JP2021195588A - Case-hardened steel material and method for producing the same - Google Patents

Case-hardened steel material and method for producing the same Download PDF

Info

Publication number
JP2021195588A
JP2021195588A JP2020102228A JP2020102228A JP2021195588A JP 2021195588 A JP2021195588 A JP 2021195588A JP 2020102228 A JP2020102228 A JP 2020102228A JP 2020102228 A JP2020102228 A JP 2020102228A JP 2021195588 A JP2021195588 A JP 2021195588A
Authority
JP
Japan
Prior art keywords
steel material
circle
forging
skin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020102228A
Other languages
Japanese (ja)
Inventor
尚秀 神谷
Naohide Kamiya
優樹 田中
Yuki Tanaka
圭介 井上
Keisuke Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2020102228A priority Critical patent/JP2021195588A/en
Publication of JP2021195588A publication Critical patent/JP2021195588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To provide a case-hardened steel material that can suppress abnormal grain growth during high-temperature carburization.SOLUTION: The case-hardened steel material is made of a steel having a predetermined component composition. Regarding the number of precipitates containing AlN and/or NbC per 1 μm2 and setting pieces having a circle-equivalent diameter of 10 nm or less as S, pieces having a circle-equivalent diameter of more than 10 nm to 40 nm or less as M, and pieces having a circle-equivalent diameter of 100 nm or more as L, S<10, M>10, L<0.001, and, furthermore, 2S+2000L<M ...Equation (1) is satisfied.SELECTED DRAWING: None

Description

この発明は、肌焼鋼材及びその製造方法に関する。 The present invention relates to a skin-baked steel material and a method for producing the same.

例えば自動車の動力伝達部品として用いられるギヤ部品等では、表面の強度および内部の靭性を確保するため、JIS鋼であるSCr420H、SCM420H等の肌焼鋼に浸炭処理が施される。浸炭処理は通常、その処理に長い時間を要するため、コスト面から浸炭時間の短縮が課題とされている。浸炭時間の短縮には浸炭温度の高温化が必要とされるが、高温下における浸炭処理では結晶粒の粗大化が生じ、疲労強度や静的強度の低下をもたらす場合がある。 For example, in gear parts and the like used as power transmission parts of automobiles, carburized steels such as SCr420H and SCM420H, which are JIS steels, are carburized in order to secure surface strength and internal toughness. Since the carburizing treatment usually takes a long time, shortening the carburizing time is an issue from the viewpoint of cost. Although it is necessary to raise the carburizing temperature to shorten the carburizing time, the carburizing treatment at a high temperature causes coarsening of crystal grains, which may lead to a decrease in fatigue strength and static strength.

結晶粒の粗大化を防止する技術としては、浸炭処理前の製造工程でAlN等の粒子を分散析出させ、結晶粒(詳しくは結晶粒界)をピンニング(ピン止め)することが広く実施されている(例えば、下記特許文献1〜3参照)。 As a technique for preventing the coarsening of crystal grains, it is widely practiced to disperse and precipitate particles such as AlN in the manufacturing process before carburizing and pinning (pinning) the crystal grains (specifically, the crystal grain boundaries). (For example, see Patent Documents 1 to 3 below).

特開2005−163168号公報Japanese Unexamined Patent Publication No. 2005-163168 特開2015−140449号公報Japanese Unexamined Patent Publication No. 2015-140449 特開2012−207244号公報Japanese Unexamined Patent Publication No. 2012-207244

しかしながら、この種の析出物粒子(ピンニング粒子)によって結晶粒をピンニングする技術にあっては、局部的に結晶粒が異常に粗大化する異常粒成長の現象を十分に防ぐことが難しい問題があった。 However, in the technique of pinning crystal grains by this kind of precipitate particles (pinning particles), there is a problem that it is difficult to sufficiently prevent the phenomenon of abnormal grain growth in which the crystal grains are locally abnormally coarsened. rice field.

ここで異常粒成長とは、浸炭初期には析出物粒子によるピンニング力が結晶粒成長の駆動力よりも大であったものが、浸炭中に力関係が逆転し、析出物粒子のピンニング力よりも結晶粒成長の駆動力が大となることによって起る現象で、こうした力関係の逆転は、浸炭中における析出物粒子の固溶、析出物がオストワルド成長し粗大化することによってピンニング力が小さくなること等が要因となって生じる。 Here, the abnormal grain growth means that the pinning force of the precipitate particles was larger than the driving force of the crystal grain growth at the initial stage of carburizing, but the force relationship was reversed during the carburizing, and the pinning force of the precipitate particles was increased. However, it is a phenomenon that occurs when the driving force for crystal grain growth becomes large, and such a reversal of the force relationship is caused by the solid solution of the precipitate particles during carburizing and the osteostatic growth of the precipitates, which causes the pinning force to become small. It occurs due to factors such as becoming.

本発明は以上のような事情を背景とし、高温浸炭時の異常粒成長を抑制することが可能な肌焼鋼材及びその製造方法を提供することを目的とする。 Against the background of the above circumstances, it is an object of the present invention to provide a skin-baked steel material capable of suppressing abnormal grain growth during high-temperature carburizing and a method for producing the same.

本発明者らは、肌焼鋼材のピンニング粒子として作用する析出物のサイズおよびその密度に着目して鋭意研究を行った結果、円相当直径10nm以下の微細な析出物および円相当直径100nm以上の粗大な析出物の密度が高い場合に高温浸炭時の異常粒成長の原因となるピンニング力の低下が大きく、異常粒成長を抑制するためには、円相当直径10nm超〜40nm以下の範囲にある析出物の密度を高めることが有効であることを見出した。本発明はこのような知見の下になされたもので、AlNおよび/またはNbCを含む析出物の1μm2当たりの個数を、円相当直径10nm以下がS個、円相当直径10nm超〜40nm以下がM個、円相当直径100nm以上がL個としたとき、S<10、M>10、L<0.001で、更に2S+2000L<M と規定している。 As a result of diligent research focusing on the size and density of the precipitates that act as pinning particles in the skin-baked steel material, the present inventors have conducted diligent studies on fine precipitates having a circle-equivalent diameter of 10 nm or less and a circle-equivalent diameter of 100 nm or more. When the density of coarse precipitates is high, the pinning force, which causes abnormal grain growth during high-temperature carburization, is greatly reduced, and in order to suppress abnormal grain growth, the diameter equivalent to a circle is in the range of more than 10 nm to 40 nm or less. It has been found that increasing the density of precipitates is effective. The present invention has been made based on such findings, and the number of precipitates containing AlN and / or NbC per 1 μm 2 is as follows: S pieces having a circle-equivalent diameter of 10 nm or less and a circle-equivalent diameter of more than 10 nm to 40 nm or less. When M pieces and circle equivalent diameter of 100 nm or more are L pieces, S <10, M> 10, L <0.001 and 2S + 2000L <M are further specified.

このような析出物密度を有する鋼材は、所定の成分組成を有する鋼を用い、鍛造前加熱と鍛造後の焼準における条件を規定することにより得ることができる。 The steel material having such a precipitate density can be obtained by using a steel having a predetermined component composition and specifying the conditions for heating before forging and normalizing after forging.

而して本発明の要旨は、次の通りである Therefore, the gist of the present invention is as follows.

[1] 質量%で、C:0.10〜0.30%、Si:0.01〜1.50%、Mn:0.40〜1.50%、P:0.03%以下、S:0.005〜0.100%、Cu:0.01〜1.00%、Ni:0.01〜1.00%、Cr:0.01〜2.00%、Mo:0.01〜0.50%、s−Al:0.005〜0.050%、N:0.005〜0.030%を含むとともに、更に、任意選択でNb:0.001〜0.100%を含み、
残部をFe及び不可避的不純物とする組成を有し、
AlNおよび/またはNbCを含む析出物の1μm2当たりの個数について、円相当直径10nm以下がS個、円相当直径10nm超〜40nm以下がM個、円相当直径100nm以上がL個としたとき、S<10、M>10、L<0.001であって、
更に下記式(1)
2S+2000L<M …式(1)
を満たすことを特徴とする肌焼鋼材。
[1] By mass%, C: 0.10 to 0.30%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, P: 0.03% or less, S: 0.005 to 0.100%, Cu: 0.01 to 1.00%, Ni: 0.01 to 1.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 0. 50%, s-Al: 0.005 to 0.050%, N: 0.005 to 0.030%, and optionally Nb: 0.001 to 0.100%.
It has a composition in which the balance is Fe and unavoidable impurities.
Regarding the number of precipitates containing AlN and / or NbC per 1 μm 2 , when S pieces have a circle-equivalent diameter of 10 nm or less, M pieces have a circle-equivalent diameter of more than 10 nm to 40 nm or less, and L pieces have a circle-equivalent diameter of 100 nm or more. S <10, M> 10, L <0.001 and
Furthermore, the following formula (1)
2S + 2000L <M ... Equation (1)
A skin-baked steel material characterized by satisfying.

[2] 質量%で、Si:0.15〜1.50%を含有することを特徴とする[1]に記載の肌焼鋼材。 [2] The skin-baked steel material according to [1], which contains Si: 0.15 to 1.50% in mass%.

[3] 質量%で、Ti:0.001〜0.150%、Zr:0.001〜0.300%の何れか1種以上を更に含有することを特徴とする[1],[2]の何れかに記載の肌焼鋼材。 [3] It is characterized by further containing any one or more of Ti: 0.001 to 0.150% and Zr: 0.001 to 0.300% in mass% [1], [2]. The skin-baked steel material described in any of.

[4] 質量%で、B:0.0005〜0.010%を更に含有することを特徴とする[1]〜[3]の何れかに記載の肌焼鋼材。 [4] The skin-baked steel material according to any one of [1] to [3], which further contains B: 0.0005 to 0.010% in mass%.

[5] [1]〜[4]の何れかに記載の化学成分を有する鋼材を用い、
鍛造前加熱温度をT1、鍛造前加熱時間をtm1としたとき、下記式(2)、式(3)を満足する条件で鋼材を加熱した後、熱間鍛造加工を行なう鍛造工程と、
前記鍛造工程の後、焼準加熱温度をT2、焼準加熱時間をtm2としたとき、前記焼準加熱温度T2が900℃以上、1000℃以下であって、且つ下記式(4)を満足する条件で前記鋼材を加熱処理する焼準工程と、
を有することを特徴とする肌焼鋼材の製造方法。
T1×log10(tm1)>400×(8+log10[Al][N]) …式(2)
T1×log10(tm1)>300×(8+log10[Nb][C]) …式(3)
3000<T2×log10(tm2)<4000 …式(4)
ここで、T1,T2は温度(℃)、tm1,tm2は時間(秒)、式中の[ ]は各元素の含有質量%を示す。
[5] Using a steel material having the chemical composition according to any one of [1] to [4],
When the pre-forging heating temperature is T1 and the pre-forging heating time is tm1, the forging process in which the steel material is heated under the conditions satisfying the following formulas (2) and (3) and then hot forging is performed.
After the forging step, when the normalizing heating temperature is T2 and the normalizing heating time is tm2, the normalizing heating temperature T2 is 900 ° C. or higher and 1000 ° C. or lower, and the following formula (4) is satisfied. The normalizing step of heat-treating the steel material under the conditions and
A method for producing a skin-baked steel material, which comprises.
T1 × log 10 (tm1)> 400 × (8 + log 10 [Al] [N])… Equation (2)
T1 × log 10 (tm1)> 300 × (8 + log 10 [Nb] [C])… Equation (3)
3000 <T2 x log 10 (tm2) <4000 ... Equation (4)
Here, T1 and T2 indicate the temperature (° C.), tm1 and tm2 indicate the time (seconds), and [] in the formula indicates the content mass% of each element.

本発明によれば、高温浸炭時の異常粒成長を抑制することが可能な肌焼鋼材及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a skin-baked steel material capable of suppressing abnormal grain growth during high-temperature carburizing and a method for producing the same.

本実施形態の肌焼鋼材の鍛造工程および焼準工程における温度パターンの例を示した図である。It is a figure which showed the example of the temperature pattern in the forging process and the normalizing process of the skin-baked steel material of this embodiment.

本実施形態に係る肌焼鋼材は、Cと、Siと、Mnと、Pと、Sと、Cuと、Niと、Crと、Moと、s−Alと、Nと、任意選択でNbを含有し、残部がFe及び不可避的不純物からなる。また、Ti、Zr、Bを更に含有してもよい。 The skin-baked steel material according to this embodiment includes C, Si, Mn, P, S, Cu, Ni, Cr, Mo, s-Al, and N, and Nb can be optionally selected. It is contained and the balance consists of Fe and unavoidable impurities. Further, Ti, Zr and B may be further contained.

本実施形態の肌焼鋼材における各化学成分の限定理由を以下に詳述する。尚、以降の説明では、特にことわりがない限り「%」は「質量%」を意味するものとする。 The reasons for limiting each chemical component in the skin-baked steel material of the present embodiment will be described in detail below. In the following description, "%" means "mass%" unless otherwise specified.

C:0.10〜0.30%
Cは、硬さ、強度を確保する上で欠かせない元素である。浸炭部品における内部(芯部)硬さを確保するため0.10%以上含有させる。但し、過剰な添加は加工性の悪化を招くため、その上限を0.30%とする。好適なCの範囲は、0.15〜0.30%であり、内部硬さを安定して確保することができる。尚より好ましくは、0.15〜0.25%であり、より内部硬さを安定して確保することができる。
C: 0.10 to 0.30%
C is an element indispensable for ensuring hardness and strength. In order to secure the internal (core) hardness of the carburized parts, it is contained in an amount of 0.10% or more. However, since excessive addition causes deterioration of processability, the upper limit is set to 0.30%. The suitable range of C is 0.15 to 0.30%, and the internal hardness can be stably secured. Even more preferably, it is 0.15 to 0.25%, and the internal hardness can be more stably secured.

Si:0.01〜1.50%
Siは、焼入れ性を高めるのに有効な元素である。また、Siは脱酸元素として有効である。これらの効果を得るため0.01%以上含有させる。但し、過剰な添加は加工性の悪化を招くため、その上限を1.50%とする。好適なSiの範囲は、0.15〜1.50%である。より好ましくは0.15〜1.30%である。
Si: 0.01 to 1.50%
Si is an element effective for improving hardenability. Further, Si is effective as a deoxidizing element. In order to obtain these effects, it is contained in an amount of 0.01% or more. However, since excessive addition causes deterioration of processability, the upper limit is set to 1.50%. A suitable Si range is 0.15 to 1.50%. More preferably, it is 0.15 to 1.30%.

Mn:0.40〜1.50%
Mnは、焼入れ性を向上させ、強度を高めるのに有効な元素であり、この効果を得るため0.40%以上含有させる。但し、過剰な添加は加工性の悪化を招くため、その上限を1.50%とする。
Mn: 0.40 to 1.50%
Mn is an element effective for improving hardenability and increasing strength, and is contained in an amount of 0.40% or more in order to obtain this effect. However, since excessive addition causes deterioration of processability, the upper limit is set to 1.50%.

P:0.030%以下
Pは粒界脆化を促進するため、その量は少ないほうが好ましい。但し、過度の抑制は工程の延長によりコスト増大の要因となるため、その上限を0.03%とする。
P: 0.030% or less Since P promotes grain boundary embrittlement, it is preferable that the amount is small. However, excessive suppression causes an increase in cost due to the extension of the process, so the upper limit is set to 0.03%.

S:0.005〜0.100%
Sは、Mnと結合しMnS量を増大させ被削性を向上させるため0.005%以上含有させる。但し、過剰な添加は疲労強度を低下させるため、その上限を0.100%とする。
S: 0.005 to 0.100%
S is contained in an amount of 0.005% or more in order to combine with Mn to increase the amount of MnS and improve machinability. However, since excessive addition reduces fatigue strength, the upper limit is set to 0.100%.

Cu:0.01〜1.00%
Cuは、焼入れ性を高める効果を有するため0.01%以上含有させる。但し、過剰な添加は熱間鍛造性の低下を招くため、その上限を1.00%とする。
Cu: 0.01-1.00%
Cu is contained in an amount of 0.01% or more because it has an effect of enhancing hardenability. However, since excessive addition causes a decrease in hot forging property, the upper limit is set to 1.00%.

Ni:0.01〜1.00%
Niは、焼入れ性向上、延靭性向上のため0.01%以上含有させる。但し、過剰な添加はベイナイトの生成を招くため、その上限を1.00%とする。好適なNiの範囲は、
0.05〜1.00%である。より好ましくは0.05〜0.50%である。
Ni: 0.01-1.00%
Ni is contained in an amount of 0.01% or more in order to improve hardenability and toughness. However, since excessive addition causes the formation of bainite, the upper limit is set to 1.00%. A suitable Ni range is
It is 0.05 to 1.00%. More preferably, it is 0.05 to 0.50%.

Cr:0.01〜2.00%
Crは、焼入れ性を高める効果を有するため0.01%以上含有させる。但し、過剰な添加は被削性を悪化させるため、その上限を2.00%とする。好適なCrの範囲は、0.10〜2.00%である。より好ましくは0.10〜1.50%である。
Cr: 0.01-2.00%
Cr is contained in an amount of 0.01% or more because it has an effect of enhancing hardenability. However, since excessive addition deteriorates machinability, the upper limit is set to 2.00%. A suitable Cr range is 0.10 to 2.00%. More preferably, it is 0.10 to 1.50%.

Mo:0.01〜0.50%
Moは、焼入れ性および耐摩耗性を向上させる効果を有する。しかしながらMoは高価であり、また多量に添加すればベイナイト組織が現れる。そのためMoの含有量は0.01〜0.50%とする。
Mo: 0.01-0.50%
Mo has the effect of improving hardenability and wear resistance. However, Mo is expensive, and when added in large amounts, a bainite structure appears. Therefore, the Mo content is set to 0.01 to 0.50%.

s−Al:0.005〜0.050%
Alは脱酸剤としての使用により鋼に含有される。s−Alは本発明における不可欠な元素であり、焼準工程においてNと結合し、AlNとして結晶粒をピンニングし浸炭時における結晶粒の粗大化を抑制する。この効果を得るため0.005%以上含有させる。但し、過剰の添加は焼準前の途中工程でAlNを残存させ、周りのAlおよびNを引き寄せることで巨大化し、焼準工程でのAlN形成をかえって妨げるため、結晶粒の粗大化を抑制する効果が低下する。また過剰の添加は曲げ疲労強度が低下するため、その上限を0.050%とする。好適なs−Alの範囲は、0.015〜0.050%である。より好ましくは0.015〜0.040%である。
s-Al: 0.005-0.050%
Al is contained in steel by use as a deoxidizing agent. s-Al is an indispensable element in the present invention and binds to N in the normalizing step to pinn the crystal grains as AlN and suppress the coarsening of the crystal grains at the time of carburizing. In order to obtain this effect, it is contained in an amount of 0.005% or more. However, excessive addition leaves AlN in the middle of the process before normalizing, attracting the surrounding Al and N to make it huge, and rather hinders the formation of AlN in the normalizing process, thus suppressing the coarsening of crystal grains. The effect is reduced. Further, since excessive addition reduces the bending fatigue strength, the upper limit is set to 0.050%. A suitable range of s-Al is 0.015 to 0.050%. More preferably, it is 0.015 to 0.040%.

N:0.005〜0.030%
Nは、Alと結合しAlNを形成する本発明における重要元素であり、0.005%以上含有させる。但し、過剰の添加はAlN量の過度な増加につながるため、その上限を0.030%とする。
N: 0.005-0.030%
N is an important element in the present invention that binds to Al to form AlN, and contains 0.005% or more. However, since excessive addition leads to an excessive increase in the amount of AlN, the upper limit is set to 0.030%.

Nb:0.001〜0.100%
Nbは、焼準工程で微細なNbCを形成し、AlNの結晶粒粗大化抑制効果を補助するため選択的に添加してもよい。但し、過剰な添加は鋼材のコストを上げ、また被削性を低下させるため、0.001〜0.100%の範囲内とする。
Nb: 0.001 to 0.100%
Nb may be selectively added in order to form fine NbC in the normalizing step and to assist the effect of suppressing grain grain coarsening of AlN. However, excessive addition increases the cost of the steel material and lowers the machinability, so the range should be within the range of 0.001 to 0.100%.

Ti:0.001〜0.150%、Zr:0.001〜0.300%
TiおよびZrも炭化物を形成し、AlNの結晶粒粗大化抑制効果を補助するため選択的に添加してもよい。但し、過剰な添加は鋼材のコストを上げ、また靭性を低下させる。このためTiの上限を0.150%、Zrの上限を0.300%とする。なお、Ti,Zrは何れか一方だけを含有させることもできるし、或いはその両方を含有させることもできる。
Ti: 0.001 to 0.150%, Zr: 0.001 to 0.300%
Ti and Zr may also form carbides and may be selectively added in order to assist the effect of suppressing grain grain coarsening of AlN. However, excessive addition increases the cost of the steel material and reduces the toughness. Therefore, the upper limit of Ti is 0.150% and the upper limit of Zr is 0.300%. It should be noted that Ti and Zr may contain only one of them, or may contain both of them.

B:0.0005〜0.010%
Bは、焼入性の向上に有効な元素であり、結晶粒界に偏析して粒界を強化して強度を向上させる効果がある。但し、過剰な添加は、鋼中のNと反応してBNを形成し、靭性を低下させる。このため、Bの含有量は0.0005〜0.010%の範囲内とすることが好ましい。
B: 0.0005 to 0.010%
B is an element effective for improving hardenability, and has an effect of segregating at grain boundaries to strengthen grain boundaries and improve strength. However, excessive addition reacts with N in the steel to form BN and reduces toughness. Therefore, the content of B is preferably in the range of 0.0005 to 0.010%.

本実施形態に係る肌焼鋼材では、AlNおよび/またはNbCを含む析出物の1μm2当たりの個数について、円相当直径10nm以下がS個、円相当直径10nm超〜40nm以下がM個、円相当直径100nm以上がL個としたとき、S<10、M>10、L<0.001と規定している。 In the skin-baked steel material according to the present embodiment, regarding the number of precipitates containing AlN and / or NbC per 1 μm 2 , S pieces have a circle-equivalent diameter of 10 nm or less, M pieces have a circle-equivalent diameter of more than 10 nm to 40 nm or less, and are equivalent to a circle. When L pieces have a diameter of 100 nm or more, S <10, M> 10, L <0.001 are specified.

ここで、AlNおよび/またはNbCを含む析出物としては、AlNのみの析出物、NbCのみの析出物、AlNおよびNbCを含む複合析出物のほか、これらの析出物にTi、Zrなどの炭化物・窒化物・炭窒化物形成元素を更に含む複合析出物も含まれる。 Here, as the precipitate containing AlN and / or NbC, a precipitate containing only AlN, a precipitate containing only NbC, a composite precipitate containing AlN and NbC, and a carbide such as Ti and Zr in these precipitates. A composite precipitate further containing a nitride / carbonitride forming element is also included.

浸炭時に析出物がオストワルド成長すると、大きい粒子は成長し、小さい粒子は溶解して消失する。本発明者らの調査によれば、円相当直径10nm以下の微細な析出物は、存在する間はそのピン止め効果により結晶粒を微細に維持するも、オストワルド成長にともない容易に消失し、結晶粒の局部的な成長を招いてしまうため、ここでは円相当直径10nm以下の微細な析出物の1μm2当たりの個数Sを10未満(即ち、S<10)としている。 When the precipitate grows Ostwald during carburizing, the large particles grow and the small particles dissolve and disappear. According to the investigation by the present inventors, fine precipitates having a circle-equivalent diameter of 10 nm or less maintain fine crystal grains due to their pinning effect while they are present, but they easily disappear with Ostwald ripening and crystallize. Since it causes local growth of grains, the number S per 1 μm 2 of fine precipitates having a diameter equivalent to a circle of 10 nm or less is set to less than 10 (that is, S <10).

一方、円相当直径100nm以上の粗大な析出物は、それ自身ピン止め効果が小さいうえに、粗大な析出物の存在はオストワルド成長を促進し、円相当直径10nm以下の微細な析出物を消失させてしまうため、ここでは円相当直径100nm以上の粗大な析出物の1μm2当たりの個数Lを0.001未満(即ち、L<0.001)としている。 On the other hand, a coarse precipitate having a diameter equivalent to a circle of 100 nm or more has a small pinning effect by itself, and the presence of the coarse precipitate promotes Ostwald ripening and eliminates fine precipitates having a diameter equivalent to a circle of 10 nm or less. Therefore, here, the number L per 1 μm 2 of coarse precipitates having a diameter equivalent to a circle of 100 nm or more is set to less than 0.001 (that is, L <0.001).

これに対し、円相当直径10nm超〜40nm以下の析出物は、オストワルド成長の影響をうけにくく、安定して存在し、ピン止め効果を発揮し得るため、ここでは円相当直径10nm超〜40nm以下の析出物の1μm2当たりの個数Mを10超(即ち、M>10)としている。 On the other hand, precipitates having a diameter equivalent to a circle of more than 10 nm to 40 nm or less are not easily affected by Ostwald ripening, exist stably, and can exert a pinning effect. The number M of the precipitates per 1 μm 2 is more than 10 (that is, M> 10).

更に本実施形態の肌焼鋼材では、これらサイズの異なる析出物の関係を下記式(1)で規定している。
2S+2000L<M …式(1)
この式(1)の左辺、即ち2S+2000Lは、オストワルド成長にともなうピンニング力の低下の大きさを示しており、本発明者らの調査によれば2S+2000LがM以上となった場合に異常粒成長が生じ易いことから、上記式(1)の規定を設けている。
Further, in the skin-baked steel material of the present embodiment, the relationship between the precipitates having different sizes is defined by the following formula (1).
2S + 2000L <M ... Equation (1)
The left side of this equation (1), that is, 2S + 2000L, indicates the magnitude of the decrease in pinning force accompanying Ostwald ripening, and according to the investigation by the present inventors, abnormal grain growth occurs when 2S + 2000L becomes M or more. Since it is likely to occur, the above formula (1) is provided.

次に本実施形態の肌焼鋼材の製造方法について説明する。
本実施形態の肌焼鋼材は、以下に述べる鍛造工程および焼準工程を経て製造することができる。鍛造に供する材料(鍛造用素材)としては、化学組成が前述の範囲で調整されたインゴットを分塊圧延したビレット、連続鋳造材を分塊圧延したビレット、或いはこれらのビレットを熱間圧延した棒鋼などを適用することができる。
Next, a method for manufacturing the skin-baked steel material of the present embodiment will be described.
The skin-baked steel material of the present embodiment can be produced through the forging step and the normalizing step described below. As the material to be forged (material for forging), a billet obtained by slab-rolling an ingot whose chemical composition is adjusted in the above range, a billet obtained by slab-rolling a continuous cast material, or a steel bar obtained by hot-rolling these billets. Etc. can be applied.

図1は、本実施形態の肌焼鋼材の鍛造工程および焼準工程における温度パターンの例を示している。
鍛造工程では、それ以前の工程で析出したAlNおよび/またはNbCを含む析出物をオーステナイト組織に十分に固溶させるため、鍛造用素材を加熱する。詳しくは、鍛造前加熱温度(鍛造用素材の表面温度である)をT1、鍛造前加熱時間をtm1としたとき、下記式(2)、式(3)を満足する条件で鍛造前加熱を行う。
T1×log10(tm1)>400×(8+log10[Al][N]) …式(2)
T1×log10(tm1)>300×(8+log10[Nb][C]) …式(3)
ここで、T1の単位は温度(℃)、tm1の単位は時間(秒)、式中の[ ]は各元素の含有質量%を示す。
このような鍛造前加熱は、例えば高周波誘導加熱により行うことができる。なお、Nb非添加の鋼材においては、式(2)のみ満足する条件で鍛造前加熱を行えばよい。
FIG. 1 shows an example of a temperature pattern in the forging step and the normalizing step of the skin-baked steel material of the present embodiment.
In the forging step, the forging material is heated in order to sufficiently dissolve the precipitate containing AlN and / or NbC precipitated in the previous steps in the austenite structure. Specifically, when the pre-forging heating temperature (the surface temperature of the forging material) is T1 and the pre-forging heating time is tm1, the pre-forging heating is performed under the conditions satisfying the following equations (2) and (3). ..
T1 × log 10 (tm1)> 400 × (8 + log 10 [Al] [N])… Equation (2)
T1 × log 10 (tm1)> 300 × (8 + log 10 [Nb] [C])… Equation (3)
Here, the unit of T1 is temperature (° C.), the unit of tm1 is time (seconds), and [] in the formula indicates the content mass% of each element.
Such pre-forging heating can be performed, for example, by high frequency induction heating. In the case of steel materials to which Nb is not added, pre-forging heating may be performed under the condition that only the formula (2) is satisfied.

その後、鍛造用素材に鍛造加工を施し、しかる後冷却してフェライト+パーライト変態させて所定の鍛造品を得る。
ここで、浸炭時における異常粒成長の抑制には、鍛造後(浸炭前)のフェライト平均粒度番号を小さく(フェライト粒径を大きく)することも有効である。本例においては図1に示すように、鍛造加工の後、1000〜800℃の間の温度域で10分保温、もしくは1000〜800℃までを10℃/分以下で徐冷し、続く750〜650℃の間の温度域で30分保温、もしくは750〜650℃までを2℃/分以下で徐冷し、その後略室温までの冷却を行う。この場合、冷却中にピンニング粒子として作用するAlN等の析出物が析出されない、若しくはこれら析出物の密度が低く抑えられ、オーステナイト結晶粒を粗大化させることができ、その結果フェライト+パーライト変態後におけるフェライト粒径を大きくすることができる。
Then, the forging material is forged, and then cooled to obtain a predetermined forged product by ferrite + pearlite transformation.
Here, in order to suppress abnormal grain growth during carburizing, it is also effective to reduce the ferrite average particle size number after forging (before carburizing) (larger ferrite particle size). In this example, as shown in FIG. 1, after forging, heat is kept for 10 minutes in a temperature range between 1000 and 800 ° C., or slowly cooled from 1000 to 800 ° C. at 10 ° C./min or less, followed by 750 to 750. Insulation is carried out in a temperature range between 650 ° C. for 30 minutes, or 750 to 650 ° C. is slowly cooled at 2 ° C./min or less, and then cooled to approximately room temperature. In this case, precipitates such as AlN that act as pinning particles are not precipitated during cooling, or the density of these precipitates is suppressed to a low level, and the austenite crystal grains can be coarsened, resulting in the ferrite + pearlite transformation. The ferrite grain size can be increased.

次に実施される焼準工程では、鍛造加工が施された鋼材を熱処理炉内に装入し、AlNおよび/またはNbCを含む析出物を所定のサイズ別の密度で分散析出させるため、以下の条件で加熱処理が施される。
即ち、焼準加熱温度をT2、焼準加熱時間をtm2としたとき、焼準加熱温度(炉内雰囲気温度)T2が900℃以上、1000℃以下であって、且つ下記式(4)を満足する条件で加熱処理が施される。
3000<T2×log10(tm2)<4000 …式(4)
ここで、T2は温度(℃)、tm2は時間(秒)を示す。
In the next normalizing step, the forged steel material is charged into the heat treatment furnace, and the precipitate containing AlN and / or NbC is dispersed and precipitated at a density according to a predetermined size. Heat treatment is applied under the conditions.
That is, when the normalizing heating temperature is T2 and the normalizing heating time is tm2, the normalizing heating temperature (internal atmosphere temperature) T2 is 900 ° C. or higher and 1000 ° C. or lower, and the following formula (4) is satisfied. The heat treatment is performed under the conditions to be used.
3000 <T2 x log 10 (tm2) <4000 ... Equation (4)
Here, T2 indicates a temperature (° C.) and tm2 indicates a time (seconds).

上記加熱処理の後は、鍛造工程の場合と同様に、750〜650℃の間の温度域で30分保温、若しくは750〜650℃までを2℃/分以下で徐冷し、その後略室温までの冷却を行う。 After the above heat treatment, as in the case of the forging step, heat is kept for 30 minutes in a temperature range between 750 to 650 ° C., or slowly cooled from 750 to 650 ° C. at 2 ° C./min or less, and then to about room temperature. Cool down.

以上のような製造方法によれば、浸炭時の異常粒成長が抑制可能となるよう析出物のサイズ別の密度が制御された肌焼鋼材を得ることができる。このように製造された肌焼鋼材は、機械加工により所望の形状に加工され、その後に浸炭焼入れ→焼戻し→仕上げ機械加工の各工程を経て、機械構造部品を製造するのに好適である。 According to the above-mentioned production method, it is possible to obtain a skin-baked steel material in which the density of each precipitate size is controlled so that abnormal grain growth at the time of carburizing can be suppressed. The skin-baked steel material thus produced is processed into a desired shape by machining, and then is suitable for manufacturing mechanical structural parts through the steps of carburizing and quenching → tempering → finishing machining.

次に本発明の実施例を以下に説明する。ここでは、下記表1に示す実施例および比較例の化学組成および熱処理条件に基づいて供試材を作製し、析出物密度および粗大化温度の評価を行った。なお、表1に示す各比較例は、化学組成および/または熱処理条件が本発明の範囲を外れている。 Next, examples of the present invention will be described below. Here, a test material was prepared based on the chemical composition and heat treatment conditions of Examples and Comparative Examples shown in Table 1 below, and the precipitate density and the coarsening temperature were evaluated. In each comparative example shown in Table 1, the chemical composition and / or heat treatment conditions are outside the scope of the present invention.

Figure 2021195588
Figure 2021195588

1.供試材の作製
上記表1に示す化学成分の鋼塊50kgを真空高周波誘導溶解炉にて溶製し、φ100mmのインゴットを作製した。そしてインゴットを1300℃で2時間加熱後、φ30mmまで鍛造して棒状に加工した。
その後、実工程を模擬するために、φ8mm、長さ12mmLの円柱状材料を作製し、加工フォーマスタにて円柱側面かつ長さ方向の中心に熱電対を接合し、加工フォーマスタにて表1に示す各鍛造前加熱温度、保持時間を模擬した後にHeガスで冷却した。次に表1に示す加熱条件で材料を焼準し、供試材とした。
粗大化温度の評価については、浸炭の模擬として大気炉にて、供試材を浸炭模擬温度で2h熱処理し、その後に水冷をした。ここで浸炭模擬温度は、880〜1100℃までの20℃間隔で設定し、それぞれの浸炭模擬温度について粗大粒の発生の有無を調査した。
1. 1. Preparation of Test Material 50 kg of steel ingots with chemical components shown in Table 1 above were melted in a vacuum high frequency induction melting furnace to prepare an ingot having a diameter of 100 mm. Then, after heating the ingot at 1300 ° C. for 2 hours, it was forged to φ30 mm and processed into a rod shape.
After that, in order to simulate the actual process, a cylindrical material with a diameter of 8 mm and a length of 12 mm L was prepared, a thermocouple was joined to the side surface of the cylinder and the center in the length direction with the machining formaster, and Table 1 was used with the machining formaster. After simulating each pre-forging heating temperature and holding time shown in (1), the mixture was cooled with He gas. Next, the material was normalized under the heating conditions shown in Table 1 to prepare a test material.
Regarding the evaluation of the coarsening temperature, the test material was heat-treated at the carburizing simulated temperature for 2 hours in an atmospheric furnace as a simulation of carburizing, and then water-cooled. Here, the carburizing simulated temperature was set at intervals of 20 ° C. from 880 to 1100 ° C., and the presence or absence of coarse particles was investigated at each carburizing simulated temperature.

2.評価
2−1.析出物密度
焼準した供試材の中心から電子顕微鏡用の試料を抽出レプリカにて作製し、電子顕微鏡にて加速電圧300kVで100,000倍の倍率でSTEM−EDSによる元素マッピングからAl系析出物およびNb系析出物を検出し、明視野像にて10視野から、AlNおよび/またはNbCを含む析出物のサイズ(円相当直径)とその個数を測定した。なお、析出物の長軸と短軸を測定し、その相乗平均を析出物の円相当直径とした。
測定結果より、円相当直径10nm以下の析出物の1μm2当たりの個数S、円相当直径10nm超〜40nm以下の析出物の1μm2当たりの個数M、円相当直径100nm以上の析出物の1μm2当たりの個数Lをそれぞれ求め、また得られたS、M、Lの値が本発明で規定する式(1)を満たしているかを判定し、これらの結果を下記表2に示した。
2. 2. Evaluation 2-1. Precipitate density A sample for an electron microscope was prepared from the center of the tempered test material by an extraction replica, and an Al-based precipitate was prepared from element mapping by STEM-EDS at an acceleration voltage of 300 kV at a magnification of 100,000 times with an electron microscope. Objects and Nb-based precipitates were detected, and the size (circle-equivalent diameter) and the number of precipitates containing AlN and / or NbC were measured from 10 visual fields in a bright-field image. The major axis and the minor axis of the precipitate were measured, and the geometric mean thereof was taken as the diameter equivalent to the circle of the precipitate.
Measurement results show that circle the number S of 1 [mu] m 2 per equivalent diameter 10nm following precipitates, circle the number M of 1 [mu] m 2 per equivalent diameter 10nm ultra ~40nm following precipitates, 1 [mu] m in circle equivalent diameter 100nm or more precipitates 2 The number L per hit was obtained, and it was determined whether the obtained values of S, M, and L satisfied the formula (1) specified in the present invention, and these results are shown in Table 2 below.

2−2.加熱条件
各実施例および比較例について、鍛造前加熱に関する条件および焼準に関する条件が本発明で規定する式(2)、式(3)および式(4)を満たしているか否かを判定し、その結果を下記表2に示した。
2-2. Heating conditions For each Example and Comparative Example, it is determined whether or not the conditions for pre-forging heating and the conditions for normalizing satisfy the formulas (2), (3) and (4) specified in the present invention. The results are shown in Table 2 below.

2−3.粗大化温度
浸炭を模擬した熱処理を行った後の供試材を長さ方向に切断して得た試料を用い、切断面を樹脂で埋込み・研磨後にピクリン酸(ピクリン酸10g、水500ml)で旧オーステナイト結晶粒を現出させた。そして光学顕微鏡(100倍)にて試料の中心部を5視野断面観察し、JISG0551に従って粒度測定を行なった。そして、JISG0551にて規定された粒度番号で5番以下の粗大粒が、何れかの視野で確認された供試材の浸炭模擬温度を粗大化温度とし、その結果を下記表2に示した。なお、表2では粗大化温度が1000℃以上であったものを合格「○」(異常粒成長を抑制する特性に優れる)と評価した。
2-3. Coagulation temperature Using a sample obtained by cutting the test material in the length direction after heat treatment simulating carburizing, the cut surface is embedded with resin, polished, and then with picric acid (picric acid 10 g, water 500 ml). Old austenite crystal grains were revealed. Then, the central part of the sample was observed in a cross section of 5 fields with an optical microscope (100 times), and the particle size was measured according to JISG0551. Then, the carburizing simulated temperature of the test material confirmed in any field of view for the coarse particles having a particle size number of 5 or less specified by JISG0551 was set as the coarsening temperature, and the results are shown in Table 2 below. In Table 2, those having a coarsening temperature of 1000 ° C. or higher were evaluated as acceptable “◯” (excellent in the property of suppressing abnormal grain growth).

Figure 2021195588
Figure 2021195588

表2の評価結果により、以下のことが分かる。
比較例1は、鍛造前加熱における温度T1(もしくは加熱時間tm1)が低く、式(2)の加熱条件を満たしていない例である。この比較例1では100nm以上の粗大な析出物の密度(個数)が本発明の上限を上回っており、またサイズの異なる析出物の関係を規定する式(1)も満たしておらず、粗大化温度は960℃と低い。
From the evaluation results in Table 2, the following can be seen.
Comparative Example 1 is an example in which the temperature T1 (or the heating time tm1) in the pre-forging heating is low and the heating condition of the formula (2) is not satisfied. In Comparative Example 1, the density (number) of coarse precipitates of 100 nm or more exceeds the upper limit of the present invention, and the formula (1) that defines the relationship between precipitates of different sizes is not satisfied, resulting in coarseness. The temperature is as low as 960 ° C.

比較例2も比較例1と同様に、鍛造前加熱における温度T1(もしくは加熱時間tm1)が低く、式(2)および式(3)の加熱条件を満たしていない例である。比較例1と同様に100nm以上の粗大な析出物の密度(個数)が本発明の上限を上回っており、またサイズの異なる析出物の関係を規定する式(1)も満たしておらず、粗大化温度は940℃と低い。 Similar to Comparative Example 1, Comparative Example 2 is also an example in which the temperature T1 (or the heating time tm1) in the pre-forging heating is low and the heating conditions of the formulas (2) and (3) are not satisfied. Similar to Comparative Example 1, the density (number) of coarse precipitates having a diameter of 100 nm or more exceeds the upper limit of the present invention, and the formula (1) that defines the relationship between precipitates of different sizes is not satisfied, so that the precipitates are coarse. The conversion temperature is as low as 940 ° C.

比較例3は、Nb量が本発明の上限を超えて添加された例である。その結果、10nm以下の微細な析出物の密度および100nm以上の粗大な析出物の密度がそれぞれ本発明の上限を上回っており、粗大化温度は980℃と低い。
比較例3によれば、ピンニング粒子としての析出物の総量を単に増やしても、粗大化温度の向上に寄与しないことが分かる。
Comparative Example 3 is an example in which the amount of Nb is added in excess of the upper limit of the present invention. As a result, the density of the fine precipitates of 10 nm or less and the density of the coarse precipitates of 100 nm or more each exceed the upper limit of the present invention, and the coarsening temperature is as low as 980 ° C.
According to Comparative Example 3, it can be seen that simply increasing the total amount of precipitates as pinning particles does not contribute to the improvement of the coarsening temperature.

比較例4は、過度に長く焼準の熱処理が行われた結果、100nm以上の粗大な析出物が本発明の上限を上回っている例である。この場合もサイズの異なる析出物の関係を規定する式(1)を満たしておらず、浸炭時のオストワルド成長にともなうピンニング力の低下が大きいと推測され、粗大化温度は940℃と低い。 Comparative Example 4 is an example in which the coarse precipitate of 100 nm or more exceeds the upper limit of the present invention as a result of the normalizing heat treatment for an excessively long time. In this case as well, the equation (1) that defines the relationship between the precipitates having different sizes is not satisfied, and it is presumed that the pinning force is greatly reduced due to the Ostwald ripening during carburizing, and the coarsening temperature is as low as 940 ° C.

比較例5は、比較例4とは逆に、過度に短く焼準の熱処理が行われた例である。その結果、サイズの異なる析出物の関係を規定する式(1)を満たしていない。この例においても、粗大化温度は980℃と低い。 Comparative Example 5 is an example in which, contrary to Comparative Example 4, the normalizing heat treatment was performed for an excessively short time. As a result, it does not satisfy the formula (1) that defines the relationship between precipitates of different sizes. Also in this example, the coarsening temperature is as low as 980 ° C.

比較例6は、Al量が本発明の上限を超えて添加された例である。サイズの異なる析出物の関係を規定する式(1)を満たしておらず、粗大化温度は980℃と低い。 Comparative Example 6 is an example in which the amount of Al is added in excess of the upper limit of the present invention. It does not satisfy the formula (1) that defines the relationship between precipitates of different sizes, and the coarsening temperature is as low as 980 ° C.

比較例7は、Al量が本発明の下限を下回っている例である。この比較例7ではピンニング粒子であるAlNの絶対量が不足し、異常粒成長の抑制に有効な円相当直径10nm超〜40nm以下の析出物の個数Mが本発明の規定に達していない。この場合も粗大化温度は880℃と低い。 Comparative Example 7 is an example in which the amount of Al is below the lower limit of the present invention. In Comparative Example 7, the absolute amount of AlN, which is a pinning particle, is insufficient, and the number M of precipitates having a diameter equivalent to a circle of more than 10 nm to 40 nm or less, which is effective for suppressing abnormal grain growth, does not reach the specification of the present invention. In this case as well, the coarsening temperature is as low as 880 ° C.

以上のように、何れの比較例においても1000℃未満の浸炭模擬温度で粗大粒が認められ、異常粒成長の発生が確認された。 As described above, in all the comparative examples, coarse grains were observed at a carburizing simulated temperature of less than 1000 ° C., and the occurrence of abnormal grain growth was confirmed.

これに対し、鋼の化学組成が本発明の範囲内で、且つ析出物のサイズ毎の密度が適正範囲内である実施例1〜10は、いずれも粗大化温度が1000℃以上であり、実施例の肌焼鋼材が高温浸炭時の異常粒成長の抑制に有効であることが分かる。 On the other hand, in Examples 1 to 10 in which the chemical composition of the steel is within the range of the present invention and the density of each precipitate size is within the appropriate range, the coarsening temperature is 1000 ° C. or higher. It can be seen that the example skin-baked steel material is effective in suppressing abnormal grain growth during high-temperature carburizing.

以上本発明について詳しく説明したが、本発明は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。 Although the present invention has been described in detail above, the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

Claims (5)

質量%で、
C:0.10〜0.30%、
Si:0.01〜1.50%、
Mn:0.40〜1.50%、
P:0.030%以下、
S:0.005〜0.100%、
Cu:0.01〜1.00%、
Ni:0.01〜1.00%、
Cr:0.01〜2.00%、
Mo:0.01〜0.50%、
s−Al:0.005〜0.050%、
N:0.005〜0.030%を含むとともに、
更に、任意選択で
Nb:0.001〜0.100%を含み、
残部をFe及び不可避的不純物とする組成を有し、
AlNおよび/またはNbCを含む析出物の1μm2当たりの個数について、円相当直径10nm以下がS個、円相当直径10nm超〜40nm以下がM個、円相当直径100nm以上がL個としたとき、S<10、M>10、L<0.001であって、
更に下記式(1)
2S+2000L<M …式(1)
を満たすことを特徴とする肌焼鋼材。
By mass%,
C: 0.10 to 0.30%,
Si: 0.01-1.50%,
Mn: 0.40-1.50%,
P: 0.030% or less,
S: 0.005 to 0.100%,
Cu: 0.01-1.00%,
Ni: 0.01-1.00%,
Cr: 0.01-2.00%,
Mo: 0.01-0.50%,
s-Al: 0.005 to 0.050%,
N: Containing 0.005 to 0.030% and
Further, Nb: 0.001 to 0.100% is optionally contained, and Nb: 0.001 to 0.100% is contained.
It has a composition in which the balance is Fe and unavoidable impurities.
Regarding the number of precipitates containing AlN and / or NbC per 1 μm 2 , when S pieces have a circle-equivalent diameter of 10 nm or less, M pieces have a circle-equivalent diameter of more than 10 nm to 40 nm or less, and L pieces have a circle-equivalent diameter of 100 nm or more. S <10, M> 10, L <0.001 and
Furthermore, the following formula (1)
2S + 2000L <M ... Equation (1)
A skin-baked steel material characterized by satisfying.
請求項1において、質量%で、
Si:0.15〜1.50%
を含有することを特徴とする肌焼鋼材。
In claim 1, by mass%,
Si: 0.15 to 1.50%
A skin-baked steel material characterized by containing.
請求項1,2の何れかにおいて、質量%で、
Ti:0.001〜0.150%
Zr:0.001〜0.300%
の何れか1種以上を更に含有することを特徴とする肌焼鋼材。
In any of claims 1 and 2, in mass%,
Ti: 0.001 to 0.150%
Zr: 0.001 to 0.300%
A skin-baked steel material characterized by further containing any one or more of the above.
請求項1〜3の何れかにおいて、質量%で、
B:0.0005〜0.010%
を更に含有することを特徴とする肌焼鋼材。
In any one of claims 1 to 3, in mass%,
B: 0.0005 to 0.010%
A skin-baked steel material characterized by further containing.
請求項1〜4の何れかに記載の化学成分を有する鋼材を用い、
鍛造前加熱温度をT1、鍛造前加熱時間をtm1としたとき、下記式(2)、式(3)を満足する条件で鋼材を加熱した後、熱間鍛造加工を行なう鍛造工程と、
前記鍛造工程の後、焼準加熱温度をT2、焼準加熱時間をtm2としたとき、前記焼準加熱温度T2が900℃以上、1000℃以下であって、且つ下記式(4)を満足する条件で前記鋼材を加熱処理する焼準工程と、
を有することを特徴とする肌焼鋼材の製造方法。
T1×log10(tm1)>400×(8+log10[Al][N]) …式(2)
T1×log10(tm1)>300×(8+log10[Nb][C]) …式(3)
3000<T2×log10(tm2)<4000 …式(4)
ここで、T1,T2は温度(℃)、tm1,tm2は時間(秒)、式中の[ ]は各元素の含有質量%を示す
Using a steel material having the chemical composition according to any one of claims 1 to 4,
When the pre-forging heating temperature is T1 and the pre-forging heating time is tm1, the forging process in which the steel material is heated under the conditions satisfying the following formulas (2) and (3) and then hot forging is performed.
After the forging step, when the normalizing heating temperature is T2 and the normalizing heating time is tm2, the normalizing heating temperature T2 is 900 ° C. or higher and 1000 ° C. or lower, and the following formula (4) is satisfied. The normalizing step of heat-treating the steel material under the conditions and
A method for producing a skin-baked steel material, which comprises.
T1 × log 10 (tm1)> 400 × (8 + log 10 [Al] [N])… Equation (2)
T1 × log 10 (tm1)> 300 × (8 + log 10 [Nb] [C])… Equation (3)
3000 <T2 x log 10 (tm2) <4000 ... Equation (4)
Here, T1 and T2 indicate the temperature (° C.), tm1 and tm2 indicate the time (seconds), and [] in the formula indicates the content mass% of each element.
JP2020102228A 2020-06-12 2020-06-12 Case-hardened steel material and method for producing the same Pending JP2021195588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102228A JP2021195588A (en) 2020-06-12 2020-06-12 Case-hardened steel material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102228A JP2021195588A (en) 2020-06-12 2020-06-12 Case-hardened steel material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021195588A true JP2021195588A (en) 2021-12-27

Family

ID=79197395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102228A Pending JP2021195588A (en) 2020-06-12 2020-06-12 Case-hardened steel material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021195588A (en)

Similar Documents

Publication Publication Date Title
TWI605133B (en) Steel plate and its manufacturing method
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP5858204B2 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
JP6401143B2 (en) Method for producing carburized forging
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP5649886B2 (en) Case-hardened steel and method for producing the same
WO2016158343A1 (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
CN109790602B (en) Steel
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
US20180094345A1 (en) Case-hardened steel component
JP5649887B2 (en) Case-hardened steel and method for producing the same
JPWO2019151048A1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP4031607B2 (en) Machine structural steel with reduced grain coarsening
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP5869919B2 (en) Case-hardening bar steel with excellent cold workability
JP7070696B2 (en) Electric resistance sewn steel pipe for hollow stabilizer
JP6465206B2 (en) Hot-rolled bar wire, parts and method for producing hot-rolled bar wire
JP2015140449A (en) Case hardening steel excellent in crystal grain size property at high temperature
JP2021195588A (en) Case-hardened steel material and method for producing the same
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP2016074951A (en) Manufacturing method of case hardened steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521