JP6148500B2 - Gas barrier coating composition - Google Patents

Gas barrier coating composition Download PDF

Info

Publication number
JP6148500B2
JP6148500B2 JP2013040651A JP2013040651A JP6148500B2 JP 6148500 B2 JP6148500 B2 JP 6148500B2 JP 2013040651 A JP2013040651 A JP 2013040651A JP 2013040651 A JP2013040651 A JP 2013040651A JP 6148500 B2 JP6148500 B2 JP 6148500B2
Authority
JP
Japan
Prior art keywords
meth
gas barrier
acrylic acid
coating composition
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013040651A
Other languages
Japanese (ja)
Other versions
JP2014169352A (en
Inventor
昌男 山崎
昌男 山崎
長谷川 剛
剛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakuranomiya Chemical Co Ltd
Original Assignee
Sakuranomiya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakuranomiya Chemical Co Ltd filed Critical Sakuranomiya Chemical Co Ltd
Priority to JP2013040651A priority Critical patent/JP6148500B2/en
Publication of JP2014169352A publication Critical patent/JP2014169352A/en
Application granted granted Critical
Publication of JP6148500B2 publication Critical patent/JP6148500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、ガスバリア性塗料組成物に関する。 The present invention relates to a gas barrier coating composition.

包装用樹脂フィルムに、特に食品包装分野においては内容物の長期保存性のためにガスバリア性が重要な要求特性となる。ガスバリア性に優れた樹脂としてポリビニルアルコール(PVA)が使用されているが、吸湿時にガスバリア性が低下し、とくに水分を多く含む食品の包装には適していない。 In the packaging resin film, particularly in the food packaging field, gas barrier properties are an important required characteristic for long-term storage of contents. Polyvinyl alcohol (PVA) is used as a resin having an excellent gas barrier property, but the gas barrier property is lowered at the time of moisture absorption and is not particularly suitable for packaging of foods containing a large amount of moisture.

高湿度下で樹脂フィルムを包装材として用いる場合、ガスバリア性だけでなく耐水性(非水溶性)も要求される。PVAの耐水性を向上させガスバリア性の湿度依存性を改善するために、PVAの水酸基とポリ(メタ)アクリル酸のカルボキシル基をエステル化反応により架橋させる方法が知られている(たとえば特許文献1)。しかしながら、十分なガスバリア性と耐水性のために200℃程度の高温での熱処理が必要であり、樹脂が着色し外観を損ねるなどの問題もあった。 When using a resin film as a packaging material under high humidity, not only gas barrier properties but also water resistance (water-insoluble) is required. In order to improve the water resistance of PVA and improve the humidity dependency of gas barrier properties, a method is known in which a hydroxyl group of PVA and a carboxyl group of poly (meth) acrylic acid are crosslinked by an esterification reaction (for example, Patent Document 1). ). However, heat treatment at a high temperature of about 200 ° C. is necessary for sufficient gas barrier properties and water resistance, and there is a problem that the resin is colored and the appearance is impaired.

さらに、食品包装用途の中でも、レトルト処理される用途においては、単なる酸素透過性の湿度依存性の改善だけでは充分ではなく、レトルト処理後の表面状態や密着性(耐レトルト性)が大きな課題となる。これまでに知られていたポリビニルアルコールおよびポリ(メタ)アクリル酸を含むガスバリア性塗料組成物では、耐レトルト性は充分に改善することができなかった。 Furthermore, among food packaging applications, in applications where retort processing is performed, it is not sufficient to simply improve the humidity dependency of oxygen permeability, and surface conditions and adhesion (retort resistance) after retort processing are major issues. Become. In the gas barrier coating composition containing polyvinyl alcohol and poly (meth) acrylic acid known so far, the retort resistance could not be sufficiently improved.

特開平6−220221号公報JP-A-6-220221

本発明は、上記のような問題点を改善し、比較的簡便な製造方法で、高温での焼付によるガスバリア性や着色の問題もなく、酸素透過度の湿度依存性も小さく、さらに耐レトルト性が向上したガスバリアフィルムを与える塗料組成物を提供することを目的とする。 The present invention improves the above-mentioned problems, is a relatively simple production method, has no gas barrier property or coloring problem due to baking at high temperature, has low humidity dependency of oxygen permeability, and is also resistant to retort. An object of the present invention is to provide a coating composition that gives a gas barrier film with improved slag.

本発明者らは上記課題を解決するために鋭意検討を重ねた結果、ポリビニルアルコール、および、ポリ(メタ)アクリル酸を含むガスバリア性塗料組成物において、ポリ(メタ)アクリル酸に分岐構造を導入することで、とくに耐レトルト性を改善できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have introduced a branched structure into poly (meth) acrylic acid in a gas barrier coating composition containing polyvinyl alcohol and poly (meth) acrylic acid. As a result, it was found that the retort resistance can be improved, and the present invention has been completed.

すなわち、本発明は、ポリビニルアルコール、および、分岐したポリ(メタ)アクリル酸を含むガスバリア性塗料組成物に関する。 That is, the present invention relates to a gas barrier coating composition containing polyvinyl alcohol and branched poly (meth) acrylic acid.

分岐したポリ(メタ)アクリル酸は、アルキレングリコールジ(メタ)アクリレートを共重合したポリ(メタ)アクリル酸であることが好ましい。 The branched poly (meth) acrylic acid is preferably poly (meth) acrylic acid obtained by copolymerizing alkylene glycol di (meth) acrylate.

また、本発明は、前記ガスバリア性塗料組成物を塗布し、熱処理する工程を含むガスバリア性フィルムの製造方法、および該製造方法により製造されたガスバリア性フィルムに関する。 Moreover, this invention relates to the manufacturing method of the gas barrier film including the process of apply | coating the said gas barrier coating composition and heat-processing, and the gas barrier film manufactured by this manufacturing method.

本発明では、分岐したポリ(メタ)アクリル酸を使用するため、ポリビニルアルコールに起因するガスバリア性の湿度による変化を改善するとともに、耐レトルト性にも優れたガスバリアフィルムを得ることができる。 In this invention, since the branched poly (meth) acrylic acid is used, while improving the change by the humidity of the gas barrier property resulting from polyvinyl alcohol, the gas barrier film excellent also in retort resistance can be obtained.

本発明のガスバリア性塗料組成物は、ポリビニルアルコール、および、分岐したポリ(メタ)アクリル酸を含むことを特徴とする。 The gas barrier coating composition of the present invention includes polyvinyl alcohol and branched poly (meth) acrylic acid.

本発明で使用するポリビニルアルコールは、分子内に少なくとも2個以上のビニルアルコール単位を有するものであれば、特に限定されず、他のモノマー単位を含む共重合体も使用できる。共重合モノマーとしては、たとえばエチレン、プロピレン、1−ブテンなどの炭素数2〜10のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸などの炭素数3〜30の不飽和カルボン酸類、アクリロニトリル、メタアクリロニトリルなどの炭素数3〜10の不飽和ニトリル類、メチルビニルエーテル、エチルビニルエーテルなどの炭素数3〜10のビニルエーテル類などが挙げられる。なかでも、ポリビニルアルコール(PVA)またはエチレン−ビニルアルコール共重合体が好ましい。 The polyvinyl alcohol used in the present invention is not particularly limited as long as it has at least two vinyl alcohol units in the molecule, and a copolymer containing other monomer units can also be used. Examples of the copolymerizable monomer include olefins having 2 to 10 carbon atoms such as ethylene, propylene and 1-butene, and unsaturated carboxylic acids having 3 to 30 carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, maleic acid and fumaric acid. Examples thereof include unsaturated nitriles having 3 to 10 carbon atoms such as acids, acrylonitrile and methacrylonitrile, and vinyl ethers having 3 to 10 carbon atoms such as methyl vinyl ether and ethyl vinyl ether. Among these, polyvinyl alcohol (PVA) or ethylene-vinyl alcohol copolymer is preferable.

ポリビニルアルコールのケン化度はとくに限定されないが、90〜100%が好ましく、95〜100%がより好ましい。90%未満では、バリア性、耐水性が低下する傾向にある。 The degree of saponification of polyvinyl alcohol is not particularly limited, but is preferably 90 to 100%, more preferably 95 to 100%. If it is less than 90%, the barrier properties and water resistance tend to be lowered.

ポリビニルアルコールの数平均重合度はとくに限定されないが、50〜5000が好ましく、300〜2000がより好ましい。50未満では、機械的強度が劣り、5000を超えると、液粘度が高くなって作業性が低下する傾向がある。 The number average polymerization degree of polyvinyl alcohol is not particularly limited, but is preferably 50 to 5000, and more preferably 300 to 2000. If it is less than 50, mechanical strength is inferior, and if it exceeds 5000, the liquid viscosity tends to be high and workability tends to be lowered.

本発明で使用するポリ(メタ)アクリル酸とは、分子内に少なくも2個以上のアクリル酸またはメタアクリル酸単位を有するポリマーであればとくに限定されず、アクリル酸またはメタアクリル酸のホモポリマーだけでなく、アクリル酸とメタアクリル酸の共重合体や、また他のモノマー単位を含む共重合体も使用できる。共重合モノマーとしては、たとえばエチレン、プロピレン、1−ブテンなどの炭素数2〜10のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸などの炭素数3〜10の不飽和カルボン酸類、アクリロニトリル、メタアクリロニトリルなどの炭素数3〜10の不飽和ニトリル類、メチルビニルエーテル、エチルビニルエーテルなどの炭素数3〜10のビニルエーテル類などが挙げられる。また、ポリ(メタ)アクリル酸をアルカリまたはアルカリ土類金属の水酸化物や水酸化アンモニウム、水酸化有機アンモニウムなどでカルボン酸基の全部または一部を中和したものも使用できる。これらのポリ(メタ)アクリル酸のうち、ポリ(メタ)アクリル酸またはその部分中和物が好ましく、ポリアクリル酸(PAA)またはその部分中和物が特に好ましい。ここで、ポリ(メタ)アクリル酸とは、ポリメタクリル酸およびポリアクリル酸を意味する。 The poly (meth) acrylic acid used in the present invention is not particularly limited as long as it is a polymer having at least two acrylic acid or methacrylic acid units in the molecule. A homopolymer of acrylic acid or methacrylic acid In addition, copolymers of acrylic acid and methacrylic acid, and copolymers containing other monomer units can also be used. Examples of the copolymerizable monomer include olefins having 2 to 10 carbon atoms such as ethylene, propylene, and 1-butene, and unsaturated carboxylic acids having 3 to 10 carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, and fumaric acid. Examples thereof include unsaturated nitriles having 3 to 10 carbon atoms such as acids, acrylonitrile and methacrylonitrile, and vinyl ethers having 3 to 10 carbon atoms such as methyl vinyl ether and ethyl vinyl ether. In addition, poly (meth) acrylic acid obtained by neutralizing all or part of carboxylic acid groups with an alkali or alkaline earth metal hydroxide, ammonium hydroxide, organic ammonium hydroxide, or the like can also be used. Among these poly (meth) acrylic acids, poly (meth) acrylic acid or a partially neutralized product thereof is preferable, and polyacrylic acid (PAA) or a partially neutralized product thereof is particularly preferable. Here, poly (meth) acrylic acid means polymethacrylic acid and polyacrylic acid.

なかでも、ポリビニルアルコールとの相溶性が高く、透明性に優れた乾燥被膜が得られる点で、アクリル酸またはメタアクリル酸のホモポリマー、もしくはその部分中和物が好ましい。 Especially, the homopolymer of acrylic acid or methacrylic acid, or its partial neutralization thing is preferable at the point from which the compatibility with polyvinyl alcohol is high and the dry film excellent in transparency is obtained.

ポリ(メタ)アクリル酸に分岐構造を導入する方法はとくに限定されないが、たとえば、溶液重合、乳化重合、ソープフリー乳化重合、懸濁重合などの重合途中で、多官能(メタ)アクリレートを導入する方法が挙げられる。なかでも、微小なソフトゲルを生成できるという点で、多官能(メタ)アクリレートを溶液重合途中で導入する方法が好ましい。 The method for introducing a branched structure into poly (meth) acrylic acid is not particularly limited. For example, polyfunctional (meth) acrylate is introduced during polymerization such as solution polymerization, emulsion polymerization, soap-free emulsion polymerization, suspension polymerization. A method is mentioned. Among them, a method of introducing polyfunctional (meth) acrylate during solution polymerization is preferable in that a fine soft gel can be generated.

多官能(メタ)アクリレートとしては、たとえば1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、3−メチルペンタンジオールジ(メタ)アクリレートなどのアルキレングリコールジ(メタ)アクリレート、ジエチレングリコールビスβ―(メタ)アクリロイルオキシプロピネート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2-ヒドロキシエチル)イソシアネートジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、2,3−ビス(メタ)アクリロイルオキシエチルオキシメチル[2.2.1]ヘプタン、ポリー1,2−ブタジエンジ(メタ)アクリレート、1,2−ビス(メタ)アクリロイルオキシメチルヘキサン、ノナエチレングリコールジ(メタ)アクリレート、テトラデカンエチレングリコールジ(メタ)アクリレート、10−デカンジオール(メタ)アクリレート、3,8−ビス(メタ)アクリロイルオキシメチルトリシクロ[5.2.10]デカンなどがあげられる。これらの化合物は1種または2種以上を組み合わせて使用できる。なかでも、アルキレングリコールジ(メタ)アクリレートが好ましい。このような分岐したポリ(メタ)アクリレートは、塗料組成物中において粒子として存在する。 Examples of the polyfunctional (meth) acrylate include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate. , Alkylene glycol di (meth) acrylate such as triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, diethylene glycol bis β- (Meth) acryloyloxypropinate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate Dipentaerythritol hexa (meth) acrylate, tri (2-hydroxyethyl) isocyanate di (meth) acrylate, pentaerythritol tetra (meth) acrylate, 2,3-bis (meth) acryloyloxyethyloxymethyl [2.2 .1] Heptane, poly-1,2-butadiene di (meth) acrylate, 1,2-bis (meth) acryloyloxymethylhexane, nonaethylene glycol di (meth) acrylate, tetradecanethylene glycol di (meth) acrylate, 10- Examples include decanediol (meth) acrylate and 3,8-bis (meth) acryloyloxymethyltricyclo [5.2.10.] Decane. These compounds can be used alone or in combination of two or more. Of these, alkylene glycol di (meth) acrylate is preferable. Such branched poly (meth) acrylates are present as particles in the coating composition.

多官能(メタ)アクリレートの共重合量はとくに限定されないが、0.5〜20重量%が好ましく、1〜10重量%がより好ましい。0.5重量%未満では、粒子化が起こらなくなり、20重量%を超えると、ポリビニルアルコールと混合しにくくなる傾向がある。 The copolymerization amount of the polyfunctional (meth) acrylate is not particularly limited, but is preferably 0.5 to 20% by weight, and more preferably 1 to 10% by weight. If it is less than 0.5% by weight, particle formation does not occur, and if it exceeds 20% by weight, it tends to be difficult to mix with polyvinyl alcohol.

分岐したポリ(メタ)アクリル酸の数平均分子量はとくに限定されないが、3000〜50000が好ましく、5000〜20000がより好ましい。3000未満では、機械的強度が低下し、50000を超えると、粘度が上昇し、作業性が低下する傾向がある。 The number average molecular weight of the branched poly (meth) acrylic acid is not particularly limited, but is preferably 3000 to 50000, more preferably 5000 to 20000. If it is less than 3000, mechanical strength will fall, and if it exceeds 50000, a viscosity will rise and there exists a tendency for workability | operativity to fall.

ポリビニルアルコール、および、分岐したポリ(メタ)アクリル酸の配合量もとくに限定されないが、分岐したポリ(メタ)アクリル酸の配合量は、ポリビニルアルコール100重量部に対して、5〜400重量部が好ましく、50〜100重量部がより好ましい。5重量部未満では、耐水性が低下し、400重量部を超えると、バリア性および耐水性が低下する傾向がある。 The blending amount of polyvinyl alcohol and branched poly (meth) acrylic acid is not particularly limited, but the blending amount of branched poly (meth) acrylic acid is 5 to 400 parts by weight with respect to 100 parts by weight of polyvinyl alcohol. Preferably, 50-100 weight part is more preferable. If it is less than 5 parts by weight, the water resistance is lowered, and if it exceeds 400 parts by weight, the barrier properties and the water resistance tend to be lowered.

ポリビニルアルコールおよび分岐したポリ(メタ)アクリル酸を混合する際、両者の間でエステル化反応を起こさせるために、触媒を添加することができる。エステル化触媒としては、酸、アルカリ、金属触媒などを使用することができる。なかでも、ポリ(メタ)アクリル酸を中和させるという点から、アルカリが好ましい。アルカリとしてはとくに限定されず、水酸化ナトリウム、水酸化カリウム、アンモニアなどが挙げられる。アルカリの添加量もとくに限定されないが、酸に対して1〜20%を中和するように添加すれば良い。 When mixing polyvinyl alcohol and branched poly (meth) acrylic acid, a catalyst can be added to cause an esterification reaction between them. As the esterification catalyst, an acid, an alkali, a metal catalyst, or the like can be used. Of these, alkali is preferable from the viewpoint of neutralizing poly (meth) acrylic acid. It does not specifically limit as an alkali, Sodium hydroxide, potassium hydroxide, ammonia etc. are mentioned. The addition amount of the alkali is not particularly limited, but may be added so as to neutralize 1 to 20% with respect to the acid.

本発明のガスバリア性塗料組成物には、無機層状化合物などを添加することができる。無機層状化合物は極薄の単位結晶層が重なって一つの層状粒子を形成している無機化合物のことであり、溶媒に膨潤・へき開するものが好ましい。これらの中でも特に溶媒への膨潤性を持つ粘度化合物が好ましく用いられる。代表的なものとしては、たとえばカオリナイト、ハロイサイト、モンモリロナイト、バーキュライト、ディッカイト、ナクライト、アンチゴライト、パイロフィライト、ヘクトライト、バイデライト、マーガタイト、タルク、テトラシリリックマイカ、白雲母、金雲母緑泥石等が挙げられる。なかでも、バリア性の点で、モンモリロナイトが好ましい。 An inorganic layered compound or the like can be added to the gas barrier coating composition of the present invention. The inorganic layered compound is an inorganic compound in which ultrathin unit crystal layers overlap to form one layered particle, and those that swell and cleave in a solvent are preferable. Among these, a viscosity compound having a swelling property to a solvent is particularly preferably used. Typical examples are kaolinite, halloysite, montmorillonite, verculite, dickite, nacrite, antigolite, pyrophyllite, hectorite, beidellite, margite, talc, tetrasilic mica, muscovite, phlogopite. Chlorite and the like. Of these, montmorillonite is preferable in terms of barrier properties.

無機層状化合物の配合量としては、ポリビニルアルコールおよび分岐したポリ(メタ)アクリル酸の合計100重量部に対して、5〜100重量部が好ましく、20〜50重量部がより好ましい。5重量部未満では、バリア性を充分に発現せず、100重量部を超えると、塗膜が白濁する傾向がある。 As a compounding quantity of an inorganic layered compound, 5-100 weight part is preferable with respect to a total of 100 weight part of polyvinyl alcohol and branched poly (meth) acrylic acid, and 20-50 weight part is more preferable. If the amount is less than 5 parts by weight, the barrier property is not sufficiently exhibited, and if it exceeds 100 parts by weight, the coating tends to become cloudy.

本発明のガスバリア性塗料組成物には、溶媒を添加することができる。溶媒としてはとくに限定されないが、たとえば水、メタノール、エタノール、プロパノールなどの炭素数1以上30以下のアルコール類;n−ヘキサン、n−ヘプタン、トルエン、キシレンなどの炭素数4以上30以下の脂肪族または芳香族炭化水素;ジクロロメタン、クロロホルム、クロロベンゼン、o−ジブロモベンゼンなどの炭素数1以上30以下の含ハロゲン脂肪族または芳香族炭化水素;ジエチルエーテル、ジフェニルエーテルなどの炭素数2以上30以下の脂肪族または芳香族エーテル類;酢酸エチル、プロピオン酸ブチルなどの炭素数2以上30以下の脂肪族または芳香族エステル類;ジメチルホルムアミド、ジメチルアセトアミドなどの炭素数2から30の脂肪族または芳香族アミド化合物;アセトニトリル、ベンゾニトリルなどの炭素数2以上30以下の脂肪族または芳香族ニトリル類などが挙げられる。これらの溶媒は1種または2種以上を組み合わせて使用できる。 A solvent can be added to the gas barrier coating composition of the present invention. Although it does not specifically limit as a solvent, For example, C1-C30 alcohols, such as water, methanol, ethanol, and propanol; C4-C30 aliphatic, such as n-hexane, n-heptane, toluene, and xylene Or aromatic hydrocarbons; halogen-containing aliphatic or aromatic hydrocarbons having 1 to 30 carbon atoms such as dichloromethane, chloroform, chlorobenzene, o-dibromobenzene; aliphatics having 2 to 30 carbon atoms such as diethyl ether and diphenyl ether Or aromatic ethers; aliphatic or aromatic esters having 2 to 30 carbon atoms such as ethyl acetate and butyl propionate; aliphatic or aromatic amide compounds having 2 to 30 carbon atoms such as dimethylformamide and dimethylacetamide; Acetonitrile, benzonitrile Like aliphatic or aromatic nitriles having 2 to 30 carbons such. These solvents can be used alone or in combination of two or more.

溶媒の使用量は特に限定されないが、ポリビニルアルコールおよび分岐したポリ(メタ)アクリル酸の混合物100重量部に対し、1〜10000重量部が好ましく、10〜1000重量部がより好ましい。 Although the usage-amount of a solvent is not specifically limited, 1-10000 weight part is preferable with respect to 100 weight part of the mixture of polyvinyl alcohol and branched poly (meth) acrylic acid, and 10-1000 weight part is more preferable.

本発明のガスバリア性フィルムの製造方法は、前記ガスバリア性塗料組成物を基材に塗布し、熱処理する工程を含む。基材はとくに限定されないが、たとえばガラス板、金属板、熱可塑性樹脂フィルム、熱硬化性樹脂フィルムなどが挙げられる。次いで、支持体上にフィルムを形成した後、熱処理を行う。熱処理温度はとくに限定されないが、150〜250℃が好ましく、150〜200℃がより好ましい。150℃未満では、反応が充分に進行しないために、耐水性の低い膜が得られやすくなり、250℃を超えると、密着性の低い膜が得られやすくなる傾向がある。 The method for producing a gas barrier film of the present invention includes a step of applying the gas barrier coating composition to a substrate and heat-treating it. Although a base material is not specifically limited, For example, a glass plate, a metal plate, a thermoplastic resin film, a thermosetting resin film etc. are mentioned. Subsequently, after forming a film on a support body, it heat-processes. Although heat processing temperature is not specifically limited, 150-250 degreeC is preferable and 150-200 degreeC is more preferable. If the temperature is lower than 150 ° C., the reaction does not proceed sufficiently, so that a film having low water resistance is likely to be obtained. If the temperature exceeds 250 ° C., a film having low adhesion tends to be obtained.

ガスバリア性フィルムの膜厚もとくに限定されないが、0.5〜20μmが好ましく、1〜5μmがより好ましい。0.5μm未満では、欠陥のない薄膜が得られにくくなる傾向がある。 The film thickness of the gas barrier film is not particularly limited, but is preferably 0.5 to 20 μm, and more preferably 1 to 5 μm. If the thickness is less than 0.5 μm, it tends to be difficult to obtain a defect-free thin film.

ガスバリア性フィルムは、他の熱可塑性樹脂フィルムと積層することができる。熱可塑性樹脂フィルムは特に制限されないが、たとえばポリエチレン、ポリプロピレンなどのポリオレフィン樹脂フィルム、ナイロン6、ナイロン66などのポリアミド樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂フィルムなどが挙げられる。 The gas barrier film can be laminated with other thermoplastic resin films. The thermoplastic resin film is not particularly limited, and examples thereof include polyolefin resin films such as polyethylene and polypropylene, polyamide resin films such as nylon 6 and nylon 66, and polyester resin films such as polyethylene terephthalate and polyethylene naphthalate.

本発明のガスバリア性塗料組成物の用途はとくに限定されず、従来のガスバリア性材料が使用されていた用途に適用できる。とくに、フィルム(深絞袋、製袋)、ボトル、チューブ、スタンディングパウチ、レトルト用袋、紙容器、バックインボックス、樹脂袋のような重袋用フィルム容器、缶詰などのような食品、工業材料などの包装材料やフロアーヒーティングパイプ及びその構造素材の一部として使用することができる。 The application of the gas barrier coating composition of the present invention is not particularly limited, and can be applied to applications where conventional gas barrier materials have been used. In particular, films (deep-drawn bags, bag making), bottles, tubes, standing pouches, retort bags, paper containers, back-in boxes, film containers for heavy bags such as resin bags, foods such as cans, and industrial materials It can be used as a packaging material such as a floor heating pipe and a part of its structural material.

つぎに、本発明の塗料を、実施例にもとづいて説明するが、本発明はこれらに限定されるものではない。 Next, the paint of the present invention will be described based on examples, but the present invention is not limited thereto.

製造例1
メタクリル酸19部、エタノール80部、および触媒としてアゾビスイソブチロニトリル(AIBN)を用い、窒素気流下で70℃1時間かけて、攪拌しながら重合した。その後、エチレングリコールジメタクリレートEG(ライトエステルEG、共栄社化学株式会社製)1部を加えて同温度で5時間攪拌しアクリル樹脂溶液を得た。得られたアクリル樹脂溶液は、固形分20.3%、粘度400cpsであった。なお、粘度は、B型粘度計およびローターNo.2を用い、25±0.5℃下にて測定した。得られたアクリル樹脂の数平均分子量は、18000であった。
Production Example 1
Polymerization was conducted with stirring for 19 hours under a nitrogen stream using 19 parts of methacrylic acid, 80 parts of ethanol, and azobisisobutyronitrile (AIBN) as a catalyst. Then, 1 part of ethylene glycol dimethacrylate EG (light ester EG, manufactured by Kyoeisha Chemical Co., Ltd.) was added and stirred at the same temperature for 5 hours to obtain an acrylic resin solution. The obtained acrylic resin solution had a solid content of 20.3% and a viscosity of 400 cps. The viscosity was measured using a B-type viscometer and a rotor No. 2 was measured at 25 ± 0.5 ° C. The number average molecular weight of the obtained acrylic resin was 18000.

製造例2
メタクリル酸19部、エタノール80部、および触媒としてアゾビスイソブチロニトリル(AIBN)を用い、窒素気流下で70℃1時間かけて、攪拌しながら重合した。その後、ポリエチレングリコールジメタクリレート(ライトエステル4EG−A、PEG#200(EG4量体)、共栄社化学株式会社製)1部を加えて同温度で5時間攪拌しアクリル樹脂溶液を得た。得られたアクリル樹脂溶液は、固形分20.1%、粘度250cpsであった。得られたアクリル樹脂の数平均分子量は、13000であった。
Production Example 2
Polymerization was conducted with stirring for 19 hours under a nitrogen stream using 19 parts of methacrylic acid, 80 parts of ethanol, and azobisisobutyronitrile (AIBN) as a catalyst. Thereafter, 1 part of polyethylene glycol dimethacrylate (light ester 4EG-A, PEG # 200 (EG tetramer), manufactured by Kyoeisha Chemical Co., Ltd.) was added and stirred at the same temperature for 5 hours to obtain an acrylic resin solution. The obtained acrylic resin solution had a solid content of 20.1% and a viscosity of 250 cps. The number average molecular weight of the obtained acrylic resin was 13000.

製造例3
メタクリル酸19部、エタノール80部、および触媒としてアゾビスイソブチロニトリル(AIBN)を用い、窒素気流下で70℃1時間かけて、攪拌しながら重合した。その後、1,6−ヘキサンジオールメタクリレート(ライトエステル1.6HX、共栄社化学株式会社製)1部を加えて同温度で5時間攪拌しアクリル樹脂溶液を得た。得られたアクリル樹脂溶液は、固形分20.0%、粘度350cpsであった。得られたアクリル樹脂の数平均分子量は、15000であった。
Production Example 3
Polymerization was conducted with stirring for 19 hours under a nitrogen stream using 19 parts of methacrylic acid, 80 parts of ethanol, and azobisisobutyronitrile (AIBN) as a catalyst. Thereafter, 1 part of 1,6-hexanediol methacrylate (light ester 1.6HX, manufactured by Kyoeisha Chemical Co., Ltd.) was added and stirred at the same temperature for 5 hours to obtain an acrylic resin solution. The obtained acrylic resin solution had a solid content of 20.0% and a viscosity of 350 cps. The number average molecular weight of the obtained acrylic resin was 15000.

製造例4
メタクリル酸20部、エタノール80部、および触媒としてアゾビスイソブチロニトリル(AIBN)を用い、窒素気流下で70℃6時間かけて、攪拌しながら重合した。得られたアクリル樹脂溶液は、固形分20.4%、粘度200cpsであった。得られたアクリル樹脂の数平均分子量は、10000であった。
Production Example 4
Using 20 parts of methacrylic acid, 80 parts of ethanol, and azobisisobutyronitrile (AIBN) as a catalyst, polymerization was conducted with stirring at 70 ° C. for 6 hours under a nitrogen stream. The obtained acrylic resin solution had a solid content of 20.4% and a viscosity of 200 cps. The number average molecular weight of the obtained acrylic resin was 10,000.

実施例1〜3および比較例1
ポリビニルアルコール(OKS−8049、日本合成株式会社製)の20%水溶液50gに、製造例1〜4で重合したアクリル樹脂50g(固形分20%)、水酸化ナトリウム0.44gを加え良く攪拌して、それぞれ実施例1〜3および比較例1の塗料を調製した。
Examples 1 to 3 and Comparative Example 1
Add 50 g of acrylic resin polymerized in Production Examples 1 to 4 (solid content 20%) and 0.44 g of sodium hydroxide to 50 g of 20% aqueous solution of polyvinyl alcohol (OKS-8049, Nihon Gosei Co., Ltd.) and stir well. The paints of Examples 1 to 3 and Comparative Example 1 were prepared.

実施例4
実施例2で得られた塗料の固形分100重量部に対して、マイカ水膨潤スラリー(濃度8%、ソマシフMEB−3、平均粒子径2〜3μ、コープケミカル株式会社製)を250重量部(固形分で20部)混合して良く攪拌し塗料を調製した。
Example 4
250 parts by weight of mica water swelling slurry (concentration 8%, Somasif MEB-3, average particle diameter of 2 to 3 μ, manufactured by Coop Chemical Co., Ltd.) with respect to 100 parts by weight of the solid content of the paint obtained in Example 2 The mixture was mixed and mixed well to prepare a paint.

比較例2
ポリビニルアルコール(OKS−8049、日本合成株式会社製)の20%水溶液50gに、固形分20%のポリアクリル酸水溶液(アクアリックHL−415,日本触媒株式会社製)50g、水酸化ナトリウム0.44gを加え良く攪拌して、比較例2の塗料を調製した。
Comparative Example 2
50 g of 20% aqueous solution of polyvinyl alcohol (OKS-8049, manufactured by Nihon Gosei Co., Ltd.), 50 g of polyacrylic acid aqueous solution (Aquaric HL-415, manufactured by Nippon Shokubai Co., Ltd.) with a solid content of 20%, 0.44 g of sodium hydroxide Was added and stirred well to prepare a coating material of Comparative Example 2.

実施例1〜3および比較例1〜2で得られた塗料を0.29mm厚のA5052アルミ材(神戸製鋼株式会社製)の基材上に塗布し、200℃で3分間焼付した。得られた塗装板を用いて、以下に示す方法で鉛筆硬度と耐水性を評価した。評価結果を表1に示す。 The paints obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were applied on a base material of 0.250 mm thick A5052 aluminum material (manufactured by Kobe Steel) and baked at 200 ° C. for 3 minutes. Using the obtained coated plate, pencil hardness and water resistance were evaluated by the following methods. The evaluation results are shown in Table 1.

実施例2および比較例2で得られた塗料を二軸延伸ポリエステルフィルム(25μ、E5107,東洋紡績株式会社製)のコロナ面上に乾燥膜厚3μで塗布し、200℃で3分間焼付および200℃で10分間焼付した。得られたそれぞれのフィルムを用いて、目視により着色を確認するとともに、以下に示す方法で酸素透過度を測定した。評価結果を表2に示す。 The paint obtained in Example 2 and Comparative Example 2 was applied on the corona surface of a biaxially stretched polyester film (25 μ, E5107, manufactured by Toyobo Co., Ltd.) with a dry film thickness of 3 μ, baked at 200 ° C. for 3 minutes, and 200 Bake at 10 ° C. for 10 minutes. Each of the obtained films was visually checked for coloration, and the oxygen permeability was measured by the method described below. The evaluation results are shown in Table 2.

実施例2および4で得られた塗料を二軸延伸ポリエステルフィルム(25μ、E5107,東洋紡績株式会社製)のコロナ面上に乾燥膜厚3μで塗布し、200℃で3分間焼付した。得られたそれぞれのフィルムを用いて、23℃において、湿度65%と80%の条件下で、以下に示す方法で酸素透過度を測定した。評価結果を表3に示す。 The paints obtained in Examples 2 and 4 were applied at a dry film thickness of 3 μm on the corona surface of a biaxially stretched polyester film (25 μm, E5107, manufactured by Toyobo Co., Ltd.) and baked at 200 ° C. for 3 minutes. Using each of the obtained films, the oxygen transmission rate was measured at 23 ° C. under the conditions of 65% and 80% humidity by the following method. The evaluation results are shown in Table 3.

<鉛筆硬度>
JIS K−5400(1990)に記載の方法に準拠し、三菱鉛筆株式会社製ユニ(商品名)を用いて測定した。
<密着性>
JIS K−5400(1990)に記載の方法に準拠し、塗装板上をカッターナイフで塗膜を貫通して素地に達するように1mm間隔で切り傷をつけ、碁盤目100個(10×10)を作る。これにニチバン製セロテープ(登録商標)を完全に密着させ、塗面に対して90°の方向に急激に剥離し、塗膜の状態を目視にて観察し、以下の基準に基づいて評価した。
<Pencil hardness>
Based on the method described in JIS K-5400 (1990), the measurement was performed using Uni (trade name) manufactured by Mitsubishi Pencil Co., Ltd.
<Adhesion>
In accordance with the method described in JIS K-5400 (1990), the coated plate was cut with a cutter knife on the painted plate at intervals of 1 mm so as to reach the substrate, and 100 grids (10 × 10) were cut create. Nichiban cello tape (registered trademark) was completely adhered to this, and it peeled off rapidly in the direction of 90 ° with respect to the coating surface. The state of the coating film was visually observed and evaluated based on the following criteria.

<耐水性>
80℃30分処理については、80℃のウォーターバスに30分間浸漬処理を施した後、表面状態と密着性を以下の基準で評価した。レトルト処理30分については、125℃で30分間レトルト処理を施した後、表面状態と密着性を以下の基準で評価した。評価結果を表1に示す。
表面状態
○・・・変化なし。
○△・・少し白化したり、表面状態に変化がある。
△・・・塗膜が白化あるいは少し溶けたような表面をしている。
×・・・処理により塗膜が溶解した。
<Water resistance>
About 80 degreeC 30 minute process, after performing immersion process for 30 minutes to a 80 degreeC water bath, the surface condition and adhesiveness were evaluated on the following references | standards. About 30 minutes of retort processing, after performing the retort processing for 30 minutes at 125 degreeC, the surface condition and adhesiveness were evaluated on the following references | standards. The evaluation results are shown in Table 1.
Surface condition ○ ・ ・ ・ No change.
○ △ ・ ・ Slightly whitening or change in surface condition.
Δ: The surface is whitened or slightly melted.
X: The coating film was dissolved by the treatment.

密着性
○・・・変化なし。
○△・・1〜10個の升目が剥離した。
△・・・半分程度の升目が剥離した。
×・・・全体が剥離した。
Adhesion ○ ・ ・ ・ No change.
○ Δ ························································································ −
Δ: Half of the squares peeled off.
X: The whole peeled off.

<酸素透過度>
JIS K 7126Bに記載の方法に準拠し、23℃×65%RHの条件下で、サンプル表面から裏面への酸素の透過率を、2回測定し、その平均値を算出した。
<Oxygen permeability>
Based on the method described in JIS K 7126B, the oxygen permeability from the sample surface to the back surface was measured twice under the condition of 23 ° C. × 65% RH, and the average value was calculated.

Figure 0006148500
Figure 0006148500

表1の結果から、分岐していないポリ(メタ)アクリル酸を使用すると、比較例1に示すように、密着性が大きく低下する。一方、分岐したポリ(メタ)アクリル酸を使用すると、実施例1〜3に示すように、30分のレトルト処理を行った後でも、表面状態と密着性を維持している。 From the results in Table 1, when unbranched poly (meth) acrylic acid is used, as shown in Comparative Example 1, the adhesion is greatly reduced. On the other hand, when branched poly (meth) acrylic acid is used, as shown in Examples 1 to 3, the surface state and adhesion are maintained even after 30 minutes of retorting.

Figure 0006148500
Figure 0006148500

表2の結果から、分岐構造を導入していないポリ(メタ)アクリル酸を含むガスバリア性塗料組成物では、比較例2に示すように200℃で10分間焼付を行うと、黄変した。一方、分岐構造を導入したポリ(メタ)アクリル酸を含むガスバリア性塗料組成物では、実施例2に示すように200℃で10分間焼付を行っても、着色は見られなかった。 From the results shown in Table 2, the gas barrier coating composition containing poly (meth) acrylic acid into which no branched structure was introduced was yellowed when baked at 200 ° C. for 10 minutes as shown in Comparative Example 2. On the other hand, in the gas barrier coating composition containing poly (meth) acrylic acid into which a branched structure was introduced, as shown in Example 2, no coloring was observed even after baking at 200 ° C. for 10 minutes.

Figure 0006148500
Figure 0006148500

表3の結果から、マイカを配合すると、酸素透過度の湿度依存性が大きく改善された。 From the results in Table 3, when mica was blended, the humidity dependency of oxygen permeability was greatly improved.

耐レトルト性に優れたガスバリア性フィルムが得られ、食品包装、とくにレトルト食品などの用途に好適に適用できる。 A gas barrier film excellent in retort resistance can be obtained, and can be suitably applied to food packaging, particularly retort foods.

Claims (2)

ポリビニルアルコール、および、分岐したポリ(メタ)アクリル酸を含むガスバリア性塗料組成物であって、
分岐したポリ(メタ)アクリル酸が、アルキレングリコールジ(メタ)アクリレートを共重合したポリ(メタ)アクリル酸であるガスバリア性塗料組成物
A gas barrier coating composition comprising polyvinyl alcohol and branched poly (meth) acrylic acid ,
A gas barrier coating composition in which the branched poly (meth) acrylic acid is poly (meth) acrylic acid obtained by copolymerizing alkylene glycol di (meth) acrylate .
請求項1に記載のガスバリア性塗料組成物を塗布し、熱処理する工程を含むガスバリア性フィルムの製造方法。 The manufacturing method of the gas barrier film including the process of apply | coating and heat-treating the gas barrier coating composition of Claim 1 .
JP2013040651A 2013-03-01 2013-03-01 Gas barrier coating composition Active JP6148500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040651A JP6148500B2 (en) 2013-03-01 2013-03-01 Gas barrier coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040651A JP6148500B2 (en) 2013-03-01 2013-03-01 Gas barrier coating composition

Publications (2)

Publication Number Publication Date
JP2014169352A JP2014169352A (en) 2014-09-18
JP6148500B2 true JP6148500B2 (en) 2017-06-14

Family

ID=51691972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040651A Active JP6148500B2 (en) 2013-03-01 2013-03-01 Gas barrier coating composition

Country Status (1)

Country Link
JP (1) JP6148500B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3562870T3 (en) * 2016-12-30 2022-01-03 Michelman, Inc. Coated film structures with an aluminum oxide intermediate layer
JP6960816B2 (en) * 2017-09-29 2021-11-05 サカタインクス株式会社 Gas barrier coating agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736600B2 (en) * 1993-09-27 1998-04-02 呉羽化学工業株式会社 Gas barrier film and method for producing the same
JP3647526B2 (en) * 1995-12-01 2005-05-11 株式会社クラレ   Multilayer structure manufacturing method
JP2001310425A (en) * 2000-04-27 2001-11-06 Unitika Ltd Gas barrier film
JP4114585B2 (en) * 2002-09-27 2008-07-09 東洋インキ製造株式会社 Method for producing gas barrier laminate
EP1754726B1 (en) * 2004-05-10 2017-11-29 Tohcello Co., Ltd. Process for producing of a gas-barrier film or a gas-barrier layered product
JP2007291180A (en) * 2006-04-21 2007-11-08 Kureha Corp Water-based polymerizable monomer composition, gas barrier film and manufacturing method of the same film

Also Published As

Publication number Publication date
JP2014169352A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6131570B2 (en) Gas barrier coating liquid, method for producing the same, method for producing gas barrier laminate, method for producing packaging material, and method for producing packaging material for heat sterilization
WO2015186733A1 (en) Aqueous dispersion, and laminate
EP2894175B1 (en) Crosslinkable composition, crosslinked product and method for production thereof, multilayered structure, crosslinking agent, and compound and method for preparation thereof
JP2011177992A (en) Laminate and packaging material using the same
KR101989480B1 (en) Steam barrier resin, steam barrier coating agent, steam barrier film, and steam barrier laminate
KR20170129621A (en) Directly adhering, transparent heat-sealable binder for the coating and sealing of transparent plastics foils
JP5671113B2 (en) Cross-linking agent, cross-linkable composition, cross-linked product, compound and method for producing the same
JP6148500B2 (en) Gas barrier coating composition
WO2003044110A1 (en) Primer composition for polyolefin materials
CN110023356B (en) Modified polyolefin resin
JP2005125693A (en) Gas-barrier laminated film
JP6030341B2 (en) Coating composition, coating film and laminate
JP6687565B2 (en) Crosslinkable resin composition, crosslinked product, production method thereof, and multilayer structure
WO2019130989A1 (en) Resin composition including ethylene/vinyl alcohol copolymer, and molded object and packaging material both comprising same
JP5675310B2 (en) Gas barrier laminated film
JPH08188679A (en) Adhesive resin composition, its laminate, and its production
JPH0441536A (en) Resin composition
JPS6195076A (en) Coating composition
JP2014133411A (en) Laminated body and method for manufacturing the same
JP7059202B2 (en) Crosslinkable resin compositions and crosslinked products, their production methods, and multilayer structures.
JP4290228B2 (en) Laminate manufacturing method
JP3173740B2 (en) Saponified ethylene-vinyl acetate copolymer solution and use thereof
JP2001064396A (en) Coating resin composition for polyolefinic resin
TWI794339B (en) Adhesion promoting compounds for apolar substrates
EP4382664A1 (en) Composition for coating a paper, method for production thereof and coated paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170519

R150 Certificate of patent or registration of utility model

Ref document number: 6148500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250