JP6148994B2 - Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof - Google Patents

Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof Download PDF

Info

Publication number
JP6148994B2
JP6148994B2 JP2014035270A JP2014035270A JP6148994B2 JP 6148994 B2 JP6148994 B2 JP 6148994B2 JP 2014035270 A JP2014035270 A JP 2014035270A JP 2014035270 A JP2014035270 A JP 2014035270A JP 6148994 B2 JP6148994 B2 JP 6148994B2
Authority
JP
Japan
Prior art keywords
temperature
carburizing
less
forging
forged part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014035270A
Other languages
Japanese (ja)
Other versions
JP2015160966A (en
Inventor
裕司 安達
裕司 安達
隆之 河合
隆之 河合
健 宇佐美
健 宇佐美
亮太 堀
亮太 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Aichi Steel Corp filed Critical Toyota Motor Corp
Priority to JP2014035270A priority Critical patent/JP6148994B2/en
Publication of JP2015160966A publication Critical patent/JP2015160966A/en
Application granted granted Critical
Publication of JP6148994B2 publication Critical patent/JP6148994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、例えば1050℃超え〜1100℃程度の浸炭温度で実施する減圧高温浸炭処理に好適な鍛造部品及びその製造する方法に関する。   The present invention relates to a forged part suitable for reduced-pressure high-temperature carburizing performed at, for example, a carburizing temperature of over 1050 ° C. to about 1100 ° C. and a method of manufacturing the same.

例えば、自動車、建設車両、建設機器等には、様々な鍛造部品が使用されている。これらの鍛造部品には、耐摩耗性と高靱性を確保するために浸炭処理が施されることが多い。一方、従来の浸炭処理は、非常に長時間を要する処理である。そのため、処理コスト低減の観点から、短時間化できる技術について種々研究がなされてきた。その中でも、浸炭温度を従来よりも高温化する高温浸炭処理が、処理時間短縮に効果的であることがわかっている。   For example, various forged parts are used in automobiles, construction vehicles, construction equipment, and the like. These forged parts are often carburized to ensure wear resistance and high toughness. On the other hand, the conventional carburizing process is a process that requires a very long time. For this reason, various studies have been made on techniques that can shorten the processing time from the viewpoint of reducing processing costs. Among them, it has been found that a high-temperature carburizing process in which the carburizing temperature is higher than before is effective in shortening the processing time.

しかしながら、従来よりも高い浸炭温度での浸炭処理は、処理時間の短縮には効果的であるが、品質的に問題が生じる場合がある。すなわち、高温浸炭処理を施した鍛造部品においては、浸炭処理時にオーステナイト結晶粒が粗大化し、焼入れ後における強度低下や歪みによる形状悪化等が生じやすいという問題がある。これらの問題を解決しようとする技術として、種々の提案がなされている(例えば、特許文献1〜4)。   However, the carburizing process at a higher carburizing temperature than the conventional one is effective for shortening the processing time, but may cause a problem in quality. That is, in a forged part subjected to high-temperature carburizing treatment, there is a problem that austenite crystal grains are coarsened during the carburizing treatment, and strength deterioration after quenching and shape deterioration due to distortion are likely to occur. Various proposals have been made as techniques for solving these problems (for example, Patent Documents 1 to 4).

特開平10−121128号公報Japanese Patent Laid-Open No. 10-121128 特開2001−303174号公報JP 2001-303174 A 特開2003−27135号公報JP 2003-27135 A 特開2005−139523号公報JP 2005-139523 A

特許文献1の技術は、Nb量とN量を規制し、浸炭処理前の安定化処理によりNb炭窒化物を粗く大きく凝集させ、高温浸炭でも部分的にしか溶けない炭窒化物粒子を生成するというものである。特許文献2の技術は、鋼を1150℃以上の温度で加熱して熱間鍛造を行い、熱間鍛造の最終加工を900〜1100℃の温度範囲で行い、その後800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷するというものである。   The technology of Patent Document 1 regulates the Nb amount and the N amount, coarsely and agglomerates the Nb carbonitride by the stabilization treatment before the carburizing treatment, and generates carbonitride particles that are only partially soluble even at high temperature carburizing. That's it. In the technique of Patent Document 2, the steel is heated at a temperature of 1150 ° C. or higher to perform hot forging, the final processing of hot forging is performed in the temperature range of 900 to 1100 ° C., and then the temperature range of 800 to 500 ° C. is performed. Slow cooling is performed at a cooling rate of 1 ° C./second or less.

特許文献3の技術は、鋼を1150℃以上に加熱後、1000℃以上で熱間加工し、500℃までを25℃/分以上の速度で冷却した後、900〜1000℃の温度に再加熱し、30分以上加熱保持後500℃までを25℃/分以下の速度で冷却するというものである。特許文献4の技術は、鋼材を1200℃以上の温度にて30分以上加熱保持した後、1100℃以上の温度で仕上圧延し、圧延後500℃までの温度範囲を25℃/分以上の速度で冷却して鍛造用母材を製造し、その後特定の温度で鍛造すると共に特定の熱処理を行うというものである。   In the technique of Patent Document 3, the steel is heated to 1150 ° C or higher, hot worked at 1000 ° C or higher, cooled to 500 ° C at a rate of 25 ° C / min or higher, and then reheated to a temperature of 900 to 1000 ° C. Then, after heating and holding for 30 minutes or more, cooling to 500 ° C. is performed at a rate of 25 ° C./min or less. In the technique of Patent Document 4, the steel material is heated and held at a temperature of 1200 ° C. or higher for 30 minutes or more, and then finish-rolled at a temperature of 1100 ° C. or higher, and the temperature range up to 500 ° C. after rolling is 25 ° C./min or higher. The forging base material is manufactured by cooling at, and then forged at a specific temperature and subjected to a specific heat treatment.

しかしながら、これらの従来技術は、実際には、1050℃以下の浸炭温度で高温浸炭する部材の製造にはある程度効果があるものの、例えば1050℃超え〜1100℃程度の1050℃を超える浸炭温度での高温浸炭処理を施す場合には、十分な効果が得られない。特に、大気圧よりも減圧された雰囲気中で行う減圧浸炭処理は処理時間短縮効果が通常のガス浸炭に比べて大きいものの、異常粒成長はより起きやすいという問題がある。すなわち、上記従来技術で製造した部材は、1050℃を超える浸炭温度で処理時間短縮効果の大きい減圧浸炭処理を行った場合には、少なくとも、結晶粒粗大化を十分に抑制することが困難である。   However, these prior arts are actually effective to some extent for the production of high-temperature carburizing members at a carburizing temperature of 1050 ° C. or less, but at carburizing temperatures exceeding 1050 ° C., for example, from about 1050 ° C. to about 1100 ° C. When the high temperature carburizing treatment is performed, a sufficient effect cannot be obtained. In particular, the reduced pressure carburizing process performed in an atmosphere reduced in pressure from atmospheric pressure has a problem that abnormal grain growth is more likely to occur, although the effect of shortening the processing time is greater than that of normal gas carburizing. That is, when the member manufactured by the above-described conventional technique is subjected to a reduced pressure carburizing process having a large processing time shortening effect at a carburizing temperature exceeding 1050 ° C., at least, it is difficult to sufficiently suppress grain coarsening. .

本発明は、かかる背景に鑑みてなされたものであり、従来よりも大幅に浸炭処理時間を短縮可能とするため、1050℃を超える浸炭温度での減圧高温浸炭処理を施しても結晶粒粗大化を抑制することができる鍛造部品及びその製造方法を提供しようとするものである。   The present invention has been made in view of such a background, and in order to make it possible to significantly reduce the carburizing time compared to the conventional case, the grain coarsening is performed even if a low-pressure high-temperature carburizing process at a carburizing temperature exceeding 1050 ° C. is performed. It is an object of the present invention to provide a forged part and a method for manufacturing the same.

本発明の一態様は、1050℃を超える浸炭温度で減圧高温浸炭処理される鍛造部品を製造する方法であって、
質量比にて、C:0.10〜0.30%、Si:0.03〜1.50%、P:0.035%以下、S:0.035%以下、Mn:0.30〜1.50%、Cr:0.30〜3.00%、Al:0.030〜0.100%、N:0.0150〜0.0250%、Nb:0.08〜0.12%、Mo:0〜0.80%を含有し、残部がFe及び不可避的不純物からなる鍛造用母材を準備し、
該鍛造用母材を1300℃以上に加熱し、
その後、上記鍛造用母材を1230℃未満に冷却させることなく1230℃以上の熱間鍛造温度で熱間鍛造して鍛造部品を作製し、
その後、上記鍛造部品を620〜1000℃の温度に30分以上保持して炭窒化物の析出を促す析出熱処理を行うことを特徴とする減圧高温浸炭処理用の鍛造部品の製造方法にある。
One aspect of the present invention is a method for producing a forged part that is subjected to reduced pressure high temperature carburizing at a carburizing temperature exceeding 1050 ° C.
By mass ratio, C: 0.10 to 0.30%, Si: 0.03 to 1.50%, P: 0.035% or less, S: 0.035% or less, Mn: 0.30 to 1 .50%, Cr: 0.30 to 3.00%, Al: 0.030 to 0.100%, N: 0.0150 to 0.0250%, Nb: 0.08 to 0.12%, Mo: Preparing a forging base material containing 0-0.80%, the balance being Fe and inevitable impurities,
Heating the base material for forging to 1300 ° C. or higher,
Then, forging parts are produced by hot forging at a hot forging temperature of 1230 ° C. or higher without cooling the forging base material to less than 1230 ° C.,
Thereafter, the forged part is maintained at a temperature of 620 to 1000 ° C. for 30 minutes or more, and a precipitation heat treatment for promoting precipitation of carbonitrides is performed.

本発明の他の態様は、1050℃を超える浸炭温度で減圧高温浸炭処理される鍛造部品であって、
質量比にて、C:0.10〜0.30%、Si:0.03〜1.50%、P:0.035%以下、S:0.035%以下、Mn:0.30〜1.50%、Cr:0.30〜3.00%、Al:0.030〜0.100%、N:0.0150〜0.0250%、Nb:0.08〜0.12%、Mo:0〜0.80%を含有し、残部がFe及び不可避的不純物からなり、
金属組織中の円相当径20nm以上の炭窒化物の析出個数が20個/μm2以上であることを特徴とする減圧高温浸炭処理用鍛造部品にある。
Another aspect of the present invention is a forged part that is subjected to reduced pressure high temperature carburizing at a carburizing temperature exceeding 1050 ° C.
By mass ratio, C: 0.10 to 0.30%, Si: 0.03 to 1.50%, P: 0.035% or less, S: 0.035% or less, Mn: 0.30 to 1 .50%, Cr: 0.30 to 3.00%, Al: 0.030 to 0.100%, N: 0.0150 to 0.0250%, Nb: 0.08 to 0.12%, Mo: Containing 0-0.80%, the balance consisting of Fe and inevitable impurities,
The forged part for low-pressure high-temperature carburizing treatment is characterized in that the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more in a metal structure is 20 pieces / μm 2 or more.

上記製造方法においては、上記特定の化学成分を有する鍛造用母材を、熱間鍛造の前に、1300℃以上の高温に加熱する。この高温加熱によって、鋼中に存在していた炭窒化物、つまり、AlNおよびNb炭窒化物等を母相中に固溶させる作用効果が得られる。さらに、この加熱処理の後、上記鍛造用母材を1230℃未満に冷却させることなく、1230℃以上の熱間鍛造温度で熱間鍛造し、鍛造部品を作製する。このような温度条件で熱間鍛造を施すことによって、鍛造部品の金属組織は、AlNおよびNb炭窒化物等が母相中に固溶した状態が維持される。   In the manufacturing method, the forging base material having the specific chemical component is heated to a high temperature of 1300 ° C. or higher before hot forging. By this high-temperature heating, an effect of solid solution of carbonitrides existing in the steel, that is, AlN and Nb carbonitrides, is obtained. Further, after this heat treatment, the forging base material is hot forged at a hot forging temperature of 1230 ° C. or higher without cooling the forging base material to less than 1230 ° C. to produce a forged part. By performing hot forging under such temperature conditions, the metal structure of the forged part is maintained in a state in which AlN, Nb carbonitride, and the like are dissolved in the matrix.

すなわち、本製造方法においては、まず、1300℃以上の加熱により鍛造用母材におけるAlNおよびNb炭窒化物等を母相中に十分に固溶させ、その後の熱間鍛造を1230℃以上という超高温で実施することにより、熱間鍛造時にNbおよびAlの固溶状態を維持して鍛造部品の金属組織中にAlNおよびNb炭窒化物が析出することを抑制する。   That is, in this production method, first, AlN and Nb carbonitride in the forging base material are sufficiently dissolved in the parent phase by heating at 1300 ° C. or higher, and the subsequent hot forging is performed at a temperature exceeding 1230 ° C. By carrying out at high temperature, the solid solution state of Nb and Al is maintained during hot forging, and precipitation of AlN and Nb carbonitrides in the metal structure of the forged part is suppressed.

そして、その後、上記鍛造部品を620〜1000℃の温度に30分以上保持して炭窒化物の析出を促す析出熱処理を行う。この析出熱処理が上記の固溶状態を確保した後に実施されることにより、適度な大きさのAlNおよびNb炭窒化物等の炭窒化物を比較的多量に析出させることができる。すなわち、数少ない炭窒化物が大きく成長するのを抑制する代わりに、適度な大きさの炭窒化物を従来よりも数多く析出させる。   Then, after that, the forged part is held at a temperature of 620 to 1000 ° C. for 30 minutes or more to perform precipitation heat treatment that promotes precipitation of carbonitride. By carrying out the precipitation heat treatment after securing the above-mentioned solid solution state, carbon nitrides such as AlN and Nb carbonitride having an appropriate size can be precipitated in a relatively large amount. That is, instead of suppressing the large growth of few carbonitrides, a larger number of carbonitrides having an appropriate size are deposited than before.

金属組織中におけるAlNおよびNb炭窒化物は、適度な大きさのものの数が多ければ多いほど、結晶粒の粗大化を阻止するピン止め効果が高い。そのため、上記製造方法によって作製された鍛造部品は、金属組織中の適度な大きさのAlNおよびNb炭窒化物が多く存在することによって、1050℃を超える浸炭温度で減圧高温浸炭処理された場合においても、結晶粒の粗大化を抑制することが可能となる。   As the number of AlN and Nb carbonitrides in the metal structure having an appropriate size is larger, the pinning effect for preventing the coarsening of crystal grains is higher. Therefore, when the forged parts produced by the above manufacturing method are subjected to reduced-pressure high-temperature carburization at a carburizing temperature exceeding 1050 ° C. due to the presence of a large amount of moderately sized AlN and Nb carbonitride in the metal structure. Also, it is possible to suppress the coarsening of the crystal grains.

このように、上記製造方法によれば、1050℃を超える浸炭温度での減圧高温浸炭処理を施しても結晶粒粗大化を抑制することができる鍛造部品を製造することができる。   Thus, according to the said manufacturing method, the forged component which can suppress a crystal grain coarsening can be manufactured even if it performs the pressure reduction high temperature carburizing process in the carburizing temperature exceeding 1050 degreeC.

そして、特に、上記特定の化学成分を有し、かつ、金属組織中の円相当径20nm以上の炭窒化物の析出個数が20個/μm2以上である鍛造部品は、AlNおよびNb炭窒化物等の炭窒化物によるピン止め効果を、1050℃超え〜1100℃の温度範囲においても十分に保持した優れたものとなる。 In particular, forged parts having the above-mentioned specific chemical components and the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more in the metal structure are 20 pieces / μm 2 or more are AlN and Nb carbonitrides. The pinning effect by carbonitrides such as is sufficiently excellent even in the temperature range from 1050 ° C. to 1100 ° C.

実施例4における、1100℃の浸炭温度で減圧高温浸炭処理する場合の、円相当径20nm以上の炭窒化物の析出個数と浸炭処理後の平均結晶粒度番号との関係を示す説明図。FIG. 6 is an explanatory diagram showing the relationship between the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more and the average grain size number after carburizing treatment when carburizing at 1100 ° C. in a carburizing temperature in Example 4;

上記鋳塊及び鍛造部品の化学成分の限定理由につき以下に説明する。
C:0.10〜0.30%、
C(炭素)は、浸炭処理を行った部品に要求される強度、内部硬さを確保するために必要な元素であり、その効果を得るためには、0.10%以上含有させることが必要である。一方、Cを過剰に含有させると、内部の靱性劣化、被削性低下および冷間鍛造性悪化等を招くため、Cの含有量は0.30%を上限とする。
The reasons for limiting the chemical components of the ingot and forged parts will be described below.
C: 0.10 to 0.30%,
C (carbon) is an element necessary for ensuring the strength and internal hardness required for parts subjected to carburizing treatment. In order to obtain the effect, C (carbon) needs to be contained in an amount of 0.10% or more. It is. On the other hand, when C is excessively contained, internal toughness deterioration, machinability reduction, cold forgeability deterioration, and the like are caused, so the C content is 0.30% as an upper limit.

Si:0.03〜1.50%、
Si(珪素)は鋼の製造時において脱酸のために必要な元素であり、その効果を得るためには0.03%以上の含有が必要である。一方、Siを過剰に含有させると、靱性劣化、加工性劣化等を招くため、Si含有量の上限は1.50%とする。
Si: 0.03 to 1.50%,
Si (silicon) is an element necessary for deoxidation during the production of steel, and in order to obtain the effect, the content of 0.03% or more is necessary. On the other hand, if Si is excessively contained, toughness deterioration and workability deterioration are caused, so the upper limit of Si content is 1.50%.

P:0.035%以下、
P(リン)は、製造時に混入が避けられない不純物である。Pは、粒界の強度を低下させ、疲労特性を悪化させる原因となるため、P含有量の上限は0.035%とする。
P: 0.035% or less,
P (phosphorus) is an impurity that cannot be avoided during production. P lowers the grain boundary strength and deteriorates fatigue characteristics, so the upper limit of the P content is 0.035%.

S:0.035%以下、
S(硫黄)はPと同様に製造時に混入が避けられない不純物である。Sは、例えばMnS等のような硫化物系介在物となって存在し、疲労強度低下等の原因となるため、S含有量の上限は0.035%とする。
S: 0.035% or less,
Similar to P, S (sulfur) is an impurity that cannot be avoided during production. Since S exists as sulfide inclusions such as MnS, for example, and causes a decrease in fatigue strength, the upper limit of the S content is 0.035%.

Mn:0.30〜1.50%、
Mn(マンガン)は、焼入性を向上させ内部まで強度を確保するのに必要な元素であり、その効果を得るためには、0.30%以上の含有が必要である。一方、Mnを多量に含有させると、残留オーステナイトが増加して、硬さ低下、内部靭性の劣化、被削性低下等を招く原因となるため、Mn含有量の上限は1.50%とする。
Mn: 0.30 to 1.50%,
Mn (manganese) is an element necessary for improving the hardenability and securing the strength to the inside, and in order to obtain the effect, it is necessary to contain 0.30% or more. On the other hand, when a large amount of Mn is contained, retained austenite increases, causing a decrease in hardness, deterioration of internal toughness, a decrease in machinability, and the like, so the upper limit of the Mn content is 1.50%. .

Cr:0.30〜3.00%、
Cr(クロム)は、焼入性を向上させ内部まで強度を確保するのに必要な元素であり、その効果を得るためには、0.30%以上の含有が必要である。一方、Crを多量に含有させると靭性劣化、被削性低下を招く原因となるため、Cr含有量の上限は3.00%とする。
Cr: 0.30 to 3.00%
Cr (chromium) is an element necessary for improving the hardenability and securing the strength to the inside, and in order to obtain the effect, it is necessary to contain 0.30% or more. On the other hand, if Cr is contained in a large amount, it causes toughness deterioration and machinability deterioration, so the upper limit of Cr content is 3.00%.

Al:0.030〜0.100%、
Al(アルミニウム)は、Siと同様に脱酸に必要な元素であるとともに、AlNとして存在することによってピン止め効果を発揮し、浸炭処理後の異常粒成長防止に効果のある元素である。この効果を得るために必要なAlN量を確保するためには、0.030%以上のAlを含有させる必要がある。一方、Al含有量がある程度多くなると、それ以上増量してもピン止め効果が飽和して異常粒成長防止効果は向上せず、その一方でAl含有量増量に伴って鋼中に生成されるAl23介在物が増加して、強度や被削性への悪影響が生じるため、Al含有量の上限は0.100%とする。
Al: 0.030 to 0.100%,
Al (aluminum) is an element necessary for deoxidation similarly to Si, and is an element effective for preventing abnormal grain growth after carburizing treatment by exhibiting a pinning effect when present as AlN. In order to secure the amount of AlN necessary for obtaining this effect, it is necessary to contain 0.030% or more of Al. On the other hand, if the Al content is increased to some extent, the pinning effect is saturated even if the Al content is increased further, and the effect of preventing abnormal grain growth is not improved. On the other hand, Al produced in the steel as the Al content increases. Since 2 O 3 inclusions increase and adversely affect the strength and machinability, the upper limit of the Al content is 0.100%.

N:0.0150〜0.0250%、
N(窒素)は、鍛造後に行われる後述の析出熱処理により、AlやNbと結合し、AlNやNb炭窒化物となって鋼中に析出し、浸炭処理後の異常粒成長を防止するために効果のある元素である。この効果を得るためには、0.0150%以上のNを含有させる必要がある。一方、Nが多過ぎても結晶粒粗大化効果が飽和し、かえって疲労強度低下を招くおそれがあるため、N含有量の上限は0.0250%とする。
N: 0.0150-0.0250%,
N (nitrogen) is combined with Al and Nb by precipitation heat treatment to be described later after forging, becomes AlN and Nb carbonitride, precipitates in steel, and prevents abnormal grain growth after carburizing treatment. It is an effective element. In order to obtain this effect, it is necessary to contain 0.0150% or more of N. On the other hand, if the amount of N is too large, the effect of coarsening the crystal grains is saturated and the fatigue strength may be lowered. Therefore, the upper limit of the N content is 0.0250%.

Nb:0.08〜0.12%、
Nb(ニオブ)は、炭窒化物となって鋼中に存在することにより、Alに比べ高温度での浸炭処理における結晶粒異常成長を防止する効果のある元素である。Nb添加量が少ない場合、ピン止め効果に寄与するNb炭窒化物の量が不足して異常粒成長を抑制する作用が十分に得られなくなるので、Nb含有量の下限を0.08%とする。一方、Nb含有量が多すぎると、1300℃以上の加熱によっても鍛造用母材中のNb炭窒化物(Nb(C,N))を十分に固溶させることが難しくなるため、Nb含有量の上限は0.12%とする。
Nb: 0.08 to 0.12%,
Nb (niobium) is an element having an effect of preventing abnormal growth of crystal grains in carburizing treatment at a higher temperature than Al by being present in the steel as carbonitride. When the amount of Nb added is small, the amount of Nb carbonitride that contributes to the pinning effect is insufficient and an effect of suppressing abnormal grain growth cannot be obtained sufficiently, so the lower limit of the Nb content is 0.08%. . On the other hand, if the Nb content is too large, it becomes difficult to sufficiently dissolve the Nb carbonitride (Nb (C, N)) in the forging base material even by heating at 1300 ° C. or higher. The upper limit is 0.12%.

Mo:0〜0.80%、
Mo(モリブデン)は、任意元素であって必ずしも含有させる必要はない。一方、Moは、焼入性向上に有効であるため、鍛造部品の大きさに応じて必要な焼入れ性を確保するために含有させることができる。ただし、Mo含有量が多くなりすぎると靱性及び被削性低下を招くおそれがあるため、Moを含有させる場合の上限は0.80%とする。
Mo: 0 to 0.80%,
Mo (molybdenum) is an optional element and need not necessarily be contained. On the other hand, since Mo is effective for improving hardenability, it can be contained in order to ensure the necessary hardenability according to the size of the forged part. However, if the Mo content is too large, the toughness and machinability may be reduced, so the upper limit when Mo is contained is 0.80%.

次に、上記製造方法における製造条件について説明する。
上記製造方法においては、圧延等により部品製造に適した断面寸法とした鋼材を所定の寸法に切断して準備された鍛造用母材を1300℃以上に加熱する。この非常に高温での鍛造用母材の加熱によって、上述したごとく、上記特定の化学成分を有する鋼中に存在していたAlNおよびNb炭窒化物を母相中に十分に固溶させる作用効果が得られる。すなわち、上記鍛造用母材に用いる鋼材は、従来より高温で浸炭処理した場合の異常粒成長抑制効果を確実に得るために、従来多く用いられているNb添加の肌焼き鋼に比べて、Nb、Al、Nの含有率を高めとしているため、上記鍛造用母材の加熱温度が1300℃未満の場合には、上記析出物を十分に固溶させることが難しくなる。
Next, manufacturing conditions in the above manufacturing method will be described.
In the manufacturing method described above, a forging base material prepared by cutting a steel material having a cross-sectional dimension suitable for component manufacturing by rolling or the like into a predetermined dimension is heated to 1300 ° C. or higher. By heating this forging base material at a very high temperature, as described above, the effect of sufficiently dissolving AlN and Nb carbonitride existing in the steel having the specific chemical component in the matrix phase. Is obtained. That is, the steel material used for the base material for forging is Nb in comparison with Nb-added case-hardened steel, which is conventionally used in many cases, in order to reliably obtain the effect of suppressing abnormal grain growth when carburized at a higher temperature than before. Since the contents of Al and N are increased, when the heating temperature of the forging base material is less than 1300 ° C., it is difficult to sufficiently dissolve the precipitate.

上記鍛造用母材の加熱後には、当該鍛造用母材を1230℃未満に冷却させることなく1230℃以上の熱間鍛造温度で熱間鍛造して鍛造部品を作製する。このように、鍛造用母材を1230℃未満に冷却させることなく熱間鍛造を実施することにより、鋼中にNb及びAlが十分に固溶した状態を維持したままの鍛造品を得ることができる。一方、熱間鍛造前あるいは鍛造時に1230℃未満に冷却して熱間鍛造を施した場合には、鋼中に固溶していたAl及びNbがAlN及びNb炭窒化物として析出し、その後の析出熱処理の際にこの析出物が成長するため、析出物の数が減少し、1050℃超えの減圧浸炭処理における結晶粒粗大化を抑制するのに必要な数のAlN及びNb炭窒化物を析出させることが困難となる。   After heating the forging base material, the forging base material is manufactured by hot forging at a hot forging temperature of 1230 ° C. or higher without cooling the forging base material to less than 1230 ° C. In this way, by performing hot forging without cooling the forging base material to less than 1230 ° C., it is possible to obtain a forged product that maintains a state where Nb and Al are sufficiently dissolved in steel. it can. On the other hand, when hot forging is performed by cooling to less than 1230 ° C before or during hot forging, Al and Nb dissolved in the steel are precipitated as AlN and Nb carbonitride, Since this precipitate grows during the precipitation heat treatment, the number of precipitates decreases, and the number of AlN and Nb carbonitrides necessary to suppress the grain coarsening in the reduced pressure carburizing process exceeding 1050 ° C. is precipitated. It becomes difficult.

上記析出熱処理は、上記鍛造部品を熱間鍛造後に一旦冷却してから再加熱して実施する方法(第1析出熱処理方法)と、熱間鍛造後の冷却過程において実施する方法(第2析出熱処理方法)をとることができる。また、これら2種類の熱処理方法を両方組み合わせることもできる。   The precipitation heat treatment is performed by first cooling the forged part after hot forging and then reheating (first precipitation heat treatment method), and by the cooling process after hot forging (second precipitation heat treatment). Method). Further, both of these two types of heat treatment methods can be combined.

上記第1析出熱処理方法の具体的な析出熱処理は、熱間鍛造後の上記鍛造部品を少なくとも500℃以下まで冷却した後に再加熱して850℃〜1000℃に30分以上保持した後、500℃までを25℃/分以下の冷却速度で冷却することにより行うことができる。   The specific precipitation heat treatment of the first precipitation heat treatment method is performed by cooling the forged part after hot forging to at least 500 ° C. or less and then reheating it and holding it at 850 ° C. to 1000 ° C. for 30 minutes or more. Can be carried out by cooling at a cooling rate of 25 ° C./min or less.

この場合には、再加熱の前に、熱間鍛造後の鍛造部品が500℃以下まで冷却されることによって、Al及びNbが固溶された状態を維持することができる。なお、この場合の冷却速度は、積極的に冷却速度を遅くしない方法で冷却する限り特に制御する必要がないが、上記固溶状態を十分に維持するために、いわゆる空冷により得られる冷却速度以上とすることが好ましい。   In this case, the forged part after hot forging is cooled to 500 ° C. or lower before reheating, so that the state in which Al and Nb are dissolved can be maintained. The cooling rate in this case does not need to be controlled as long as it is cooled by a method that does not actively slow down the cooling rate, but in order to maintain the above solid solution state sufficiently, it is higher than the cooling rate obtained by so-called air cooling. It is preferable that

上記冷却の後、鍛造部品を再加熱して850℃〜1000℃に30分以上保持する。これにより、適度な大きさのAlN及びNb炭窒化物を数多く析出させることができる。この再加熱温度が850℃未満の場合及び保持時間が30分未満の場合には、金属組織のオーステナイト化が不十分となり、処理後の硬さ不良、ミクロ組織の不均一等を招き、加工性の低下や浸炭歪み悪化の原因となるおそれがある。また、再加熱温度が1000℃を超える場合には、AlN及びNb炭窒化物が過剰に成長する一方、これらの数が減少することによって、ピン止め効果が減少するおそれがある。   After the cooling, the forged part is reheated and held at 850 ° C. to 1000 ° C. for 30 minutes or more. Thereby, many moderately sized AlN and Nb carbonitrides can be precipitated. When this reheating temperature is less than 850 ° C. and when the holding time is less than 30 minutes, the austenite of the metal structure becomes insufficient, resulting in poor hardness after processing, non-uniform microstructure, etc., and workability. There is a possibility that it may cause a decrease in carburization and deterioration of carburization distortion. In addition, when the reheating temperature exceeds 1000 ° C., AlN and Nb carbonitride grow excessively, while the number of them decreases, which may reduce the pinning effect.

上記の再加熱の後には、上記鍛造部品を冷却するが、その場合の冷却速度を少なくとも500℃に達するまで25℃/分以下とする。これにより、焼入れ効果が最小限となり、加工性を維持することができる。一方、冷却速度が25℃/分を超える場合には、鍛造部品の硬度が高くなり、その後の加工性が低下するおそれがある。   After the reheating, the forged part is cooled. In this case, the cooling rate is 25 ° C./min or less until at least 500 ° C. is reached. Thereby, the quenching effect is minimized and the workability can be maintained. On the other hand, when the cooling rate exceeds 25 ° C./min, the hardness of the forged part is increased, and the subsequent workability may be reduced.

上記第2析出熱処理方法の具体的な析出熱処理は、熱間鍛造後の上記鍛造部品の冷却途中において該鍛造部品を620〜700℃の温度に30分以上保持することにより行うことができる。この場合には、熱間鍛造後の鍛造部品を620℃以下に冷却させることなく、620℃〜700℃に保持することによって、適度な大きさのAlN及びNb炭窒化物を数多く析出させることができる。この保持温度が620℃未満あるいは保持時間が30分未満の場合には、AlN及びNb炭窒化物の析出が十分に進まないおそれがある。一方、保持温度が700℃を超える場合には、処理後にベイナイト組織が生成しやすく、また、被削性の劣化や減圧高温浸炭処理後の結晶粒粗大化が生じやすくなる。   The specific precipitation heat treatment of the second precipitation heat treatment method can be performed by holding the forged part at a temperature of 620 to 700 ° C. for 30 minutes or more during the cooling of the forged part after hot forging. In this case, it is possible to precipitate a large number of moderately sized AlN and Nb carbonitrides by keeping the forged parts after hot forging at 620 ° C. to 700 ° C. without cooling them to 620 ° C. or lower. it can. When the holding temperature is less than 620 ° C. or the holding time is less than 30 minutes, the precipitation of AlN and Nb carbonitride may not proceed sufficiently. On the other hand, when the holding temperature exceeds 700 ° C., a bainite structure is likely to be generated after the processing, and machinability is deteriorated and crystal grain coarsening after the reduced-pressure high-temperature carburizing processing is likely to occur.

そして、上記析出熱処理は、当該析出熱処理によって、上記鍛造部品中における円相当径20nm以上の炭窒化物の析出個数を20個/μm2以上とするように条件を設定することが好ましい。上記の具体的な2種類のいずれか一方又は両方の析出熱処理を採用すれば、この析出状態を容易に実現できる。なお、上記熱間鍛造後の鍛造部品を620〜1000℃の温度に30分以上保持すれば、上記2種類の析出熱処理以外の条件を採用しても同様の析出状態を得ることも可能であり、1050℃超における減圧浸炭処理時の結晶粒粗大化を抑制することが可能である。一方、結晶粒粗大化抑制以外の他の特性を満足する鍛造部品をより確実に製造するには、上記2種類の特定の析出熱処理を採用するのが好ましい。 And it is preferable to set conditions for the said precipitation heat treatment so that the precipitation number of carbonitride having an equivalent circle diameter of 20 nm or more in the forged part is 20 pieces / μm 2 or more by the precipitation heat treatment. If one or both of the above two specific types of precipitation heat treatment are employed, this precipitation state can be easily realized. In addition, if the forged parts after the hot forging are kept at a temperature of 620 to 1000 ° C. for 30 minutes or more, it is possible to obtain the same precipitation state even if conditions other than the above two kinds of precipitation heat treatment are adopted. It is possible to suppress crystal grain coarsening during reduced-pressure carburization at over 1050 ° C. On the other hand, in order to more reliably manufacture a forged part that satisfies other characteristics than the suppression of grain coarsening, it is preferable to employ the two types of specific precipitation heat treatments.

鍛造部品の金属組織において、円相当径20nm未満の炭窒化物が多く存在してもあまりピン止め効果を発揮しない。また、円相当径20nm以上の炭窒化物の析出個数が20個/μm2未満の場合も十分なピン止め効果が得られない。 Even if a large amount of carbonitride having an equivalent circle diameter of less than 20 nm is present in the metal structure of the forged part, the pinning effect is not so much exhibited. Further, when the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more is less than 20 / μm 2, a sufficient pinning effect cannot be obtained.

なお、上記炭窒化物は、実質的には、AlN及びNb炭窒化物からなるが、他の種類の炭窒化物、例えば、不純物として含有されるTiの炭窒化物が存在していればそれも含む。   The carbonitride is substantially composed of AlN and Nb carbonitride, but other types of carbonitride, for example, Ti carbonitride contained as impurities, are present. Including.

(実施例1)
上記減圧高温浸炭処理用鍛造部品及びその製造方法にかかる実施例について説明する。本例では、表1に示すごとく、化学成分が異なる複数種類の鋼材(試料1〜10)を準備し、1種類の製造方法によって鍛造部品を作製し、減圧高温浸炭処理による結晶粒粗大化の有無を評価した。本例では、析出熱処理方法として、上述した第1析出熱処理方法を採用した。
Example 1
Examples of the forged part for low-pressure high-temperature carburizing treatment and the manufacturing method thereof will be described. In this example, as shown in Table 1, a plurality of types of steel materials (samples 1 to 10) having different chemical components are prepared, a forged part is prepared by one type of manufacturing method, and grain coarsening by reduced-pressure high-temperature carburizing treatment is performed. The presence or absence was evaluated. In this example, the first precipitation heat treatment method described above was employed as the precipitation heat treatment method.

Figure 0006148994
Figure 0006148994

各試料は、次のようにして作製した。まず、表1に示された化学成分を有する鋼塊をそれぞれ作製した。具体的には、各試料の原料の溶解、精錬及び鋳込みをVIM(Vacuum Induction Melting:真空誘導溶解装置)を用いて行い、鋼塊を得た。この鋼塊から鍛伸等により、直径φ65mm×120mm長さの鍛造用母材を準備し、これを1330℃に加熱し、その後、1230℃未満に冷却させることなく1280℃の熱間鍛造温度で熱間鍛造して鍛造部品を作製した。なお、記載された温度は、全て表面温度である(以下、同様)。   Each sample was produced as follows. First, steel ingots having chemical components shown in Table 1 were prepared. Specifically, melting, refining and casting of the raw materials of each sample were performed using a VIM (Vacuum Induction Melting) to obtain a steel ingot. A forging base material having a diameter of 65 mm × 120 mm is prepared from the steel ingot by forging and the like, heated to 1330 ° C., and then cooled to less than 1230 ° C. at a hot forging temperature of 1280 ° C. Forged parts were produced by hot forging. The temperatures described are all surface temperatures (the same applies hereinafter).

熱間鍛造後の鍛造部品は、冷却速度およそ600℃の温度までを100℃/分、600℃以下の温度域で20℃/分となる空冷の条件で室温まで冷却した。その後、鍛造部品を再加熱して900℃に60分保持した後、500℃までをおよそ30℃/分の冷却速度で冷却した。得られた鍛造部品に対し、1060℃、1080℃及び1100℃の3種類の浸炭温度で減圧高温浸炭処理を行った。そして、浸炭処理前後の金属組織を観察してその品質を評価した。   The forged parts after hot forging were cooled to room temperature under air cooling conditions of 100 ° C./min up to a cooling rate of about 600 ° C. and 20 ° C./min in a temperature range of 600 ° C. or lower. Thereafter, the forged part was reheated and held at 900 ° C. for 60 minutes, and then cooled to 500 ° C. at a cooling rate of about 30 ° C./min. The obtained forged parts were subjected to reduced-pressure high-temperature carburizing treatment at three carburizing temperatures of 1060 ° C., 1080 ° C., and 1100 ° C. And the metal structure before and behind carburizing treatment was observed and the quality was evaluated.

減圧浸炭処理は、浸炭期の炉内圧力が150Paとなる減圧雰囲気下で、浸炭期と拡散期とを合わせて合計約5分間で処理を行った。雰囲気ガスとしては、アセチレンガスを使用し、浸炭処理はパルス浸炭法(例えば特開2004−300520参照)により行った。また、浸炭処理後は、窒素ガスを用いたガス冷却によって鍛造部品に焼入れ処理を施した。ここまで処理した鍛造部品を用いて後述する金属組織の観察を行った。   The reduced pressure carburizing treatment was performed in a reduced pressure atmosphere in which the pressure in the furnace during the carburizing period was 150 Pa for a total of about 5 minutes including the carburizing period and the diffusion period. As the atmospheric gas, acetylene gas was used, and the carburizing process was performed by a pulse carburizing method (see, for example, JP-A-2004-300520). Moreover, after the carburizing treatment, the forged parts were quenched by gas cooling using nitrogen gas. The metal structure mentioned later was observed using the forged parts processed so far.

金属組織の観察は、鍛造部品の浸炭処理前における炭窒化物の個数(個/μm2)の測定と、浸炭処理後における結晶粒粗大化の有無を評価した。結晶粒粗大化の判定では、JIS G0551に記載の測定方法で平均6番以上となり、かつ3番以下の部分が全くない場合を良(○)、平均6番未満、あるいは、3番以下の部分が少なくとも一部に存在する場合を不良(△)、平均6番未満であり、かつ、3番以下の部分が少なくとも一部に存在する場合を不良(×)と判定した。評価結果を表2に示す。 For the observation of the metal structure, the number of carbonitrides (pieces / μm 2 ) before carburizing treatment of forged parts and the presence or absence of grain coarsening after carburizing treatment were evaluated. In the determination of the coarsening of the crystal grains, the measurement method described in JIS G0551 has an average of 6 or more and the case where there is no 3 or less portion is good (◯), the average is less than 6 or the 3 or less portion Is at least partially defective (Δ), the average is less than No. 6, and the case where the number 3 or less is at least partially present is determined as defective (×). The evaluation results are shown in Table 2.

炭窒化物(析出粒子)の個数の測定は、次のようにして行った。
観察用の試料の調整は、一般的に用いられているレプリカ法で行なった。具体的には、先ず、各試料の鋼材を鏡面研磨仕上げし、ナイタール(硝酸3%エタノール溶液)にて研磨面を約30秒エッチングした。次いで、真空蒸着装置でエッチング面に膜厚約200nmのカーボン膜(レプリカ膜)を蒸着させた。レプリカ膜を設けた試料をナイタールに約30分浸漬し、鋼材とレプリカ膜の界面を溶解することで、レプリカ膜を鋼材から外した。その後、レプリカ膜は蒸留水にて洗浄を3回行ない、乾燥したものを観察用サンプルとした。
このレプリカ膜を透過電子顕微鏡にセットし、20万倍の条件で1実施条件につき20枚のTEM像を撮影した。全てのTEM像の写真を2値化処理後画像解析し、円相当径および個数を算出し、単位面積当たりの個数と粒度分布を求めることにより、20nm以上の析出粒子数を定量化した。
The number of carbonitrides (precipitated particles) was measured as follows.
The sample for observation was adjusted by a commonly used replica method. Specifically, first, the steel material of each sample was mirror-polished and the polished surface was etched with nital (nitric acid 3% ethanol solution) for about 30 seconds. Next, a carbon film (replica film) having a film thickness of about 200 nm was deposited on the etching surface by a vacuum deposition apparatus. The sample provided with the replica film was immersed in nital for about 30 minutes, and the replica film was removed from the steel material by dissolving the interface between the steel material and the replica film. Thereafter, the replica membrane was washed three times with distilled water and dried to obtain a sample for observation.
This replica film was set on a transmission electron microscope, and 20 TEM images were taken for each execution condition under a condition of 200,000 times. All the photographs of the TEM images were binarized and subjected to image analysis, the equivalent circle diameter and number were calculated, and the number per unit area and the particle size distribution were determined to quantify the number of precipitated particles of 20 nm or more.

Figure 0006148994
Figure 0006148994

表2から知られるごとく、化学成分が適切な試料(試料1〜6)については、浸炭温度が1060℃〜1100℃のいずれの条件においても、結晶粒粗大化が生じることなく良好であった。一方、Al、N及びNbのうち少なくとも1つの成分が限定範囲の下限値を下回る試料(試料7〜10)は、少なくとも、浸炭温度が1100℃の際に、観察した金属組織におけるほぼ全面が粗大化していた。   As is known from Table 2, the samples (samples 1 to 6) with appropriate chemical components were good without any grain coarsening under any of the carburizing temperatures of 1060 ° C to 1100 ° C. On the other hand, the samples (samples 7 to 10) in which at least one component of Al, N, and Nb is below the lower limit value of the limited range, at least when the carburizing temperature is 1100 ° C., almost the entire surface of the observed metal structure is coarse. It was converted.

(実施例2)
本例では、実施例1の表1に示した化学成分が異なる複数種類の鍛造用母材(試料1〜10)を準備し、実施例1とは異なる1種類の製造方法によって鍛造部品を作製し、減圧高温浸炭処理による結晶粒粗大化の有無を評価した。本例では、析出熱処理方法として、上述した第2析出熱処理方法を採用した。
(Example 2)
In this example, a plurality of types of forging base materials (samples 1 to 10) having different chemical components shown in Table 1 of Example 1 are prepared, and a forged part is produced by one type of manufacturing method different from Example 1. Then, the presence or absence of crystal grain coarsening due to reduced-pressure high-temperature carburizing treatment was evaluated. In this example, the second precipitation heat treatment method described above was employed as the precipitation heat treatment method.

本例では、各試料は次のようにして作製した。まず、表1に示された化学成分を有する鋼塊をそれぞれ作製した。具体的には、各試料の原料の溶解、精錬及び鋳込みをVIM(Vacuum Induction Melting:真空誘導溶解装置)を用いて行い、鋼塊を得た。この鋼塊から実施例1と同様に鍛造用母材を準備し、これを1330℃に加熱し、その後、1230℃未満に冷却させることなく1280℃の熱間鍛造温度で熱間鍛造して鍛造部品を作製した。ここまでは実施例1と同様である。   In this example, each sample was produced as follows. First, steel ingots having chemical components shown in Table 1 were prepared. Specifically, melting, refining and casting of the raw materials of each sample were performed using a VIM (Vacuum Induction Melting) to obtain a steel ingot. A base material for forging is prepared from this steel ingot in the same manner as in Example 1, heated to 1330 ° C., and then forged by hot forging at a hot forging temperature of 1280 ° C. without cooling to less than 1230 ° C. Parts were produced. The steps so far are the same as in the first embodiment.

熱間鍛造後の鍛造部品は、その冷却途中において650℃雰囲気加熱炉に投入し、それ以下の温度に低下しない状態で60分保持し、その後、冷却速度およそ20℃/分となる空冷の条件で室温まで冷却した。得られた鍛造部品に対し、実施例1と同様の方法で、1060℃、1080℃及び1100℃の3種類の浸炭温度で減圧高温浸炭処理した。そして、浸炭処理前後の金属組織を観察してその品質を評価した。評価方法は実施例1と同様とした。評価結果を表3に示す。   The forged parts after hot forging are put into a 650 ° C. atmosphere heating furnace in the middle of cooling, held for 60 minutes in a state where the temperature is not lowered to that temperature, and then cooled by air at about 20 ° C./min. At room temperature. The obtained forged parts were subjected to reduced-pressure high-temperature carburizing treatment at three kinds of carburizing temperatures of 1060 ° C., 1080 ° C. and 1100 ° C. in the same manner as in Example 1. And the metal structure before and behind carburizing treatment was observed and the quality was evaluated. The evaluation method was the same as in Example 1. The evaluation results are shown in Table 3.

Figure 0006148994
Figure 0006148994

表3から知られるごとく、本例においても、化学成分が適切な試料(試料1〜6)については、浸炭温度が1060℃〜1100℃のいずれの条件においても、結晶粒粗大化が生じることなく良好であった。一方、Al、N及びNbのうち少なくとも1つの成分が限定範囲の下限値を下回る試料(試料7〜10)は、少なくとも、浸炭温度が1100℃の際に、観察した金属組織におけるほぼ全面が粗大化していた。   As is known from Table 3, also in this example, for the samples (samples 1 to 6) with appropriate chemical components, no coarsening of crystal grains occurs in any of the carburizing temperatures of 1060 ° C to 1100 ° C. It was good. On the other hand, in the samples (samples 7 to 10) in which at least one component of Al, N and Nb is below the lower limit value of the limited range, at least when the carburizing temperature is 1100 ° C., almost the entire surface of the observed metal structure is coarse. It was converted.

(実施例3)
本例では、実施例1の表1における1種類の試料(試料2)を複数準備し、製造条件が異なる複数の製造方法によって鍛造部品を作製し、減圧高温浸炭処理による結晶粒粗大化の有無を評価した。
(Example 3)
In this example, a plurality of one kind of samples (sample 2) in Table 1 of Example 1 are prepared, forged parts are produced by a plurality of production methods having different production conditions, and whether or not grain coarsening is caused by reduced-pressure high-temperature carburizing treatment. Evaluated.

製造条件は、表4に示すごとく、熱間鍛造工程よりも前の鍛造用母材の加熱温度(a)熱間鍛造を行う際の熱間鍛造温度(b)、熱間鍛造後の室温までの冷却条件(c)、再加熱を行う場合の再加熱温度(d)及びその保持温度(e)、さらに、再加熱を行った場合の再加熱後の冷却条件(f)を種々変更した。得られた鍛造部品に対し、実施例1と同様の評価を行った。評価結果を表5に示す。   As shown in Table 4, the manufacturing conditions are as follows: the heating temperature of the forging base material before the hot forging step (a) the hot forging temperature (b) when performing hot forging, and the room temperature after hot forging. The cooling condition (c), the reheating temperature (d) in the case of reheating and the holding temperature (e), and the cooling condition (f) after the reheating in the case of reheating were variously changed. Evaluation similar to Example 1 was performed with respect to the obtained forged part. The evaluation results are shown in Table 5.

Figure 0006148994
Figure 0006148994

Figure 0006148994
Figure 0006148994

表5から知られるように、加熱温度(a)が1300℃以上であり、その後連続的に行う熱間鍛造の熱間鍛造温度(b)が1230℃以上であり、かつ、析出熱処理の条件((c)〜(f))が上述した第1析出熱処理方法又は第2析出熱処理方法のいずれかの条件を具備する場合(条件1〜11の場合)及び両方の条件を具備する場合(条件12の場合)には、浸炭温度が1060℃〜1100℃のいずれの条件においても、結晶粒粗大化が生じることなく良好であった。   As is known from Table 5, the heating temperature (a) is 1300 ° C. or higher, the hot forging temperature (b) of hot forging performed continuously thereafter is 1230 ° C. or higher, and the conditions for the precipitation heat treatment ( When (c) to (f)) have the above-described conditions of either the first precipitation heat treatment method or the second precipitation heat treatment method (conditions 1 to 11) and both conditions (condition 12) In the case of (1), the carburization temperature was good without any coarsening of the crystal grains under any conditions of 1060 ° C to 1100 ° C.

一方、少なくとも、上記条件(a)〜(d)のいずれかが不適切な場合(条件13〜17)には、少なくとも、浸炭温度が1100℃の際に、観察した金属組織におけるほぼ全面が粗大化していた。   On the other hand, at least when any of the above conditions (a) to (d) is inappropriate (conditions 13 to 17), at least when the carburizing temperature is 1100 ° C., almost the entire surface of the observed metal structure is coarse. It was converted.

(実施例4)
上述した実施例1〜3において1100℃の浸炭温度で減圧高温浸炭処理した鍛造部品における、円相当径20nm以上の炭窒化物の析出個数と浸炭処理後の平均結晶粒度番号との関係を調べた。両者の関係を図1に示す。同図は、横軸に円相当径20nm以上の炭窒化物の析出個数(個/μm2)を、縦軸に平均結晶粒度番号を取ったものである。
Example 4
In the above-described Examples 1 to 3, forged parts subjected to high-pressure carburization under reduced pressure at a carburizing temperature of 1100 ° C., the relationship between the number of precipitated carbonitrides with an equivalent circle diameter of 20 nm or more and the average grain size number after carburizing was investigated. . The relationship between the two is shown in FIG. In the figure, the horizontal axis represents the number of precipitated carbonitrides with a circle equivalent diameter of 20 nm or more (pieces / μm 2 ), and the vertical axis represents the average grain size number.

同図から知られるごとく、1100℃という超高温の浸炭処理を実施する場合においては、少なくとも、円相当径20nm以上の炭窒化物の析出個数を20(個/μm2)以上とすることにより、平均結晶粒度番号を6以上とすることができる。このことから、少なくとも平均結晶粒度番号で判断した場合、円相当径20nm以上の炭窒化物の析出個数を20(個/μm2)以上とすることが、超高温の浸炭温度により減圧浸炭処理される鍛造部品における結晶粒粗大化防止に有効であることがわかる。 As is known from the figure, in the case of carrying out an ultra-high temperature carburizing treatment of 1100 ° C., at least the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more is 20 (pieces / μm 2 ) or more. The average grain size number can be 6 or more. From this, when judged by at least the average grain size number, the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more is set to 20 (pieces / μm 2 ) or more. It can be seen that this is effective in preventing grain coarsening in the forged parts.

Claims (5)

1050℃を超える浸炭温度で減圧高温浸炭処理される鍛造部品を製造する方法であって、
質量比にて、C:0.10〜0.30%、Si:0.03〜1.50%、P:0.035%以下、S:0.035%以下、Mn:0.30〜1.50%、Cr:0.30〜3.00%、Al:0.030〜0.100%、N:0.0150〜0.0250%、Nb:0.08〜0.12%、Mo:0〜0.80%を含有し、残部がFe及び不可避的不純物からなる鍛造用母材を準備し、
該鍛造用母材を1300℃以上に加熱し、
その後、上記鍛造用母材を1230℃未満に冷却させることなく1230℃以上の熱間鍛造温度で熱間鍛造して鍛造部品を作製し、
その後、上記鍛造部品を620〜1000℃の温度に30分以上保持して炭窒化物の析出を促す析出熱処理を行うことを特徴とする減圧高温浸炭処理用鍛造部品の製造方法。
A method for producing a forged part that is subjected to high-pressure carburization under reduced pressure at a carburizing temperature exceeding 1050 ° C,
By mass ratio, C: 0.10 to 0.30%, Si: 0.03 to 1.50%, P: 0.035% or less, S: 0.035% or less, Mn: 0.30 to 1 .50%, Cr: 0.30 to 3.00%, Al: 0.030 to 0.100%, N: 0.0150 to 0.0250%, Nb: 0.08 to 0.12%, Mo: Preparing a forging base material containing 0-0.80%, the balance being Fe and inevitable impurities,
Heating the base material for forging to 1300 ° C. or higher,
Then, forging parts are produced by hot forging at a hot forging temperature of 1230 ° C. or higher without cooling the forging base material to less than 1230 ° C.,
Then, the forged part is maintained at a temperature of 620 to 1000 ° C. for 30 minutes or longer, and a precipitation heat treatment for promoting precipitation of carbonitride is performed.
上記析出熱処理は、熱間鍛造後の上記鍛造部品を少なくとも500℃以下まで冷却した後に再加熱して850℃〜1000℃に30分以上保持した後、500℃までを25℃/分以下の冷却速度で冷却することにより行うことを特徴とする請求項1に記載の減圧高温浸炭処理用の鍛造部品の製造方法。   In the precipitation heat treatment, the forged part after hot forging is cooled to at least 500 ° C. or less, reheated and held at 850 ° C. to 1000 ° C. for 30 minutes or more, and then cooled to 500 ° C. at 25 ° C./min or less. The method for producing a forged part for reduced-pressure high-temperature carburizing treatment according to claim 1, wherein the method is performed by cooling at a speed. 上記析出熱処理は、熱間鍛造後の上記鍛造部品の冷却途中において該鍛造部品を620〜700℃の温度に30分以上保持することにより行うことを特徴とする請求項1に記載の減圧高温浸炭処理用鍛造部品の製造方法。   2. The reduced-pressure high-temperature carburization according to claim 1, wherein the precipitation heat treatment is performed by holding the forged part at a temperature of 620 to 700 ° C. for 30 minutes or more during the cooling of the forged part after hot forging. Manufacturing method of forged parts for processing. 上記析出熱処理によって、上記鍛造部品における円相当径20nm以上の炭窒化物の析出個数を20個/μm2以上とすることを特徴とする請求項1〜3のいずれか1項に記載の減圧高温浸炭処理用の鍛造部品の製造方法。 The reduced pressure and high temperature according to any one of claims 1 to 3, wherein the precipitation heat treatment sets the number of precipitation of carbonitride having an equivalent circle diameter of 20 nm or more in the forged part to 20 pieces / µm 2 or more. A method for manufacturing forged parts for carburizing. 1050℃を超える浸炭温度で減圧高温浸炭処理される鍛造部品であって、
質量比にて、C:0.10〜0.30%、Si:0.03〜1.50%、P:0.035%以下、S:0.035%以下、Mn:0.30〜1.50%、Cr:0.30〜3.00%、Al:0.030〜0.100%、N:0.0150〜0.0250%、Nb:0.08〜0.12%、Mo:0〜0.80%を含有し、残部がFe及び不可避的不純物からなり、
金属組織中の円相当径20nm以上の炭窒化物の析出個数が20個/μm2以上であることを特徴とする減圧高温浸炭処理用鍛造部品。
A forged part that is subjected to high-pressure carburization under reduced pressure at a carburizing temperature exceeding 1050 ° C,
By mass ratio, C: 0.10 to 0.30%, Si: 0.03 to 1.50%, P: 0.035% or less, S: 0.035% or less, Mn: 0.30 to 1 .50%, Cr: 0.30 to 3.00%, Al: 0.030 to 0.100%, N: 0.0150 to 0.0250%, Nb: 0.08 to 0.12%, Mo: Containing 0-0.80%, the balance consisting of Fe and inevitable impurities,
A forged part for reduced-pressure high-temperature carburizing treatment, wherein the number of precipitated carbonitrides having an equivalent circle diameter of 20 nm or more in a metal structure is 20 pieces / μm 2 or more.
JP2014035270A 2014-02-26 2014-02-26 Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof Expired - Fee Related JP6148994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035270A JP6148994B2 (en) 2014-02-26 2014-02-26 Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035270A JP6148994B2 (en) 2014-02-26 2014-02-26 Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015160966A JP2015160966A (en) 2015-09-07
JP6148994B2 true JP6148994B2 (en) 2017-06-14

Family

ID=54184288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035270A Expired - Fee Related JP6148994B2 (en) 2014-02-26 2014-02-26 Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6148994B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148995B2 (en) * 2014-02-26 2017-06-14 愛知製鋼株式会社 Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof
JP6401143B2 (en) * 2015-10-20 2018-10-03 トヨタ自動車株式会社 Method for producing carburized forging

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100492B2 (en) * 1993-04-16 2000-10-16 新日本製鐵株式会社 Manufacturing method of high fatigue strength hot forgings
JP3329210B2 (en) * 1996-10-16 2002-09-30 住友金属工業株式会社 Method for producing case hardened steel and case hardened steel manufactured by the method
JP4681160B2 (en) * 2001-07-10 2011-05-11 愛知製鋼株式会社 Manufacturing method of high temperature carburizing steel and high temperature carburizing steel manufactured by the method
JP4350968B2 (en) * 2003-03-31 2009-10-28 愛知製鋼株式会社 Steel for vacuum carburizing and manufacturing method of vacuum carburized parts
JP6148995B2 (en) * 2014-02-26 2017-06-14 愛知製鋼株式会社 Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015160966A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6401143B2 (en) Method for producing carburized forging
CN111411293A (en) High speed tool and method of making same
TW201619409A (en) Steel for bolts, and bolt
JP6148995B2 (en) Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof
WO2018211779A1 (en) Oil tempered wire
JP2012158827A (en) Hot-worked steel product for surface hardening
JP5325432B2 (en) Manufacturing method of cold processed products
TW201606096A (en) Case-hardened steel having excellent cold forgeability and capable of suppressing abnormal grain growth during carburizing treatment
JP6148994B2 (en) Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
TWI544089B (en) It is possible to suppress the surface hardened steel produced by the abnormal particles during carburization and the mechanical structural parts
US20220106663A1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
JP5326885B2 (en) Rolled steel for hot forging and method for producing the same
JP2016074951A (en) Manufacturing method of case hardened steel
JP2005163168A (en) Production method for high-temperature carburizing steel capable of omitting normalizing after hot forging
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP2012102390A (en) High strength/high toughness non-heat treated hot-forged component and method for producing the same
JP2021195588A (en) Case-hardened steel material and method for producing the same
JP6344495B1 (en) Vacuum carburizing and nitriding treatment method for steel
CN113403527B (en) Blank for vacuum carburization and method for manufacturing same
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JP6347153B2 (en) Steel material and manufacturing method thereof
JP2011111667A (en) Steel having excellent rolling fatigue life
JP6801721B2 (en) Steel materials for soft magnetic parts, soft magnetic parts, and manufacturing methods for soft magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6148994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees