JP6145872B2 - Method for forming photoelectric conversion layer - Google Patents

Method for forming photoelectric conversion layer Download PDF

Info

Publication number
JP6145872B2
JP6145872B2 JP2013142416A JP2013142416A JP6145872B2 JP 6145872 B2 JP6145872 B2 JP 6145872B2 JP 2013142416 A JP2013142416 A JP 2013142416A JP 2013142416 A JP2013142416 A JP 2013142416A JP 6145872 B2 JP6145872 B2 JP 6145872B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion layer
organic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013142416A
Other languages
Japanese (ja)
Other versions
JP2015015415A (en
Inventor
有紀 今田
有紀 今田
孝彦 一木
孝彦 一木
龍介 大▲崎▼
龍介 大▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013142416A priority Critical patent/JP6145872B2/en
Publication of JP2015015415A publication Critical patent/JP2015015415A/en
Application granted granted Critical
Publication of JP6145872B2 publication Critical patent/JP6145872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、有機光電変換素子に設けられてなる光電変換層を成膜する方法に関する。   The present invention relates to a method for forming a photoelectric conversion layer formed on an organic photoelectric conversion element.

デジタルスチルカメラ、デジタルビデオカメラ、携帯電話用カメラ、内視鏡用カメラ等に利用されているイメージセンサとして、CCDセンサやCMOSセンサなどの撮像素子が広く知られている。これらの素子には、一対の電極間に光電変換層を含む受光層を備えた光電変換素子が備えられている。光電変換素子は、一対の電極のうち光透過性を有する透明電極側から入射した光に応じて光電変換層で電荷を生成し、生成された電荷を電極から信号電荷として読み出す素子である。   Image sensors such as CCD sensors and CMOS sensors are widely known as image sensors used in digital still cameras, digital video cameras, mobile phone cameras, endoscope cameras, and the like. These elements include a photoelectric conversion element including a light receiving layer including a photoelectric conversion layer between a pair of electrodes. The photoelectric conversion element is an element that generates a charge in a photoelectric conversion layer in accordance with light incident from the transparent electrode side having light transparency among a pair of electrodes, and reads the generated charge as a signal charge from the electrode.

光電変換層に有機化合物を用いた有機光電変換素子及びそれを用いた撮像素子が本出願人らによって提案されている。有機、無機にかかわらず、撮像素子に用いられる光電変換素子には、光電流/暗電流のS/N比、応答速度、感度、残像特性等様々な性能において高い水準を満足することが求められる。これらの性能の高性能化には、光電変換素子の光電変換効率の向上が必須である。   An organic photoelectric conversion element using an organic compound in the photoelectric conversion layer and an image pickup element using the same have been proposed by the present applicants. Regardless of organic or inorganic, photoelectric conversion elements used for imaging elements are required to satisfy high standards in various performances such as S / N ratio of photocurrent / dark current, response speed, sensitivity, and afterimage characteristics. . In order to improve these performances, it is essential to improve the photoelectric conversion efficiency of the photoelectric conversion element.

本出願人は、有機光電変換素子において、良好な光電変換効率が得られる有機光電変換層として、p型有機半導体とフラーレン又はフラーレン誘導体等のn型半導体との混合層(バルクへテロ層)を提案している(特許文献1〜2等)。   In the organic photoelectric conversion element, the applicant of the present invention provides a mixed layer (bulk hetero layer) of a p-type organic semiconductor and an n-type semiconductor such as fullerene or a fullerene derivative as an organic photoelectric conversion layer capable of obtaining good photoelectric conversion efficiency. (Patent Documents 1 and 2 etc.).

バルクヘテロ層は、例えば、p型有機半導体材料とn型有機半導体材料とを共蒸着(真空蒸着)により製造することができる。共蒸着では、複数の蒸着源を配してその速度等をコントロールすることによりその所望の組成の膜を形成する。   The bulk hetero layer can be manufactured, for example, by co-evaporation (vacuum deposition) of a p-type organic semiconductor material and an n-type organic semiconductor material. In the co-evaporation, a film having a desired composition is formed by arranging a plurality of evaporation sources and controlling the speed and the like.

特開2007−123707号公報JP 2007-123707 A 特開2012−94660号公報JP 2012-94660 A

小坂,「真空蒸着中の輻射熱とその低減について」,金属表面技術,1977年,Vol.28, No.6, p.330-335, 1977.Kosaka, “Radiation heat and its reduction during vacuum deposition”, Metal Surface Technology, 1977, Vol.28, No.6, p.330-335, 1977.

しかしながら、共蒸着により形成されたバルクヘテロ層を有機光電変換層として備えた撮像素子は、組成が制御されたものであってもデバイス性能がばらつきやすく、歩留まりのよい製造が難しいという問題がある。   However, an image sensor provided with a bulk hetero layer formed by co-evaporation as an organic photoelectric conversion layer has a problem that even if the composition is controlled, device performance tends to vary, and it is difficult to manufacture with a high yield.

特に、残像現象の程度は、バルクヘテロ層の成膜において、同一条件の成膜をしているにもかかわらず異なる装置を用いただけで顕著にばらつくことが本発明者によって確認されている。   In particular, it has been confirmed by the present inventor that the degree of the afterimage phenomenon varies significantly only by using a different apparatus even when the film is formed under the same conditions in the film formation of the bulk hetero layer.

真空蒸着では、基板温度が、蒸着熱により上昇することが知られており、蒸着が進むにつれて基板温度は徐々に上昇する(非特許文献1等に記載)。これは、蒸着熱が輻射エネルギーにより大きく影響を受けることに起因するものと考えられる。輻射エネルギーは、基板の材質、基板表面に蒸着される膜の材料やその膜厚の増加、真空容器の内部表面の材質や該表面の膜付着状態、真空容器の形状等の色々な要素によって変化しやすいため、真空蒸着において基板温度の精密な制御は難しい。   In vacuum vapor deposition, it is known that the substrate temperature rises due to vapor deposition heat, and the substrate temperature gradually rises as vapor deposition proceeds (described in Non-Patent Document 1, etc.). This is considered to be due to the fact that the heat of vapor deposition is greatly affected by the radiation energy. Radiant energy varies depending on various factors such as the material of the substrate, the material of the film deposited on the surface of the substrate and the increase of the film thickness, the material of the inner surface of the vacuum vessel, the state of film adhesion on the surface, and the shape of the vacuum vessel. Therefore, precise control of the substrate temperature is difficult in vacuum deposition.

本発明は上記事情に鑑みてなされたものであり、成膜装置によって変化しやすく、且つ、残像特性に直接影響を及ぼす膜特性が良好なバルクヘテロ層を安定して製造可能な有機光電変換膜の成膜方法を提供することを目的とするものである。
本発明はまた、残像特性の良好な有機光電変換素子を歩留まり良く製造することを目的とするものである。
The present invention has been made in view of the above circumstances, and is an organic photoelectric conversion film capable of stably producing a bulk hetero layer that is easily changed by a film forming apparatus and has good film characteristics that directly affect afterimage characteristics. The object is to provide a film forming method.
Another object of the present invention is to produce an organic photoelectric conversion element having good afterimage characteristics with high yield.

本発明の有機光電変換層の成膜方法は、
有機光電変換素子に備えられてなる有機光電変換層の成膜方法であって、
基板を用意し、この基板を真空蒸着室内に設置する基板設置工程と、
設置された基板の温度が5℃以上15℃以下の温度範囲となるように制御しながら、有機光電変換層を構成するn型有機半導体とp型有機半導体を基板上に共蒸着して第1の光電変換層を成膜する第1の光電変換層形成工程と、
基板の温度の制御をやめ、第1の光電変換層上に共蒸着を実施して第2の光電変換層を成膜する第2の光電変換層形成工程を有する。
The method for forming the organic photoelectric conversion layer of the present invention is as follows.
A method for forming an organic photoelectric conversion layer provided in an organic photoelectric conversion element,
Preparing a substrate and installing the substrate in a vacuum deposition chamber; and
The n-type organic semiconductor and the p-type organic semiconductor constituting the organic photoelectric conversion layer are co-deposited on the substrate while controlling the temperature of the installed substrate to be in a temperature range of 5 ° C. or more and 15 ° C. or less. A first photoelectric conversion layer forming step of forming a photoelectric conversion layer of,
There is a second photoelectric conversion layer forming step in which the control of the temperature of the substrate is stopped and co-evaporation is performed on the first photoelectric conversion layer to form a second photoelectric conversion layer.

本明細書において、基板の温度(基板温度)とは、基板を設置する基板ホルダ等の、基板設置面の温度とする。また、「基板上に共蒸着する」とは、基板上に直接共蒸着する場合、及び、基板上に、電極等のその他の層を介して共蒸着する場合の両方を意味する。   In this specification, the temperature of the substrate (substrate temperature) is the temperature of the substrate installation surface such as a substrate holder on which the substrate is installed. Further, “co-evaporation on the substrate” means both the case of co-evaporation directly on the substrate and the case of co-evaporation on the substrate via another layer such as an electrode.

本発明の有機光電変換層の成膜方法において、基板温度の制御には冷却を好ましく用いることができる。また、第2の光電変換層が第1の光電変換層よりも大きい層厚を有することが好ましい。
第1の光電変換層の平均層厚の第2の光電変換層の平均層厚対する比は、1/2以下であることが好ましく、1/3以下であることがより好ましい。第1の光電変換層と第2の光電変換層の合計層厚が0.2μm〜1.0μmの範囲である場合は、第1の光電変換層の平均層厚は10Å以上100Å以下であることが好ましい。
In the method for forming an organic photoelectric conversion layer of the present invention, cooling can be preferably used for controlling the substrate temperature. In addition, the second photoelectric conversion layer preferably has a larger layer thickness than the first photoelectric conversion layer.
The ratio of the average layer thickness of the first photoelectric conversion layer to the average layer thickness of the second photoelectric conversion layer is preferably 1/2 or less, and more preferably 1/3 or less. When the total layer thickness of the first photoelectric conversion layer and the second photoelectric conversion layer is in the range of 0.2 μm to 1.0 μm, the average layer thickness of the first photoelectric conversion layer is 10 to 100 mm. Is preferred.

本発明の有機光電変換層の成膜方法は、第2の光電変換層形成工程を、基板温度の最高温度が80℃以上となる条件で実施する態様が好ましい。   The method for forming the organic photoelectric conversion layer of the present invention is preferably an embodiment in which the second photoelectric conversion layer forming step is performed under the condition that the maximum substrate temperature is 80 ° C. or higher.

また、本発明の有機光電変換層の成膜方法において、基板設置工程後、第1の光電変換層形成工程を実施する前に、基板の温度が5℃以上15℃以下の温度範囲となるように冷却する冷却工程を有する態様が好ましい。   Moreover, in the film-forming method of the organic photoelectric conversion layer of this invention, after implementing a board | substrate installation process, before implementing a 1st photoelectric conversion layer formation process, the temperature of a board | substrate shall be 5 to 15 degreeC. An embodiment having a cooling step of cooling to a temperature is preferable.

有機光電変換層のn型有機半導体としては、フラーレン又はフラーレン誘導体を主成分とするものが好ましく、p型有機半導体としては、下記一般式(1)で表される化合物が挙げられる。
(一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
The n-type organic semiconductor of the organic photoelectric conversion layer is preferably one having a fullerene or a fullerene derivative as a main component, and examples of the p-type organic semiconductor include compounds represented by the following general formula (1).
(In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 , and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)

本発明の有機光電変換素子の製造方法は、正孔捕集電極と電子捕集電極とに挟持された少なくとも有機光電変換層を含む受光層を有する有機光電変換素子の製造方法であって、
前記有機光電変換層を、上記本発明の有機光電変換層の成膜方法により成膜するものである。
The method for producing an organic photoelectric conversion element of the present invention is a method for producing an organic photoelectric conversion element having a light receiving layer including at least an organic photoelectric conversion layer sandwiched between a hole collecting electrode and an electron collecting electrode,
The organic photoelectric conversion layer is formed by the organic photoelectric conversion layer forming method of the present invention.

本発明の有機膜成膜装置は、基板上に有機膜を共蒸着により成膜する装置であって、
真空蒸着室と、
真空蒸着室内に前記基板側に開口されて配置されてなり、有機膜の原料を入れる容器と、この容器を加熱して容器内の原料を蒸発させる加熱源とを備える複数の蒸着源と、
基板の温度を共蒸着中に5℃以上15℃以下に制御する基板温度制御手段を有する。
基板温度制御手段は、共蒸着中に着脱可能な冷却手段であることが好ましい。
The organic film forming apparatus of the present invention is an apparatus for forming an organic film on a substrate by co-evaporation,
A vacuum deposition chamber;
A plurality of vapor deposition sources, each of which is disposed in the vacuum vapor deposition chamber so as to be opened on the substrate side, and includes a container for storing the raw material of the organic film, and a heating source for heating the container and evaporating the raw material in the container,
Substrate temperature control means for controlling the temperature of the substrate between 5 ° C. and 15 ° C. during co-evaporation is provided.
The substrate temperature control means is preferably a cooling means that is detachable during co-evaporation.

本発明の有機光電変換層の成膜方法では、有機光電変換層を、基板の温度が5℃以上15℃以下の温度範囲となるように制御しながら共蒸着した後に、基板の温度の制御をやめて更に共蒸着を実施することにより形成する。かかる成膜方法によれば、成膜装置によって変化しやすく、且つ、残像特性に直接影響を及ぼす膜特性が良好なバルクヘテロ層を安定して製造することができる。
更に、本発明の有機光電変換層の成膜方法を用いることにより、残像特性の良好な有機光電変換素子を歩留まり良く製造することができる。
In the method for forming an organic photoelectric conversion layer of the present invention, the organic photoelectric conversion layer is co-deposited while controlling the temperature of the substrate to be in a temperature range of 5 ° C. to 15 ° C., and then the temperature of the substrate is controlled. It stops and forms by carrying out co-evaporation further. According to such a film forming method, it is possible to stably manufacture a bulk hetero layer that is easily changed by a film forming apparatus and has good film characteristics that directly affect afterimage characteristics.
Furthermore, by using the method for forming an organic photoelectric conversion layer of the present invention, an organic photoelectric conversion element having good afterimage characteristics can be produced with a high yield.

本発明の有機光電変換層の成膜方法により有機光電変換層を成膜して得られる有機光電変換素子の一実施形態を示す断面模式図Sectional schematic diagram which shows one Embodiment of the organic photoelectric conversion element obtained by forming an organic photoelectric converting layer into a film by the film-forming method of the organic photoelectric converting layer of this invention 本発明の有機光電変換層の成膜方法の一実施形態を示す断面模式図(基板設置工程から第1の光電変換層形成工程)Cross-sectional schematic diagram which shows one Embodiment of the film-forming method of the organic photoelectric converting layer of this invention (from a board | substrate installation process to the 1st photoelectric converting layer formation process) 本発明の有機光電変換層の成膜方法の一実施形態を示す断面模式図(第2の光電変換層形成工程)Sectional schematic diagram which shows one Embodiment of the film-forming method of the organic photoelectric converting layer of this invention (2nd photoelectric converting layer formation process) 本発明の有機膜成膜装置の一実施形態を示す概略模式図Schematic schematic diagram showing one embodiment of the organic film deposition apparatus of the present invention 本発明の有機光電変換層の成膜方法における基板温度変化の一例を示す図The figure which shows an example of the substrate temperature change in the film-forming method of the organic photoelectric converting layer of this invention 第1の光電変換層形成工程を実施せずに有機光電変換層を成膜して得られた有機光電変換素子の残像電流値と、有機光電変換層形成時の基板温度の最高温度との関係を示す図The relationship between the afterimage current value of the organic photoelectric conversion element obtained by forming the organic photoelectric conversion layer without performing the first photoelectric conversion layer forming step and the maximum substrate temperature at the time of forming the organic photoelectric conversion layer Figure showing 有機材料の蒸着膜の配向度と蒸着時の基板温度との関係を示す図The figure which shows the relation between the degree of orientation of the vapor deposition film of organic material and the substrate temperature at the time of vapor deposition 本発明の有機光電変換層の成膜方法により有機光電変換層を成膜して得られた有機光電変換素子の残像電流値と、第2の光電変換層形成工程における基板温度の最高温度との関係を示す図The afterimage current value of the organic photoelectric conversion element obtained by forming the organic photoelectric conversion layer by the method for forming an organic photoelectric conversion layer of the present invention and the maximum substrate temperature in the second photoelectric conversion layer forming step Diagram showing relationship 図7にて測定した有機光電変換素子の有機光電変換層の配向度と、第2の光電変換層形成工程における基板温度の最高温度との関係を示す図The figure which shows the relationship between the orientation degree of the organic photoelectric converting layer of the organic photoelectric conversion element measured in FIG. 7, and the maximum temperature of the substrate temperature in a 2nd photoelectric converting layer formation process. 本発明により得られる有機光電変換素子に好適な撮像素子の一例の概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration of an example of an imaging device suitable for the organic photoelectric conversion device obtained by the present invention

「有機光電変換層の成膜方法及び有機光電変換素子の製造方法」
図面を参照して、本発明にかかる一実施形態の有機光電変換層の成膜方法及びそれを用いた有機光電変換素子の製造方法について説明する。図1は本実施形態の有機光電変換素子の製造方法によって製造される有機光電変換素子の概略断面図である。また、図2A〜図2Bは、本発明にかかる一実施形態の有機光電変換層の成膜方法の工程を示す断面模式図である。本明細書の図面において、視認しやすくするため、各部の縮尺は適宜変更して示してある。
“Method for Forming Organic Photoelectric Conversion Layer and Method for Manufacturing Organic Photoelectric Conversion Element”
With reference to drawings, the film-forming method of the organic photoelectric converting layer of one Embodiment concerning this invention and the manufacturing method of an organic photoelectric conversion element using the same are demonstrated. FIG. 1 is a schematic cross-sectional view of an organic photoelectric conversion element manufactured by the method for manufacturing an organic photoelectric conversion element of this embodiment. Moreover, FIG. 2A-FIG. 2B is a cross-sectional schematic diagram which shows the process of the film-forming method of the organic photoelectric converting layer of one Embodiment concerning this invention. In the drawings of this specification, the scale of each part is appropriately changed and shown for easy visual recognition.

図1に示されるように、有機光電変換素子1は、基板10と、基板10上に形成された正孔捕集電極20と、正孔捕集電極20上に形成された電子ブロッキング層31と、電子ブロッキング層31上に形成された光電変換層32と、光電変換層32上に形成された正孔ブロッキング層33と、正孔ブロッキング層33上に形成された電子捕集電極40と、電子捕集電極40の表面及び、正孔捕集電極20から電子捕集電極40まで積層された積層体の側面を被覆してなる封止層50とを備える。電子ブロッキング層31と光電変換層32と正孔ブロッキング層33とで受光層30を形成している。   As shown in FIG. 1, the organic photoelectric conversion element 1 includes a substrate 10, a hole collection electrode 20 formed on the substrate 10, and an electron blocking layer 31 formed on the hole collection electrode 20. A photoelectric conversion layer 32 formed on the electron blocking layer 31, a hole blocking layer 33 formed on the photoelectric conversion layer 32, an electron collection electrode 40 formed on the hole blocking layer 33, and an electron And a sealing layer 50 that covers the surface of the collecting electrode 40 and the side surface of the laminate that is laminated from the hole collecting electrode 20 to the electron collecting electrode 40. The electron blocking layer 31, the photoelectric conversion layer 32, and the hole blocking layer 33 form the light receiving layer 30.

光電変換素子1において、電子捕集電極40は透明電極であり、電子捕集電極40上方から光が入射すると、この光が電子捕集電極40を透過して光電変換層32に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は正孔捕集電極20に移動し、電子は電子捕集電極40に移動する。   In the photoelectric conversion element 1, the electron collection electrode 40 is a transparent electrode, and when light enters from above the electron collection electrode 40, the light passes through the electron collection electrode 40 and enters the photoelectric conversion layer 32. A charge is generated. Of the generated charges, holes move to the hole collecting electrode 20, and electrons move to the electron collecting electrode 40.

電子捕集電極40及び正孔捕集電極20間にバイアス電圧(外部電場)を印加することで、光電変換層32で発生した電荷のうち、正孔を正孔捕集電極20に、電子を電子捕集電極40に移動させることができる。   By applying a bias voltage (external electric field) between the electron collection electrode 40 and the hole collection electrode 20, among the charges generated in the photoelectric conversion layer 32, holes are transferred to the hole collection electrode 20 and electrons are transferred. The electron collecting electrode 40 can be moved.

光電変換層32は、バルクへテロ層からなる光電変換層であり共蒸着により成膜することができる。バルクヘテロ層からなる光電変換層は、バルクへテロ層におけるn型有機半導体とp型有機半導体の混合比率によって、(1)バルクへテロ層中のキャリア輸送性、(2)可視光吸収率、(3)電子ブロッキング層との間のキャリア輸送性、(4)耐熱性について最適化することができる。これらの特性を良好にすることで、耐熱性を有し、且つ、応答速度及び感度が良好な、暗電流の少ない光電変換素子とすることができる。   The photoelectric conversion layer 32 is a photoelectric conversion layer made of a bulk hetero layer, and can be formed by co-evaporation. The photoelectric conversion layer composed of a bulk hetero layer has (1) carrier transportability in the bulk hetero layer, (2) visible light absorption rate, depending on the mixing ratio of the n-type organic semiconductor and the p-type organic semiconductor in the bulk hetero layer ( 3) Carrier transportability with the electron blocking layer and (4) heat resistance can be optimized. By making these characteristics favorable, a photoelectric conversion element having heat resistance and good response speed and sensitivity and low dark current can be obtained.

光電変換層32は、以下に示す本発明の有機光電変換層の成膜方法により成膜されてなり、第1の光電変換層形成工程にて成膜された、正孔捕集電極20側の第1の光電変換層32aと、第2の光電変換層形成工程にて成膜された、電子捕集電極40側の第2の光電変換層32bとから構成されている。   The photoelectric conversion layer 32 is formed by the organic photoelectric conversion layer forming method of the present invention described below, and is formed in the first photoelectric conversion layer forming step, on the hole collecting electrode 20 side. It is comprised from the 1st photoelectric converting layer 32a and the 2nd photoelectric converting layer 32b by the side of the electron collection electrode 40 formed into a film in the 2nd photoelectric converting layer formation process.

図2A〜図2Bに示されるように、本実施形態の有機光電変換層の成膜方法は、正孔捕集電極20と電子ブロッキング層31とが順次積層された基板10を用意し、その基板10を真空蒸着室内に設置する基板設置工程と、設置された基板10の温度が5℃以上15℃以下の温度範囲となるように制御しながら、有機光電変換層を構成するn型有機半導体とp型有機半導体とを基板10上に共蒸着して第1の光電変換層32aを成膜する第1の光電変換層形成工程と、基板の温度制御をやめ、第1の光電変換層32a上に共蒸着を実施して第2の光電変換層32bを成膜する第2の光電変換層形成工程を実施して有機光電変換層32を成膜する。
共蒸着の方法は特に制限されないが、抵抗加熱蒸着、電子ビーム蒸着、フラッシュ蒸着等を用いて実施することが好ましい。
As shown in FIGS. 2A to 2B, the organic photoelectric conversion layer forming method of the present embodiment prepares a substrate 10 in which a hole collecting electrode 20 and an electron blocking layer 31 are sequentially laminated, and the substrate. A n-type organic semiconductor that constitutes the organic photoelectric conversion layer while controlling the temperature of the installed substrate 10 to be in a temperature range of 5 ° C. or higher and 15 ° C. or lower; The first photoelectric conversion layer forming step in which the p-type organic semiconductor is co-evaporated on the substrate 10 to form the first photoelectric conversion layer 32a, and the temperature control of the substrate is stopped, and the first photoelectric conversion layer 32a is formed. The organic photoelectric conversion layer 32 is formed by performing a second photoelectric conversion layer forming step of forming a second photoelectric conversion layer 32b by performing co-evaporation.
The method of co-evaporation is not particularly limited, but is preferably performed using resistance heating vapor deposition, electron beam vapor deposition, flash vapor deposition, or the like.

本実施形態の有機光電変換層の成膜方法は、図3に示される有機膜成膜装置200により好適に実施することができる。図3は、真空蒸着装置である有機膜成膜装置200の概略模式図である。図示されるように、有機膜成膜装置200は、基板10上に有機膜を共蒸着により成膜する装置であって、真空蒸着室170と、基板10を表面110aに保持する基板ホルダ110と、真空蒸着室170内に基板10側に開口されて配置されてなり、有機膜の原料を入れる容器151(A,B)と、この容器を加熱して容器内の原料を蒸発させる加熱源152(A,B)とを備える複数の蒸着源150(A,B)と、基板10の温度を共蒸着中に5℃以上15℃以下に制御する基板温度制御手段120を有する。   The method for forming an organic photoelectric conversion layer according to this embodiment can be preferably implemented by the organic film forming apparatus 200 shown in FIG. FIG. 3 is a schematic diagram of an organic film deposition apparatus 200 that is a vacuum deposition apparatus. As shown in the figure, the organic film deposition apparatus 200 is an apparatus for depositing an organic film on the substrate 10 by co-evaporation, and includes a vacuum deposition chamber 170 and a substrate holder 110 that holds the substrate 10 on the surface 110a. The container 151 (A, B) is arranged in the vacuum deposition chamber 170 so as to be opened to the substrate 10 side, and a heating source 152 for heating the container and evaporating the raw material in the container. (A, B) and a plurality of vapor deposition sources 150 (A, B), and substrate temperature control means 120 for controlling the temperature of the substrate 10 to 5 ° C. or more and 15 ° C. or less during co-deposition.

有機膜成膜装置200において、複数の蒸着源150が2つである態様について示してあるが、蒸着源150は2つに限定されるものではない。図3において、蒸着源はそれぞれ加熱制御手段160(A,B)に接続されて原料の蒸発を制御されており、蒸着源の開口部の基板側には、それぞれの原料の蒸着の開始及び終了を制御するシャッター140(A,B)が備えられている。   In the organic film forming apparatus 200, the aspect in which the plurality of vapor deposition sources 150 are two is shown, but the number of vapor deposition sources 150 is not limited to two. In FIG. 3, the vapor deposition sources are respectively connected to the heating control means 160 (A, B) to control the evaporation of the raw materials, and the start and end of the vapor deposition of the respective raw materials are performed on the substrate side of the opening of the vapor deposition source. A shutter 140 (A, B) for controlling the above is provided.

また、基板ホルダ110には、成膜される有機膜の組成及び膜厚の面内均一性を良好にするために基板ホルダを回転させたり、3次元方向に移動させる基板ホルダ位置制御手段130と、基板ホルダ表面110aの温度を5℃以上15℃以下に制御する基板温度制御手段120とを備えている。本実施形態では、基板温度制御手段120が冷却源121と温度制御部122とにより構成された態様について示してあるが、基板温度制御手段120は、共蒸着中に着脱可能な冷却源121によってのみ構成されていてもよい。   The substrate holder 110 includes a substrate holder position control means 130 for rotating the substrate holder and moving it in a three-dimensional direction in order to improve the in-plane uniformity of the composition and thickness of the organic film to be formed. And a substrate temperature control means 120 for controlling the temperature of the substrate holder surface 110a to 5 ° C. or more and 15 ° C. or less. In the present embodiment, the substrate temperature control unit 120 is shown as being configured by the cooling source 121 and the temperature control unit 122, but the substrate temperature control unit 120 is only used by the detachable cooling source 121 during co-evaporation. It may be configured.

<基板設置工程>
基板設置工程では、光電変換層32を成膜する基板10を用意し、有機膜成膜装置200の真空蒸着室170内に設置する。本実施形態では、正孔捕集電極20と電子ブロッキング層31とが基板表面10a上に順次積層された基板10を用意し、真空蒸着室170内の基板ホルダ110の表面110aに、電子ブロッキング層31の表面が成膜面となるように設置する。図3において、基板10上に成膜された層については図示を省略してある。
<Board installation process>
In the substrate installation step, the substrate 10 on which the photoelectric conversion layer 32 is formed is prepared and installed in the vacuum vapor deposition chamber 170 of the organic film formation apparatus 200. In this embodiment, the substrate 10 in which the hole collection electrode 20 and the electron blocking layer 31 are sequentially laminated on the substrate surface 10 a is prepared, and the electron blocking layer is formed on the surface 110 a of the substrate holder 110 in the vacuum evaporation chamber 170. It installs so that the surface of 31 may become a film-forming surface. In FIG. 3, illustration of layers formed on the substrate 10 is omitted.

<第1の光電変換層形成工程>
次に、設置された基板10の温度が5℃以上15℃以下の温度範囲となるように制御しながら、有機光電変換層を構成するn型有機半導体とp型有機半導体とを基板10上に成膜された電子ブロッキング層31上に共蒸着して第1の光電変換層32aを成膜する。
<First photoelectric conversion layer forming step>
Next, the n-type organic semiconductor and the p-type organic semiconductor constituting the organic photoelectric conversion layer are placed on the substrate 10 while controlling the temperature of the installed substrate 10 to be in a temperature range of 5 ° C. to 15 ° C. The first photoelectric conversion layer 32a is formed by co-evaporation on the deposited electron blocking layer 31.

有機光電変換層32を構成するn型有機半導体とp型有機半導体は特に制限されないが、いずれかの材料若しくは両方が、分子が縦長の長軸を有する異方性を有していることが必要である。有機光電変換層32の好適な材料については後記する。   The n-type organic semiconductor and the p-type organic semiconductor constituting the organic photoelectric conversion layer 32 are not particularly limited, but one or both of the materials needs to have anisotropy in which molecules have a longitudinal long axis. It is. Suitable materials for the organic photoelectric conversion layer 32 will be described later.

第1の光電変換層形成工程では、基板10の温度が5℃以上15℃以下の温度範囲となるように制御しながら、n型有機半導体とp型有機半導体とを共蒸着することにより、縦長の長軸を有する異方性分子が、長軸が基板面に水平方向に強く配向した状態で蒸着された第1のバルクヘテロ層(第1の有機光電変換層)32aを成膜する。   In the first photoelectric conversion layer forming step, an n-type organic semiconductor and a p-type organic semiconductor are co-evaporated while controlling the temperature of the substrate 10 to be in a temperature range of 5 ° C. or more and 15 ° C. or less, thereby The first bulk hetero layer (first organic photoelectric conversion layer) 32a is deposited, in which anisotropic molecules having the major axis are deposited in a state where the major axis is strongly oriented in the horizontal direction on the substrate surface.

第1の光電変換層形成工程は、基板10の温度が5℃以上15℃以下の温度範囲となるように制御しながら、n型有機半導体とp型有機半導体とを共蒸着する工程であるので、基板設置工程において成膜基板が5℃以上15℃以下の温度範囲となっていない場合、例えば、室温に温度が保たれた基板10上に第1の光電変換層形成工程を実施する場合等においては、基板の冷却工程を実施する必要がある。   The first photoelectric conversion layer forming step is a step of co-evaporating an n-type organic semiconductor and a p-type organic semiconductor while controlling the temperature of the substrate 10 to be in a temperature range of 5 ° C. or higher and 15 ° C. or lower. When the film formation substrate is not in the temperature range of 5 ° C. or more and 15 ° C. or less in the substrate installation step, for example, when the first photoelectric conversion layer forming step is performed on the substrate 10 whose temperature is kept at room temperature. In this case, it is necessary to carry out a substrate cooling process.

冷却工程は、基板設置工程前に実施してもよいし、基板設置工程後、基板ホルダ上にて実施してもよい。第1の光電変換層形成工程は、開始時から基板10の温度が5℃以上15℃以下となっているようにする。   The cooling process may be performed before the substrate installation process, or may be performed on the substrate holder after the substrate installation process. In the first photoelectric conversion layer forming step, the temperature of the substrate 10 is set to be 5 ° C. or higher and 15 ° C. or lower from the beginning.

<第2の光電変換層形成工程>
次に、基板10の温度制御をやめて、第1のバルクヘテロ層32aの上に、引き続き第1のバルクヘテロ層32aと同様の蒸着源を用いて共蒸着を実施し、第2のバルクヘテロ層32bを形成する。第2のバルクヘテロ層32bの成膜において、基板10の温度制御をやめた以外は第1のバルクヘテロ層32aの成膜条件と同様でよいが、必要に応じてその他の条件を変更してもよい。
<Second photoelectric conversion layer forming step>
Next, the temperature control of the substrate 10 is stopped, and co-evaporation is subsequently performed on the first bulk hetero layer 32a using the same deposition source as that of the first bulk hetero layer 32a to form the second bulk hetero layer 32b. To do. In the formation of the second bulk hetero layer 32b, it may be the same as the film formation conditions of the first bulk hetero layer 32a except that the temperature control of the substrate 10 is stopped, but other conditions may be changed as necessary.

基板設置工程前の基板が室温にて保持されていた場合の、本実施形態の有機光電変換層の成膜方法の各工程と基板温度との関係を図4に示す。図4は、横軸が本実施形態の成膜方法の各プロセスを示しており、左から右に工程が進んでいく。図4に示されるように、第1の光電変換層形成工程前に基板温度は冷却工程により5℃以上15℃以下にされ(図4では10℃)、その温度を維持した状態に制御しながら第1の光電変換層形成工程を実施し、その後、温度制御をやめてから第2の光電変換層形成工程を実施する。図4では第1の光電変換層形成工程において基板温度は一定値となっているが、5℃以上15℃以下の範囲であれば変動しても構わない。   FIG. 4 shows the relationship between each step of the organic photoelectric conversion layer deposition method of the present embodiment and the substrate temperature when the substrate before the substrate installation step is held at room temperature. In FIG. 4, the horizontal axis indicates each process of the film forming method of the present embodiment, and the process proceeds from left to right. As shown in FIG. 4, the substrate temperature is set to 5 ° C. or higher and 15 ° C. or lower by the cooling step before the first photoelectric conversion layer forming step (10 ° C. in FIG. 4) while controlling the temperature to be maintained. The first photoelectric conversion layer forming step is performed, and then the temperature control is stopped and then the second photoelectric conversion layer forming step is performed. In FIG. 4, the substrate temperature is a constant value in the first photoelectric conversion layer forming step, but may vary as long as it is in the range of 5 ° C. to 15 ° C.

図4では、第2の光電変換層形成工程の最高温度が70℃となる場合について示してあるが、第2の光電変換層形成工程において、光電変換層を構成する有機材料の融点以下であればその最高温度は特に制限されない。ただし、膜の長期信頼性の観点からは、150℃程度以下であることが好ましい。また生産性の観点からは、蒸着成膜環境が長時間連続稼動している場合に雰囲気温度が短時間成膜と比べると高くなるケースが有り得、たとえば前記第2の光電変換層形成工程を実施する際の基板温度の最高温度は80℃以上となることも実際上起こり得る。   FIG. 4 shows the case where the maximum temperature of the second photoelectric conversion layer forming step is 70 ° C., but in the second photoelectric conversion layer forming step, it should be equal to or lower than the melting point of the organic material constituting the photoelectric conversion layer. The maximum temperature is not particularly limited. However, from the viewpoint of long-term reliability of the film, it is preferably about 150 ° C. or lower. From the viewpoint of productivity, there may be a case where the atmospheric temperature is higher than the short-time film formation when the deposition film formation environment is operated continuously for a long time. For example, the second photoelectric conversion layer forming step is performed. In practice, the maximum substrate temperature may be 80 ° C. or higher.

第1の光電変換層と第2の光電変換層の層厚の割合は特に制限されないが、低温成膜となる第1の光電変換層よりも第2の光電変換層の層厚が大きい方が、生産性の点で好ましい。第1の光電変換層の平均層厚の第2の光電変換層の平均層厚に対する比が1/2以下であることが好ましく、1/3以下であることがより好ましい。第1の光電変換層と第2の光電変換層の合計層厚が0.2μm〜1.0μmの範囲である場合は、第1の光電変換層の平均層厚は10Å以上100Å以下であれば、配向性付与効果が充分に得られる。   The ratio of the layer thickness of the first photoelectric conversion layer and the second photoelectric conversion layer is not particularly limited, but the layer thickness of the second photoelectric conversion layer is larger than the first photoelectric conversion layer that is formed at a low temperature. From the viewpoint of productivity. The ratio of the average layer thickness of the first photoelectric conversion layer to the average layer thickness of the second photoelectric conversion layer is preferably 1/2 or less, and more preferably 1/3 or less. When the total layer thickness of the first photoelectric conversion layer and the second photoelectric conversion layer is in the range of 0.2 μm to 1.0 μm, the average layer thickness of the first photoelectric conversion layer is 10 to 100 mm. , Sufficient orientation imparting effect can be obtained.

後記実施例では、第1の光電変換層と第2の光電変換層の合計層厚が約400nmであり、そのうち第1の光電変換層の膜厚は6〜7.5nmであった。   In the examples described later, the total thickness of the first photoelectric conversion layer and the second photoelectric conversion layer was about 400 nm, and the thickness of the first photoelectric conversion layer was 6 to 7.5 nm.

本実施形態の有機光電変換層の成膜方法では、有機光電変換層32を、基板の温度が5℃以上15℃以下の温度範囲となるように制御しながら共蒸着した後に、基板の温度の制御をやめて更に共蒸着を実施して形成する。かかる成膜方法によれば、残像特性の良好な有機光電変換素子を歩留まり良く製造することができる。
以下に、上記有機光電変換層の成膜方法により、残像特性の良好な有機光電変換素子を歩留まり良く製造可能とするメカニズムについて説明する。
In the method for forming an organic photoelectric conversion layer according to this embodiment, the organic photoelectric conversion layer 32 is co-evaporated while being controlled so that the temperature of the substrate is in a temperature range of 5 ° C. or more and 15 ° C. or less. The control is stopped and further co-evaporation is performed. According to such a film forming method, an organic photoelectric conversion element having good afterimage characteristics can be manufactured with a high yield.
Below, the mechanism which makes it possible to manufacture an organic photoelectric conversion element with good afterimage characteristics with a high yield by the above-mentioned method for forming an organic photoelectric conversion layer will be described.

「本発明が解決しようとする課題」の項目において述べたように、真空蒸着による有機膜の成膜では、基板温度が、基板の材質、基板表面に蒸着される膜の材料やその膜厚の増加、真空容器の内部表面の材質や該表面の膜付着状態、真空容器の形状等の色々な要素によって変化する輻射エネルギーにより影響を受ける。   As described in the section “Problems to be solved by the present invention”, in the formation of an organic film by vacuum deposition, the substrate temperature depends on the material of the substrate, the material of the film deposited on the surface of the substrate, and the film thickness thereof. It is affected by radiant energy that varies depending on various factors such as the increase, the material of the inner surface of the vacuum vessel, the state of film adhesion on the surface, and the shape of the vacuum vessel.

本発明者は、成膜装置によって変化しやすい輻射エネルギーが、残像特性の成膜装置によるばらつきの要因の一つである可能性に着目し、残像特性と、輻射エネルギーにより変化する基板温度との関係について検討を行った。   The present inventor paid attention to the possibility that the radiant energy, which is easily changed by the film forming apparatus, is one of the causes of variations in the afterimage characteristics of the film forming apparatus. The relationship was examined.

図5は、市販されている真空蒸着装置を用いて、ITO(酸化インジウム錫)電極が成膜された基板上に、電子ブロッキング層、バルクヘテロ層を蒸着し、更に、上部電極をスパッタ法により形成して有機光電変換素子を作製し、得られた素子の残像電流値を測定した結果を示したものである。有機光電変換素子は、それぞれバルクヘテロ層の蒸着時の基板温度のみ変化させて、複数作製した。既に述べたように、通常の蒸着時の基板温度は、輻射エネルギーを含む蒸着により、経時上昇していくものであり、成膜終了時に最高温度となることが殆どである。従って、ここでは、成膜終了時の基板温度を異ならせた有機光電変換素子を複数作製し、それぞれの残留電流値について測定した。   Fig. 5 shows the deposition of an electron blocking layer and a bulk hetero layer on a substrate on which an ITO (indium tin oxide) electrode is formed using a commercially available vacuum deposition apparatus, and further forms an upper electrode by sputtering. Then, an organic photoelectric conversion element was produced, and the result of measuring the afterimage current value of the obtained element is shown. A plurality of organic photoelectric conversion elements were produced by changing only the substrate temperature at the time of vapor deposition of the bulk hetero layer. As already described, the substrate temperature during normal vapor deposition increases with time due to vapor deposition including radiant energy, and almost always reaches the maximum temperature at the end of film formation. Therefore, here, a plurality of organic photoelectric conversion elements having different substrate temperatures at the end of film formation were prepared, and the respective residual current values were measured.

図5には、基板温度の最高温度の値により残電流値が変化することが示されている。この測定では,基板温度が80℃から大きく残像電流値が増加し特性が低下していることが観察される。   FIG. 5 shows that the remaining current value changes depending on the maximum substrate temperature. In this measurement, it is observed that the substrate temperature is greatly increased from 80 ° C., the afterimage current value is increased, and the characteristics are deteriorated.

次に、残像電流値に影響を与えているバルクヘテロ層の膜特性について検討を行った。バルクヘテロ層はアモルファスの膜であり、異方性の大きい有機分子を含む有機アモルファス膜は、膜厚方向の有機分子の配向性が基板温度に依存して変化することが知られている(特開2010−212112号公報等)。一方、膜面内方向についての配向性は確認されていない。   Next, the film characteristics of the bulk hetero layer affecting the afterimage current value were investigated. The bulk hetero layer is an amorphous film, and it is known that the orientation of organic molecules in the film thickness direction changes depending on the substrate temperature in an organic amorphous film containing organic molecules having a large anisotropy (Japanese Patent Application Laid-Open (JP-A)). 2010-212112 etc.). On the other hand, the orientation in the in-plane direction has not been confirmed.

本発明者は、図5で用いたバルクヘテロ層材料のうち、分子の異方性の大きいp型有機半導体材料(後記化合物6)について、蒸着膜の、膜厚方向の有機分子の配向性の基板温度に依存性について評価を行った。   The inventor of the bulk hetero layer material used in FIG. 5 has a p-type organic semiconductor material (compound 6 described later) having a large molecular anisotropy, and an organic molecule orientation substrate in the film thickness direction of the deposited film. The dependence on temperature was evaluated.

膜厚方向の有機分子の配向性は、非特許文献(”Daisuke Yokoyama et al, “Horizontal Orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films. ”Organic Electronics 10, pp.127-137 2009.)や、特開2010−212112号公報に記載されているように、蒸着膜に対する多入射角分光エリプソメトリー法による偏光解析と、解析により得られる消衰係数とから求められる配向度パラメータにより定量化することにより行った。   The orientation of organic molecules in the film thickness direction is described in non-patent literature (“Daisuke Yokoyama et al,“ Horizontal Orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films. ”Organic Electronics 10, pp. 127-137 2009.) and as disclosed in Japanese Patent Application Laid-Open No. 2010-212112, the orientation obtained from the polarization analysis of the deposited film by the multi-incidence angle spectroscopic ellipsometry method and the extinction coefficient obtained by the analysis. This was done by quantifying the degree parameter.

具体的には、算出された消衰係数から下記式(a)に示される配向度パラメータSを算出し、膜中の分子配向を評価した。
S=(−2)×(k−kxy)/(k+2kxy) ・・・(a)
(kは膜厚方向の消衰係数、kxyは基板面内方向の消衰係数である。)
Specifically, the orientation degree parameter S shown in the following formula (a) was calculated from the calculated extinction coefficient, and the molecular orientation in the film was evaluated.
S = (− 2) × (k z −k xy ) / (k z +2 k xy ) (a)
(K z is the extinction coefficient in the film thickness direction, and k xy is the extinction coefficient in the in-plane direction of the substrate.)

薄膜が光学的異方性を有していない、すなわち、分子配向(有機分子の長軸の配向)が完全ランダム配向の場合のS値は0、薄膜中の分子配向方向が基板に対して完全に垂直方向の場合のS値は−0.5、完全水平配向の場合が1となる。また、π共役化合物の分子配向が基板に対して水平方向に制御されている場合は、S値は0<S≦1の範囲の値を示す。   When the thin film has no optical anisotropy, that is, when the molecular orientation (alignment of the long axis of the organic molecule) is a completely random orientation, the S value is 0, and the molecular orientation direction in the thin film is completely with respect to the substrate The S value in the case of the vertical direction is -0.5, and 1 in the case of the complete horizontal alignment. Further, when the molecular orientation of the π-conjugated compound is controlled in the horizontal direction with respect to the substrate, the S value indicates a value in the range of 0 <S ≦ 1.

化合物6(以下、有機色素分子とする)を、石英基板上に各種基板温度で成膜し、それぞれの配向度Sを評価した結果を図6に示す。基板温度は基板を直接加熱する方法とし、成膜中は一定温度にて保持した。ここで、配向度を正確に測定するために、蒸着膜の膜厚は、膜の吸収特性を正確に測定するに充分な40nmとした。   Compound 6 (hereinafter referred to as organic dye molecule) is formed on a quartz substrate at various substrate temperatures, and the results of evaluating the respective orientation degrees S are shown in FIG. The substrate temperature was a method in which the substrate was directly heated, and was maintained at a constant temperature during film formation. Here, in order to accurately measure the degree of orientation, the thickness of the deposited film was set to 40 nm sufficient to accurately measure the absorption characteristics of the film.

図6には、基板温度15℃までは、蒸着膜の配向度パラメータが0.7付近であり、20℃〜60℃では0.6付近、100℃では水平方向の分子配向は保てず、よりランダムに近くなっていることが示されている。   In FIG. 6, up to the substrate temperature of 15 ° C., the degree of orientation parameter of the deposited film is around 0.7, 20 ° C. to 60 ° C. around 0.6, and 100 ° C. cannot maintain the horizontal molecular orientation. It is shown to be closer to random.

図5と図6とを比較すると、有機色素分子の長軸が、基板に対して水平方向の配向性が強い(0.5<S≦1の範囲でより1に近い場合)場合に、残留電流値が低くなる傾向があると推察される。
このことは、本評価で用いた有機色素が、ドナー・アクセプタ連結型の縦長の分子で、分子内双極子モーメントを一定量もっているという特徴を有することから、以下のようなメカニズムによるものと本発明者は考えている。
Comparing FIG. 5 and FIG. 6, when the major axis of the organic dye molecule is strongly oriented in the horizontal direction with respect to the substrate (when closer to 1 in the range of 0.5 <S ≦ 1), the residual It is assumed that the current value tends to be low.
This is because the organic dye used in this evaluation is a donor-acceptor-coupled vertically long molecule and has a certain amount of dipole moment within the molecule. The inventor thinks.

縦長の有機色素分子の長軸が基板に対して倒れる傾向(水平配向)になると、有機色素分子の分子間でπ共役が重なる配置を容易に取りやすくなり、π共役の重なりが大きくなると、電荷の受渡しがよりスムーズになり、残像電流が小さい、すなわち応答性が良くなる。
一方、分子配向がランダムぎみ(S=0に近づく)になると、上述のような重なりが少なくなることに加えて、分子内に双極子モーメントを持っているため、分子がランダム配置することで電位の局在準位がランダムに形成されて、電荷のトラップになるなど、電位が電荷の流れを阻害する。
When the long axis of the organic pigment molecules tends to tilt with respect to the substrate (horizontal orientation), it becomes easier to easily arrange the π conjugates between the molecules of the organic pigment molecules, and when the overlap of the π conjugates increases, Delivery becomes smoother, the afterimage current is small, that is, the response is improved.
On the other hand, when the molecular orientation becomes random (approaching S = 0), in addition to reducing the overlap as described above, there is a dipole moment within the molecule. The potential level inhibits the flow of charges, such as the formation of localized levels of the electrons and the trapping of charges.

以上のことから、本発明者は、残像特性の良好な有機光電変換素子を安定して製造可能とするためには、バルクヘテロ層を構成する縦長の有機分子が基板に対して水平方向に強く配向したバルクヘテロ層を、基板温度の変化による影響を受けること無く形成することが重要であることを見出した。   From the above, in order to enable stable production of an organic photoelectric conversion element with good afterimage characteristics, the present inventors strongly oriented the vertically long organic molecules constituting the bulk heterolayer in the horizontal direction with respect to the substrate. The present inventors have found that it is important to form the bulk hetero layer without being affected by changes in the substrate temperature.

縦長の有機分子が基板に対して水平方向に強く配向するように成膜するには、基板温度をより低温に維持して成膜すればよいと考えられる。図6から判断すれば、基板温度を60℃以下とすることにより、ある程度水平方向に縦長の有機分子が配向したバルクヘテロ層が得られ、基板温度を15℃以下とすればより水平方向の配向性が強くなり、残像特性の優れた有機光電変換素子が得られるものと考えられる。   In order to form a film so that the vertically long organic molecules are strongly oriented in the horizontal direction with respect to the substrate, it is considered that the film may be formed while maintaining the substrate temperature at a lower temperature. Judging from FIG. 6, when the substrate temperature is set to 60 ° C. or lower, a bulk hetero layer in which vertically long organic molecules are oriented to some extent in the horizontal direction can be obtained, and when the substrate temperature is set to 15 ° C. or lower, the horizontal orientation is further improved. It is considered that an organic photoelectric conversion element having excellent afterimage characteristics can be obtained.

基板温度は低いことが好ましいと考えられるが、5℃未満では、成膜環境下の水分や、酸素、水素などの成膜環境下に存在する極微量であるガス成分を膜中に取り込みやすくなる点で問題がある。   It is considered that the substrate temperature is preferably low, but if it is less than 5 ° C., it is easy to incorporate moisture in the film forming environment, and a very small amount of gas components existing in the film forming environment such as oxygen and hydrogen into the film. There is a problem in terms.

一方、室温より低い15℃以下の低温での蒸着では蒸着速度が遅く生産性が悪いという問題、また、基板温度は制御なしでは徐々に蒸着熱により上昇していくことを考慮すると、コストパフォーマンスやプロセス容易性の観点からも、低温温度制御は少ない時間にすることが好ましい。また、後記実施例、比較例にて示されるように、本発明者は、10℃に基板温度を制御したまま成膜されたバルクヘテロ層では、残像特性が劣化することも確認している。   On the other hand, in consideration of the problem that the deposition rate is slow and the productivity is low when the deposition is performed at a low temperature of 15 ° C. or lower, which is lower than the room temperature, and that the substrate temperature is gradually increased by the deposition heat without control, the cost performance and Also from the viewpoint of process easiness, it is preferable that the low-temperature temperature control is performed for a short time. In addition, as shown in Examples and Comparative Examples described later, the present inventors have also confirmed that afterimage characteristics deteriorate in a bulk heterolayer formed while controlling the substrate temperature at 10 ° C.

有機光電変換層の有機分子の配向性の制御は、過去にいくつか報告がある。例えば、既に述べた特開2010−212112号公報には、単一材料の蒸着により形成されてなる電荷輸送性非晶質膜において、分子配向方向が水平方向であれば、水平方向の電荷移動度と垂直方向の電荷移動度を比較すると垂直方向の電荷移動度が高くなることが記載されており、基板温度を0℃〜Tg(270℃や300℃)の範囲内の一定温度で蒸着することにより配向制御された電荷輸送層が得られることが記載されている。すなわち、配向性の制御は、0℃〜Tgの範囲であれば、300℃近傍までの高温成膜においても、良好な制御が可能であることが記載されている。   There have been some reports on the control of the orientation of organic molecules in the organic photoelectric conversion layer. For example, in Japanese Patent Laid-Open No. 2010-212112 already described, in a charge transporting amorphous film formed by vapor deposition of a single material, if the molecular orientation direction is horizontal, the charge mobility in the horizontal direction is It is described that the charge mobility in the vertical direction increases when the charge mobility in the vertical direction is compared with that in the vertical direction, and the substrate temperature is deposited at a constant temperature within the range of 0 ° C. to Tg (270 ° C. or 300 ° C.). It is described that a charge transport layer whose orientation is controlled by the above can be obtained. That is, it is described that the orientation control can be satisfactorily controlled even in high-temperature film formation up to about 300 ° C., as long as it is in the range of 0 ° C. to Tg.

また、特開2008−258421号公報には、キャリア移動度を向上させるために、光導電性有機化合物を含有する光電変換層の気相成膜において一部又はすべてを、基板温度を60℃〜250℃の範囲内の一定温度で成膜することにより、p型有機半導体及びn型有機半導体の少なくとも一方が配向制御されてなる光電変換層を備えた有機光電変換素子が開示されている。   JP 2008-258421 A discloses that, in order to improve carrier mobility, part or all of a photoelectric conversion layer containing a photoconductive organic compound is formed in a vapor phase, and the substrate temperature is set to 60 ° C. An organic photoelectric conversion element including a photoelectric conversion layer in which at least one of a p-type organic semiconductor and an n-type organic semiconductor is controlled in orientation by forming a film at a constant temperature within a range of 250 ° C. is disclosed.

更に、アモルファス有機薄膜内の分子配向は下層の影響を受けにくいこと、アモルファス有機薄膜を、基板温度を変えて重ねて成膜することで、単一材料のみで厚み方向に光学特性や電気特性を変調、制御可能であることが、上記非特許文献等に記載されている。   In addition, the molecular orientation in the amorphous organic thin film is not easily affected by the lower layer, and the amorphous organic thin film is formed by layering the substrate at different temperatures. It is described in the above-mentioned non-patent document that modulation and control are possible.

これらの記載からは、本実施形態の有機光電変換層の成膜方法のように、成膜プロセス中の基板温度が、図4に示されるような変化を示す場合には第1の光電変換層32aと第2の光電変換層32bとでは、配向性や光学特性、電気特性は異なるものが成膜されると想到されよう。   From these descriptions, the first photoelectric conversion layer is obtained when the substrate temperature during the film formation process changes as shown in FIG. 4 as in the method for forming the organic photoelectric conversion layer of the present embodiment. It is conceivable that films having different orientation, optical characteristics, and electrical characteristics are formed in the second photoelectric conversion layer 32b.

後記実施例及び比較例に示されるように、本発明者は、縦長の有機分子が水平方向に配向したバルクヘテロ層を容易に生産性良く成膜可能なバルクヘテロ層の成膜方法について検討を重ねた結果、有機光電変換層の成膜において、高い水平配向性を有する有機光電変換層が得られるように基板温度を5℃〜15℃に制御しながらまず成膜し、その後、基板温度の制御をやめて通常の蒸着成膜を実施することにより、良好な生産性、良好なコストパフォーマンス及びプロセス容易性を有し、且つ、残像特性の良好な有機光電変換素子の製造可能となることを見出した。   As shown in Examples and Comparative Examples described later, the present inventor has repeatedly studied a method for forming a bulk hetero layer that can easily form a bulk hetero layer in which vertically long organic molecules are oriented in the horizontal direction with high productivity. As a result, in the formation of the organic photoelectric conversion layer, the film was first formed while controlling the substrate temperature at 5 ° C. to 15 ° C. so that an organic photoelectric conversion layer having high horizontal orientation was obtained, and then the substrate temperature was controlled. It was found that an organic photoelectric conversion element having good productivity, good cost performance, easy process and good afterimage characteristics can be produced by stopping ordinary vapor deposition.

後記実施例の記載からもわかるように、本発明の有機光電変換層の成膜方法では、下地層における有機分子の配向性の影響により上層の有機分子を配向させて配向性の優れた光電変換層を成膜している。このように、有機アモルファス膜において、下地層の有機分子の配向性により上層の有機分子の配向性を制御する方法は、有機アモルファス膜における技術常識にはない新たな手法である。   As can be seen from the description of Examples below, in the method of forming an organic photoelectric conversion layer of the present invention, the organic layer in the upper layer is aligned by the influence of the orientation of the organic molecule in the underlayer, and the photoelectric conversion with excellent orientation is achieved. Layers are being deposited. As described above, in the organic amorphous film, the method of controlling the orientation of the organic molecules in the upper layer by the orientation of the organic molecules in the underlying layer is a new technique not found in the technical common sense of the organic amorphous film.

以下に、有機光電変換素子1の各層の構成について説明する。
<基板及び電極>
基板10としては特に制限なく、シリコン基板、ガラス基板等を用いることができる。
Below, the structure of each layer of the organic photoelectric conversion element 1 is demonstrated.
<Substrate and electrode>
There is no restriction | limiting in particular as the board | substrate 10, A silicon substrate, a glass substrate, etc. can be used.

正孔捕集電極20は、光電変換層32で発生した電荷のうちの正孔を捕集するための電極であり、後記する撮像素子の構成においては画素電極に相当する。正孔捕集電極20としては、導電性が良好であれば特に制限されないが、用途に応じて、透明性を持たせる場合と、逆に透明を持たせず光を反射させるような材料を用いる場合等がある。   The hole collection electrode 20 is an electrode for collecting holes out of the charges generated in the photoelectric conversion layer 32, and corresponds to a pixel electrode in the configuration of the imaging device described later. The hole collecting electrode 20 is not particularly limited as long as it has good conductivity. However, depending on the application, a material that does not have transparency but reflects light can be used. There are cases.

具体的には、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられ、更に具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル、チタン、タングステン、アルミ等の金属及びこれらの金属の酸化物や窒化物などの導電性化合物(一例として窒化チタン(TiN)を挙げる)、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITO又は窒化チタンとの積層物などが挙げられる。正孔捕集電極20として特に好ましいのは、窒化チタン、窒化モリブデン、窒化タンタル、窒化タングステンのいずれかの材料である。   Specific examples include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. More specifically, tin oxide doped with antimony or fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) and other conductive metal oxides, gold, silver, chromium, nickel, titanium, tungsten, aluminum and other metals Conductive compounds such as oxides and nitrides of these metals (titanium nitride (TiN) is given as an example), a mixture or laminate of these metals and conductive metal oxides, copper iodide, copper sulfide, etc. And inorganic conductive materials, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO or titanium nitride. Particularly preferred as the hole collecting electrode 20 is any material of titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.

電子捕集電極40は、光電変換層32で発生した電荷のうちの電子を捕集する電極であり、本実施形態では受光側に配された透明電極である。電子捕集電極40としては、光電変換層32に光を入射させるために、光電変換層32が感度を持つ波長の光に対して十分に透明な導電性材料であれば特に制限されないいが、光電変換層32に入射する光の絶対量が大きく、外部量子効率を高くするために、透明導電性酸化物(TCO)を用いることが好ましい。電子捕集電極40は、後記する撮像素子の構成においては画素電極に相当する。   The electron collection electrode 40 is an electrode that collects electrons out of charges generated in the photoelectric conversion layer 32, and is a transparent electrode disposed on the light receiving side in the present embodiment. The electron collecting electrode 40 is not particularly limited as long as it is a conductive material that is sufficiently transparent to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity in order to make light incident on the photoelectric conversion layer 32. In order to increase the absolute amount of light incident on the photoelectric conversion layer 32 and increase the external quantum efficiency, it is preferable to use a transparent conductive oxide (TCO). The electron collection electrode 40 corresponds to a pixel electrode in the configuration of the imaging device described later.

電子捕集電極40としては、具体的には、ITO、IZO、SnO2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO2、FTO(フッ素ドープ酸化スズ)のいずれかの材料が挙げられる。 Specifically, as the electron collecting electrode 40, ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 , FTO Any material of (fluorine-doped tin oxide) is mentioned.

電子捕集電極40の光透過率は、可視光波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。   The light transmittance of the electron collection electrode 40 is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, and more preferably 95% or more in the visible light wavelength.

電極(20,40)を形成する方法は特に限定されず、電極材料との適正を考慮して適宜選択することができる。具体的には、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等により形成することができる。   The method for forming the electrodes (20, 40) is not particularly limited, and can be appropriately selected in consideration of appropriateness with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method.

電極の材料がITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾルーゲル法など)、酸化インジウムスズの分散物の塗布などの方法で形成することができる。更に、ITOを用いて作製された膜に、UV−オゾン処理、プラズマ処理などを施すことができる。電極の材料がTiNの場合、反応性スパッタリング法をはじめとする各種の方法が用いられ、更にアニール処理、UV−オゾン処理、プラズマ処理などを施すことができる。   When the material of the electrode is ITO, it can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (such as a sol-gel method), or a dispersion of indium tin oxide. Furthermore, UV-ozone treatment, plasma treatment, or the like can be performed on a film formed using ITO. When the electrode material is TiN, various methods including a reactive sputtering method are used, and further, annealing treatment, UV-ozone treatment, plasma treatment, and the like can be performed.

TCOからなる透明導電膜を電子捕集電極40とした場合、DCショート、あるいはリーク電流増大が生じる場合がある。この原因の一つは、光電変換層32に導入される微細なクラックがTCOなどの緻密な膜によってカバレッジされ、反対側の下部電極20との間の導通が増すためと考えられる。そのため、Alなど膜質が比較的劣る電極の場合、リーク電流の増大は生じにくい。電子捕集電極40の膜厚を、光電変換層32の膜厚(すなわち、クラックの深さ)に対して制御する事により、リーク電流の増大を大きく抑制できる。電子捕集電極40の厚みは、光電変換層32厚みの1/5以下、好ましくは1/10以下であるようにする事が望ましい。   When a transparent conductive film made of TCO is used as the electron collecting electrode 40, a DC short circuit or an increase in leakage current may occur. One reason for this is thought to be that fine cracks introduced into the photoelectric conversion layer 32 are covered with a dense film such as TCO, and conduction between the lower electrode 20 on the opposite side is increased. Therefore, in the case of an electrode having a relatively poor film quality such as Al, an increase in leakage current is unlikely to occur. By controlling the film thickness of the electron collection electrode 40 with respect to the film thickness of the photoelectric conversion layer 32 (that is, the depth of cracks), an increase in leakage current can be largely suppressed. The thickness of the electron collection electrode 40 is desirably 1/5 or less, preferably 1/10 or less of the thickness of the photoelectric conversion layer 32.

通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態に係る光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100〜10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極40は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換層32での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、透過率の増加を考慮すると、電子捕集電極40の膜厚は、5〜100nmであることが好ましく、5〜20nmである事がより好ましい。   Usually, when the conductive film is made thinner than a certain range, a rapid increase in resistance value is caused. However, in the solid-state imaging device incorporating the photoelectric conversion element according to the present embodiment, the sheet resistance is preferably 100 to 10,000 Ω / □. Well, the degree of freedom in the range of film thickness that can be made thin is great. Further, the thinner the upper electrode 40 is, the less light is absorbed, and the light transmittance is generally increased. The increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion layer 32 and increases the photoelectric conversion ability. Considering the suppression of leakage current, the increase in the resistance value of the thin film, and the increase in transmittance due to the thinning, the thickness of the electron collection electrode 40 is preferably 5 to 100 nm, and preferably 5 to 20 nm. Is more preferable.

<受光層>
受光層30は、少なくとも光電変換層32を含む層であるが、本実施形態では電子ブロッキング層31及び正孔ブロッキング層33を備えている。電子ブロッキング層31及び正孔ブロッキング層33の成膜方法は特に制限されず、それぞれの乾式成膜法又は湿式成膜法により形成することができるが、成膜時のすべての工程は真空中で行われることが好ましく、基本的には化合物が直接、外気の酸素、水分と接触しないようにすることが好ましい。かかる成膜方法としては真空蒸着法が挙げられる。真空蒸着法においては、水晶振動子、干渉計等の膜厚モニタ−を用いて蒸着速度をPIもしくはPID制御することが好ましい。また、2種以上の化合物を同時に蒸着する場合には光電変換層32と同様、共蒸着法を用いることができ、共蒸着法は、抵抗加熱蒸着、電子ビーム蒸着、フラッシュ蒸着等を用いて実施することが好ましい。
<Light receiving layer>
The light receiving layer 30 is a layer including at least the photoelectric conversion layer 32, and includes an electron blocking layer 31 and a hole blocking layer 33 in the present embodiment. The method for forming the electron blocking layer 31 and the hole blocking layer 33 is not particularly limited, and can be formed by each dry film forming method or wet film forming method. Preferably, it is preferably carried out, and basically it is preferable that the compound does not come into direct contact with oxygen and moisture in the outside air. An example of such a film forming method is a vacuum deposition method. In the vacuum deposition method, it is preferable to perform PI or PID control of the deposition rate using a film thickness monitor such as a crystal resonator or an interferometer. In the case where two or more kinds of compounds are deposited at the same time, a co-evaporation method can be used as in the photoelectric conversion layer 32. The co-evaporation method is performed using resistance heating deposition, electron beam deposition, flash deposition, or the like. It is preferable to do.

受光層30を乾式成膜法により形成する場合、形成時の真空度は、受光層形成時の素子特性の劣化を防止することを考慮すると、1×10−3Pa以下が好ましく、4×10−4Pa以下がさらに好ましく、1×10−4Pa以下が特に好ましい。 When the light receiving layer 30 is formed by a dry film forming method, the degree of vacuum at the time of formation is preferably 1 × 10 −3 Pa or less in consideration of preventing deterioration of element characteristics at the time of forming the light receiving layer. −4 Pa or less is more preferable, and 1 × 10 −4 Pa or less is particularly preferable.

受光層30の厚みは、10nm以上1000nm以下が好ましく、さらに好ましくは50nm以上800nm以下、特に好ましくは100nm以上600nm以下である。10nm以上とすることにより、好適な暗電流抑制効果が得られ、1000nm以下とすることにより、好適な光電変換効率(感度)が得られる。   The thickness of the light receiving layer 30 is preferably 10 nm to 1000 nm, more preferably 50 nm to 800 nm, and particularly preferably 100 nm to 600 nm. By setting it to 10 nm or more, a suitable dark current suppressing effect is obtained, and by setting it to 1000 nm or less, suitable photoelectric conversion efficiency (sensitivity) is obtained.

<<光電変換層>>
光電変換層(バルクへテロ層)32におけるn型有機半導体としては特に制限なく、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブ等が挙げられる。以下に代表的なフラーレンの骨格を示す。
また、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。フラーレン誘導体の置換基として好ましくは、アルキル基、アリール基、又は複素環基である。アルキル基として更に好ましくは、炭素数1〜12までのアルキル基であり、アリール基、及び複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、さらに好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらはさらに置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていてもよい。また、複数の置換基は可能な限り結合して環を形成してもよい。
<< Photoelectric conversion layer >>
The n-type organic semiconductor in the photoelectric conversion layer (bulk hetero layer) 32 is not particularly limited. Fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , fullerene C 90 , fullerene C 96 , fullerene C 240 , fullerene 540 , mixed fullerene, fullerene nanotube and the like can be mentioned. A typical fullerene skeleton is shown below.
The fullerene derivative means a compound having a substituent added thereto. The substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group. More preferably, the alkyl group is an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring. , Biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, benzofuran ring, benzothiophene ring, isobenzofuran Ring, benzimidazole ring, imidazopyridine ring, quinolidine ring, quinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinoxazoline ring, isoquinoline ring, carbazole ring, phenanthridine ring, acridine ring, phenanthroline , Thianthrene ring, chromene ring, xanthene ring, phenoxathiin ring, phenothiazine ring, or phenazine ring, more preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyridine ring, imidazole ring, oxazole ring, or A thiazole ring, particularly preferably a benzene ring, a naphthalene ring, or a pyridine ring. These may further have a substituent, and the substituents may be bonded as much as possible to form a ring. In addition, you may have a some substituent and they may be the same or different. A plurality of substituents may be combined as much as possible to form a ring.

バルクへテロ層32において、n型有機半導体と混合する有機p型半導体は特に制限されないが、吸収スペクトルのピーク波長は、可視領域の光を幅広く吸収するという観点から450nm以上700nm以下であることが好ましく、480nm以上700nm以下がより好ましく、510nm以上680nm以下であることが更に好ましい。光を効率よく利用する観点から、モル吸光係数は高ければ高いほどよい。吸収スペクトル(クロロホルム溶液)が、波長400nmから700nmまでの可視領域において、モル吸光係数は20000M−1cm−1以上が好ましく、30000M−1cm−1以上がより好ましく、40000M−1cm−1以上が更に好ましい。 In the bulk hetero layer 32, the organic p-type semiconductor mixed with the n-type organic semiconductor is not particularly limited, but the peak wavelength of the absorption spectrum may be 450 nm or more and 700 nm or less from the viewpoint of widely absorbing light in the visible region. It is preferably 480 nm to 700 nm, more preferably 510 nm to 680 nm. From the viewpoint of efficiently using light, the higher the molar extinction coefficient, the better. Absorption spectrum (chloroform solution), in the visible region of the wavelength 400nm to 700 nm, the molar absorption coefficient preferably 20000 -1 cm -1 or more, more preferably 30000 m -1 cm -1 or more, 40000M -1 cm -1 or more Is more preferable.

p型有機半導体は、ドナー性有機半導体(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物あり、さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物である。従って、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。   A p-type organic semiconductor is a donor-type organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and has a property of easily donating electrons. More specifically, two organic materials are brought into contact with each other. Is an organic compound having a smaller ionization potential when used. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.

p型有機半導体としては、例えば、トリアリールアミン化合物、ピラン化合物、キナクリドン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができ、トリアリールアミン化合物、ピラン化合物、キナクリドン化合物、ピロール化合物、フタロシアニン化合物、メロシアニン化合物、縮合芳香族炭素環化合物が好ましい。   Examples of p-type organic semiconductors include triarylamine compounds, pyran compounds, quinacridone compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, Cyanine compounds, merocyanine compounds, oxonol compounds, polyamine compounds, indole compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, Fluoranthene derivatives), metal complexes with nitrogen-containing heterocyclic compounds as ligands, and triarylamination Things, pyran compounds, quinacridone compounds, pyrrole compounds, phthalocyanine compounds, merocyanine compounds, fused aromatic carbocyclic compound.

p型有機半導体の好適な材料として例えば、下記一般式(1)で表される化合物が挙げられる。
(一般式(1)中、Zは5又は6員環を形成するのに必要な原子群を表す。L、L、及びLはそれぞれ独立に、無置換メチン基、又は置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
Examples of suitable materials for the p-type organic semiconductor include compounds represented by the following general formula (1).
(In General Formula (1), Z 1 represents an atomic group necessary for forming a 5- or 6-membered ring. L 1 , L 2 , and L 3 are each independently an unsubstituted methine group or a substituted methine. D 1 represents an atomic group, and n represents an integer of 0 or more.

一般式(1)中、Zは、少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば以下のものが挙げられる。 In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. . As a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring, those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following: Is mentioned.

(a)1,3−ジカルボニル核:例えば1,3−インダンジオン核、1,3−シクロヘキサンジオン、5,5−ジメチル−1,3−シクロヘキサンジオン、1,3−ジオキサン−4,6−ジオン等。
(b)ピラゾリノン核:例えば1−フェニル−2−ピラゾリン−5−オン、3−メチル−1−フェニル−2−ピラゾリン−5−オン、1−(2−ベンゾチアゾイル)−3−メチル−2−ピラゾリン−5−オン等。
(c)イソオキサゾリノン核:例えば3−フェニル−2−イソオキサゾリン−5−オン、3−メチル−2−イソオキサゾリン−5−オン等。
(d)オキシインドール核:例えば1−アルキル−2,3−ジヒドロ−2−オキシインドール等。
(e)2,4,6−トリケトヘキサヒドロピリミジン核:例えばバルビツール酸又は2−チオバルビツール酸及びその誘導体等。誘導体としては例えば1−メチル、1−エチル等の1−アルキル体、1,3−ジメチル、1,3−ジエチル、1,3−ジブチル等の1,3−ジアルキル体、1,3−ジフェニル、1,3−ジ(p−クロロフェニル)、1,3−ジ(p−エトキシカルボニルフェニル)等の1,3−ジアリール体、1−エチル−3−フェニル等の1−アルキル−1−アリール体、1,3−ジ(2―ピリジル)等の1,3位ジヘテロ環置換体等が挙げられる。
(f)2−チオ−2,4−チアゾリジンジオン核:例えばローダニン及びその誘導体等。誘導体としては例えば3−メチルローダニン、3−エチルローダニン、3−アリルローダニン等の3−アルキルローダニン、3−フェニルローダニン等の3−アリールローダニン、3−(2−ピリジル)ローダニン等の3位ヘテロ環置換ローダニン等が挙げられる。
(g)2−チオ−2,4−オキサゾリジンジオン(2−チオ−2,4−(3H,5H)−オキサゾールジオン核:例えば3−エチル−2−チオ−2,4−オキサゾリジンジオン等。
(h)チアナフテノン核:例えば3(2H)−チアナフテノン−1,1−ジオキサイド等。
(i)2−チオ−2,5−チアゾリジンジオン核:例えば3−エチル−2−チオ−2,5−チアゾリジンジオン等。
(j)2,4−チアゾリジンジオン核:例えば2,4−チアゾリジンジオン、3−エチル−2,4−チアゾリジンジオン、3−フェニル−2,4−チアゾリジンジオン等。
(k)チアゾリン−4−オン核:例えば4−チアゾリノン、2−エチル−4−チアゾリノン等。
(l)2,4−イミダゾリジンジオン(ヒダントイン)核:例えば2,4−イミダゾリジンジオン、3−エチル−2,4−イミダゾリジンジオン等。
(m)2−チオ−2,4−イミダゾリジンジオン(2−チオヒダントイン)核:例えば2−チオ−2,4−イミダゾリジンジオン、3−エチル−2−チオ−2,4−イミダゾリジンジオン等。
(n)イミダゾリン−5−オン核:例えば2−プロピルメルカプト−2−イミダゾリン−5−オン等。
(o)3,5−ピラゾリジンジオン核:例えば1,2−ジフェニル−3,5−ピラゾリジンジオン、1,2−ジメチル−3,5−ピラゾリジンジオン等。
(p)ベンゾチオフェンー3−オン核:例えばベンゾチオフェンー3−オン、オキソベンゾチオフェンー3−オン、ジオキソベンゾチオフェンー3−オン等。
(q)インダノン核:例えば1−インダノン、3−フェニルー1−インダノン、3−メチルー1−インダノン、3,3−ジフェニルー1−インダノン、3,3−ジメチルー1−インダノン等。
(A) 1,3-dicarbonyl nucleus: For example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
(B) pyrazolinone nucleus: for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
(C) Isoxazolinone nucleus: For example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
(D) Oxindole nucleus: For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
(E) 2,4,6-triketohexahydropyrimidine nucleus: for example, barbituric acid or 2-thiobarbituric acid and its derivatives. Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
(F) 2-thio-2,4-thiazolidinedione nucleus: for example, rhodanine and derivatives thereof. Examples of the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
(G) 2-thio-2,4-oxazolidinedione (2-thio-2,4- (3H, 5H) -oxazoledione nucleus: for example, 3-ethyl-2-thio-2,4-oxazolidinedione and the like.
(H) Tianaphthenone nucleus: For example, 3 (2H) -thianaphthenone-1,1-dioxide and the like.
(I) 2-thio-2,5-thiazolidinedione nucleus: for example, 3-ethyl-2-thio-2,5-thiazolidinedione and the like.
(J) 2,4-thiazolidinedione nucleus: For example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione, and the like.
(K) Thiazolin-4-one nucleus: For example, 4-thiazolinone, 2-ethyl-4-thiazolinone and the like.
(L) 2,4-imidazolidinedione (hydantoin) nucleus: for example, 2,4-imidazolidinedione, 3-ethyl-2,4-imidazolidinedione, etc.
(M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus: for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
(N) Imidazolin-5-one nucleus: for example, 2-propylmercapto-2-imidazolin-5-one and the like.
(O) 3,5-pyrazolidinedione nucleus: for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
(P) Benzothiophen-3-one nucleus: for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
(Q) Indanone nucleus: For example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, and the like.

で表される環として好ましくは、1,3−ジカルボニル核、ピラゾリノン核、2,4,6−トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツール酸核、2−チオバルビツール酸核)、2−チオ−2,4−チアゾリジンジオン核、2−チオ−2,4−オキサゾリジンジオン核、2−チオ−2,5−チアゾリジンジオン核、2,4−チアゾリジンジオン核、2,4−イミダゾリジンジオン核、2−チオ−2,4−イミダゾリジンジオン核、2−イミダゾリン−5−オン核、3,5−ピラゾリジンジオン核、ベンゾチオフェン−3−オン核、インダノン核であり、より好ましくは1,3−ジカルボニル核、2,4,6−トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツール酸核、2−チオバルビツール酸核)、3,5−ピラゾリジンジオン核、ベンゾチオフェンー3−オン核、インダノン核であり、更に好ましくは1,3−ジカルボニル核、2,4,6−トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツール酸核、2−チオバルビツール酸核)であり、特に好ましくは1,3−インダンジオン核、バルビツール酸核、2−チオバルビツール酸核及びそれらの誘導体である。 The ring represented by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, a 2-thiobarbi acid nucleus, Tool acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2 , 4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus And more preferably a 1,3-dicarbonyl nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body such as a barbituric acid nucleus, Rubituric acid nucleus), 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus, more preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine Nuclei (including thioketone bodies, such as barbituric acid nuclei, 2-thiobarbituric acid nuclei), particularly preferably 1,3-indandione nuclei, barbituric acid nuclei, 2-thiobarbituric acid nuclei and their Is a derivative.

一般式(1)において、L、L、及びLはそれぞれ独立に、無置換メチン基、又は置換メチン基を表す。置換メチン基同士が結合して環を形成してもよい。環としては6員環(例えば、ベンゼン環等)が挙げられる。置換メチン基の置換基としては後述の置換基Wが挙げられるが、L、L及びLは全てが無置換メチン基である場合が好ましい。 In the general formula (1), L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. The substituted methine groups may be bonded to form a ring. A 6-membered ring (for example, benzene ring etc.) is mentioned as a ring. Examples of the substituent of the substituted methine group include the substituent W described later, and it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.

一般式(1)において、nは0以上の整数を表し、好ましくは0以上3以下の整数を表し、より好ましくは0である。nを増大させた場合、吸収波長域が長波長にすることができるが、熱による分解温度が低くなる。可視域に適切な吸収を有し、かつ蒸着成膜時の熱分解を抑制する点でn=0が好ましい。   In the general formula (1), n represents an integer of 0 or more, preferably 0 or more and 3 or less, more preferably 0. When n is increased, the absorption wavelength region can be made longer, but the decomposition temperature due to heat is lowered. N = 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.

一般式(1)において、Dは原子群を表す。Dは−NR(R)を含む基であることが好ましく、更に、前記Dが−NR(R)が置換したアリール基(好ましくは、置換基を有してもよい、フェニル基又はナフチル基)を表す場合が好ましい。R、及びRはそれぞれ独立に、水素原子、又は置換基を表し、該置換基としては後述する置換基Wが挙げられるが、好ましくは、脂肪族炭化水素基(好ましくは置換基を有してもよいアルキル基又はアルケニル基)、アリール基、又はヘテロ環基である。 In the general formula (1), D 1 represents an atomic group. D 1 is preferably a group containing —NR a (R b ), and D 1 is preferably an aryl group substituted with —NR a (R b ) (preferably, may have a substituent, Preferred is a phenyl group or a naphthyl group. R a and R b each independently represent a hydrogen atom or a substituent, and examples of the substituent include a substituent W described later, and preferably an aliphatic hydrocarbon group (preferably having a substituent). An alkyl group or an alkenyl group), an aryl group, or a heterocyclic group.

が表すアリーレン基としては、好ましくは炭素数6〜30のアリーレン基であり、より好ましくは炭素数6〜18のアリーレン基である。該アリーレン基は、後述の置換基Wを有していてもよく、好ましくは炭素数1〜4のアルキル基を有していてもよい炭素数6〜18のアリーレン基である。例えば、フェニレン基、ナフチレン基、アントラセニレン基、ピレニレン基、フェナントレニレン基、メチルフェニレン基、ジメチルフェニレン基等が挙げられ、フェニレン基又はナフチレン基が好ましい。 The arylene group represented by D 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms. The arylene group may have a substituent W described later, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples include a phenylene group, a naphthylene group, an anthracenylene group, a pyrenylene group, a phenanthrenylene group, a methylphenylene group, and a dimethylphenylene group, and a phenylene group or a naphthylene group is preferable.

Ra、Rbで表される置換基としては後述の置換基Wが挙げられ、好ましくは、脂肪族炭化水素基(好ましくは置換されてよいアルキル基、アルケニル基)、アリール基(好ましくは置換されてよいフェニル基)、又はヘテロ環基である。   Examples of the substituent represented by Ra and Rb include a substituent W described later, and preferably an aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may be substituted) or an aryl group (preferably substituted). A good phenyl group), or a heterocyclic group.

Ra、Rbが表すアリール基としては、それぞれ独立に、好ましくは炭素数6〜30のアリール基であり、より好ましくは炭素数6〜18のアリール基である。該アリール基は、置換基を有していてもよく、好ましくは炭素数1〜4のアルキル基又は炭素数6〜18のアリール基を有していてもよい炭素数6〜18のアリール基である。例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基、フェナントレニル基、メチルフェニル基、ジメチルフェニル基、ビフェニル基等が挙げられ、フェニル基又はナフチル基が好ましい。   The aryl groups represented by Ra and Rb are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms. The aryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. is there. Examples include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, and a biphenyl group, and a phenyl group or a naphthyl group is preferable.

Ra、Rbが表すヘテロ環基としては、それぞれ独立に、好ましくは炭素数3〜30のヘテロ環基であり、より好ましくは炭素数3〜18のヘテロ環基である。該ヘテロ環基は、置換基を有していてもよく、好ましくは炭素数1〜4のアルキル基又は炭素数6〜18のアリール基を有していてもよい炭素数3〜18のヘテロ環基である。また、Ra、Rbが表すヘテロ環基は縮環構造であることが好ましく、フラン環、チオフェン環、セレノフェン環、シロール環、ピリジン環、ピラジン環、ピリミジン環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環からから選ばれる環の組み合わせ(同一でも良い)の縮環構造が好ましく、キノリン環、イソキノリン環、ベンゾチオフェン環、ジベンゾチオフェン環、チエノチオフェン環、ビチエノベンゼン環、ビチエノチオフェン環が好ましい。   The heterocyclic groups represented by Ra and Rb are each independently preferably a heterocyclic group having 3 to 30 carbon atoms, and more preferably a heterocyclic group having 3 to 18 carbon atoms. The heterocyclic group may have a substituent, preferably a C3-18 heterocycle which may have a C1-4 alkyl group or a C6-18 aryl group. It is a group. The heterocyclic group represented by Ra and Rb is preferably a condensed ring structure, such as a furan ring, a thiophene ring, a selenophene ring, a silole ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an oxazole ring, a thiazole ring, a triazole ring, A condensed ring structure of a combination of rings selected from an oxadiazole ring and a thiadiazole ring (which may be the same) is preferable. A quinoline ring, an isoquinoline ring, a benzothiophene ring, a dibenzothiophene ring, a thienothiophene ring, a bithienobenzene ring, A thienothiophene ring is preferred.

、Ra、及びRbが表すアリーレン基及びアリール基はベンゼン環又は縮環構造であることが好ましく、ベンゼン環を含む縮環構造であることがより好ましく、ナフタレン環、アントラセン環、ピレン環、フェナントレン環を挙げることができ、ベンゼン環、ナフタレン環又はアントラセン環がより好ましくは、ベンゼン環又はナフタレン環が更に好ましい。 The arylene group and aryl group represented by D 1 , Ra and Rb are preferably a benzene ring or a condensed ring structure, more preferably a condensed ring structure containing a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, A phenanthrene ring can be mentioned, a benzene ring, a naphthalene ring or an anthracene ring is more preferable, and a benzene ring or a naphthalene ring is still more preferable.

置換基Wとしてはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といっても良い)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(−B(OH))、ホスファト基(−OPO(OPO(OH))、スルファト基(−OSOH)、その他の公知の置換基が挙げられる。 As the substituent W, a halogen atom, an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, and a heterocyclic group (May be referred to as a heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryl Oxycarbonyl group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl and arylsulfonylamino group, mercapto Alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfinyl group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl and heterocyclic azo Group, imide group, phosphino group, phosphinyl group, phosphinyloxy group, phosphinylamino group, phosphono group, silyl group, hydrazino group, ureido group, boronic acid group (-B (OH) 2 ), phosphato group ( -OPO (OPO (OH) 2) , a sulfato group (-OSO 3 H), and other known substituents.

Ra、Rbが置換基(好ましくはアルキル基、アルケニル基)を表す場合、それらの置換基は、−NRa(Rb)が置換したアリール基の芳香環(好ましくはベンゼン環)骨格の水素原子、又は置換基と結合して環(好ましくは6員環)を形成してもよい。   When Ra and Rb represent a substituent (preferably an alkyl group or an alkenyl group), the substituent is a hydrogen atom of an aromatic ring (preferably benzene ring) skeleton of an aryl group substituted by —NRa (Rb), or It may combine with a substituent to form a ring (preferably a 6-membered ring).

Ra、Rbは互いに置換基同士が結合して環(好ましくは5員又は6員環、より好ましくは6員環)を形成してもよく、また、Ra、RbはそれぞれがL(L、L、Lのいずれかを表す)中の置換基と結合して環(好ましくは5員又は6員環、より好ましくは6員環)を形成してもよい。 Ra and Rb may be bonded to each other to form a ring (preferably a 5- or 6-membered ring, more preferably a 6-membered ring), and Ra and Rb are each L (L 1 , A ring (preferably a 5- or 6-membered ring, more preferably a 6-membered ring) may be formed by combining with a substituent in L 2 or L 3 .

一般式(1)で表される化合物は、特開2000−297068号公報に記載の化合物であり、前記公報に記載のない化合物も、前記公報に記載の合成方法に準じて製造することができる。   The compound represented by the general formula (1) is a compound described in JP 2000-297068 A, and a compound not described in the above publication can also be produced according to the synthesis method described in the above publication. .

一般式(1)で表される化合物は下記一般式(2)で表される化合物であることが好ましい。
(式中、Z、L21、L22、L23、及びnは一般式(1)におけるZ、L、L、L、及びnと同義であり、その好ましい例も同様である。D21は置換又は無置換のアリーレン基を表す。D22、及びD23はそれぞれ独立に、置換若しくは無置換のアリール基又は置換若しくは無置換のヘテロ環基を表す。)
21が表すアリーレン基としては、Dが表すアリーレン環基と同義であり、その好ましい例も同様である。
The compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
(In the formula, Z 2 , L 21 , L 22 , L 23 , and n are synonymous with Z 1 , L 1 , L 2 , L 3 , and n in the general formula (1), and preferred examples thereof are also the same. D 21 represents a substituted or unsubstituted arylene group, and D 22 and D 23 each independently represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
The arylene group represented by D 21 has the same meaning as the arylene ring group represented by D 1 , and preferred examples thereof are also the same.

22、及びD23が表すアリール基としては、それぞれ独立に、Ra、及びRbが表すヘテロ環基と同義であり、その好ましい例も同様である。 The aryl group represented by D 22 and D 23 is independently the same as the heterocyclic group represented by Ra and Rb, and preferred examples thereof are also the same.

以下に一般式(1)で表される化合物の好ましい具体例を、一般式(3)を用いて示すが、本発明はこれらに限定されるものではない。
(式(3)中、Zは下記A−1〜A−12のいずれかを表す。L31がメチレンを表し、nが0を表す。D31がB−1〜B−9のいずれかであり、D32、及びD33がC−1〜C−16のいずれかを表す。)
としては、A−2が好ましく、D32、及びD33はC−1、C−2、C−15、C−16から選択されることが好ましく、D31はB−1又はB−9であることが好ましい。
特に好ましいp型有機材料としては、染料若しくは5個以上の縮環構造を持たない材料(縮環構造を0〜4個、好ましは1〜3個有する材料)が挙げられる。有機薄膜太陽電池で一般的に使用されている顔料系p型材料を用いると、pn界面での暗時電流が増大しやすい傾向になること、結晶性の粒界でのトラップにより光応答が遅くなりがちであることから、撮像素子用として用いることが難しい。このため、結晶化しにくい染料系のp型材料、若しくは5個以上の縮環構造を持たない材料が撮像素子用に好ましく用いることができる。
Although the preferable specific example of a compound represented by General formula (1) below is shown using General formula (3), this invention is not limited to these.
(In the formula (3), Z 3 represents any of the following A-1 to A-12. L 31 represents methylene and n represents 0. D 31 represents any of B-1 to B-9. D 32 and D 33 represent any one of C-1 to C-16.)
Z 3 is preferably A-2, D 32 and D 33 are preferably selected from C-1, C-2, C-15, and C-16, and D 31 is B-1 or B- 9 is preferred.
Particularly preferred p-type organic materials include dyes or materials not having 5 or more condensed ring structures (materials having 0 to 4, preferably 1 to 3 condensed ring structures). When using a pigment-based p-type material generally used in organic thin-film solar cells, the dark current tends to increase at the pn interface, and the light response is slow due to trapping at the crystalline grain boundary. Since it tends to be, it is difficult to use for an image sensor. For this reason, a dye-based p-type material that is difficult to crystallize, or a material that does not have five or more condensed ring structures can be preferably used for the imaging element.

一般式(1)で表される化合物の更に好ましい具体例は、一般式(3)における以下の置換基、連結基及び部分構造の組み合わせであるが、本発明はこれらに限定されるものではない。
ここで、A−1〜A−12、B−1〜B−9、及びC−1〜C−16は既に示したものと同義である。
More preferred specific examples of the compound represented by the general formula (1) are combinations of the following substituents, linking groups and partial structures in the general formula (3), but the present invention is not limited thereto. .
Here, A-1 to A-12, B-1 to B-9, and C-1 to C-16 are synonymous with those already shown.

以下に一般式(1)で表される化合物の特に好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Although the especially preferable specific example of the compound represented by General formula (1) below is shown, this invention is not limited to these.

光電変換層32は、有機ELの発光層(電気信号を光に変換する層)とは異なり非発光性の層である。非発光性層とは、可視光領域(波長400nm〜730nm)において発光量子効率が1%以下、好ましくは0.5%以下、より好ましくは0.1%以下の層であることを意味する。光電変換層32において、発光量子効率が1%を超えると、センサや撮像素子に適用した場合にセンシング性能又は撮像性能に影響を与えるため、好ましくない。   The photoelectric conversion layer 32 is a non-light-emitting layer, unlike an organic EL light-emitting layer (a layer that converts an electrical signal into light). The non-light emitting layer means a layer having a light emission quantum efficiency of 1% or less, preferably 0.5% or less, more preferably 0.1% or less in the visible light region (wavelength 400 nm to 730 nm). In the photoelectric conversion layer 32, if the emission quantum efficiency exceeds 1%, it is not preferable because it affects sensing performance or imaging performance when applied to a sensor or an imaging device.

<<電子ブロッキング層>>
電子ブロッキング層31は、正孔捕集電極20から光電変換層32に電子が注入されるのを抑制するための層である。有機材料単独膜で構成されてもよいし、複数の異なる有機材料あるいは無機材料の混合膜で構成されていてもよい。
<< Electron blocking layer >>
The electron blocking layer 31 is a layer for suppressing injection of electrons from the hole collection electrode 20 into the photoelectric conversion layer 32. It may be composed of a single organic material film, or may be composed of a mixed film of a plurality of different organic materials or inorganic materials.

電子ブロッキング層31は、複数層で構成してあってもよい。このようにすることで、電子ブロッキング層31を構成する各層の間に界面ができ、各層に存在する中間準位に不連続性が生じる。この結果、中間準位等を介した電荷の移動がしにくくなるため電子ブロッキング効果を高めることができる。但し、電子ブロッキング層31を構成する各層が同一材料であると、各層に存在する中間準位が全く同じとなる場合も有り得るため、電子ブロッキング効果を更に高めるために、各層を構成する材料を異なるものにすることが好ましい。   The electron blocking layer 31 may be composed of a plurality of layers. By doing in this way, an interface is formed between each layer which comprises the electron blocking layer 31, and a discontinuity arises in the intermediate level which exists in each layer. As a result, it becomes difficult for the charge to move through the intermediate level and the like, so that the electron blocking effect can be enhanced. However, if the layers constituting the electron blocking layer 31 are made of the same material, the intermediate levels existing in the layers may be exactly the same. Therefore, in order to further enhance the electron blocking effect, the materials constituting the layers are different. It is preferable to make it.

電子ブロッキング層31は、正孔捕集電極20からの電子注入障壁が高くかつ正孔輸送性が高い材料で構成することが好ましい。電子注入障壁としては、隣接する電極の仕事関数よりも、電子ブロッキング層の電子親和力が1eV以上小さいことが好ましい、より好ましくは1.3eV以上、特に好ましいのは1.5eV以上である。   The electron blocking layer 31 is preferably made of a material having a high electron injection barrier from the hole collection electrode 20 and a high hole transport property. As the electron injection barrier, the electron affinity of the electron blocking layer is preferably 1 eV or less, more preferably 1.3 eV or more, and particularly preferably 1.5 eV or more than the work function of the adjacent electrode.

電子ブロッキング層31は、正孔捕集電極20と光電変換層32との接触を充分に抑制し、また正孔捕集電極20表面に存在する欠陥やゴミの影響を避けるために、20nm以上であることが好ましく、40nm以上であることがより好ましい。   The electron blocking layer 31 sufficiently suppresses the contact between the hole collecting electrode 20 and the photoelectric conversion layer 32, and also avoids the influence of defects and dust existing on the surface of the hole collecting electrode 20 at 20 nm or more. It is preferable that it is 40 nm or more.

電子ブロッキング層31には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’−ビス(3−メチルフェニル)−(1,1’−ビフェニル)−4,4’−ジアミン(TPD)や4,4’−ビス[N−(ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”−トリス(N−(3−メチルフェニル)N−フェニルアミノ)トリフェニルアミン(m−MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、フルオレン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。具体的には、例えば、特開2008−72090号公報に記載された化合物等を好ましく用いることができる。   An electron-donating organic material can be used for the electron blocking layer 31. Specifically, in a low molecular material, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) or 4,4′-bis [N Aromatic diamine compounds such as-(naphthyl) -N-phenyl-amino] biphenyl (α-NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, etc. Polyphyrin compounds, triazole derivatives, oxa Zazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, fluorene derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc. As the polymer material, polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used. Even if it is a compound having a sufficient hole transporting property, it is possible to use it, and specifically, for example, the compounds described in JP-A-2008-72090 are preferred. Can be used.

電子ブロッキング層31として好適な化合物の一例を以下に示す。
電子ブロッキング層31としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、電子ブロッキング層31に用いた場合に、光電変換層32に電圧が多くかかるようになり、光電変換効率(感度)を高くすることができる。電子ブロッキング層31となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。
An example of a compound suitable as the electron blocking layer 31 is shown below.
An inorganic material can also be used as the electron blocking layer 31. In general, since an inorganic material has a dielectric constant larger than that of an organic material, a large voltage is applied to the photoelectric conversion layer 32 when the electron blocking layer 31 is used, and the photoelectric conversion efficiency (sensitivity) is increased. Can do. Materials that can be the electron blocking layer 31 include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, Examples include indium silver oxide and iridium oxide.

電子ブロッキング層31が単層の場合にはその層を無機材料からなる層とすることができ、または、複数層の場合には1つ又は2以上の層を無機材料からなる層とすることができる。
<<正孔ブロッキング層>>
光電変換素子1において、正孔ブロッキング層33は、外部電圧印加時に電子捕集電極40からの正孔注入を抑制する層であり、上に形成する層(本実施形態では電子捕集電極40)の形成時、光電変換層32を保護して成膜ダメージを抑制する機能を有する。
When the electron blocking layer 31 is a single layer, the layer can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers can be a layer made of an inorganic material. it can.
<< Hole blocking layer >>
In the photoelectric conversion element 1, the hole blocking layer 33 is a layer that suppresses injection of holes from the electron collection electrode 40 when an external voltage is applied, and is a layer formed on the layer (in this embodiment, the electron collection electrode 40). When the film is formed, it has a function of protecting the photoelectric conversion layer 32 and suppressing film formation damage.

正孔ブロッキング層には、電子受容性有機材料を用いることができる。電子受容性材料は特に制限されないが、1,3−ビス(4−tert−ブチルフェニル−1,3,4−オキサジアゾリル)フェニレン(OXD−7)等のオキサジアゾール誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、バソクプロイン、バソフェナントロリン、及びこれらの誘導体、トリアゾール化合物、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、ビス(4−メチル−8−キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などを用いることができる。また、電子受容性有機材料でなくとも、十分な電子輸送性を有する材料ならば使用することは可能である。ポルフィリン系化合物や、DCM(4−ジシアノメチレン−2−メチル−6−(4−(ジメチルアミノスチリル))−4Hピラン)等のスチリル系化合物、4Hピラン系化合物を用いることができる。   An electron-accepting organic material can be used for the hole blocking layer. Although the electron-accepting material is not particularly limited, oxadiazole derivatives such as 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7), anthraquinodimethane derivatives, Diphenylquinone derivatives, bathocuproine, bathophenanthroline, and derivatives thereof, triazole compounds, tris (8-hydroxyquinolinato) aluminum complexes, bis (4-methyl-8-quinolinato) aluminum complexes, distyrylarylene derivatives, silole compounds, etc. Can be used. Moreover, even if it is not an electron-accepting organic material, it can be used if it is a material which has sufficient electron transport property. A porphyrin-based compound or a styryl-based compound such as DCM (4-dicyanomethylene-2-methyl-6- (4- (dimethylaminostyryl))-4H pyran) or a 4H pyran-based compound can be used.

正孔ブロッキング層33及び電子ブロッキング層31より構成される電荷ブロッキング層は、厚くしすぎると、光電変換層に適切な電界強度を印加するために必要な、供給電圧が高くなってしまう問題や、電荷ブロッキング層中のキャリア輸送過程が、光電変換素子の性能に悪影響を与えてしまう問題を生じる可能性がある。従って、正孔ブロッキング層33及び電子ブロッキング層31の合計膜厚は、300nm以下となるように設計されることが好ましい。該合計膜厚は、200nm以下がより好ましく、100nm以下が更に好ましい。   If the charge blocking layer composed of the hole blocking layer 33 and the electron blocking layer 31 is too thick, the supply voltage necessary for applying an appropriate electric field strength to the photoelectric conversion layer is increased, The carrier transport process in the charge blocking layer may cause a problem that adversely affects the performance of the photoelectric conversion element. Accordingly, the total film thickness of the hole blocking layer 33 and the electron blocking layer 31 is preferably designed to be 300 nm or less. The total film thickness is more preferably 200 nm or less, and still more preferably 100 nm or less.

<封止層>
封止層50は、光電変換素子1、もしくは後記する撮像素子100の作製後に、水分子や酸素分子などの光電変換材料を劣化させる因子の侵入を阻止して、長期間の保存/使用にわたって、光電変換層の劣化を防止するための層である。また、封止層50は、封止層成膜後の撮像素子100の作製工程において溶液、プラズマなどに含まれる光電変換層を劣化させる因子の侵入を阻止して光電変換層を保護するための層でもある。
<Sealing layer>
The sealing layer 50 prevents entry of factors that degrade the photoelectric conversion material such as water molecules and oxygen molecules after the photoelectric conversion element 1 or the imaging element 100 described later, and can be stored and used for a long period of time. It is a layer for preventing deterioration of the photoelectric conversion layer. In addition, the sealing layer 50 protects the photoelectric conversion layer by preventing intrusion of factors that degrade the photoelectric conversion layer included in the solution, plasma, and the like in the manufacturing process of the imaging element 100 after the sealing layer is formed. It is also a layer.

封止層50は、正孔捕集電極20、電子ブロッキング層31、光電変換層32、正孔ブロッキング層33及び電子捕集電極40を覆って形成されている。   The sealing layer 50 is formed so as to cover the hole collection electrode 20, the electron blocking layer 31, the photoelectric conversion layer 32, the hole blocking layer 33, and the electron collection electrode 40.

光電変換素子1では、入射光は封止層50を通じて光電変換層32に到達するので、光光電変換層32に光を効率よく入射させるために、封止層50は、光電変換層32が感度を持つ波長の光に対して十分に透明である必要がある。かかる封止層50としては、水分子を浸透させない緻密な金属酸化物・金属窒化物・金属窒化酸化物などセラミクスやダイヤモンド状炭素(DLC)などがあげられ、従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素やそれらの積層膜、それらと有機高分子の積層膜などが用いられている。   In the photoelectric conversion element 1, since incident light reaches the photoelectric conversion layer 32 through the sealing layer 50, the photoelectric conversion layer 32 is sensitive to the sealing layer 50 in order to allow light to efficiently enter the photoelectric conversion layer 32. It is necessary to be sufficiently transparent to light having a wavelength. Examples of the sealing layer 50 include ceramics such as dense metal oxide, metal nitride, and metal nitride oxide that do not allow water molecules to permeate, diamond-like carbon (DLC), and the like. Conventionally, aluminum oxide, silicon oxide, Silicon nitride, silicon nitride oxide, a laminated film thereof, a laminated film of them and an organic polymer, or the like is used.

封止層50は、単一材料からなる薄膜で構成することもできるが、多層構成にして各層に別々の機能を付与することで、封止層50全体の応力緩和、製造工程中の発塵等によるクラック、ピンホールなどの欠陥発生の抑制、材料開発の最適化が容易になることなどの効果が期待できる。例えば、封止層50は、水分子などの劣化因子の浸透を阻止する本来の目的を果たす層の上に、その層で達成することが難しい機能を持たせた「封止補助層」を積層した2層構成を形成することができる。3層以上の構成も可能だが、製造コストを勘案するとなるべく層数は少ない方が好ましい。   The sealing layer 50 can be composed of a thin film made of a single material, but by providing a separate function for each layer in a multi-layer structure, the stress relaxation of the entire sealing layer 50 and dust generation during the manufacturing process Such effects as the suppression of defects such as cracks and pinholes caused by the above, and the optimization of material development can be expected. For example, the sealing layer 50 is formed by laminating a “sealing auxiliary layer” having a function that is difficult to achieve on the layer that serves the original purpose of preventing the penetration of deterioration factors such as water molecules. A two-layer structure can be formed. Although it is possible to have three or more layers, it is preferable that the number of layers is as small as possible in consideration of manufacturing costs.

封止層50の形成方法は、特に制限されず、既に成膜された光電変換層32等の性能、膜質をなるべく劣化させない方法で成膜されることが好ましい。   The formation method of the sealing layer 50 is not particularly limited, and is preferably formed by a method that does not deteriorate the performance and film quality of the already formed photoelectric conversion layer 32 and the like as much as possible.

有機光電変換材料は、水分子、酸素分子などの劣化因子の存在で顕著に性能が劣化してしまう。そのために劣化因子を浸透させない緻密な金属酸化物、金属窒化酸化物などで光電変換層全体を被覆して封止することが必要である。従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素やそれらの積層構成、それらと有機高分子の積層構成などを封止層として、各種真空成膜技術で形成されている。   The performance of organic photoelectric conversion materials is significantly deteriorated due to the presence of deterioration factors such as water molecules and oxygen molecules. Therefore, it is necessary to cover and seal the entire photoelectric conversion layer with a dense metal oxide, metal nitride oxide or the like that does not permeate deterioration factors. Conventionally, aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, a laminated structure thereof, a laminated structure of them and an organic polymer, or the like is used as a sealing layer by various vacuum film forming techniques.

しかしながら、従来の封止層は、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差において、薄膜の成長が困難なので(段差が影になるので)平坦部と比べて膜厚が顕著に薄くなる。このために段差部分が劣化因子の浸透する経路になってしまう。この段差を封止層で完全に被覆するには、平坦部において1μm以上の膜厚になるように成膜して、封止層全体を厚くする必要がある。封止層形成時の真空度は、1×10Pa以下が好ましく、5×10Pa以下がさらに好ましい。 However, the conventional sealing layer is difficult to grow a thin film at a step due to a structure on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, etc. As a result, the film thickness is significantly reduced. For this reason, the step portion becomes a path through which the deterioration factor penetrates. In order to completely cover the step with the sealing layer, it is necessary to form the film so as to have a film thickness of 1 μm or more in the flat portion, and to increase the thickness of the entire sealing layer. The degree of vacuum when forming the sealing layer is preferably 1 × 10 3 Pa or less, and more preferably 5 × 10 2 Pa or less.

画素寸法が2μm未満、特に1μm程度の撮像素子とした場合、封止層50の膜厚が大きいと、カラーフィルタと光電変換層との距離が大きくなり、封止層内で入射光が回折/発散し、混色が発生する恐れがある。従って、画素寸法が1μm程度の撮像素子への適用を考えた場合、封止層50の膜厚を減少させても素子性能が劣化しないような封止層材料/製造方法が必要になる。   In the case of an imaging device having a pixel size of less than 2 μm, particularly about 1 μm, if the sealing layer 50 is thick, the distance between the color filter and the photoelectric conversion layer increases, and incident light is diffracted / Diversity and color mixing may occur. Therefore, when considering application to an image sensor having a pixel size of about 1 μm, a sealing layer material / manufacturing method is required that does not deteriorate the device performance even if the thickness of the sealing layer 50 is reduced.

原子層堆積(ALD)法は、CVD法の一種で、薄膜材料となる有機金属化合物分子、金属ハロゲン化物分子、金属水素化物分子の基板表面への吸着/反応と、それらに含まれる未反応基の分解を、交互に繰返して薄膜を形成する技術である。基板表面へ薄膜材料が到達する際は上記低分子の状態なので、低分子が入り込めるごくわずかな空間さえあれば薄膜が成長可能である。そのために、従来の薄膜形成法では困難であった段差部分を完全に被覆し(段差部分に成長した薄膜の厚さが平坦部分に成長した薄膜の厚さと同じ)、すなわち段差被覆性が非常に優れる。そのため、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差を完全に被覆できるので、そのような段差部分が光電変換材料の劣化因子の浸入経路にならない。封止層50の形成を原子層堆積法で行なった場合は従来技術よりも効果的に必要な封止層膜厚を薄くすることが可能になる。   The atomic layer deposition (ALD) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained therein. Is a technique for forming a thin film by alternately repeating decomposition. When the thin film material reaches the substrate surface, it is in the above-mentioned low molecular state, so that the thin film can be grown in a very small space where the low molecule can enter. For this reason, the step portion, which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. For this reason, steps due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material. When the sealing layer 50 is formed by the atomic layer deposition method, the required sealing layer thickness can be effectively reduced as compared with the prior art.

原子層堆積法で封止層50を形成する場合は、先述した封止層50に好ましいセラミクスに対応した材料を適宜選択できる。もっとも、本発明の光電変換層は有機光電変換材料を使用するために、有機光電変換材料が劣化しないような、比較的に低温で薄膜成長が可能な材料に制限される。アルキルアルミニウムやハロゲン化アルミニウムを材料とした原子層堆積法によると、有機光電変換材料が劣化しない200℃未満で緻密な酸化アルミニウム薄膜を形成することができる。特にトリメチルアルミニウムを使用した場合は100℃程度でも酸化アルミニウム薄膜を形成でき好ましい。酸化珪素や酸化チタンも材料を適切に選択することで酸化アルミニウムと同様に200℃未満で緻密な薄膜を形成することができ好ましい。   In the case of forming the sealing layer 50 by the atomic layer deposition method, a material corresponding to the ceramics preferable for the sealing layer 50 described above can be appropriately selected. However, since the photoelectric conversion layer of the present invention uses an organic photoelectric conversion material, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate. According to the atomic layer deposition method using alkyl aluminum or aluminum halide as the material, a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate. In particular, when trimethylaluminum is used, an aluminum oxide thin film can be formed even at about 100 ° C. Silicon oxide and titanium oxide are also preferable because a dense thin film can be formed at less than 200 ° C., similarly to aluminum oxide, by appropriately selecting materials.

封止層は、水分子などの光電変換材料を劣化させる因子の侵入を十分阻止するために、10nm以上の膜厚であることが好ましい。撮像素子において、封止層の膜厚が大きいと、封止層内で入射光が回折または発散してしまい、混色が発生する。封止層の膜厚としては、200nm以下であることが好ましい。   The sealing layer preferably has a thickness of 10 nm or more in order to sufficiently prevent the entry of factors that degrade the photoelectric conversion material such as water molecules. In the imaging device, when the sealing layer has a large film thickness, incident light is diffracted or diverged in the sealing layer, and color mixing occurs. The film thickness of the sealing layer is preferably 200 nm or less.

なお、原子層堆積法により形成した薄膜は、段差被覆性、緻密性という観点からは比類なく良質な薄膜形成を低温で達成できる。もっとも、薄膜材料の物性が、フォトリソグラフィ工程で使用する薬品で劣化してしまうことがある。例えば、原子層堆積法で成膜した酸化アルミニウム薄膜は非晶質なので、現像液や剥離液のようなアルカリ溶液で表面が侵食されてしまう。   In addition, the thin film formed by the atomic layer deposition method can achieve a high-quality thin film formation at a low temperature that is unparalleled from the viewpoint of step coverage and denseness. However, the physical properties of the thin film material may be deteriorated by chemicals used in the photolithography process. For example, since an aluminum oxide thin film formed by atomic layer deposition is amorphous, the surface is eroded by an alkaline solution such as a developer or a stripping solution.

また、原子層堆積法のようなCVD法で形成した薄膜は内部応力が非常に大きな引張応力を持つ例が多く、半導体製造工程のように、断続的な加熱、冷却が繰返される工程や、長期間の高温/高湿度雰囲気下での保存/使用により、薄膜自体に亀裂の入る劣化が発生することがある。   In addition, thin films formed by CVD, such as atomic layer deposition, often have tensile stresses with very large internal stress, such as processes that repeat intermittent heating and cooling, such as semiconductor manufacturing processes, Due to storage / use in a high temperature / high humidity atmosphere for a period, deterioration of the thin film itself may occur.

従って、原子層堆積法により成膜した封止層50を用いる場合は、耐薬品性に優れ、且つ、封止層50の内部応力を相殺可能な封止補助層を形成することが好ましい。   Therefore, when the sealing layer 50 formed by the atomic layer deposition method is used, it is preferable to form a sealing auxiliary layer that has excellent chemical resistance and can cancel the internal stress of the sealing layer 50.

かかる補助封止層としては、例えば、スパッタ法などの物理的気相成膜(PVD)法で成膜した耐薬品性に優れる金属酸化物、金属窒化物、金属窒化酸化物などのセラミクスのいずれか1つを含む層が挙げられる。スパッタ法などのPVD法で成膜したセラミクスは大きな圧縮応力を持つことが多く、原子層堆積法で形成した封止層50の引張応力を相殺することができる。   Examples of the auxiliary sealing layer include any of ceramics such as metal oxide, metal nitride, and metal nitride oxide that are excellent in chemical resistance formed by physical vapor deposition (PVD) such as sputtering. Or a layer containing one of them. Ceramics formed by a PVD method such as sputtering often has a large compressive stress, and can cancel the tensile stress of the sealing layer 50 formed by an atomic layer deposition method.

光電変換素子1において、光電変換効率(感度)、暗電流、光応答速度において、優れた特性を得るために、正孔捕集電極20と電子捕集電極40との間に印加する外部電場としては、1V/cm以上1×10V/cm以下が好ましい。外部電場は、一対の電極に外部から印加される電圧を電極間距離で割った値である。 In the photoelectric conversion element 1, as an external electric field applied between the hole collection electrode 20 and the electron collection electrode 40 in order to obtain excellent characteristics in photoelectric conversion efficiency (sensitivity), dark current, and light response speed. Is preferably 1 V / cm or more and 1 × 10 7 V / cm or less. The external electric field is a value obtained by dividing the voltage applied from the outside to the pair of electrodes by the distance between the electrodes.

光電変換素子1は、電子ブロッキング層31と光電変換層32と正孔ブロッキング層33とによって受光層30が形成されている。本実施形態においては正孔ブロッキング層33を備えた態様について示しているが、正孔ブロッキング層33は正孔の流れには寄与しないことから、正孔ブロッキング層33の有無にかかわらず本発明の効果を得ることができる。   In the photoelectric conversion element 1, the light receiving layer 30 is formed by the electron blocking layer 31, the photoelectric conversion layer 32, and the hole blocking layer 33. In the present embodiment, the mode including the hole blocking layer 33 is shown. However, since the hole blocking layer 33 does not contribute to the flow of holes, the present invention can be used regardless of the presence or absence of the hole blocking layer 33. An effect can be obtained.

「撮像素子」
次に、光電変換素子1を備えた撮像素子100の構成について、図9を参照して説明する。図9は、本発明の一実施形態を説明するための撮像素子の概略構成を示す断面模式図である。この撮像素子は、デジタルカメラ、デジタルビデオカメラ等の撮像装置、電子内視鏡、携帯電話機等の撮像モジュール等に搭載して用いられる。
"Image sensor"
Next, the configuration of the image sensor 100 including the photoelectric conversion element 1 will be described with reference to FIG. FIG. 9 is a schematic cross-sectional view illustrating a schematic configuration of an image sensor for explaining an embodiment of the present invention. This imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module such as an electronic endoscope or a mobile phone, or the like.

撮像素子100は、図1に示したような構成の複数の有機光電変換素子1と、各有機光電変換素子の光電変換層で発生した電荷に応じた信号を読み出す読み出し回路が形成された回路基板とを有し、該回路基板上方の同一面上に、複数の有機光電変換素子が1次元状又は二次元状に配列された構成となっている。   The image pickup device 100 is a circuit board on which a plurality of organic photoelectric conversion elements 1 configured as shown in FIG. 1 and a readout circuit that reads out signals corresponding to charges generated in the photoelectric conversion layer of each organic photoelectric conversion element are formed. And a plurality of organic photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on the same surface above the circuit board.

撮像素子100は、基板101と、絶縁層102と、接続電極103と、画素電極104と、接続部105と、接続部106と、受光層107と、対向電極108と、緩衝層109と、封止層110と、カラーフィルタ(CF)111と、隔壁112と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備える。   The image sensor 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a light receiving layer 107, a counter electrode 108, a buffer layer 109, a sealing layer. A stop layer 110, a color filter (CF) 111, a partition wall 112, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116 are provided.

画素電極104は、図1に示した有機光電変換素子1の正孔捕集電極20と同じ機能を有する。対向電極108は、図1に示した有機光電変換素子1の電子捕集電極40と同じ機能を有する。受光層107は、図1に示した有機光電変換素子1の正孔捕集電極20と電子捕集電極40との間に設けられる受光層30と同じ構成である。封止層110は、図1に示した有機光電変換素子1の封止層50と同じ機能を有する。画素電極104と、これに対向する対向電極108の一部と、これら電極で挟まれる受光層107と、画素電極104に対向する緩衝層109及び封止層110の一部とが、有機光電変換素子を構成している。   The pixel electrode 104 has the same function as the hole collection electrode 20 of the organic photoelectric conversion element 1 shown in FIG. The counter electrode 108 has the same function as the electron collection electrode 40 of the organic photoelectric conversion element 1 shown in FIG. The light receiving layer 107 has the same configuration as the light receiving layer 30 provided between the hole collecting electrode 20 and the electron collecting electrode 40 of the organic photoelectric conversion element 1 shown in FIG. The sealing layer 110 has the same function as the sealing layer 50 of the organic photoelectric conversion element 1 shown in FIG. The pixel electrode 104, a part of the counter electrode 108 facing the pixel electrode 104, the light receiving layer 107 sandwiched between the electrodes, and the buffer layer 109 and the part of the sealing layer 110 facing the pixel electrode 104 are subjected to organic photoelectric conversion. The element is configured.

基板101は、ガラス基板又はSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と複数の接続電極103が形成されている。   The substrate 101 is a glass substrate or a semiconductor substrate such as Si. An insulating layer 102 is formed on the substrate 101. A plurality of pixel electrodes 104 and a plurality of connection electrodes 103 are formed on the surface of the insulating layer 102.

受光層107は、複数の画素電極104の上にこれらを覆って設けられた全ての有機光電変換素子で共通の層である。   The light receiving layer 107 is a layer common to all the organic photoelectric conversion elements provided on the plurality of pixel electrodes 104 so as to cover them.

対向電極108は、受光層107上に設けられた、全ての有機光電変換素子で共通の1つの電極である。対向電極108は、受光層107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。   The counter electrode 108 is one electrode provided on the light receiving layer 107 and common to all organic photoelectric conversion elements. The counter electrode 108 is formed up to the connection electrode 103 disposed outside the light receiving layer 107 and is electrically connected to the connection electrode 103.

接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグ等である。対向電極電圧供給部115は、基板101に形成され、接続部106及び接続電極103を介して対向電極108に所定の電圧を印加する。対向電極108に印加すべき電圧が撮像素子の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給する。   The connection part 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply part 115. The counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103. When the voltage to be applied to the counter electrode 108 is higher than the power supply voltage of the image sensor, the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.

読出し回路116は、複数の画素電極104の各々に対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。読出し回路116は、例えばCCD、MOS回路、又はTFT回路等で構成されており、絶縁層102内に配置された図示しない遮光層によって遮光されている。読み出し回路116は、それに対応する画素電極104と接続部105を介して電気的に接続されている。   The readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104. The reading circuit 116 is configured by, for example, a CCD, a MOS circuit, or a TFT circuit, and is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102. The readout circuit 116 is electrically connected to the corresponding pixel electrode 104 via the connection unit 105.

緩衝層109は、対向電極108上に、対向電極108を覆って形成されている。封止層110は、緩衝層109上に、緩衝層109を覆って形成されている。カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。隔壁112は、カラーフィルタ111同士の間に設けられており、カラーフィルタ111の光透過効率を向上させるためのものである。   The buffer layer 109 is formed on the counter electrode 108 so as to cover the counter electrode 108. The sealing layer 110 is formed on the buffer layer 109 so as to cover the buffer layer 109. The color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110. The partition wall 112 is provided between the color filters 111 and is for improving the light transmission efficiency of the color filter 111.

遮光層113は、封止層110上のカラーフィルタ111及び隔壁112を設けた領域以外に形成されており、有効画素領域以外に形成された受光層107に光が入射する事を防止する。保護層114は、カラーフィルタ111、隔壁112、及び遮光層113上に形成されており、撮像素子100全体を保護する。   The light shielding layer 113 is formed in a region other than the region where the color filter 111 and the partition 112 on the sealing layer 110 are provided, and prevents light from entering the light receiving layer 107 formed outside the effective pixel region. The protective layer 114 is formed on the color filter 111, the partition 112, and the light shielding layer 113, and protects the entire image sensor 100.

このように構成された撮像素子100では、光が入射すると、この光が受光層107に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は、画素電極104で捕集され、その量に応じた電圧信号が読み出し回路116によって撮像素子100外部に出力される。   In the imaging device 100 configured as described above, when light is incident, the light is incident on the light receiving layer 107, and charges are generated here. Holes in the generated charges are collected by the pixel electrode 104, and a voltage signal corresponding to the amount is output to the outside of the image sensor 100 by the readout circuit 116.

撮像素子100の製造方法は、次の通りである。
対向電極電圧供給部115と読み出し回路116が形成された回路基板上に、接続部105,106、複数の接続電極103、複数の画素電極104、及び絶縁層102を形成する。複数の画素電極104は、絶縁層102の表面に例えば正方格子状に配置する。
The manufacturing method of the image sensor 100 is as follows.
On the circuit substrate on which the common electrode voltage supply unit 115 and the readout circuit 116 are formed, the connection units 105 and 106, the plurality of connection electrodes 103, the plurality of pixel electrodes 104, and the insulating layer 102 are formed. The plurality of pixel electrodes 104 are arranged on the surface of the insulating layer 102 in a square lattice pattern, for example.

次に、複数の画素電極104上に、受光層107、対向電極108、緩衝層109、封止層110を順次形成する。受光層107、対向電極108、封止層110の形成方法は、上記光電変換素子1の説明において記したとおりである。緩衝層109については、例えば真空抵抗加熱蒸着法によって形成する。次に、カラーフィルタ111、隔壁112、遮光層113を形成後、保護層114を形成して、撮像素子100を完成する。   Next, the light receiving layer 107, the counter electrode 108, the buffer layer 109, and the sealing layer 110 are sequentially formed on the plurality of pixel electrodes 104. The formation method of the light receiving layer 107, the counter electrode 108, and the sealing layer 110 is as described in the description of the photoelectric conversion element 1. The buffer layer 109 is formed by, for example, a vacuum resistance heating vapor deposition method. Next, after forming the color filter 111, the partition 112, and the light shielding layer 113, the protective layer 114 is formed, and the imaging element 100 is completed.

「設計変更」
以上、本発明の有機光電変換層の成膜方法及びそれを用いた有機光電変換素子の製造方法、有機膜成膜装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、適宜変更可能である。
"Design changes"
As mentioned above, although the film-forming method of the organic photoelectric conversion layer of this invention, the manufacturing method of the organic photoelectric conversion element using the same, and the organic film film-forming apparatus were demonstrated in detail, this invention is not limited to the said embodiment, this Changes can be made as appropriate without departing from the spirit of the invention.

(実施例1)
Si基板上にITO電極をパターン形成したCMOS基板を用意し、有機蒸着室の基板ホルダーに設置して、蒸着室内を1.0×10-4Pa以下となるように減圧した。その後、基板ホルダーを回転させながら、ITO電極上に、抵抗加熱蒸着法により化合物2を電子ブロッキング層として蒸着速度1.0〜1.2Å/Secで厚み30nmとなるように蒸着した。
Example 1
A CMOS substrate in which an ITO electrode was patterned on a Si substrate was prepared, placed on a substrate holder in an organic vapor deposition chamber, and the pressure in the vapor deposition chamber was reduced to 1.0 × 10 −4 Pa or less. Thereafter, while rotating the substrate holder, the compound 2 was deposited as an electron blocking layer on the ITO electrode at a deposition rate of 1.0 to 1.2 mm / sec to a thickness of 30 nm by a resistance heating deposition method.

次に、図3に示される構成を有する有機蒸着室内の蒸着源の容器に、化合物7とC60をそれぞれに設置し、基板温度が10℃となるまで冷却ブロックにより冷却した後、化合物1とC60の割合が膜厚比で1:3となる条件にて成膜を開始した。成膜開始から30秒間基板温度が5℃〜15℃の範囲となるように基板温度を制御しながら共蒸着して第1の光電変換層形成工程を実施した。第1の光電変換層形成工程における2材料合わせた共蒸着膜での蒸着速度は、2.0〜2.5Å/Secであった。 Next, the compound 7 and C 60 are respectively installed in the container of the vapor deposition source in the organic vapor deposition chamber having the configuration shown in FIG. 3 and cooled by the cooling block until the substrate temperature becomes 10 ° C. Film formation was started under the condition that the ratio of C 60 was 1: 3 in terms of the film thickness ratio. The first photoelectric conversion layer forming step was carried out by co-evaporation while controlling the substrate temperature so that the substrate temperature was in the range of 5 ° C. to 15 ° C. for 30 seconds from the start of film formation. In the first photoelectric conversion layer forming step, the vapor deposition rate in the co-deposited film combining the two materials was 2.0 to 2.5 liters / Sec.

成膜開始から30秒経過後に冷却ブロックをはずしてバルクヘテロ層の層厚が約400nmとなるまで共蒸着して第2の光電変換層形成工程を実施した。第2の光電変換層形成工程において、基板温度の最高温度は100℃とした。   After the elapse of 30 seconds from the start of film formation, the cooling block was removed, and the second photoelectric conversion layer forming step was performed by co-evaporation until the thickness of the bulk hetero layer reached about 400 nm. In the second photoelectric conversion layer forming step, the maximum substrate temperature was set to 100 ° C.

次いで、スパッタ室に搬送し、第2の光電変換層上に対向電極としてITOをRFマグネトロンスパッタにより厚み10nmとなるようにスパッタした。その後、ALD(Atomic Layer Deposition:原子層堆積)室へ搬送し、保護膜としてAl膜を原子層堆積法により厚み2000Åとなるように成膜した。
その後、スパッタ室に搬送し、応力緩和層としてSiON膜をplaner型スパッタにより厚み1000Åとなるように成膜し、撮像素子を作製した。
Next, the film was transferred to a sputtering chamber, and ITO was sputtered on the second photoelectric conversion layer as a counter electrode so as to have a thickness of 10 nm by RF magnetron sputtering. Thereafter, the film was transferred to an ALD (Atomic Layer Deposition) chamber, and an Al 2 O 3 film was formed as a protective film to a thickness of 2000 mm by an atomic layer deposition method.
Thereafter, the film was transferred to a sputtering chamber, and a SiON film as a stress relaxation layer was formed to a thickness of 1000 mm by a planer type sputtering to produce an imaging device.

(実施例2)
第2の光電変換層形成工程において、基板温度の最高温度を35℃とした以外は実施例1と同様にして撮像素子を作製した。
(Example 2)
In the second photoelectric conversion layer forming step, an imaging device was manufactured in the same manner as in Example 1 except that the maximum substrate temperature was set to 35 ° C.

(実施例3)
第2の光電変換層形成工程において、基板温度の最高温度を60℃とした以外は実施例1と同様にして撮像素子を作製した。
(Example 3)
In the second photoelectric conversion layer forming step, an imaging element was manufactured in the same manner as in Example 1 except that the maximum substrate temperature was set to 60 ° C.

(実施例4)
第2の光電変換層形成工程において、基板温度の最高温度を80℃とした以外は実施例1と同様にして撮像素子を作製した。
Example 4
In the second photoelectric conversion layer forming step, an imaging device was manufactured in the same manner as in Example 1 except that the maximum substrate temperature was set to 80 ° C.

(実施例5)
化合物7とC60の割合が膜厚比で1:2となる蒸着条件とした以外は実施例1と同様にして撮像素子を作製した。
(Example 5)
Compound 7 and 1 percentage thickness ratio of C 60: except for using 2 become vapor deposition conditions to produce an image sensor in the same manner as in Example 1.

(実施例6)
化合物7とC60の割合が膜厚比で1:1となる蒸着条件とした以外は実施例1と同様にして撮像素子を作製した。
(Example 6)
An imaging device was fabricated in the same manner as in Example 1 except that the deposition conditions were such that the ratio of the compound 7 and C 60 was 1: 1 in terms of the film thickness ratio.

(実施例7)
化合物7の代わりに化合物6を用いた以外は実施例1と同様にして撮像素子を作製した。
(Example 7)
An imaging device was produced in the same manner as in Example 1 except that Compound 6 was used instead of Compound 7.

(比較例1)
バルクへテロ層の形成方法以外は実施例1と同様にして撮像素子を作製した。バルクへテロ層の形成方法は、成膜開始前の基板温度は室温環境の20℃程度の状態から成膜室に搬送して、まもなく、化合物7とC60の割合が膜厚比で1:3となる蒸着条件にて成膜を開始した。バルクへテロ層の共蒸着において、基板温度の最高温度は100℃であり、蒸着速度は2.0〜2.5Å/Secであった。
(Comparative Example 1)
An imaging device was manufactured in the same manner as in Example 1 except for the method of forming the bulk hetero layer. The bulk hetero layer is formed by transferring the substrate temperature from about 20 ° C. in the room temperature environment to the film forming chamber before the start of film formation, and soon the ratio of compound 7 and C 60 is 1: Film formation was started under vapor deposition conditions of 3. In the bulk hetero layer co-deposition, the maximum temperature of the substrate was 100 ° C., and the deposition rate was 2.0 to 2.5 liters / Sec.

(比較例2)
バルクへテロ層の形成方法以外は実施例2と同様にして撮像素子を作製した。バルクへテロ層の形成方法は、成膜開始前の基板温度は室温環境の20℃程度の状態から成膜室に搬送して、まもなく、化合物7とC60の割合が膜厚比で1:3となる蒸着速度にて成膜を開始した。バルクへテロ層の共蒸着において、基板温度の最高温度は35℃であり、蒸着速度は2.0〜2.5Å/Secであった。
(Comparative Example 2)
An imaging device was produced in the same manner as in Example 2 except for the method for forming the bulk hetero layer. The bulk hetero layer is formed by transferring the substrate temperature from about 20 ° C. in the room temperature environment to the film forming chamber before the start of film formation, and soon the ratio of compound 7 and C 60 is 1: Film formation was started at an evaporation rate of 3. In the bulk hetero layer co-deposition, the maximum temperature of the substrate was 35 ° C., and the deposition rate was 2.0 to 2.5 liters / Sec.

(比較例3)
バルクへテロ層の形成方法以外は実施例1と同様にして撮像素子を作製した。バルクへテロ層の形成方法は、成膜開始前の基板の冷却後、基板温度を5℃〜15℃の範囲となるように制御しながら、化合物1とC60の割合が膜厚比で1:3となる蒸着条件にてバルクへテロ層を成膜した。
(Comparative Example 3)
An imaging device was manufactured in the same manner as in Example 1 except for the method of forming the bulk hetero layer. The bulk hetero layer is formed by cooling the substrate before starting the film formation, and controlling the substrate temperature to be in the range of 5 ° C. to 15 ° C., while the ratio of the compound 1 to C 60 is 1 in the film thickness ratio. : A bulk hetero layer was formed under vapor deposition conditions of 3.

(比較例4)
バルクへテロ層の形成方法以外は実施例1と同様にして撮像素子を作製した。バルクへテロ層の形成方法は、成膜開始前の基板温度は室温環境の20℃程度の状態から成膜室に搬送して、まもなく、化合物7とC60の割合が膜厚比で1:3となる蒸着条件にて成膜を開始した。バルクへテロ層の共蒸着において、2材料合わせた共蒸着膜での蒸着速度は2.0〜2.5Å/Secとし、バルクへテロ膜成膜中の基板温度の最高温度は80℃であった。
(Comparative Example 4)
An imaging device was manufactured in the same manner as in Example 1 except for the method of forming the bulk hetero layer. The bulk hetero layer is formed by transferring the substrate temperature from about 20 ° C. in the room temperature environment to the film forming chamber before the start of film formation, and soon the ratio of compound 7 and C 60 is 1: Film formation was started under vapor deposition conditions of 3. In the co-deposition of the bulk hetero layer, the deposition rate of the co-deposition film combining the two materials was 2.0 to 2.5 liters / sec, and the maximum substrate temperature during the bulk hetero film formation was 80 ° C. It was.

(比較例5)
バルクへテロ層の形成方法以外は実施例1と同様にして撮像素子を作製した。バルクへテロ層の形成方法は、成膜開始前の基板温度は室温環境の20℃程度の状態から成膜室に搬送して、まもなく、化合物7とC60の割合が膜厚比で1:3となる蒸着条件にて成膜を開始した。バルクへテロ層の共蒸着において、2材料合わせた共蒸着膜での蒸着速度は2.0〜2.5Å/Secとし、バルクへテロ膜成膜中の基板温度の最高温度は60℃であった。
(Comparative Example 5)
An imaging device was manufactured in the same manner as in Example 1 except for the method of forming the bulk hetero layer. The bulk hetero layer is formed by transferring the substrate temperature from about 20 ° C. in the room temperature environment to the film forming chamber before the start of film formation, and soon the ratio of compound 7 and C 60 is 1: Film formation was started under vapor deposition conditions of 3. In the co-deposition of the bulk hetero layer, the deposition rate of the co-deposited film combining the two materials was 2.0 to 2.5 liters / sec, and the maximum substrate temperature during the bulk hetero film formation was 60 ° C. It was.

(評価)
上記実施例及び比較例の撮像素子について、残留電流値の測定を行った。残留電流値の測定は、出力1WのLEDを1秒以上照射した後消灯し、20m秒経過後の残留電流を測定することにより実施した。その結果、実施例1〜実施例7において、残留電流値はいずれも約10pAであった。
(Evaluation)
The residual current values were measured for the image sensors of the above examples and comparative examples. The residual current value was measured by irradiating an LED with an output of 1 W for 1 second or more and then turning off, and measuring the residual current after 20 msec. As a result, in Examples 1 to 7, the residual current values were all about 10 pA.

第2の光電変換層形成工程の基板最高温度の異なる実施例1〜実施例4及び比較例3の結果を、図7に纏めて示す。また、実施例1〜実施例4及び比較例3の光電変換層について、その配向度パラメータを測定した結果を図8に纏めて示す。図7、図8より、成膜初期に基板温度を5℃〜15℃の範囲に制御して共蒸着を実施し、その後この温度制御をやめて共蒸着を実施する本発明の有機光電変換層の成膜方法により、基板温度の最高温度に依存することなく、有機光電変換層中の縦長の有機分子を基板面に対して水平方向への配向性を強く成膜し、その結果、低い残像電流値を有する有機光電変換素子が得られることが確認された。このことは、本発明によれば、成膜装置の温度上昇特性に依存せず、低い残像電流値を有する有機光電変換素子を安定して製造できることを示している。   The results of Examples 1 to 4 and Comparative Example 3 having different substrate maximum temperatures in the second photoelectric conversion layer forming step are collectively shown in FIG. Moreover, about the photoelectric converting layer of Example 1- Example 4 and Comparative Example 3, the result of having measured the orientation degree parameter is put together in FIG. 7 and FIG. 8, the organic photoelectric conversion layer of the present invention in which the substrate temperature is controlled in the range of 5 ° C. to 15 ° C. at the initial stage of film formation and co-evaporation is performed after this temperature control is stopped. Depending on the film formation method, the vertical organic molecules in the organic photoelectric conversion layer are strongly oriented in the horizontal direction with respect to the substrate surface without depending on the maximum substrate temperature, resulting in a low afterimage current. It was confirmed that an organic photoelectric conversion element having a value was obtained. This indicates that according to the present invention, an organic photoelectric conversion element having a low afterimage current value can be stably manufactured without depending on the temperature rise characteristic of the film forming apparatus.

本発明の有機光電変換層の成膜方法は、デジタルカメラや携帯電話用カメラ、内視鏡用カメラ等に搭載される有機撮像素子や、有機ELディスプレイや有機EL照明等に搭載される有機発光素子、電子ペーパーや無線タグ等に搭載される有機薄膜トランジスタ、光センサ等に用いられる有機光電変換素子の光電変換層の成膜に好ましく適用することができる。   The organic photoelectric conversion layer deposition method of the present invention is an organic light-emitting device mounted on an organic imaging device mounted on a digital camera, a mobile phone camera, an endoscope camera, or the like, an organic EL display, an organic EL illumination, or the like. It can be preferably applied to the film formation of a photoelectric conversion layer of an organic photoelectric conversion element used in an element, an organic thin film transistor mounted on an electronic paper, a wireless tag, or the like, or an optical sensor.

1 有機光電変換素子(光電変換素子)
10 基板
20 正孔捕集電極(電極)
30 受光層
31 電子ブロッキング層
32 光電変換層(バルクへテロ層)
32a 第1の光電変換層
32b 第2の光電変換層層
33 正孔ブロッキング層
40 電子捕集電極(電極)
50 封止層
120 基板温度制御手段
150 蒸着源
151 容器
152 加熱源
170 真空蒸着室
200 有機膜成膜装置
1 Organic photoelectric conversion device (photoelectric conversion device)
10 Substrate 20 Hole collecting electrode (electrode)
30 Photosensitive layer 31 Electron blocking layer 32 Photoelectric conversion layer (bulk hetero layer)
32a First photoelectric conversion layer 32b Second photoelectric conversion layer 33 Hole blocking layer 40 Electron collecting electrode (electrode)
50 Sealing layer 120 Substrate temperature control means 150 Deposition source 151 Container 152 Heat source 170 Vacuum deposition chamber 200 Organic film forming apparatus

Claims (9)

有機光電変換素子に備えられてなる有機光電変換層の成膜方法であって、
基板を用意し、該基板を真空蒸着室内に設置する基板設置工程と、
該設置された基板の温度が5℃以上15℃以下の温度範囲となるように冷却しながら、前記有機光電変換層を構成するn型有機半導体とp型有機半導体とを前記基板上に共蒸着して第1の光電変換層を成膜する第1の光電変換層形成工程と、
前記冷却をやめ、前記第1の光電変換層上に前記共蒸着を実施して第2の光電変換層を成膜する第2の光電変換層形成工程を有する有機光電変換層の成膜方法。
A method for forming an organic photoelectric conversion layer provided in an organic photoelectric conversion element,
Preparing a substrate and installing the substrate in a vacuum deposition chamber; and
The n-type organic semiconductor and the p-type organic semiconductor constituting the organic photoelectric conversion layer are co-deposited on the substrate while cooling so that the temperature of the installed substrate is in a temperature range of 5 ° C. to 15 ° C. A first photoelectric conversion layer forming step of forming a first photoelectric conversion layer;
An organic photoelectric conversion layer forming method including a second photoelectric conversion layer forming step in which the cooling is stopped and the co-evaporation is performed on the first photoelectric conversion layer to form a second photoelectric conversion layer.
前記基板温度の最高温度が80℃以上となる条件で前記第2の光電変換層形成工程を実施する請求項1記載の有機光電変換層の成膜方法。   The method for forming an organic photoelectric conversion layer according to claim 1, wherein the second photoelectric conversion layer forming step is performed under a condition that the maximum temperature of the substrate is 80 ° C. or more. 前記第2の光電変換層が前記第1の光電変換層よりも大きい層厚を有する請求項1または2記載の有機光電変換層の成膜方法。 The second film forming method according to claim 1 or 2, organic photoelectric conversion layer according photoelectric conversion layer has a thickness greater than said first photoelectric conversion layer. 前記第1の光電変換層の平均層厚の前記第2の光電変換層の平均層厚に対する比が1/2以下である請求項記載の有機光電変換層の成膜方法。 The method for forming an organic photoelectric conversion layer according to claim 3 , wherein a ratio of an average layer thickness of the first photoelectric conversion layer to an average layer thickness of the second photoelectric conversion layer is 1/2 or less. 前記第1の光電変換層の平均層厚の前記第2の光電変換層の平均層厚に対する比が1/3以下である請求項記載の光電変換層の成膜方法。 The method for forming a photoelectric conversion layer according to claim 4 , wherein a ratio of an average layer thickness of the first photoelectric conversion layer to an average layer thickness of the second photoelectric conversion layer is 1/3 or less. 前記基板設置工程後、前記第1の光電変換層形成工程を実施する前に、前記基板の温度が5℃以上15℃以下の温度範囲となるように冷却する冷却工程を有する請求項1〜いずれか1項記載の有機光電変換層の成膜方法。 After the substrate placing step, prior to performing the first photoelectric conversion layer forming step, according to claim 1 to 5 having a cooling step of cooling so that the temperature of the substrate is the temperature range of 5 ° C. or higher 15 ℃ less The film-forming method of the organic photoelectric converting layer of any one of Claims 1. 前記n型有機半導体がフラーレン又はフラーレン誘導体を主成分とするものである請求項1〜いずれか1項記載の有機光電変換層の成膜方法。 The n-type organic semiconductor according to claim 1-6 any one method of forming the organic photoelectric conversion layer according as a main component fullerene or a fullerene derivative. 前記p型有機半導体は、下記一般式(1)で表される化合物を含むものである請求項1〜いずれか1項記載の有機光電変換層の成膜方法。
(一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
The p-type organic semiconductor is represented by the following general formula (1) are those containing a compound represented by the claims 1-7 any one method of forming the organic photoelectric conversion layer according.
(In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 , and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
基板上に、正孔捕集電極と電子捕集電極とに挟持された少なくとも有機光電変換層を含む受光層を有する有機光電変換素子の製造方法であって、
前記有機光電変換層を、請求項1〜いずれか1項記載の有機光電変換層の成膜方法により成膜する有機光電変換素子の製造方法。
A method for producing an organic photoelectric conversion element having a light receiving layer including at least an organic photoelectric conversion layer sandwiched between a hole collection electrode and an electron collection electrode on a substrate,
The manufacturing method of the organic photoelectric conversion element which forms the said organic photoelectric converting layer with the film-forming method of the organic photoelectric converting layer of any one of Claims 1-8 .
JP2013142416A 2013-07-08 2013-07-08 Method for forming photoelectric conversion layer Active JP6145872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142416A JP6145872B2 (en) 2013-07-08 2013-07-08 Method for forming photoelectric conversion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142416A JP6145872B2 (en) 2013-07-08 2013-07-08 Method for forming photoelectric conversion layer

Publications (2)

Publication Number Publication Date
JP2015015415A JP2015015415A (en) 2015-01-22
JP6145872B2 true JP6145872B2 (en) 2017-06-14

Family

ID=52436932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142416A Active JP6145872B2 (en) 2013-07-08 2013-07-08 Method for forming photoelectric conversion layer

Country Status (1)

Country Link
JP (1) JP6145872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401289B2 (en) 2019-06-25 2022-08-02 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same
US11557741B2 (en) 2018-11-14 2023-01-17 Samsung Electronics Co., Ltd. Photoelectric conversion devices and organic sensors and electronic devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491494B1 (en) 2015-09-25 2023-01-20 삼성전자주식회사 Compound for organic photoelectric device and organic photoelectric device and image sensor including the same
KR102529631B1 (en) 2015-11-30 2023-05-04 삼성전자주식회사 Organic photoelectronic device and image sensor
KR102557864B1 (en) 2016-04-06 2023-07-19 삼성전자주식회사 Compound and organic photoelectric device, image sensor and electronic device including the same
US10236461B2 (en) 2016-05-20 2019-03-19 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
KR102605375B1 (en) 2016-06-29 2023-11-22 삼성전자주식회사 Organic photoelectronic device and image sensor
KR102589215B1 (en) 2016-08-29 2023-10-12 삼성전자주식회사 Organic photoelectronic device and image sensor and electronic device
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
KR20200132537A (en) 2019-05-17 2020-11-25 삼성전자주식회사 Photoelectric conversion device and organic sensor and electronic device
KR20210109158A (en) 2020-02-27 2021-09-06 삼성전자주식회사 Photoelectric conversion device and organic sensor and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369154B2 (en) * 2000-09-01 2003-01-20 科学技術振興事業団 Manufacturing method of organic co-deposited film
US20090107539A1 (en) * 2005-08-02 2009-04-30 Adeka Corporation Photoelectric device
JP5013571B2 (en) * 2005-08-22 2012-08-29 国立大学法人 筑波大学 Organic semiconductor molecule orientation control method and organic thin film solar cell
JP2008258421A (en) * 2007-04-05 2008-10-23 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element, and manufacturing method thereof
JP5408474B2 (en) * 2009-03-11 2014-02-05 国立大学法人九州大学 Method for controlling molecular orientation direction of charge transporting amorphous thin film and method for producing charge transporting amorphous thin film
JP5124620B2 (en) * 2009-06-05 2013-01-23 富士フイルム株式会社 PHOTOELECTRIC CONVERSION ELEMENT, ITS MANUFACTURING METHOD, AND IMAGING ELEMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557741B2 (en) 2018-11-14 2023-01-17 Samsung Electronics Co., Ltd. Photoelectric conversion devices and organic sensors and electronic devices
US11401289B2 (en) 2019-06-25 2022-08-02 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same

Also Published As

Publication number Publication date
JP2015015415A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6145872B2 (en) Method for forming photoelectric conversion layer
JP6046649B2 (en) Photoelectric conversion device and imaging device using the same
JP6059697B2 (en) Photoelectric conversion device and imaging device
JP6010514B2 (en) Photoelectric conversion device and imaging device
JP5925234B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element
JP5938028B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
JP5814293B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND IMAGING ELEMENT, PHOTOELECTRIC CONVERSION ELEMENT MANUFACTURING METHOD, AND IMAGING ELEMENT MANUFACTURING METHOD
JP6010567B2 (en) Photoelectric conversion material, photoelectric conversion element, optical sensor, and imaging element
JP5662893B2 (en) Vapor deposition material for photoelectric conversion element, photoelectric conversion element, sensor, imaging element
JP5824436B2 (en) Photoelectric conversion device and imaging device using the same
JP2015043362A (en) Photoelectric conversion element and image pickup element
JP6077426B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
US20140179055A1 (en) Method for producing photoelectric conversion element and method for producing imaging device
JP5992378B2 (en) Photoelectric conversion device, optical sensor, and imaging device
JP6231435B2 (en) Solid-state image sensor
JP6059616B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element
JP6114606B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element
JP2015074793A (en) Manufacturing method of photoelectric conversion layer and vapor deposition method
JP2013055248A (en) Manufacturing method of photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6145872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250