capillary slits whose width in the direction is smaller than the depth perpendicular to the second surface, and the number of capillary slits and the mating surface of the heat insulating material attached to the second surface are a number of capillary cooling flows The bonding apparatus heater that has generated heat by directly forming a path is directly cooled by cooling air, and the second surface is provided with a recess in the vicinity of the center, and the recess and the mating surface of the heat insulating material attached to the second surface Cavitation where cooling air flows The number of capillary slits is a cooling method for a heater for a bonding apparatus extending from the cavity to the side surface, and the temperature of the cooling air flowing out from the outlet of the capillary cooling channel is higher than the temperature of the wall surface of the capillary slit. The flow rate of the cooling air flowing into the capillary cooling flow path is adjusted so that the temperature is lower by the threshold value. Further, the method for cooling a heater for a bonding apparatus according to the present invention has a first surface made of ceramics to which a bonding tool is attached, and a second surface to which a heat insulating material is attached on the side opposite to the first surface, A flat plate shape that generates heat when an electric current flows, is provided on the second surface, has a width in the direction along the second surface in the range of 0.1 mm to 0.02 mm, and on the second surface. A plurality of capillary slits whose width in the direction along the second surface is smaller than the depth perpendicular to the second surface, and the number of capillary slits and the mating surface of the heat insulating material attached to the second surface are The bonding device heater that has generated heat by forming a cooling channel is directly cooled by cooling air, and the heat insulating material is provided with a second recess near the center of the mating surface, and the second recess and the second surface. Forms a cavity into which cooling air flows The plurality of capillary slits is a cooling method for the bonding apparatus heater that communicates with the cavity and extends between the opposing side surfaces, and the temperature of the cooling air flowing out from the outlet of the capillary cooling flow path is The flow rate of the cooling air flowing into the capillary cooling channel is adjusted so that the temperature is lower by a predetermined threshold than the temperature of the wall surface.

本発明は、ボンディング装置用ヒータをより効果的に冷却することができるという効果奏する。   The present invention has an effect that the heater for the bonding apparatus can be cooled more effectively.

本発明の実施形態におけるボンディング装置用ヒータの構成を示す説明図である。It is explanatory drawing which shows the structure of the heater for bonding apparatuses in embodiment of this invention. 本発明の実施形態におけるボンディング装置用ヒータの平面図と断面図である。It is the top view and sectional drawing of the heater for bonding apparatuses in embodiment of this invention. 本発明の実施形態におけるボンディング装置用ヒータの毛細スリットの詳細を示す断面図である。It is sectional drawing which shows the detail of the capillary slit of the heater for bonding apparatuses in embodiment of this invention. 本発明の実施形態におけるボンディング装置用ヒータの毛細冷却流路を示す斜視図である。It is a perspective view which shows the capillary cooling flow path of the heater for bonding apparatuses in embodiment of this invention. 従来技術によるボンディング装置用ヒータの冷却溝の詳細を示す断面図である。It is sectional drawing which shows the detail of the cooling groove of the heater for bonding apparatuses by a prior art. 本発明の実施形態におけるボンディング装置用ヒータの毛細スリット幅と熱抵抗の関係を示すグラフである。It is a graph which shows the relationship between the capillary slit width of the heater for bonding apparatuses in embodiment of this invention, and thermal resistance. 本発明の実施形態におけるボンディング装置用ヒータの毛細冷却流路の長さと空気温度の関係を示すグラフである。It is a graph which shows the relationship between the length of the capillary cooling flow path of the heater for bonding apparatuses in embodiment of this invention, and air temperature. 本発明の他の実施形態におけるボンディング装置用ヒータの構成を示す説明図である。It is explanatory drawing which shows the structure of the heater for bonding apparatuses in other embodiment of this invention. 本発明の他の実施形態におけるボンディング装置用ヒータの平面図と断面図である。It is the top view and sectional drawing of the heater for bonding apparatuses in other embodiment of this invention.

以下、図面を参照しながら本発明の実施形態のボンディング装置用ヒータについて説明する。図1に示すように、本実施形態のボンディング装置用ヒータ30は、平板形の本体31と、ボンディングツール40が取り付けられる第一の面である下面31bと、断熱材20が取り付けられる第二の面である上面31aとを備えている。上面31aの中央近傍には略直方体の窪み34が設けられ、本体31には窪み34から側面33に延びる多数の毛細スリット35が設けられている。この窪み34と上面31aに合わせられる断熱材20の合わせ面21とは、冷却空気が流入するキャビティ36を形成し、多数の毛細スリット35と上面31aに取り付けられる断熱材20の合わせ面21とは、キャビティ36から側面33に延びる多数の毛細冷却流路37を形成している。   Hereinafter, a bonding apparatus heater according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the heater 30 for a bonding apparatus of the present embodiment includes a flat plate-shaped main body 31, a lower surface 31 b that is a first surface to which the bonding tool 40 is attached, and a second member to which the heat insulating material 20 is attached. And an upper surface 31a which is a surface. A substantially rectangular parallelepiped recess 34 is provided in the vicinity of the center of the upper surface 31 a, and the body 31 is provided with a number of capillary slits 35 extending from the recess 34 to the side surface 33. The recess 34 and the mating surface 21 of the heat insulating material 20 aligned with the upper surface 31a form a cavity 36 into which cooling air flows, and the many slits 35 and the mating surface 21 of the heat insulating material 20 attached to the upper surface 31a A number of capillary cooling channels 37 extending from the cavity 36 to the side surface 33 are formed.

断熱材20の上部には、ステンレス製のベース部材10が取り付けられており、このベース部材10は、図示しないボンディング装置のボンディングヘッドに取り付けられ、ボンディングヘッドに内蔵されている上下方向の駆動装置によりベース部材10と断熱材20とボンディング装置用ヒータ30とボンディングツール40とが一体となって上下方向に移動する。   A stainless steel base member 10 is attached to the upper portion of the heat insulating material 20, and this base member 10 is attached to a bonding head of a bonding apparatus (not shown) and is driven by a vertical driving device built in the bonding head. The base member 10, the heat insulating material 20, the bonding device heater 30, and the bonding tool 40 are integrally moved in the vertical direction.

ボンディング装置用ヒータ30は、例えば、窒化アルミなどのセラミックスの内部に白金あるいはタングステンなどにより構成された発熱抵抗体を埋め込んだものである。また、断熱材20は、ボンディング装置用ヒータ30の熱をベース部材10に伝えないようにするもので、例えば、アドセラム(登録商標)等のセラミックス製である。   The bonding apparatus heater 30 is formed, for example, by embedding a heating resistor composed of platinum or tungsten in a ceramic such as aluminum nitride. The heat insulating material 20 prevents the heat of the bonding apparatus heater 30 from being transmitted to the base member 10 and is made of ceramics such as Adseram (registered trademark).

図2を参照しながらボンディング装置用ヒータ30と断熱材20の構造について詳細に説明する。図2(a)は、ボンディング装置用ヒータ30の上面31aを示す平面図であり、図2(b)は図2(a)に示すA−Aの断面図であり、図2(c)は図2(a)に示すB−Bの断面図である。   The structures of the bonding apparatus heater 30 and the heat insulating material 20 will be described in detail with reference to FIG. 2A is a plan view showing the upper surface 31a of the bonding apparatus heater 30, FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A, and FIG. It is sectional drawing of BB shown to Fig.2 (a).

図2(a)に示すように、ボンディング装置用ヒータ30の上面31aの上下方向の中央部には、2つの窪み34が設けられており、各窪み34の上下方向の壁面から各側面33に向かって本体31の中に多数の毛細スリット35が延びている。本実施形態のボンディング装置用ヒータ30では、各窪み34の各上下方向の壁から本体31の上下方向の各側面33に向かってそれぞれ63本の毛細スリット35が延びている。従って、図2(a)に示す上面31aには、合計63×2×2=252本の毛細スリット35が形成されている。また、各毛細スリット35の長さはLである。毛細スリット35は、例えば、ダイシング装置によって切削することによって形成してもよい。 As shown in FIG. 2 (a), two depressions 34 are provided in the center of the upper surface 31 a of the bonding apparatus heater 30 in the vertical direction. A number of capillary slits 35 extend into the main body 31. In the heater 30 for the bonding apparatus of this embodiment, 63 capillary slits 35 extend from the vertical walls of the recesses 34 to the vertical side surfaces 33 of the main body 31. Accordingly, a total of 63 × 2 × 2 = 252 capillary slits 35 are formed on the upper surface 31a shown in FIG. The length of KakukeHoso slit 35 is L 1. The capillary slit 35 may be formed by cutting with a dicing device, for example.

図3に示すように各毛細スリット35の幅Wは0.05mm、毛細スリット35の間の壁38の厚さDは0.1mm、毛細スリット35の深さHは、0.3mmである。このように、毛細スリット35は、幅Wが深さHよりも小さく、本実施形態では、幅Wに対する深さHの比率(深さH/幅W)=(0.3/0.05)=6.0となっている。また、窪み34の深さは毛細スリット35と同様の0.3mmの深さとなっている。 As shown in FIG. 3, the width W 1 of each capillary slit 35 is 0.05 mm, the thickness D 1 of the wall 38 between the capillary slits 35 is 0.1 mm, and the depth H 1 of the capillary slit 35 is 0.3 mm. It is. Thus, capillary slits 35 is smaller than the depth H 1 is the width W 1, in the present embodiment, the ratio of the depth H 1 to the width W 1 (depth H 1 / width W 1) = (0. 3 / 0.05) = 6.0. Further, the depth of the recess 34 is 0.3 mm, which is the same as that of the capillary slit 35.

図2(b)、図2(c)に示すように、本体31の上面31aには断熱材20が重ねあわされている。断熱材20の合わせ面21は平面であり、上面31aに設けられた窪み34、毛細スリット35の周囲の面と密着している。このため、図2(b)に示すように、本体31の上面31aに断熱材20の合わせ面21が重ねあわされると、略直方体の窪み34の上側の解放面及び毛細スリット35の上側の解放面が閉じられ、各窪み34と合わせ面21とは略直方体の各キャビティ36を形成する。同様に図2(c)に示すように、多数の毛細スリット35と合わせ面21は、上下方向に細長い多数の毛細冷却流路37を形成する。また、図2(b)に示すように、断熱材20には、各キャビティ36にそれぞれ連通する2つの冷却空気孔25が設けられている。そして、各冷却空気孔25に供給された冷却空気は、図2(b)の下向き矢印で示すように、冷却空気孔25からキャビティ36に流入した後、各キャビティ36から多数の毛細冷却流路37に流入し、図2(a)に示す上下方向の矢印のように、各側面33側から外部に流出し、ボンディング装置用ヒータ30を冷却する。   As shown in FIGS. 2B and 2C, the heat insulating material 20 is overlaid on the upper surface 31 a of the main body 31. The mating surface 21 of the heat insulating material 20 is a flat surface, and is in close contact with the surface around the recess 34 and the capillary slit 35 provided on the upper surface 31a. For this reason, as shown in FIG. 2B, when the mating surface 21 of the heat insulating material 20 is overlapped with the upper surface 31 a of the main body 31, the upper release surface of the substantially rectangular parallelepiped recess 34 and the upper release of the capillary slit 35 are released. The surfaces are closed, and the recesses 34 and the mating surface 21 form cavities 36 that are substantially rectangular parallelepiped. Similarly, as shown in FIG. 2C, the large number of capillary slits 35 and the mating surface 21 form a large number of capillary cooling channels 37 elongated in the vertical direction. Further, as shown in FIG. 2B, the heat insulating material 20 is provided with two cooling air holes 25 communicating with the cavities 36, respectively. Then, the cooling air supplied to each cooling air hole 25 flows into the cavity 36 from the cooling air hole 25 as shown by a downward arrow in FIG. 37, and flows out from the side surfaces 33 to the outside as indicated by the up and down arrows shown in FIG. 2A to cool the bonding apparatus heater 30.

図4に示すように、本実施形態のボンディング装置用ヒータ30の毛細冷却流路37は、幅W、深さH、長さLの矩形断面の流路であり、冷却空気は、キャビティ36に連通している入口371から流路に入り、側面33の上にある出口372から流出する。毛細冷却流路37の幅Wは0.05mmと非常に狭くなっている一方、その深さHは0.3mmと幅Wの6倍にもなっていることから、毛細冷却流路37の中を流れる空気の流れは狭い平行平板間の流れとなり、ボンディング装置用ヒータ30の本体31と空気との熱交換は毛細冷却流路37の両側面37aを構成する毛細スリット35の両側面35aが支配的で毛細冷却流路37の底面37bを構成する毛細スリット35の底面35bはほとんど熱交換に寄与しなくなる。本実施形態のボンディング装置用ヒータ30では毛細冷却流路37の数は252であることから、有効熱交換面積は、次のようになる。 As shown in FIG. 4, the capillary cooling flow path 37 of the bonding apparatus heater 30 of the present embodiment is a flow path having a rectangular cross section with a width W 1 , a depth H 1 , and a length L 1 . The flow enters from the inlet 371 communicating with the cavity 36 and flows out from the outlet 372 on the side surface 33. While the width W 1 of the capillary cooling channel 37 is very narrow as 0.05 mm, the depth H 1 is 0.3 mm, which is six times as wide as the width W 1. The flow of air flowing through 37 is a flow between narrow parallel plates, and heat exchange between the main body 31 of the bonding device heater 30 and the air is performed on both side surfaces of the capillary slits 35 constituting both side surfaces 37a of the capillary cooling channel 37. 35a is dominant and the bottom surface 35b of the capillary slit 35 constituting the bottom surface 37b of the capillary cooling channel 37 hardly contributes to heat exchange. Since the number of the capillary cooling channels 37 is 252 in the heater 30 for the bonding apparatus of the present embodiment, the effective heat exchange area is as follows.

有効熱交換面積
=毛細スリット35の両側面35aの面積=H×L×2×毛細冷却流路37の数
=H×L×504
となる。
Effective heat exchange area = area of both side surfaces 35a of the capillary slit 35 = H 1 × L 1 × 2 × number of capillary cooling channels 37
= H 1 × L 1 × 504
It becomes.

また、毛細冷却流路37の全流路断面積は、
全流路断面積
=W×H×毛細冷却流路37の数=W×H×504
となる。
In addition, the total channel cross-sectional area of the capillary cooling channel 37 is
Total channel cross-sectional area = W 1 × H 1 × number of capillary cooling channels 37 = W 1 × H 1 × 504
It becomes.

一方、図5に示すように、断熱材20の合わせ面21に本実施形態の毛細冷却流路37の全流路断面積と同様の断面積を持つ冷却空気流路26を形成した場合を考える。図5に示す例では、冷却空気流路26は、図中の横方向には仕切りが無い流路として形成されている。この場合、2つの毛細冷却流路37の幅Wと壁38の厚さDの合計長さ、すなわち毛細冷却流路37の2ピッチ分の幅Wは、(0.05+0.1)×2=0.3mmで毛細冷却流路37の深さHと同様であることから、冷却空気流路26の高さHを毛細冷却流路37の幅Wの2倍の0.1mmとすれば、両者の流路断面積は同一となる。そして、図5に示す幅Wの冷却空気流路26の有効熱交換領域は冷却空気流路26の上面31aに面する底面26bのみであり、側面26aはほとんど熱交換に寄与しないから、有効熱交換面積は、W×Lであるのに対し、幅Wの部分の毛細冷却流路37の有効熱交換面積は、H×L×2(両面)×2(2流路)となる。ここで、W=Hであることから、幅Wの部分の毛細冷却流路37の有効熱交換面積は、幅Wの冷却空気流路26の有効熱交換面積の4倍となることとなる。 On the other hand, as shown in FIG. 5, a case is considered in which a cooling air flow path 26 having the same cross-sectional area as that of the capillary cooling flow path 37 of the present embodiment is formed on the mating surface 21 of the heat insulating material 20. . In the example shown in FIG. 5, the cooling air channel 26 is formed as a channel without a partition in the horizontal direction in the figure. In this case, the total length of the width W 1 of the two capillary cooling channels 37 and the thickness D 1 of the wall 38, that is, the width W 2 for two pitches of the capillary cooling channels 37 is (0.05 + 0.1). × 2 = 0.3 mm, which is the same as the depth H 1 of the capillary cooling channel 37, so that the height H 2 of the cooling air channel 26 is set to 0. 2 times the width W 1 of the capillary cooling channel 37. If it is set to 1 mm, both channel cross-sectional areas will become the same. Then, the effective heat exchange area of the cooling air flow path 26 having a width W 2 shown in FIG. 5 is only the bottom 26b facing the upper surface 31a of the cooling air flow path 26, do not contribute to the side surface 26a is mostly heat exchanger, effective While the heat exchange area is W 2 × L 1 , the effective heat exchange area of the capillary cooling channel 37 in the width W 2 portion is H 1 × L 1 × 2 (both sides) × 2 (2 channels) ) Here, since W 2 = H 1 , the effective heat exchange area of the capillary cooling flow path 37 in the width W 2 portion is four times the effective heat exchange area of the cooling air flow path 26 of width W 2. It will be.

また、毛細冷却流路37を構成する毛細スリット35の両側面35aの各表面から冷却空気への熱伝達は、流れに垂直な方向の熱伝導が支配的で、乱流のような物資移動を伴う熱移動は非常に小さくなる。このため、図6に示すように、熱移動の際の熱抵抗は毛細スリット35の幅Wの大きさが大きくなると増大する。   In addition, the heat transfer from each surface 35a of the capillary slit 35 constituting the capillary cooling flow path 37 to the cooling air is dominated by the heat conduction in the direction perpendicular to the flow. The accompanying heat transfer is very small. For this reason, as shown in FIG. 6, the thermal resistance during heat transfer increases as the width W of the capillary slit 35 increases.

従って、図1から図4を参照して説明した本実施形態のボンディング装置用ヒータ30の毛細冷却流路37は、図5を参照して説明した従来技術による冷却空気流路26の4倍の有効熱交換面積を有し、冷却空気流路26よりも熱抵抗が少ないことから、より大きな熱交換を行うことができ、より効果的にボンディング装置用ヒータ30を冷却することができる。   Accordingly, the capillary cooling flow path 37 of the bonding apparatus heater 30 of this embodiment described with reference to FIGS. 1 to 4 is four times as large as the cooling air flow path 26 of the prior art described with reference to FIG. Since it has an effective heat exchange area and has a lower thermal resistance than the cooling air flow path 26, a larger heat exchange can be performed and the bonding apparatus heater 30 can be cooled more effectively.

図7に示す様に、本実施形態のボンディング装置用ヒータ30の毛細冷却流路37の内部の温度は、毛細冷却流路37の流れ方向の位置と空気の流量によって変化する。図7(a)は、毛細冷却流路37の幅方向中央の長手方向距離に対する空気温度の変化を示すグラフであり、図7(b)は毛細冷却流路37中の空気温度が壁面(毛細スリット35の壁面)の温度Tとなる位置を示す図である。空気流量が少ない場合には、図7(a)の線a、図7(b)の線pに示す様に、毛細冷却流路37の入口371に温度Tで流入した空気の温度は急速に上昇し、流路の前半で毛細冷却流路37の壁面(毛細スリット35の壁面)の温度T2まで上昇してしまい、そのまま出口372から流出する。この場合、流路の後半では空気温度が壁面の温度Tに達してしまっているので、本体31から熱を奪うことができなくなってしまい、冷却能力が十分に発揮できていない。 As shown in FIG. 7, the temperature inside the capillary cooling channel 37 of the heater 30 for the bonding apparatus of the present embodiment varies depending on the position of the capillary cooling channel 37 in the flow direction and the flow rate of air. FIG. 7A is a graph showing changes in the air temperature with respect to the longitudinal distance at the center in the width direction of the capillary cooling channel 37. FIG. 7B shows the air temperature in the capillary cooling channel 37 on the wall surface (capillary). is a diagram showing the temperature T 2 a position of the wall surface) of the slit 35. If the air flow rate is small, the line a of FIG. 7 (a), as shown in line p in FIG. 7 (b), the temperature of the air flowing in the temperature T 1 of the inlet 371 of the capillary cooling channel 37 rapidly Rises to the temperature T2 of the wall surface of the capillary cooling channel 37 (wall surface of the capillary slit 35) in the first half of the channel, and flows out from the outlet 372 as it is. In this case, since the air temperature in the second half of the channel they've reached a temperature T 2 of the wall, will no longer be able to take the heat from the body 31, the cooling capacity is not be sufficiently exhibited.

逆に、流量が多い場合には、図7(a)の線c、図7(b)の線rに示す様に、入口371に温度Tで流入した空気は、温度が壁面の温度Tの半分程度の温度で出口372から外部に流出していく。この場合、毛細冷却流路37の長手方向全般に渡って空気と壁面(毛細スリット35の壁面)との温度差が大きいので、冷却能力は大きくなるが、冷却空気流量のわりに冷却能力は大きくならない。 Conversely, when the flow rate is large, the line c in FIG. 7 (a), as shown in line r in FIG. 7 (b), the air flowing into the inlet 371 at a temperature T 1, the temperature wall surface temperature T It flows out from the outlet 372 to the outside 2 of about half of the temperature. In this case, since the temperature difference between the air and the wall surface (wall surface of the capillary slit 35) is large over the entire length of the capillary cooling channel 37, the cooling capacity increases, but the cooling capacity does not increase in place of the cooling air flow rate. .

そこで、本実施形態のボンディング装置用ヒータ30では、毛細冷却流路37の出口372から流出する空気の温度が壁面(毛細スリット35の壁面)の温度Tよりも少しだけ、あるいは所定の閾値ΔTだけ低い温度となるように空気流量を調整する。この流量は、試験などによって予め決めておき、その流量となるように冷却空気孔25に供給する空気の圧力を調整したり、冷却空気孔25の入り口側に設けた流量調節弁あるいはレギュレータによって流量を調節したりするようにしてもよい。このように冷却空気流量を調整することによって少ない冷却空気流量で効果的にボンディング装置用ヒータ30を冷却することができる。 Therefore, the bonding device for a heater 30 of the present embodiment, a capillary temperature of the air flowing out of the outlet 372 of the cooling channel 37 is slightly wider than the temperature T 2 of the wall surface (wall surface of the capillary slit 35), or a predetermined threshold value ΔT Adjust the air flow rate so that the temperature is as low as possible. This flow rate is determined in advance by a test or the like, and the pressure of the air supplied to the cooling air hole 25 is adjusted so as to be the flow rate, or the flow rate adjusting valve or regulator provided on the inlet side of the cooling air hole 25 is used. Or may be adjusted. Thus, by adjusting the cooling air flow rate, the bonding device heater 30 can be effectively cooled with a small cooling air flow rate.

図8から図9を参照して本発明の他の実施形態について説明する。先に図1から図7を参照して説明した実施形態と同様の部分には同様の符号を付して説明は省略する。図8に示すように、本実施形態では、断熱材20の合わせ面21の中央近傍に第二の窪みである窪み134が設けられ、図9(a)に示す様に、本体31に設けられた毛細スリット35は、一方の側面33から対抗する他方の側面33まで延びている。窪み134には、冷却空気孔25が接続されている。毛細スリット35の本数、幅、深さは先に図1から7を参照して説明した実施形態と同様である。   Another embodiment of the present invention will be described with reference to FIGS. Parts similar to those of the embodiment described above with reference to FIGS. 1 to 7 are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 8, in this embodiment, a depression 134 that is a second depression is provided in the vicinity of the center of the mating surface 21 of the heat insulating material 20, and is provided in the main body 31 as shown in FIG. 9A. The capillary slit 35 extends from one side surface 33 to the other side surface 33 facing it. The cooling air hole 25 is connected to the recess 134. The number, width, and depth of the capillary slits 35 are the same as those of the embodiment described above with reference to FIGS.

図8、図9(b)に示す様に、断熱材20の合わせ面21を本体31の上面31aに合わせると、断熱材20の合わせ面21に設けられた窪み134は、本体31の上面31aの毛細スリット35が設けられていない面に密着し、冷却空気孔25からの空気が入り込むキャビティ136を構成する。図9(c)に示すように、毛細スリット35と断熱材20の合わせ面21とは毛細冷却流路37を構成する。図9(a)に示す様に、毛細冷却流路37の長さはLである。また、図9(b)に示す様に、キャビティ136の下面は多数の毛細スリット35の上側の開放端と連通している。そして、冷却空気孔25からキャビティ136に入った空気は、キャビティ136から下側の毛細スリット35に流入した後、図9(a)に示すように、毛細冷却流路37を側面33に向って流れ、ボンディング装置用ヒータ30を冷却する。 As shown in FIG. 8 and FIG. 9B, when the mating surface 21 of the heat insulating material 20 is aligned with the upper surface 31 a of the main body 31, the depression 134 provided on the mating surface 21 of the heat insulating material 20 becomes the upper surface 31 a of the main body 31. A cavity 136 into which the air from the cooling air hole 25 enters is formed in close contact with the surface where the capillary slit 35 is not provided. As shown in FIG. 9C, the capillary slit 35 and the mating surface 21 of the heat insulating material 20 constitute a capillary cooling channel 37. As shown in FIG. 9 (a), the length of the capillary cooling passage 37 is L 1. Further, as shown in FIG. 9B, the lower surface of the cavity 136 communicates with the open ends on the upper side of the many capillary slits 35. Then, after the air that has entered the cavity 136 from the cooling air hole 25 flows into the lower capillary slit 35 from the cavity 136, as shown in FIG. Then, the bonding device heater 30 is cooled.

本実施形態は、先に図1から図7を参照して説明した実施形態と同様の効果に加え、セラミックス製の本体31の加工が簡単であり、より簡便な構成とすることができるという効果を奏する。   In the present embodiment, in addition to the same effects as those of the embodiment described above with reference to FIGS. 1 to 7, the processing of the ceramic main body 31 is simple, and the structure can be made simpler. Play.

以上説明した実施形態では、毛細スリット35の幅Wは0.05mmとして説明したが、毛細スリット35の幅Wは0.5mm〜0.01mmの範囲であれば自由に選択してもよい。0.1mm〜0.02mmの範囲であればより好ましく、0.05mm〜0.02mmの範囲であれば更に好ましい。また、毛細スリット35の深さHは、0.3mm、毛細スリット35の幅Wと毛細スリット35の深さHの比率は1:6として説明したが、毛細スリット35の深さHは毛細スリット35の幅Wよりも深ければよく、例えば、1.0mm〜0.1mmの範囲で自由に選択してもよい。また、毛細スリット35の幅Wと毛細スリット35の深さHの比率は1:6に限られず、1:3〜1:10の範囲であれば自由に選択できる。 In the above described embodiment, the width W 1 of the capillary slit 35 is described as 0.05 mm, the width W 1 of the capillary slit 35 may be selected freely as long as the range of 0.5mm~0.01mm . A range of 0.1 mm to 0.02 mm is more preferable, and a range of 0.05 mm to 0.02 mm is more preferable. Further, the depth H 1 of the capillary slit 35 is 0.3 mm, and the ratio of the width W 1 of the capillary slit 35 to the depth H 1 of the capillary slit 35 is 1: 6. 1 may be deeper than the width W 1 of the capillary slits 35, for example, may be selected freely within a range of 1.0Mm~0.1Mm. The width W 1 and depth ratio of an H 1 capillary slits 35 of capillary slit 35 is 1: 6 to limited without, 1: 3 to 1: can be freely selected as long as the range of 10.

10 ベース部材、20 断熱材、21 合わせ面、25 冷却空気孔、26 冷却空気流路、30 ボンディング装置用ヒータ、31 本体、31a 上面、31b 下面、33 側面、34,134 窪み、35 毛細スリット、35a,37a 側面、35b,37b 底面、36,136 キャビティ、37 毛細冷却流路、38 壁、40 ボンディングツール、371 入口、372 出口。   10 base member, 20 heat insulating material, 21 mating surface, 25 cooling air hole, 26 cooling air flow path, 30 heater for bonding device, 31 main body, 31a upper surface, 31b lower surface, 33 side surface, 34, 134 recess, 35 capillary slit, 35a, 37a side surface, 35b, 37b bottom surface, 36, 136 cavity, 37 capillary cooling channel, 38 walls, 40 bonding tool, 371 inlet, 372 outlet.

Claims (5)

セラミックス製でボンディングツールが取り付けられる第一の面と、前記第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形のボンディング装置用ヒータであって、
前記第二の面に設けられ、前記第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が前記第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、
多数の前記毛細スリットと前記第二の面に取り付けられる前記断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、
前記第二の面は、中央近傍に窪みが設けられ、
前記窪みと前記第二の面に取り付けられる前記断熱材の合わせ面とは、前記冷却空気が流入するキャビティを形成し、
多数の前記毛細スリットは、前記キャビティから側面に延びること、を特徴とするボンディング装置用ヒータ。
For a flat-plate bonding device made of ceramics and having a first surface on which a bonding tool is attached and a second surface to which a heat insulating material is attached on the opposite side of the first surface, and generates heat when an electric current flows A heater,
Provided in the second surface, the width in the direction along the second surface is in the range of 0.1 mm to 0.02 mm, and the width in the direction along the second surface is the second A plurality of capillary slits smaller than the depth in the vertical direction on the surface of
A large number of the capillary slits and the mating surface of the heat insulating material attached to the second surface form a large number of capillary cooling channels and directly cool the heater for the bonding apparatus that has generated heat with cooling air,
The second surface is provided with a depression near the center,
The mating surface of the heat insulating material attached to the recess and the second surface forms a cavity into which the cooling air flows,
A large number of the capillary slits extend from the cavity to the side surface.
セラミックス製でボンディングツールが取り付けられる第一の面と、前記第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形のボンディング装置用ヒータであって、
前記第二の面に設けられ、前記第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が前記第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、
多数の前記毛細スリットと前記第二の面に取り付けられる前記断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、
前記断熱材は、前記合わせ面の中央近傍に第二の窪みが設けられ、
前記第二の窪みと前記第二の面とは、前記冷却空気が流入するキャビティを形成し、
多数の前記毛細スリットは、前記キャビティに連通し、対向する各側面の間に延びること、を特徴とするボンディング装置用ヒータ。
For a flat-plate bonding device made of ceramics and having a first surface on which a bonding tool is attached and a second surface to which a heat insulating material is attached on the opposite side of the first surface, and generates heat when an electric current flows A heater,
Provided in the second surface, the width in the direction along the second surface is in the range of 0.1 mm to 0.02 mm, and the width in the direction along the second surface is the second A plurality of capillary slits smaller than the depth in the vertical direction on the surface of
A large number of the capillary slits and the mating surface of the heat insulating material attached to the second surface form a large number of capillary cooling channels and directly cool the heater for the bonding apparatus that has generated heat with cooling air,
The heat insulating material is provided with a second depression near the center of the mating surface,
The second recess and the second surface form a cavity into which the cooling air flows,
A large number of the capillary slits communicate with the cavity and extend between the opposing side surfaces.
請求項1または2に記載のボンディング装置用ヒータであって、
前記毛細スリットの前記幅に対する前記毛細スリットの深さの比率は、3から10の範囲であること、
を特徴とするボンディング装置用ヒータ。
The heater for a bonding apparatus according to claim 1 or 2,
The ratio of the depth of the capillary slit to the width of the capillary slit is in the range of 3 to 10,
A heater for a bonding apparatus.
セラミックス製でボンディングツールが取り付けられる第一の面と、前記第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形状で、前記第二の面に設けられ、前記第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が前記第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、多数の前記毛細スリットと前記第二の面に取り付けられる前記断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、前記第二の面は、中央近傍に窪みが設けられ、前記窪みと前記第二の面に取り付けられる前記断熱材の合わせ面とは、前記冷却空気が流入するキャビティを形成し、多数の前記毛細スリットは、前記キャビティから側面に延びるボンディング装置用ヒータの冷却方法であって、
前記毛細冷却流路の出口から流出する冷却空気の温度が、前記毛細スリットの壁面の温度よりも所定の閾値だけ低い温度となるように、前記毛細冷却流路に流入する冷却空気の流量を調整すること、
を特徴とする冷却方法。
It has a first surface made of a ceramic and to which a bonding tool is attached, and a second surface to which a heat insulating material is attached on the side opposite to the first surface. Provided in the second surface, the width in the direction along the second surface is in the range of 0.1 mm to 0.02 mm, and the width in the direction along the second surface is the second surface. A plurality of capillary slits smaller than the depth in the vertical direction, and the plurality of capillary slits and the mating surface of the heat insulating material attached to the second surface form a plurality of capillary cooling channels. The heated heater for the bonding apparatus is directly cooled by cooling air, and the second surface is provided with a recess in the vicinity of the center, and the recess and the mating surface of the heat insulating material attached to the second surface are: Cavity into which the cooling air flows Forming a I, a large number of the capillary slits, a cooling method of a bonding device for a heater extending sides from the cavity,
The flow rate of the cooling air flowing into the capillary cooling channel is adjusted so that the temperature of the cooling air flowing out from the outlet of the capillary cooling channel is lower than the temperature of the wall surface of the capillary slit by a predetermined threshold value. To do,
A cooling method characterized by the above.
セラミックス製でボンディングツールが取り付けられる第一の面と、前記第一の面と反対側で断熱材が取り付けられる第二の面とを有し、電流が流れることで発熱する平板形状で、前記第二の面に設けられ、前記第二の面に沿った方向の幅が、0.1mmから0.02mmの範囲で、且つ、前記第二の面に沿った方向の幅が前記第二の面に垂直方向の深さよりも小さい多数の毛細スリットと、を備え、多数の前記毛細スリットと前記第二の面に取り付けられる前記断熱材の合わせ面とは、多数の毛細冷却流路を形成して発熱した当該ボンディング装置用ヒータを冷却空気によって直接冷却し、前記断熱材は、前記合わせ面の中央近傍に第二の窪みが設けられ、前記第二の窪みと前記第二の面とは、前記冷却空気が流入するキャビティを形成し、多数の前記毛細スリットは、前記キャビティに連通し、対向する各側面の間に延びるボンディング装置用ヒータの冷却方法であって、
前記毛細冷却流路の出口から流出する冷却空気の温度が、前記毛細スリットの壁面の温度よりも所定の閾値だけ低い温度となるように、前記毛細冷却流路に流入する冷却空気の流量を調整すること、
を特徴とする冷却方法。
It has a first surface made of a ceramic and to which a bonding tool is attached, and a second surface to which a heat insulating material is attached on the side opposite to the first surface. Provided in the second surface, the width in the direction along the second surface is in the range of 0.1 mm to 0.02 mm, and the width in the direction along the second surface is the second surface. A plurality of capillary slits smaller than the depth in the vertical direction, and the plurality of capillary slits and the mating surface of the heat insulating material attached to the second surface form a plurality of capillary cooling channels. The heated heater for the bonding apparatus is directly cooled by cooling air, and the heat insulating material is provided with a second recess in the vicinity of the center of the mating surface, and the second recess and the second surface are Forming a cavity into which cooling air flows Number of the capillary slit, the communication with the cavity, a cooling method of a bonding device for a heater extending between each opposing side surfaces,
The flow rate of the cooling air flowing into the capillary cooling channel is adjusted so that the temperature of the cooling air flowing out from the outlet of the capillary cooling channel is lower than the temperature of the wall surface of the capillary slit by a predetermined threshold value. To do,
A cooling method characterized by the above.
JP2015127628A 2015-06-25 2015-06-25 Heater for bonding apparatus and cooling method thereof Active JP6149241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127628A JP6149241B2 (en) 2015-06-25 2015-06-25 Heater for bonding apparatus and cooling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127628A JP6149241B2 (en) 2015-06-25 2015-06-25 Heater for bonding apparatus and cooling method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012161304A Division JP5793473B2 (en) 2012-07-20 2012-07-20 Heater for bonding apparatus and cooling method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016065371A Division JP6047724B2 (en) 2016-03-29 2016-03-29 Heater for bonding apparatus, heater assembly for bonding apparatus, and bonding apparatus

Publications (2)

Publication Number Publication Date
JP2015165602A JP2015165602A (en) 2015-09-17
JP6149241B2 true JP6149241B2 (en) 2017-06-21

Family

ID=54187943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127628A Active JP6149241B2 (en) 2015-06-25 2015-06-25 Heater for bonding apparatus and cooling method thereof

Country Status (1)

Country Link
JP (1) JP6149241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322932B2 (en) 2013-03-25 2019-06-18 Hes Energy Systems Pte. Ltd. Method and generator for hydrogen production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006361B2 (en) * 1992-09-30 2000-02-07 株式会社日立製作所 Heat sink, electronic device using the same, and electronic computer using the electronic device
JP3255871B2 (en) * 1997-03-31 2002-02-12 住友大阪セメント株式会社 Manufacturing method of pulse heater and semiconductor chip mounting board
JP2002016091A (en) * 2000-06-29 2002-01-18 Kyocera Corp Contact heating device
JP3801966B2 (en) * 2002-07-31 2006-07-26 京セラ株式会社 Heating device
US7775062B2 (en) * 2008-09-15 2010-08-17 Mike Blomquist Modular cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322932B2 (en) 2013-03-25 2019-06-18 Hes Energy Systems Pte. Ltd. Method and generator for hydrogen production

Also Published As

Publication number Publication date
JP2015165602A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5793473B2 (en) Heater for bonding apparatus and cooling method thereof
KR102228798B1 (en) Bonding head with a heatable and coolable suction member
JP6603401B2 (en) Bonding equipment
US20100081191A1 (en) Anisotropic heat spreader for use with a thermoelectric device
US8938880B2 (en) Method of manufacturing an integrated cold plate for electronics
WO2000011717A1 (en) Heatsink, and semiconductor laser device and semiconductor laser stack using heatsink
JP6149241B2 (en) Heater for bonding apparatus and cooling method thereof
JP6047724B2 (en) Heater for bonding apparatus, heater assembly for bonding apparatus, and bonding apparatus
JP2015109485A (en) Heater for bonding apparatus and method for cooling the same
JP5487142B2 (en) Heat tool and thermocompression bonding equipment
JP6850854B2 (en) Bonding head and mounting device
US20140373557A1 (en) Temperature control device
JP6836317B2 (en) Bonding head and mounting device
JP6632856B2 (en) Bonding head and mounting equipment
TWI751971B (en) Apparatus and method for semiconductor device test and semiconductor device test system
JP4890323B2 (en) Thermoelectric module and manufacturing method thereof
JP6893003B2 (en) Cooler, semiconductor module
US10192847B2 (en) Rapid cooling system for a bond head heater
JP2021052060A (en) Heat sink and electronic apparatus with heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170419

R150 Certificate of patent or registration of utility model

Ref document number: 6149241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250