JP6143819B2 - Constant voltage circuit and power supply system - Google Patents

Constant voltage circuit and power supply system Download PDF

Info

Publication number
JP6143819B2
JP6143819B2 JP2015172971A JP2015172971A JP6143819B2 JP 6143819 B2 JP6143819 B2 JP 6143819B2 JP 2015172971 A JP2015172971 A JP 2015172971A JP 2015172971 A JP2015172971 A JP 2015172971A JP 6143819 B2 JP6143819 B2 JP 6143819B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
regulator
power supply
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015172971A
Other languages
Japanese (ja)
Other versions
JP2017049827A (en
Inventor
國司 昌利
昌利 國司
尚章 近田
尚章 近田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
FDK Corp
Original Assignee
Asahi Kasei Corp
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, FDK Corp filed Critical Asahi Kasei Corp
Priority to JP2015172971A priority Critical patent/JP6143819B2/en
Publication of JP2017049827A publication Critical patent/JP2017049827A/en
Application granted granted Critical
Publication of JP6143819B2 publication Critical patent/JP6143819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、定電圧回路及び電源システムに関する。   The present invention relates to a constant voltage circuit and a power supply system.

近年、蓄電システムに適用する蓄電デバイスが普及してきている。蓄電デバイスの一例として、リチウムイオンバッテリやリチウムイオンキャパシタがある。蓄電デバイスは、直列に接続された複数の蓄電セルを含む。蓄電デバイスは、蓄電デバイスの温度や電圧を監視し、過充電や過放電等を回避して蓄電デバイスを保護する保護回路を有する。   In recent years, power storage devices applied to power storage systems have become widespread. Examples of the electricity storage device include a lithium ion battery and a lithium ion capacitor. The power storage device includes a plurality of power storage cells connected in series. The power storage device has a protection circuit that monitors the temperature and voltage of the power storage device and protects the power storage device by avoiding overcharge and overdischarge.

例えば、蓄電デバイスの保護回路等の付加回路は、蓄電デバイスの蓄電セルから電力を供給され駆動する。付加回路は、一定電圧の電力により駆動する。そこで、蓄電セルから付加回路へ供給される電力は、レギュレータ等の定電圧回路により一定電圧になるように制御される。   For example, an additional circuit such as a protection circuit for the power storage device is driven by power supplied from the power storage cell of the power storage device. The additional circuit is driven by power of a constant voltage. Therefore, the power supplied from the storage cell to the additional circuit is controlled to be a constant voltage by a constant voltage circuit such as a regulator.

特開2007−305475号公報JP 2007-305475 A

ここで、上記技術では、レギュレータ等の定電圧回路は、蓄電デバイスにおいて直列に接続された複数の蓄電セルの最上位から最下位までの電圧に対応することを要する。例えば図2に示すように、従来技術に係る電源システム1Aは、直列に接続された各16Vの4つの蓄電セル群210〜240を含む蓄電モジュール200、定電圧回路10Aを有する。蓄電モジュール200は、蓄電デバイスの一例である。定電圧回路10Aは、レギュレータ11Aを有する。レギュレータ11Aは、蓄電モジュール200の最上位の電圧VTOPからレギュレータ入力が供給される。すなわち、図2に示す例では、レギュレータ11Aは、16V×4=64Vの電圧に対応することを要する。   Here, in the above technique, a constant voltage circuit such as a regulator is required to correspond to voltages from the highest level to the lowest level of a plurality of power storage cells connected in series in the power storage device. For example, as illustrated in FIG. 2, the power supply system 1A according to the related art includes a power storage module 200 including four 16V storage cell groups 210 to 240 connected in series, and a constant voltage circuit 10A. The power storage module 200 is an example of a power storage device. The constant voltage circuit 10A includes a regulator 11A. The regulator 11 </ b> A is supplied with a regulator input from the highest voltage VTOP of the power storage module 200. That is, in the example shown in FIG. 2, the regulator 11A needs to correspond to a voltage of 16V × 4 = 64V.

近年、蓄電デバイスにおける蓄電セルの直列数が増大してきている。このため、蓄電デバイスにおいて直列に接続された複数の蓄電セルの最上位から最下位までの電圧がより高電圧となってきている。よって、レギュレータは、入力電圧範囲が高電圧まで対応できることが求められる。しかしながら、高電圧まで対応できるレギュレータは、消費電力が大きく、高価である。   In recent years, the number of storage cells in series in an storage device has increased. For this reason, the voltage from the highest level to the lowest level of the plurality of power storage cells connected in series in the power storage device has become higher. Therefore, the regulator is required to be able to handle an input voltage range up to a high voltage. However, a regulator that can handle high voltages consumes a large amount of power and is expensive.

これに対し、直列に接続された複数の蓄電セルの中間の電圧からレギュレータ入力を供給する方法がある。しかし、この方法では、直列接続された各蓄電セルの消費電力に差異が生じるため、各蓄電セルの電圧が均一とならず電圧バランスが崩れてしまうと言う問題がある。   On the other hand, there is a method of supplying a regulator input from a voltage intermediate between a plurality of storage cells connected in series. However, this method has a problem in that the power consumption of each storage cell connected in series is different, so that the voltage of each storage cell is not uniform and the voltage balance is lost.

上述の問題に鑑み、開示技術の一例は、蓄電デバイスにおいて、各蓄電セルの電圧バランスを保持しつつ、消費電力を低減し、安価な構成で電源安定化を行うことを目的とする。   In view of the above-described problems, an example of the disclosed technique is to reduce power consumption and stabilize power supply with an inexpensive configuration while maintaining the voltage balance of each storage cell in the storage device.

開示技術の定電圧回路及び電源システムの一例は、直列に接続された複数の蓄電セルの最上位電圧を、複数の蓄電セル間の中間電圧へ降下させるソースフォロワ回路と、ソースフォロワ回路により降下された中間電圧を入力電圧として電源安定化を行うレギュレータ回路とを備える。   An example of the constant voltage circuit and the power supply system of the disclosed technology is dropped by the source follower circuit and the source follower circuit that drop the highest voltage of the plurality of storage cells connected in series to an intermediate voltage between the plurality of storage cells. And a regulator circuit for stabilizing the power supply using the intermediate voltage as an input voltage.

開示技術の一例によれば、例えば、蓄電デバイスにおいて、各蓄電セルの電圧バランスを保持しつつ、消費電力を低減し、安価な構成で電源安定化を行うことができる。   According to an example of the disclosed technology, for example, in a power storage device, it is possible to reduce power consumption and stabilize power supply with an inexpensive configuration while maintaining the voltage balance of each power storage cell.

図1Aは、実施形態に係る電源システムの一例を示す図である。FIG. 1A is a diagram illustrating an example of a power supply system according to the embodiment. 図1Bは、実施形態に係る電源システムの詳細の一例を示す図である。FIG. 1B is a diagram illustrating an example of details of the power supply system according to the embodiment. 図2は、従来技術に係る電源システムの一例を示す図である。FIG. 2 is a diagram illustrating an example of a power supply system according to the related art.

[実施形態]
以下に、開示技術の一例に係る定電圧回路及び電源システムの実施形態を図面に基づいて説明する。以下の記載において、同一の構成要素には同一の符号を付与し、後出の場合には説明を省略する。なお、以下の実施形態は、一例を示すに過ぎず、開示技術を限定するものではない。
[Embodiment]
Hereinafter, embodiments of a constant voltage circuit and a power supply system according to an example of the disclosed technique will be described with reference to the drawings. In the following description, the same reference numerals are given to the same components, and the description will be omitted in later cases. The following embodiments are merely examples, and do not limit the disclosed technology.

(実施形態に係る電源システム)
図1Aは、実施形態に係る電源システムの一例を示す図である。実施形態に係る電源システム1は、直列に接続された4つの蓄電セル群210〜240を含む蓄電モジュール200、蓄電デバイス保護回路100を有する。各蓄電セル群210〜240は、例えば蓄電セルを4つ直列に接続して構成され、各電圧は4V×4=16Vである。
(Power supply system according to the embodiment)
FIG. 1A is a diagram illustrating an example of a power supply system according to the embodiment. The power supply system 1 according to the embodiment includes a power storage module 200 including four power storage cell groups 210 to 240 connected in series, and a power storage device protection circuit 100. Each power storage cell group 210 to 240 is configured by connecting, for example, four power storage cells in series, and each voltage is 4V × 4 = 16V.

なお、蓄電デバイス保護回路100は、図示しない蓄電モジュール200の制御基板上に設けられてもよい。蓄電モジュール200の制御基板は、蓄電モジュール200の近傍に配置される。蓄電デバイス保護回路100は、さらに、定電圧回路10、第1の回路20、第2の回路30を有する。   Note that the power storage device protection circuit 100 may be provided on a control board of the power storage module 200 (not shown). The control board of the power storage module 200 is disposed in the vicinity of the power storage module 200. The power storage device protection circuit 100 further includes a constant voltage circuit 10, a first circuit 20, and a second circuit 30.

蓄電デバイス保護回路100は、蓄電モジュール200の最上位の蓄電セル群240の16V×4=64VのVTOPの電圧から入力IN1を入力し、蓄電セル群210及び220間の16V×1=16Vの電圧から入力IN2を入力する。定電圧回路10は、入力IN2により、直流電流の定電圧化や平滑化等の電源安定化を行う。そして、定電圧回路10は、直流電流の定電圧化や平滑化等の電源安定化を行った出力OUTを、第1の回路20へ出力する。   The storage device protection circuit 100 receives the input IN1 from the VTOP voltage of 16V × 4 = 64V of the uppermost storage cell group 240 of the storage module 200, and the voltage of 16V × 1 = 16V between the storage cell groups 210 and 220 The input IN2 is input. The constant voltage circuit 10 performs power source stabilization such as constant voltage or smoothing of DC current by the input IN2. Then, the constant voltage circuit 10 outputs an output OUT subjected to power supply stabilization such as constant voltage or smoothing of a direct current to the first circuit 20.

第1の回路20は、IC(Integrated Circuit)等の安定化された電源で駆動する回路である。また、入力IN1は、第2の回路30へも入力される。ここで、第2の回路30は、安定化されることを要しない電源で駆動する回路である。なお、蓄電セル群210、定電圧回路10、第1の回路20、第2の回路30は、接地されている。   The first circuit 20 is a circuit driven by a stabilized power source such as an IC (Integrated Circuit). The input IN1 is also input to the second circuit 30. Here, the second circuit 30 is a circuit driven by a power source that does not need to be stabilized. The storage cell group 210, the constant voltage circuit 10, the first circuit 20, and the second circuit 30 are grounded.

(実施形態に係る電源システムの詳細)
図1Bは、実施形態に係る電源システムの詳細の一例を示す図である。図1Bにおいて、実施形態に係る電源システム1における蓄電デバイス保護回路100の構成は、定電圧回路10のみを示し、その他は省略している。また、実施形態で示す各構成の数及び特性値等は、一例を示すに過ぎない。
(Details of power supply system according to the embodiment)
FIG. 1B is a diagram illustrating an example of details of the power supply system according to the embodiment. In FIG. 1B, the configuration of the power storage device protection circuit 100 in the power supply system 1 according to the embodiment shows only the constant voltage circuit 10, and the others are omitted. In addition, the numbers and characteristic values of the components shown in the embodiments are merely examples.

定電圧回路10は、レギュレータ11、容量が例えば0.1μFのコンデンサ12〜13、Nチャネル電界効果トランジスタ14を有する。コンデンサ12の一端は、Nチャネル電界効果トランジスタ14のソースSに接続され、他端は接地されている。また、コンデンサ13の一端は、レギュレータ11の出力端に接続され、他端は接地されている。   The constant voltage circuit 10 includes a regulator 11, capacitors 12 to 13 having a capacitance of, for example, 0.1 μF, and an N-channel field effect transistor 14. One end of the capacitor 12 is connected to the source S of the N-channel field effect transistor 14, and the other end is grounded. One end of the capacitor 13 is connected to the output end of the regulator 11, and the other end is grounded.

レギュレータ11は、レギュレータ回路の一例である。レギュレータ11は、入力端がNチャネル電界効果トランジスタ14のソースSに接続され、出力端が第1の回路20(図1A参照)及びコンデンサ13に接続される。レギュレータ11は、EN(ENable)信号線を介してEN信号が入力されると動作状態となり、EN信号の入力断により非動作状態となる。   The regulator 11 is an example of a regulator circuit. The regulator 11 has an input terminal connected to the source S of the N-channel field effect transistor 14 and an output terminal connected to the first circuit 20 (see FIG. 1A) and the capacitor 13. The regulator 11 is activated when an EN signal is input via an EN (ENable) signal line, and is deactivated when the EN signal is interrupted.

Nチャネル電界効果トランジスタ14は、ソースフォロワ回路の一例である。Nチャネル電界効果トランジスタ14のドレインDは、蓄電モジュール200の最上位の電圧VTOPに接続される。また、Nチャネル電界効果トランジスタ14のゲートGは、蓄電モジュール200の中間電圧である蓄電セル群210及び220間に接続される。この接続により、Nチャネル電界効果トランジスタ14のゲートGの電圧は、16V×1=16Vとなる。また、Nチャネル電界効果トランジスタ14のドレインDの電圧は、16V×4=64Vとなる。また、Nチャネル電界効果トランジスタ14のソースSの電圧は、(蓄電セル群210及び220間の電圧−電流を流すために必要なゲート−ソース間電圧)となる。   The N-channel field effect transistor 14 is an example of a source follower circuit. The drain D of the N-channel field effect transistor 14 is connected to the highest voltage VTOP of the power storage module 200. Further, the gate G of the N-channel field effect transistor 14 is connected between the storage cell groups 210 and 220 that are intermediate voltages of the storage module 200. With this connection, the voltage of the gate G of the N-channel field effect transistor 14 becomes 16V × 1 = 16V. The voltage at the drain D of the N-channel field effect transistor 14 is 16V × 4 = 64V. In addition, the voltage at the source S of the N-channel field effect transistor 14 becomes (the voltage between the storage cell groups 210 and 220-the voltage between the gate and the source necessary for flowing current).

そして、Nチャネル電界効果トランジスタ14のソースSの電圧は、例えば(16V−0.6V)程度となる。レギュレータ11への入力電圧がNチャネル電界効果トランジスタ14のソースSの電圧を許容できればよいので、レギュレータ11は、Nチャネル電界効果トランジスタ14のソースSの電圧以上の電圧、例えば20Vの入力を許容するものであればよい。   The voltage at the source S of the N-channel field effect transistor 14 is, for example, about (16V-0.6V). Since the input voltage to the regulator 11 only needs to allow the voltage of the source S of the N-channel field effect transistor 14, the regulator 11 allows input of a voltage higher than the voltage of the source S of the N-channel field effect transistor 14, for example, 20V. Anything is acceptable.

このように、レギュレータ11は、ゲートGが蓄電セル群210及び220の間に接続されたNチャネル電界効果トランジスタ14のソースSから電圧が入力されることにより、蓄電モジュール200の最上位電圧よりも低い電圧で、直流電流の定電圧化や平滑化等の電源安定化を行うことができる。そして、Nチャネル電界効果トランジスタ14のゲートGには、蓄電モジュール200の中間電圧である16Vが供給されるが、ゲートGにはほとんど電流が流れない。よって、蓄電モジュール200の各蓄電セル群210〜240及び蓄電セル群210〜240に含まれる各蓄電セルの電圧バランスは同一となるように保持され、各蓄電セルから出力される電流は概ね同一となる。   As described above, the regulator 11 receives the voltage from the source S of the N-channel field effect transistor 14 in which the gate G is connected between the storage cell groups 210 and 220, thereby causing the regulator 11 to exceed the highest voltage of the storage module 200. With a low voltage, power supply stabilization such as constant voltage or smoothing of direct current can be performed. The gate G of the N-channel field effect transistor 14 is supplied with 16V, which is an intermediate voltage of the power storage module 200, but almost no current flows through the gate G. Therefore, the storage cell groups 210 to 240 of the storage module 200 and the storage cells included in the storage cell groups 210 to 240 are held to have the same voltage balance, and the currents output from the storage cells are substantially the same. Become.

なお、入力IN2は、蓄電セル群210及び220間の電圧に限らず、蓄電セル群220及び230間の電圧、蓄電セル群230及び240間の電圧であってもよい。入力IN2が蓄電セル群210及び220間以外の電圧であっても、レギュレータ11は、蓄電モジュール200の最上位電圧64Vよりも低い電圧で動作することができる。   The input IN2 is not limited to the voltage between the storage cell groups 210 and 220, but may be the voltage between the storage cell groups 220 and 230 and the voltage between the storage cell groups 230 and 240. Even if the input IN2 is a voltage other than that between the storage cell groups 210 and 220, the regulator 11 can operate at a voltage lower than the highest voltage 64V of the storage module 200.

また、Nチャネル電界効果トランジスタ14はエンハンスメントタイプであるが、エンハンスメントタイプではなくディプリッションタイプのNチャネル電界効果トランジスタであってもよい。   The N-channel field effect transistor 14 is an enhancement type, but it may be a depletion type N-channel field effect transistor instead of the enhancement type.

(実施形態による効果)
実施形態は、Nチャネル電界効果トランジスタ14により蓄電モジュール200の最上位電圧を分圧し、レギュレータ11が許容できる入力電圧以下まで降下させてレギュレータ11へ入力する。よって、高電圧の入力が許容できないレギュレータを、適切に電圧降下させた上で電圧を入力することにより、高電圧の蓄電モジュール200に適応させることができる。
(Effect by embodiment)
In the embodiment, the highest voltage of the power storage module 200 is divided by the N-channel field effect transistor 14, and the voltage is dropped to an input voltage that can be allowed by the regulator 11 and input to the regulator 11. Therefore, a regulator that cannot accept a high voltage can be adapted to the high voltage power storage module 200 by inputting the voltage after appropriately dropping the voltage.

一般に、蓄電デバイスである電源システム1において用いられる回路(例えばCMU(Cell Monitoring Unit)やBMU(Battery Management Unit)等)は、蓄電モジュール200から電力が供給され、動作する。そのため、回路の消費電力が大きいと蓄電デバイスに充電された多くの電力を自己消費することになる。蓄電デバイスがキャパシタであると、容量が小さいため、回路の自己消費によるSOC(State Of Charge)の変動が大きくなる。例えば、容量が1Ahの蓄電デバイスの場合、回路が100μAの電流を消費すると、充放電しない場合でも約42日でSOCが約10%低下することになる。   In general, a circuit (for example, a CMU (Cell Monitoring Unit), a BMU (Battery Management Unit), or the like) used in the power supply system 1 that is a power storage device operates with power supplied from the power storage module 200. Therefore, if the power consumption of the circuit is large, a large amount of power charged in the power storage device is consumed by itself. If the power storage device is a capacitor, the capacity is small, and thus the variation in SOC (State Of Charge) due to self-consumption of the circuit increases. For example, in the case of a power storage device having a capacity of 1 Ah, if the circuit consumes 100 μA of current, the SOC will be reduced by about 10% in about 42 days even when charging and discharging are not performed.

さらに、例えば80Vを越えるような蓄電デバイスにレギュレータを適用する場合、消費電流が20μA程度のレギュレータを選定しなければならないが、例えば50V以下の蓄電デバイスであれば、消費電流が数μA程度の比較的安価なレギュレータを用いることができる。   Furthermore, for example, when applying a regulator to a power storage device exceeding 80 V, a regulator with a current consumption of about 20 μA must be selected. An inexpensive regulator can be used.

このように、実施形態は、蓄電デバイスに比較的安価なレギュレータを用いて低コスト化を図ることができるとともに、蓄電デバイスにおけるレギュレータによる自己消費の電流量を低減できる。また、実施形態は、様々なデバイスの電源にも広く適用可能である。   Thus, the embodiment can reduce the cost by using a relatively inexpensive regulator for the power storage device, and can reduce the amount of current consumed by the regulator in the power storage device. The embodiments can also be widely applied to power supplies for various devices.

上記の実施形態に係る定電圧回路の各部は、回路設計に応じて、適宜統合又は分散してもよい。また、上記の実施形態に係る定電圧回路の各部を適宜、組合せ、代替、省略して構成したバランス補正回路も、開示技術に係る定電圧回路に含まれる。   Each part of the constant voltage circuit according to the above embodiment may be appropriately integrated or distributed depending on the circuit design. In addition, a balance correction circuit configured by appropriately combining, substituting, and omitting each part of the constant voltage circuit according to the above embodiment is also included in the constant voltage circuit according to the disclosed technique.

1 電源システム
10 定電圧回路
11 レギュレータ
12、13 コンデンサ
14 Nチャネル電界効果トランジスタ
20 第1の回路
30 第2の回路
100 蓄電デバイス保護回路
200 蓄電モジュール
210〜240 蓄電セル群
DESCRIPTION OF SYMBOLS 1 Power supply system 10 Constant voltage circuit 11 Regulator 12, 13 Capacitor 14 N channel field effect transistor 20 1st circuit 30 2nd circuit 100 Power storage device protection circuit 200 Power storage module 210-240 Power storage cell group

Claims (4)

直列に接続された複数の蓄電セルの最上位電圧を、前記複数の蓄電セル間の中間電圧へ降下させるソースフォロワ回路と、
前記ソースフォロワ回路により降下された前記中間電圧を入力電圧として電源安定化を行うレギュレータ回路と
を備えることを特徴とする定電圧回路。
A source follower circuit for dropping the highest voltage of a plurality of storage cells connected in series to an intermediate voltage between the plurality of storage cells;
And a regulator circuit for stabilizing a power supply using the intermediate voltage dropped by the source follower circuit as an input voltage.
前記ソースフォロワ回路は、ドレインが前記最上位電圧と接続され、ゲートが前記中間電圧と接続され、前記最上位電圧を前記中間電圧へ降下させるNチャネル電界効果トランジスタを含み、
前記レギュレータ回路は、入力端が、前記Nチャネル電界効果トランジスタのソースと接続され、前記中間電圧を入力電圧として電源安定化を行うレギュレータを含む
ことを特徴とする請求項1に記載の定電圧回路。
The source follower circuit includes an N-channel field effect transistor having a drain connected to the highest voltage, a gate connected to the intermediate voltage, and dropping the highest voltage to the intermediate voltage,
2. The constant voltage circuit according to claim 1, wherein the regulator circuit includes a regulator having an input terminal connected to a source of the N-channel field effect transistor and performing power supply stabilization using the intermediate voltage as an input voltage. .
前記レギュレータの入力許容電圧が、前記中間電圧から前記Nチャネル電界効果トランジスタのゲート−ソース間の電圧を差し引いた電圧以上かつ前記最上位電圧未満である
ことを特徴とする請求項2に記載の定電圧回路。
The constant input voltage of the regulator is equal to or higher than a voltage obtained by subtracting a voltage between a gate and a source of the N-channel field effect transistor from the intermediate voltage and lower than the highest voltage. Voltage circuit.
前記複数の蓄電セルと、
請求項1、2又は3に記載の定電圧回路と
を備えることを特徴とする電源システム。
The plurality of storage cells;
A power supply system comprising: the constant voltage circuit according to claim 1.
JP2015172971A 2015-09-02 2015-09-02 Constant voltage circuit and power supply system Active JP6143819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015172971A JP6143819B2 (en) 2015-09-02 2015-09-02 Constant voltage circuit and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172971A JP6143819B2 (en) 2015-09-02 2015-09-02 Constant voltage circuit and power supply system

Publications (2)

Publication Number Publication Date
JP2017049827A JP2017049827A (en) 2017-03-09
JP6143819B2 true JP6143819B2 (en) 2017-06-07

Family

ID=58279788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172971A Active JP6143819B2 (en) 2015-09-02 2015-09-02 Constant voltage circuit and power supply system

Country Status (1)

Country Link
JP (1) JP6143819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453607A (en) * 2017-07-28 2017-12-08 浙江大学 A kind of submarine observation network constant-current supply system based on linear power balancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188901A1 (en) * 2019-03-15 2020-09-24 ビークルエナジージャパン株式会社 Battery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111492A1 (en) * 1999-11-30 2001-06-27 Nokia Mobile Phones Ltd. Low loss voltage preregulator
JP5488877B2 (en) * 2009-09-17 2014-05-14 日立工機株式会社 Electric tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453607A (en) * 2017-07-28 2017-12-08 浙江大学 A kind of submarine observation network constant-current supply system based on linear power balancer

Also Published As

Publication number Publication date
JP2017049827A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US8970163B2 (en) Charge control system of battery pack
US9077196B2 (en) Battery pack and power generation circuit in battery pack
JP6779317B2 (en) Electrical equipment
KR101084828B1 (en) Battery pack and Charging Control Method for Battery Pack
JP4812419B2 (en) Battery pack and battery pack charging / discharging method
US9917458B2 (en) Battery charging method and battery pack using the same
EP3037830A1 (en) Battery monitoring device
KR20110134741A (en) System of charging battery pack and method thererof
US9024583B2 (en) Battery pack with analog switch
US20140009105A1 (en) Voltage management device for a stacked battery
US20120181987A1 (en) System for charge and discharge of battery pack
US20110193527A1 (en) Lithium Battery Module
EP2879266A1 (en) Power management method for a stacked cell rechargeable energy storage and stacked cell rechargeable energy storage device
JPWO2015029283A1 (en) Battery controller
JP2008182809A (en) Battery circuit, battery pack, and battery system
JP2009106050A (en) Overvoltage protection circuit
US10566816B2 (en) Battery charging method with mutiple constant voltages and battery charging apparatus employing the same
JP6143819B2 (en) Constant voltage circuit and power supply system
US9985445B2 (en) Charging/discharging control circuit, charging/discharging control device, and battery apparatus
JP6446181B2 (en) Charging circuit and electronic device using the same
WO2013068246A2 (en) Integrated circuit adapted to perform power path control in a mobile equipment
CN106200763A (en) Real Time Clock System based on pulsewidth modulation and method
JP2016040999A (en) Charged state equalization method of storage battery device
JP2018117438A (en) Power source module with lithium ion capacitor
KR102240177B1 (en) Battery protection circuit, battery protection apparatus, and battery pack, and battery protection mathod

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6143819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250