JP6143627B2 - Ammonia recovery method - Google Patents

Ammonia recovery method Download PDF

Info

Publication number
JP6143627B2
JP6143627B2 JP2013208671A JP2013208671A JP6143627B2 JP 6143627 B2 JP6143627 B2 JP 6143627B2 JP 2013208671 A JP2013208671 A JP 2013208671A JP 2013208671 A JP2013208671 A JP 2013208671A JP 6143627 B2 JP6143627 B2 JP 6143627B2
Authority
JP
Japan
Prior art keywords
silver
ammonia
ammonia solution
solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013208671A
Other languages
Japanese (ja)
Other versions
JP2015071512A (en
Inventor
浅野 聡
聡 浅野
俊昭 寺尾
俊昭 寺尾
猛裕 松永
猛裕 松永
賢 岡田
賢 岡田
美也子 秋吉
美也子 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Sumitomo Metal Mining Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013208671A priority Critical patent/JP6143627B2/en
Publication of JP2015071512A publication Critical patent/JP2015071512A/en
Application granted granted Critical
Publication of JP6143627B2 publication Critical patent/JP6143627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銀アンモニア溶液からのアンモニア回収方法に関するものであり、特に、爆発性を有する雷銀の生成を抑えて銀アンモニア溶液から安全にアンモニアを回収する方法に関する。   The present invention relates to a method for recovering ammonia from a silver ammonia solution, and particularly to a method for safely recovering ammonia from a silver ammonia solution while suppressing the formation of explosive thunder silver.

電子機器における配線層や電極などの導電膜の形成には、銀粉を含んだ銀ペーストや銀インクが多用されている。これら銀ペーストや銀インクは、加熱硬化あるいは加熱焼成によって銀粉が連なって電気的に接続した電流パスを形成するので、配線層や電極となる導電膜の材料として用いられている。例えば、銀ペーストの一種である樹脂型銀ペーストは、銀粉、樹脂、硬化剤、および溶剤などからなり、これを回路パターンや端子形状に印刷し、100℃〜200℃で加熱硬化させることで配線や電極用の導電膜を形成することができる。また、銀ペーストの一種である焼成型銀ペーストは、銀粉、ガラス、および溶剤などからなり、これを回路パターンや端子形状に印刷し、600℃〜800℃で加熱焼成することで配線や電極用の導電膜を形成することができる。   For the formation of conductive layers such as wiring layers and electrodes in electronic devices, silver paste and silver ink containing silver powder are frequently used. These silver pastes and silver inks are used as conductive film materials for wiring layers and electrodes because they form a current path in which silver powders are connected and electrically connected by heat curing or heat baking. For example, a resin-type silver paste, which is a kind of silver paste, consists of silver powder, resin, curing agent, solvent, etc., printed on a circuit pattern or terminal shape, and cured by heating at 100 ° C to 200 ° C. And a conductive film for an electrode can be formed. Moreover, the baking type silver paste which is 1 type of silver paste consists of silver powder, glass, a solvent, etc., this is printed on a circuit pattern or a terminal shape, and is used for wiring or an electrode by baking at 600 to 800 degreeC. The conductive film can be formed.

かかる銀ペーストに使用する銀粉の粒径は一般に0.1μmから数μm程度であり、形成する配線の幅や電極の厚さに応じて異なる粒径の銀粉が使用される。銀粉はペースト中で均一に分散させることが望ましく、これにより均一な厚みと幅を有する配線や均一な厚みを有する電極を形成することができる。一方、銀インクはタッチパネルや高電流を必要しない配線材として用いられており、使用される銀粉の粒径は数nmから0.1μm程度であり、銀ペーストよりも細かい銀粉が使用される。   The particle size of silver powder used for such silver paste is generally about 0.1 μm to several μm, and silver powder having different particle sizes is used depending on the width of the wiring to be formed and the thickness of the electrode. The silver powder is desirably dispersed uniformly in the paste, whereby a wiring having a uniform thickness and width and an electrode having a uniform thickness can be formed. On the other hand, silver ink is used as a wiring material that does not require a touch panel or high current, and the particle size of silver powder used is about several nm to 0.1 μm, and silver powder finer than silver paste is used.

これら銀ペーストや銀インクの製造コストでは銀粉が高い割合を占めており、低コストに銀粉を製造することが重要視されている。そのため、銀粉はアンモニアを用いた湿式還元法で製造されることが多い。アンモニアは銀イオンと安定な銀アンミン錯体を形成するため還元反応を制御しやすく、湿式還元法による銀粉の製造では有効な成分である。さらに、アンモニアは一般に薬剤コストが低く、廃液処理において容易に回収可能な薬剤である点においても工業上有利である。   In the production costs of these silver pastes and silver inks, silver powder occupies a high proportion, and it is important to produce silver powder at a low cost. Therefore, silver powder is often produced by a wet reduction method using ammonia. Ammonia forms a stable silver ammine complex with silver ions, making it easy to control the reduction reaction, and is an effective component in the production of silver powder by a wet reduction method. Further, ammonia is industrially advantageous in that it is generally low in drug cost and can be easily recovered in waste liquid treatment.

しかし、アンモニアは人体や環境に有害な物質であり、アンモニアを含む廃液を周辺環境に放出したり、あるいはアンモニアガスとして大気中に放出することは法律で制限されている。そのため、アンモニアを含む廃液は通常は放出前にアンモニアを除去する処理が施されている。この処理法には、例えば非特許文献1に示すようなアンモニアストリッピング法、薬剤または触媒による分解処理法、微生物による生物学的処理法、イオン交換法による吸着処理法等を挙げることができる。これらの内、アンモニア濃度が0.1質量%以上の高濃度の場合は、アンモニアストリッピング法によるアンモニアの回収が行われることが多い。アンモニアストリッピング法は、他の方法に比べて処理に要するエネルギー消費量が少なく、設備も簡易でコストを抑えることができるからである。   However, ammonia is a substance harmful to the human body and the environment, and it is legally restricted to discharge waste liquid containing ammonia to the surrounding environment or to the atmosphere as ammonia gas. Therefore, the waste liquid containing ammonia is usually subjected to a treatment for removing ammonia before release. Examples of the treatment method include an ammonia stripping method as shown in Non-Patent Document 1, a decomposition treatment method using a drug or a catalyst, a biological treatment method using a microorganism, an adsorption treatment method using an ion exchange method, and the like. Among these, when the ammonia concentration is a high concentration of 0.1% by mass or more, ammonia is often recovered by an ammonia stripping method. This is because the ammonia stripping method requires less energy consumption than other methods, has simple equipment, and can reduce costs.

アンモニアストリッピング法は、下記式1に示すように水酸化物イオンを添加することにより平衡を左に傾かせてアンモニアを非解離状態で遊離させ、さらに温度を上げることによってアンモニアガスの溶解度を下げて遊離したアンモニアガスを排水から分離する方法である。分離してアンモニアガスはアンモニア水として回収したり、硫酸に吸収させて硫酸アンモニウムとして回収したりできる。あるいは、触媒と接触させることにより窒素ガスに分解して無害化する方法がとられることがある。なお、式1の関係から水酸化物イオン濃度が高い方がアンモニアガスになりやすく、工業的にはpH11以上が好ましいとされている。
[式1]
NH+HO ⇔ NHOH ⇔ NH +OH
In the ammonia stripping method, as shown in the following formula 1, by adding hydroxide ions, the equilibrium is tilted to the left to release ammonia in a non-dissociated state, and the solubility of ammonia gas is lowered by raising the temperature further. This is a method for separating the released ammonia gas from the waste water. Separately, the ammonia gas can be recovered as aqueous ammonia, or absorbed into sulfuric acid and recovered as ammonium sulfate. Alternatively, a method of decomposing and detoxifying nitrogen gas by contacting with a catalyst may be used. In addition, from the relationship of Formula 1, the higher the hydroxide ion concentration, the easier it becomes ammonia gas, and it is considered industrially that the pH is 11 or more.
[Formula 1]
NH 3 + H 2 O⇔NH 4 OH⇔NH 4 + + OH

特許文献1には、排水中の重金属イオンを水溶性ポリマーに吸着させた後、該水溶性ポリマーを分離膜を用いて分離し、分離後の液をアンモニアストリッピング法で処理してアンモニアを回収する技術が開示されている。排水中の重金属イオンの分離を行うには水酸化物や還元による重金属の分離の方が効率的であり、特許文献1の技術は水溶性ポリマーの処理および分離膜の維持コストがかかるという欠点がある。また、特許文献2には、アンモニア性窒素含有水に酸化剤を添加したのち、加温下で金属触媒と接触させてアンモニアを分解し、窒素ガスとして回収する技術が開示されている。   In Patent Document 1, heavy metal ions in waste water are adsorbed on a water-soluble polymer, and then the water-soluble polymer is separated using a separation membrane, and the separated liquid is treated by an ammonia stripping method to recover ammonia. Techniques to do this are disclosed. Separation of heavy metal ions in wastewater is more efficient by separation of heavy metals by hydroxide or reduction, and the technique of Patent Document 1 has a drawback that it costs water-soluble polymer treatment and separation membrane maintenance costs. is there. Patent Document 2 discloses a technique in which an oxidizing agent is added to ammoniacal nitrogen-containing water, and then brought into contact with a metal catalyst under heating to decompose ammonia and recover it as nitrogen gas.

特開平11−333455号公報JP 11-333455 A 特許第3614186号公報Japanese Patent No. 3614186

「用水・排水の産業別処理技術」2011年5月発行,和田洋六著,東京電機大学出版局“Treatment technology for water and wastewater by industry” published in May 2011, written by Yoroku Wada, Tokyo Denki University Press E.A.MacWilliam、M.J.Hazard、Photographic science and engineering、1977、Vol21、No.4、221−224E. A. MacWilliam, M.M. J. et al. Hazard, Photographic science and engineering, 1977, Vol 21, No. 4, 221-224

銀を含んだアンモニア溶液中では、銀イオンの大部分は銀アンミン錯体の形態で存在しており、この銀アンミン錯体は、条件によっては爆発性の雷銀を生成する可能性がある。これは、銀溶液やその廃液を管理しながら処理する反応槽内や配管系内のみならず、銀溶液やその廃液が飛散して乾固した場合も同様である。そのため、銀粉の製造工程における銀を含んだ銀溶液の一連の処理においては勿論、銀粉の製造工程から排出される廃液の取り扱いにおいても安全性に考慮する必要がある。   In an ammonia solution containing silver, most of silver ions are present in the form of a silver ammine complex, and this silver ammine complex may generate explosive thunder silver depending on conditions. This is the same not only in the reaction tank and the piping system in which the silver solution and its waste liquid are managed, but also when the silver solution and its waste liquid are scattered and dried. Therefore, it is necessary to consider safety not only in the series of processing of the silver solution containing silver in the silver powder manufacturing process but also in the handling of the waste liquid discharged from the silver powder manufacturing process.

しかしながら、従来のアンモニアを含む廃液の処理方法では、銀とアンモニアとを含む溶液に対して爆発性の雷銀の発生の回避を考慮しながらアンモニアを回収する方法については検討されていなかった。本発明は上記したような銀とアンモニアとを含む溶液の処理が抱える課題に鑑みてなされたものであり、銀アンミン錯体を含む溶液に対して、危険な雷銀を発生させることなく安全にアンモニアを回収する方法を提供することを目的としている。   However, in the conventional method for treating waste liquid containing ammonia, a method for recovering ammonia in consideration of avoiding the generation of explosive thunder silver in a solution containing silver and ammonia has not been studied. The present invention has been made in view of the problems of processing of a solution containing silver and ammonia as described above, and can safely be used for a solution containing a silver ammine complex without causing dangerous lightning silver. It aims to provide a method for recovering.

本発明の発明者らは、銀アンミン錯体がアンモニア回収工程において雷銀を生成する条件について鋭意研究を重ねた結果、銀を含んだアンモニア溶液(以降、銀アンモニア溶液と称する)に含まれる成分の濃度や温度を限定することにより雷銀の生成を抑えて安全にアンモニアを回収できることを見出し本発明を完成するに至った。   The inventors of the present invention have conducted extensive research on the conditions under which silver ammine complexes generate thunder silver in the ammonia recovery process, and as a result, of the components contained in the silver-containing ammonia solution (hereinafter referred to as silver ammonia solution). By limiting the concentration and temperature, it was found that ammonia can be recovered safely by suppressing the formation of thunder silver, and the present invention has been completed.

すなわち、本発明が提供するアンモニアの回収方法の第1形態は、銀とアンモニアとを少なくとも含有する銀アンモニア溶液からアンモニアを回収する方法であって、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1と等しくするか又は1より大きくし、且つ該銀アンモニア溶液中の水酸化アルカリの濃度を0.0001mol/L以上0.05mol/L以下とし、アンモニア回収時の銀アンモニア溶液の温度を50℃より高くすることを特徴としている。   That is, the first form of the ammonia recovery method provided by the present invention is a method of recovering ammonia from a silver ammonia solution containing at least silver and ammonia, and the total chlorine contained in the silver ammonia solution before ammonia recovery The value obtained by dividing the molar concentration of silver by the molar concentration of total silver contained in the silver ammonia solution is equal to or greater than 1, and the concentration of alkali hydroxide in the silver ammonia solution is 0.0001 mol / L. The temperature is 0.05 mol / L or less, and the temperature of the silver ammonia solution at the time of ammonia recovery is higher than 50 ° C.

また、本発明が提供するアンモニアの回収方法の第2形態は、銀とアンモニアとを少なくとも含有する銀アンモニア溶液からアンモニアを回収する方法であって、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1と等しくするか又は1より大きくし、且つ該銀アンモニア溶液中の水酸化アルカリの濃度を0.05mol/Lを超え0.1mol/L以下とし、アンモニア回収時の銀アンモニア溶液の温度を50℃以下にすることを特徴としている。   A second form of the ammonia recovery method provided by the present invention is a method of recovering ammonia from a silver ammonia solution containing at least silver and ammonia, and the total chlorine contained in the silver ammonia solution before ammonia recovery. The value obtained by dividing the molar concentration of silver by the molar concentration of total silver contained in the silver ammonia solution is equal to or greater than 1, and the concentration of alkali hydroxide in the silver ammonia solution is 0.05 mol / L. And 0.1 mol / L or less, and the temperature of the silver ammonia solution at the time of ammonia recovery is 50 ° C. or less.

さらに、本発明が提供するアンモニアの回収方法の第3形態は、銀とアンモニアとを少なくとも含有する銀アンモニア溶液からアンモニアを回収する方法であって、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1.07以上とし、且つ該銀アンモニア溶液中の水酸化アルカリの濃度を0.05mol/Lを超え0.2mol/L以下にすることを特徴としている。   Furthermore, the third form of the ammonia recovery method provided by the present invention is a method of recovering ammonia from a silver ammonia solution containing at least silver and ammonia, and the total chlorine contained in the silver ammonia solution before ammonia recovery The value obtained by dividing the molar concentration of silver by the molar concentration of total silver contained in the silver ammonia solution is set to 1.07 or more, and the concentration of alkali hydroxide in the silver ammonia solution exceeds 0.05 mol / L and is 0.2 mol. / L or less.

本発明によれば、爆発性の雷銀の生成を抑制しながらアンモニアを効率よく回収して再利用できるので、その工業的価値は極めて高い。   According to the present invention, ammonia can be efficiently recovered and reused while suppressing the generation of explosive thunder silver, and thus its industrial value is extremely high.

以下、本発明に係るアンモニアの回収方法を、銀粉や銀コロイドの製造工程から排出される銀アンミン錯体を含む銀アンモニア溶液からストリッピング法でアンモニアを回収する場合を例に挙げて説明する。銀粉や銀コロイド溶液の製造方法では、アンモニアを含有する水溶液に必要に応じて塩化物塩を添加した後、銀塩を溶解して銀アンミン錯体を含む銀アンモニア溶液を作製し、この銀アンモニア溶液に還元剤を添加して銀イオンを還元することで銀微粒子を形成し、得られた銀微粒子を含む懸濁液を固液分離して銀粉を作製したり銀コロイド溶液を作製したりすることが行われている。   Hereinafter, the ammonia recovery method according to the present invention will be described by taking as an example the case of recovering ammonia by a stripping method from a silver ammonia solution containing a silver ammine complex discharged from the production process of silver powder or silver colloid. In the method for producing silver powder or silver colloid solution, a silver salt solution containing a silver ammine complex is prepared by dissolving a silver salt after adding a chloride salt to an aqueous solution containing ammonia as required. Forming silver fine particles by reducing silver ions by adding a reducing agent to the suspension, and solid-liquid separation of the resulting suspension containing silver fine particles to produce silver powder or silver colloid solution Has been done.

必要に応じてアンモニア溶液に添加する塩化物塩は、溶解しないものや還元反応の際に水酸化物のような沈殿物を生じるものは好ましくないが、それ以外あれば特に限定はない。例えば、塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化リチウムなどを使用することができる。   The chloride salt added to the ammonia solution as needed is not preferred if it does not dissolve or produces a precipitate such as a hydroxide during the reduction reaction, but otherwise there is no particular limitation. For example, sodium chloride, potassium chloride, ammonium chloride, lithium chloride and the like can be used.

上記の製造方法では、形成する銀微粒子の粒径や形状、銀コロイドの特性などによっては銀イオンをすべて還元するとは限られず、この場合は未還元の銀アンミン錯体を含む溶液が発生する。また、銀アンミン錯体をすべて還元する工程であっても量産工程では還元を行う反応槽内での反応の偏りなどで、未還元の銀アンミン錯体を含んだ溶液が発生することもある。このような残留する未反応の銀アンミン錯体は、後段のアンモニア回収工程において処理する際、雷銀の生成により爆発などの危険を孕んでいることが問題になる。すなわち、銀アンミン錯体溶液は、乾燥、加熱、またはアルカリ性物質の添加を行うことにより、溶液中のアンモニア濃度が下がり、雷銀が生成されるので、その生成を抑える安全対策が重要となる。ここで雷銀とは、窒化銀、アミド銀、およびイミド銀などの銀を含む爆発性物質の一般的な総称である。   In the above production method, the silver ions are not necessarily all reduced depending on the particle diameter and shape of the silver fine particles to be formed and the characteristics of the silver colloid. In this case, a solution containing an unreduced silver ammine complex is generated. Further, even in the process of reducing all of the silver ammine complex, a solution containing unreduced silver ammine complex may be generated due to the bias of the reaction in the reaction tank in which reduction is performed in the mass production process. When such a remaining unreacted silver ammine complex is treated in a subsequent ammonia recovery step, there is a problem that a danger such as an explosion is generated due to generation of thunder silver. That is, when the silver ammine complex solution is dried, heated, or added with an alkaline substance, the ammonia concentration in the solution is lowered and thundersilver is generated. Therefore, it is important to take safety measures to suppress the generation. Here, lightning silver is a general term for explosive substances including silver such as silver nitride, amide silver, and imide silver.

具体的な雷銀の発生過程としては、銀アンミン錯体を含む銀アンモニア溶液を乾燥濃縮させると、銀アンミン錯体から配位子のアンモニアが外れてアミド銀(AgNH)が生成する。これは意図的に銀アンモニア溶液を濃縮する場合に限られず、例えば反応槽や配管系から銀アンモニア溶液が飛散して乾燥濃縮した場合も同様に雷銀が形成される。また、銀アンミン錯体を含む銀アンモニア溶液にアルカリを加えた場合は、銀アンミン錯体から配位子のアンモニアが外れ、これによりアミド銀が生成して窒化銀の生成が進行する。 As a specific generation process of lightning silver, when a silver ammonia solution containing a silver ammine complex is dried and concentrated, the ammonia of the ligand is removed from the silver ammine complex to produce amide silver (AgNH 2 ). This is not limited to intentionally concentrating the silver ammonia solution. For example, lightning silver is also formed when the silver ammonia solution scatters from the reaction tank or piping system and is concentrated by drying. Further, when an alkali is added to a silver ammonia solution containing a silver ammine complex, the ligand ammonia is removed from the silver ammine complex, whereby amide silver is produced and silver nitride proceeds.

例えば非特許文献2よれば、銀アンミン錯体を含む銀アンモニア溶液に水酸化カリウムを添加すると、下記式2および式3の反応を経由して爆発性を有する窒化銀AgNが生成することが開示されている。このことから、アルカリの添加により雷銀の生成が促進されると考えられる。
[式2]
[Ag(NH)]2++OH→AgNH+NH+H
[式3]
AgNH→AgN+2NH
For example, according to Non-Patent Document 2, when potassium hydroxide is added to a silver ammonia solution containing a silver ammine complex, explosive silver nitride Ag 3 N may be generated via the reactions of the following formulas 2 and 3. It is disclosed. From this, it is considered that the formation of thunder silver is promoted by the addition of alkali.
[Formula 2]
[Ag (NH 3 )] 2+ + OH → AgNH 2 + NH 3 + H 2 O
[Formula 3]
AgNH 2 → Ag 3 N + 2NH 3

ところで、廃液からアンモニア等を回収するアンモニアストリッピング法では、より高い効率でストリッピングするために廃液を加熱することが行われており、これは上記した式2の反応を促進させることになるため、pHや温度の制御だけでは雷銀の生成を防止することは困難である。そこで、本発明者らは銀とアンモニアを含む銀アンモニア溶液に対して雷銀の生成を抑えながらアンモニアを良好にストリッピングできる条件について鋭意研究した結果、下記に述べるように、アンモニア回収前の銀アンモニア溶液中の全塩素のモル濃度と全銀のモル濃度との比率及び水酸化アルカリのモル濃度、並びにアンモニア回収時の銀アンモニア溶液の温度にそれぞれ所定の制限を課した3つの条件においては、いずれも雷銀を生成しないことを見出した。   By the way, in the ammonia stripping method for recovering ammonia and the like from the waste liquid, the waste liquid is heated in order to perform stripping with higher efficiency, and this promotes the reaction of the above formula 2. It is difficult to prevent the formation of lightning silver only by controlling the pH and temperature. Therefore, as a result of intensive studies on the conditions under which ammonia can be satisfactorily stripped while suppressing the formation of thunder silver with respect to a silver ammonia solution containing silver and ammonia, the present inventors, as described below, In the three conditions in which predetermined limits are imposed respectively on the ratio of the molar concentration of total chlorine to the molar concentration of total silver in the ammonia solution, the molar concentration of alkali hydroxide, and the temperature of the silver ammonia solution at the time of ammonia recovery, Neither of them found that it produces thunder silver.

ここで、全塩素のモル濃度とは、銀アンモニア溶液中に含まれるClで示される塩素イオンやClで示される塩素分子、さらには銀アンモニア溶液中に塩素の化合物として存在するものの全てを塩素原子に換算したモル濃度である。また、全銀のモル濃度とは、銀アンモニア溶液中の銀の化学種を銀原子に換算したモル濃度であり、この場合、銀はほとんどが銀アンミン錯体[Ag(NHとして存在するが、化学平衡により銀アンミン錯体以外の錯体として存在する銀イオンが含まれる。さらに、水酸化アルカリとは、水酸化リチウム、水酸化ナトリウム、および水酸化カリウムのうちのいずれか1つ以上である。 Here, the molar concentration of total chlorine refers to all of the chlorine ions represented by Cl and chlorine molecules represented by Cl 2 contained in the silver ammonia solution, as well as all the compounds existing as chlorine compounds in the silver ammonia solution. The molar concentration in terms of chlorine atoms. The total silver molar concentration is the molar concentration obtained by converting the chemical species of silver in the silver ammonia solution into silver atoms. In this case, most of the silver is converted into a silver ammine complex [Ag (NH 3 ) 2 ] +. Although present, silver ions that are present as complexes other than silver ammine complexes due to chemical equilibrium are included. Furthermore, the alkali hydroxide is any one or more of lithium hydroxide, sodium hydroxide, and potassium hydroxide.

まず、第1の条件は、アンモニア回収前の銀アンモニア溶液が下記式4または式5のいずれかの関係を満たすように、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を該銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1と等しくするか又は1より大きくし、また、アンモニア回収前の銀アンモニア溶液中の水酸化アルカリ濃度を0.0001mol/L以上0.05mol/L以下とし、更にアンモニア回収時の銀アンモニア溶液の加熱温度を50℃より高い温度にする条件である。この条件下でアンモニアを回収すれば、雷銀を生成することはない。   First, the first condition is that the molar concentration of total chlorine contained in the silver ammonia solution before ammonia recovery is adjusted so that the silver ammonia solution before ammonia recovery satisfies either of the following formulas 4 and 5. The value divided by the molar concentration of total silver contained in the ammonia solution is made equal to or greater than 1, and the alkali hydroxide concentration in the silver ammonia solution before ammonia recovery is 0.0001 mol / L or more and 0.001. The temperature is set to 05 mol / L or less, and the heating temperature of the silver ammonia solution at the time of ammonia recovery is set to a temperature higher than 50 ° C. If ammonia is recovered under these conditions, no lightning silver is produced.

[式4]
1=(全塩素のモル濃度)/(全銀のモル濃度)
[式5]
1<(全塩素のモル濃度)/(全銀のモル濃度)
[Formula 4]
1 = (Molar concentration of total chlorine) / (Molar concentration of total silver)
[Formula 5]
1 <(Molar concentration of total chlorine) / (Molar concentration of total silver)

アンモニア回収前の銀アンモニア溶液が上記式4および式5のいずれをも満たさない場合、すなわち、アンモニア回収前の銀アンモニア溶液中の全塩素のモル濃度を全銀のモル濃度で除した値が1未満の場合は、塩素が不足するため塩化銀の生成が不安定となり、雷銀が生成されてしまう。また、水酸化アルカリ濃度が0.0001mol/L未満では前述した式1の平衡が左に傾きにくく、溶液中でアンモニウムイオンとして残留する割合が高くなり、アンモニアの回収効率が著しく下がることになる。一方、水酸化アルカリ濃度が0.05mol/Lを超えると、銀アンミン錯体からアンモニア配位子が外れやすくなり、雷銀の生成を促進させることになる。アンモニアの回収時は、銀アンモニア溶液を50℃より高くする必要があり、85℃以上に加熱するのが好ましい。85℃よりも低いとアンモニアの回収効率が悪くなるからである。   When the silver ammonia solution before ammonia recovery does not satisfy any of the above formulas 4 and 5, that is, the value obtained by dividing the molar concentration of total chlorine in the silver ammonia solution before ammonia recovery by the molar concentration of total silver is 1. If it is less than 1, chlorine is insufficient and the production of silver chloride becomes unstable, and lightning silver is produced. In addition, when the alkali hydroxide concentration is less than 0.0001 mol / L, the equilibrium of the above-described formula 1 is not easily inclined to the left, the ratio of remaining ammonium ions in the solution is increased, and the ammonia recovery efficiency is significantly reduced. On the other hand, when the alkali hydroxide concentration exceeds 0.05 mol / L, the ammonia ligand is easily detached from the silver ammine complex, and the generation of lightning silver is promoted. At the time of recovery of ammonia, the silver ammonia solution needs to be higher than 50 ° C., and is preferably heated to 85 ° C. or higher. This is because when the temperature is lower than 85 ° C., the ammonia recovery efficiency deteriorates.

次に、第2の条件は、アンモニア回収前の銀アンモニア溶液が上記式4または式5のいずれかの関係を満たすように、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を該銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1と等しくするか又は1より大きくし、また、アンモニア回収前の銀アンモニア溶液中の水酸化アルカリの濃度を0.05mol/Lを超えて0.1mol/L以下とし、更にアンモニア回収時の銀アンモニア溶液の温度を50℃以下にする条件である。この条件下でアンモニアを回収すれば、雷銀を生成することはない。   Next, the second condition is that the molar concentration of total chlorine contained in the silver ammonia solution before ammonia recovery is adjusted so that the silver ammonia solution before ammonia recovery satisfies either of the above formulas 4 or 5. The value divided by the molar concentration of total silver contained in the silver ammonia solution is made equal to 1 or larger than 1, and the concentration of alkali hydroxide in the silver ammonia solution before ammonia recovery is set to 0.05 mol / L. This is a condition of exceeding 0.1 mol / L and further making the temperature of the silver ammonia solution at the time of ammonia recovery 50 ° C. or less. If ammonia is recovered under these conditions, no lightning silver is produced.

このように、水酸化アルカリ濃度が0.05mol/Lを超え0.1mol/L以下であっても、銀アンモニア溶液の温度を50℃以下に保てば、雷銀の生成を抑制することができる。0.1mol/Lを超えると、50℃以下であっても銀アンミン錯体からアンモニア配位子が外れやすくなり、雷銀の生成を促進させることになる。この第2の条件は第1の条件よりもアンモニア回収時の温度が低いため、アンモニアストリッピングの際は減圧することが望ましい。   Thus, even if the alkali hydroxide concentration is more than 0.05 mol / L and not more than 0.1 mol / L, if the temperature of the silver ammonia solution is kept at 50 ° C. or less, generation of thunder silver can be suppressed. it can. When it exceeds 0.1 mol / L, the ammonia ligand is easily detached from the silver ammine complex even at 50 ° C. or lower, and the formation of thunder silver is promoted. Since this second condition has a lower temperature during ammonia recovery than the first condition, it is desirable to reduce the pressure during ammonia stripping.

そして、第3の条件は、下記式6の関係を満たすように、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1.07以上とし、且つ水酸化アルカリ濃度が0.2mol/L以下とすることで雷銀を生成せずに処理できることを見出した。このように塩素原子を過剰にすることにより、水酸化アルカリ濃度が0.1mol/Lを超え0.2mol/L以下でも、銀アンミン錯体からアンモニア配位子が外れても塩化銀となる反応が優先され、雷銀の生成を抑制できる。なお、この第3の条件ではアンモニア回収時の温度について特に制約はない。
[式6]
1.07≦(全塩素のモル濃度)/(全銀のモル濃度)
The third condition is a value obtained by dividing the molar concentration of total chlorine contained in the silver ammonia solution before ammonia recovery by the molar concentration of total silver contained in the silver ammonia solution so as to satisfy the relationship of the following formula 6. It has been found that the process can be carried out without producing thunder silver by setting the pH to 1.07 or more and the alkali hydroxide concentration to 0.2 mol / L or less. By making the chlorine atom excessive in this way, even when the alkali hydroxide concentration exceeds 0.1 mol / L and is 0.2 mol / L or less, the reaction that becomes silver chloride even if the ammonia ligand is removed from the silver ammine complex. Priority is given, and generation of thunder silver can be suppressed. In the third condition, there is no particular restriction on the temperature at the time of ammonia recovery.
[Formula 6]
1.07 ≦ (Molar concentration of total chlorine) / (Molar concentration of total silver)

銀アンモニア溶液に含まれる全塩素のモル濃度を全銀のモル濃度で除した値の上限は特にないが、全塩素のモル濃度が高くなればなるほど水酸化アルカリの濃度を0.2mol/Lよりも高くできる可能性が高い。しかしながら、塩化銀の溶解度を超えた場合には塩化銀の析出が生じる可能性が高くなり、また、塩化ナトリウムの析出、中和のための薬剤コストが増加するので、これらの観点から上限を課すのが好ましい。   There is no particular upper limit to the value obtained by dividing the molar concentration of total chlorine contained in the silver ammonia solution by the molar concentration of total silver. However, the higher the molar concentration of total chlorine, the higher the concentration of alkali hydroxide from 0.2 mol / L. Is likely to be higher. However, when the solubility of silver chloride is exceeded, the possibility of silver chloride precipitation increases, and the cost of chemicals for precipitation and neutralization of sodium chloride increases, so an upper limit is imposed from these viewpoints. Is preferred.

[実施例1]
28%アンモニア水1gに塩化銀を60mg加えて溶解し、さらに水酸化ナトリウムを0.05mol/Lとなるように加えて銀アンモニア溶液を作製した。この銀アンモニア溶液に含まれる全塩素のモル濃度を全銀のモル濃度で除した値は1.00となる。この銀アンモニア溶液を100℃まで加熱して得た残留物に波長920nm〜940nm、パルスピーク出力5W、パルス幅2m秒の赤外線レーザを照射して着火試験を行ったところ、爆発は認められなかった。この結果から、この銀アンモニア溶液は100℃に加熱しても雷銀の生成はなく安全であることがわかった。
[Example 1]
A silver ammonia solution was prepared by adding 60 mg of silver chloride to 1 g of 28% ammonia water and further adding sodium hydroxide to 0.05 mol / L. A value obtained by dividing the molar concentration of total chlorine contained in the silver ammonia solution by the molar concentration of total silver is 1.00. When an ignition test was performed on the residue obtained by heating the silver ammonia solution to 100 ° C. by irradiating an infrared laser having a wavelength of 920 nm to 940 nm, a pulse peak output of 5 W, and a pulse width of 2 ms, no explosion was observed. . From this result, it was found that this silver ammonia solution was safe even when heated to 100 ° C. without generation of thunder silver.

そこで、還流冷却器を備えた丸底フラスコ内で28%アンモニア水10gに塩化銀0.6gを溶解し、純水100mLおよび水酸化ナトリウム濃度が0.05mol/Lとなるように加えて銀アンモニア溶液を作製した。この銀アンモニア溶液を設定温度100℃にして加熱し、その際、還流冷却器から排出されるアンモニアガスを0.1mol/Lの硫酸水溶液50mLに吸収させた。この硫酸水溶液中のアンモニア量をインドフェノール青吸光光度法により分析したところ2.8gとなり、ほぼ全量のアンモニアを回収できた。このことから、上記条件の銀アンモニア溶液の場合はアンモニアストリッピング法を用いて効率よく且つ安全にアンモニアを回収できることがわかった。   Therefore, in a round bottom flask equipped with a reflux condenser, 0.6 g of silver chloride was dissolved in 10 g of 28% aqueous ammonia, and added to 100 mL of pure water and a sodium hydroxide concentration of 0.05 mol / L to add silver ammonia. A solution was made. This silver ammonia solution was heated to a set temperature of 100 ° C., and at that time, ammonia gas discharged from the reflux condenser was absorbed into 50 mL of a 0.1 mol / L sulfuric acid aqueous solution. When the amount of ammonia in this sulfuric acid aqueous solution was analyzed by indophenol blue absorptiometry, it was 2.8 g, and almost the entire amount of ammonia was recovered. From this, it was found that in the case of the silver ammonia solution under the above conditions, ammonia can be recovered efficiently and safely using the ammonia stripping method.

[実施例2]
水酸化ナトリウムの濃度を0.05mol/Lに代えて0.01mol/Lとなるように加えた以外は実施例1と同様にして着火試験及びアンモニアの回収を行ったところ、爆発は認められず、また、硫酸水溶液中のアンモニア量が2.7gとなり、アンモニアを95%以上回収できた。このことから、上記条件の銀アンモニア溶液の場合はアンモニアストリッピング法を用いて効率よく且つ安全にアンモニアを回収できることがわかった。
[Example 2]
When an ignition test and recovery of ammonia were performed in the same manner as in Example 1 except that the concentration of sodium hydroxide was changed to 0.01 mol / L instead of 0.05 mol / L, no explosion was observed. In addition, the amount of ammonia in the sulfuric acid aqueous solution was 2.7 g, and it was possible to recover 95% or more of ammonia. From this, it was found that in the case of the silver ammonia solution under the above conditions, ammonia can be recovered efficiently and safely using the ammonia stripping method.

[実施例3]
28%アンモニア水1gに塩化銀60mgと、塩化ナトリウム1.49mgと加えて溶解した。さらに水酸化ナトリウムを0.2mol/Lとなるように加えて銀アンモニア溶液を作製した。この銀アンモニア溶液に含まれる全塩素のモル濃度を全銀のモル濃度で除した値は1.07となる。この銀アンモニア溶液に対して実施例1と同様に加熱して着火試験及びアンモニアの回収を行ったところ、爆発は認められず、また、硫酸水溶液中のアンモニア量が2.8gとなりほぼ全量のアンモニアを回収できた。このことから、上記条件の銀アンモニア溶液の場合はアンモニアストリッピング法を用いて効率よく且つ安全にアンモニアを回収できることがわかった。
[Example 3]
In 1 g of 28% aqueous ammonia, 60 mg of silver chloride and 1.49 mg of sodium chloride were added and dissolved. Furthermore, sodium hydroxide was added so that it might become 0.2 mol / L, and the silver ammonia solution was produced. The value obtained by dividing the molar concentration of total chlorine contained in the silver ammonia solution by the molar concentration of total silver is 1.07. When this silver ammonia solution was heated in the same manner as in Example 1 to conduct an ignition test and recover ammonia, no explosion was observed, and the amount of ammonia in the sulfuric acid aqueous solution was 2.8 g. Was recovered. From this, it was found that in the case of the silver ammonia solution under the above conditions, ammonia can be recovered efficiently and safely using the ammonia stripping method.

[実施例4]
水酸化ナトリウムの濃度を0.05mol/Lに代えて0.1mol/Lとなるように加えた以外は実施例1と同様にして銀アンモニア溶液を作製した。この銀アンモニア溶液を50℃に加熱して得た残留物に対して実施例1と同様に着火試験を行ったところ、爆発は認められなかった。この結果から、この銀アンモニア溶液は50℃の加熱では雷銀の生成はなく安全であることがわかった。
[Example 4]
A silver ammonia solution was prepared in the same manner as in Example 1 except that the concentration of sodium hydroxide was changed to 0.1 mol / L instead of 0.05 mol / L. When an ignition test was performed on the residue obtained by heating this silver ammonia solution to 50 ° C. in the same manner as in Example 1, no explosion was observed. From this result, it was found that this silver ammonia solution was safe with no formation of thunder silver when heated at 50 ° C.

そこで、還流冷却器を備えた耐圧の丸底フラスコ内で28%アンモニア水10gに塩化銀0.6gを溶解し、純水100mLおよび水酸化ナトリウム濃度が0.1mol/Lとなるように加え、設定温度を50℃となるように加熱し、還流冷却器から出たアンモニアガスを−50mmHgとなるように減圧しながら0.1mol/Lの硫酸水溶液50mLに吸収させた。硫酸水溶液中のアンモニア量をインドフェノール青吸光光度法により分析したところ2.6gとなり、90%以上のアンモニアを回収できた。このことから、上記条件の銀アンモニア溶液の場合はアンモニアストリッピング法を用いて効率よく且つ安全にアンモニアを回収できることがわかった。   Therefore, 0.6 g of silver chloride was dissolved in 10 g of 28% aqueous ammonia in a pressure-resistant round bottom flask equipped with a reflux condenser, and added so that 100 mL of pure water and a sodium hydroxide concentration were 0.1 mol / L. The set temperature was heated to 50 ° C., and ammonia gas from the reflux condenser was absorbed in 50 mL of a 0.1 mol / L sulfuric acid aqueous solution while reducing the pressure to -50 mmHg. When the amount of ammonia in the sulfuric acid aqueous solution was analyzed by indophenol blue absorptiometry, it was 2.6 g, and 90% or more of ammonia could be recovered. From this, it was found that in the case of the silver ammonia solution under the above conditions, ammonia can be recovered efficiently and safely using the ammonia stripping method.

[比較例1]
28%アンモニア水1gに、塩化銀46mgおよび酸化銀13mgを溶解して全塩素のモル濃度を全銀のモル濃度で除した値が0.75の銀アンモニア溶液を作製した。この銀アンモニア溶液を常温で乾燥して得た残留物に対して実施例1と同様に着火試験を行ったところ、雷銀の生成が部分的に認められ、この銀アンモニア溶液を加熱すると爆発等の危険性があることがわかった。よって、以降のアンモニア回収試験は行わなかった。
[Comparative Example 1]
A silver ammonia solution having a value of 0.75 obtained by dissolving 46 mg of silver chloride and 13 mg of silver oxide in 1 g of 28% ammonia water and dividing the molar concentration of total chlorine by the molar concentration of total silver was prepared. When an ignition test was performed on the residue obtained by drying this silver ammonia solution at room temperature in the same manner as in Example 1, the formation of thunder silver was partially observed. I found out that there was a risk. Therefore, the subsequent ammonia recovery test was not performed.

[比較例2]
28%アンモニア水1gに、塩化銀60mgを溶解して全塩素のモル濃度を全銀のモル濃度で除した値が1.00の銀アンモニア溶液を作製した。この銀アンモニア溶液に更に水酸化ナトリウムを0.1mol/Lとなるように添加し、60℃に加熱して得た残留物に対して実施例1と同様に着火試験を行ったところ、雷銀の生成が認められ、この銀アンモニア溶液を加熱すると爆発等の危険性があることがわかった。よって、以降のアンモニア回収試験は行わなかった。
[Comparative Example 2]
A silver ammonia solution having a value of 1.00 obtained by dissolving 60 mg of silver chloride in 1 g of 28% ammonia water and dividing the molar concentration of total chlorine by the molar concentration of total silver was prepared. To this silver ammonia solution, sodium hydroxide was further added at 0.1 mol / L, and the residue obtained by heating to 60 ° C. was subjected to an ignition test in the same manner as in Example 1. It was found that when this silver ammonia solution was heated, there was a risk of explosion and the like. Therefore, the subsequent ammonia recovery test was not performed.

[比較例3]
28%アンモニア水1gに、塩化銀60mgを溶解して全塩素のモル濃度を全銀のモル濃度で除した値が1.00の銀アンモニア溶液を作製した。この銀アンモニア溶液に更に水酸化ナトリウムを0.2mol/Lとなるように添加し、50℃に加熱して得た残留物に対して実施例1と同様に着火試験を行ったところ、雷銀の生成が認められ、この銀アンモニア溶液を加熱すると爆発等の危険性があることがわかった。よって、以降のアンモニア回収試験は行わなかった。
[Comparative Example 3]
A silver ammonia solution having a value of 1.00 obtained by dissolving 60 mg of silver chloride in 1 g of 28% ammonia water and dividing the molar concentration of total chlorine by the molar concentration of total silver was prepared. To this silver ammonia solution, sodium hydroxide was further added at 0.2 mol / L, and the residue obtained by heating to 50 ° C. was subjected to an ignition test in the same manner as in Example 1. It was found that when this silver ammonia solution was heated, there was a risk of explosion and the like. Therefore, the subsequent ammonia recovery test was not performed.

[比較例4]
28%アンモニア水1gに、塩化銀60mgおよび塩化ナトリウム1.47mgを溶解して塩素のモル濃度を銀のモル濃度で除した値が1.06の銀アンモニア溶液を作製した。この銀アンモニア溶液に更に水酸化ナトリウムを0.2mol/Lとなるように添加し、100℃に加熱して得た残留物に対して実施例1と同様に着火試験を行ったところ、雷銀の生成が認められ、この銀アンモニア溶液を加熱すると爆発等の危険性があることがわかった。よって、以降のアンモニア回収試験は行わなかった。
[Comparative Example 4]
A silver ammonia solution having a value of 1.06 obtained by dissolving 60 mg of silver chloride and 1.47 mg of sodium chloride in 1 g of 28% ammonia water and dividing the molar concentration of chlorine by the molar concentration of silver was prepared. To this silver ammonia solution, sodium hydroxide was further added at 0.2 mol / L, and the residue obtained by heating to 100 ° C. was subjected to an ignition test in the same manner as in Example 1. It was found that when this silver ammonia solution was heated, there was a risk of explosion and the like. Therefore, the subsequent ammonia recovery test was not performed.

Claims (6)

銀とアンモニアとを少なくとも含有する銀アンモニア溶液からアンモニアを回収する方法であって、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1と等しくするか又は1より大きくし、且つ該銀アンモニア溶液中の水酸化アルカリの濃度を0.0001mol/L以上0.05mol/L以下とし、アンモニア回収時の銀アンモニア溶液の温度を50℃より高くすることを特徴とする銀アンモニア溶液中のアンモニア回収方法。   A method for recovering ammonia from a silver ammonia solution containing at least silver and ammonia, wherein the molar concentration of total chlorine contained in the silver ammonia solution before ammonia recovery is the molar concentration of total silver contained in the silver ammonia solution. And the concentration of alkali hydroxide in the silver ammonia solution is set to 0.0001 mol / L or more and 0.05 mol / L or less so that the silver ammonia solution is recovered at the time of ammonia recovery. A method for recovering ammonia in a silver ammonia solution, wherein the temperature is higher than 50 ° C. 銀とアンモニアとを少なくとも含有する銀アンモニア溶液からアンモニアを回収する方法であって、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1と等しくするか又は1より大きくし、且つ該銀アンモニア溶液中の水酸化アルカリの濃度を0.05mol/Lを超え0.1mol/L以下とし、アンモニア回収時の銀アンモニア溶液の温度を50℃以下にすることを特徴とする銀アンモニア溶液中のアンモニア回収方法。   A method for recovering ammonia from a silver ammonia solution containing at least silver and ammonia, wherein the molar concentration of total chlorine contained in the silver ammonia solution before ammonia recovery is the molar concentration of total silver contained in the silver ammonia solution. The silver ammonia solution at the time of ammonia recovery is made equal to 1 or greater than 1 and the alkali hydroxide concentration in the silver ammonia solution is more than 0.05 mol / L and not more than 0.1 mol / L. The method for recovering ammonia in a silver ammonia solution, wherein the temperature of the solution is adjusted to 50 ° C. or lower. 銀とアンモニアとを少なくとも含有する銀アンモニア溶液からアンモニアを回収する方法であって、アンモニア回収前の銀アンモニア溶液に含まれる全塩素のモル濃度を前記銀アンモニア溶液に含まれる全銀のモル濃度で除した値を1.07以上とし、且つ該銀アンモニア溶液中の水酸化アルカリの濃度を0.05mol/Lを超え0.2mol/L以下にして処理することを特徴とする銀アンモニア溶液中のアンモニア回収方法。   A method for recovering ammonia from a silver ammonia solution containing at least silver and ammonia, wherein the molar concentration of total chlorine contained in the silver ammonia solution before ammonia recovery is the molar concentration of total silver contained in the silver ammonia solution. The silver ammonia solution is characterized by being processed by setting the value obtained by dividing the concentration to be 1.07 or more and the alkali hydroxide concentration in the silver ammonia solution to be more than 0.05 mol / L and not more than 0.2 mol / L. Ammonia recovery method. 前記銀アンモニア溶液が、アンモニアを含有する水溶液に塩化物塩を溶解したものであることを特徴とする、請求項1〜3のいずれかに記載の銀アンモニア溶液中のアンモニア回収方法。   The method for recovering ammonia in a silver ammonia solution according to any one of claims 1 to 3, wherein the silver ammonia solution is obtained by dissolving a chloride salt in an aqueous solution containing ammonia. 前記塩化物塩が、塩化リチウム、塩化ナトリウム、及び塩化カリウムのうち1以上を含むことを特徴とする、請求項4に記載の銀アンモニア溶液中のアンモニア回収方法。   The method for recovering ammonia in a silver ammonia solution according to claim 4, wherein the chloride salt contains one or more of lithium chloride, sodium chloride, and potassium chloride. 前記水酸化アルカリが、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウムのうち1以上を含むことを特徴とする、請求項1〜5のいずれかに記載の銀アンモニア溶液中のアンモニア回収方法。   The method for recovering ammonia in a silver ammonia solution according to any one of claims 1 to 5, wherein the alkali hydroxide contains one or more of lithium hydroxide, sodium hydroxide, and potassium hydroxide.
JP2013208671A 2013-10-03 2013-10-03 Ammonia recovery method Expired - Fee Related JP6143627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208671A JP6143627B2 (en) 2013-10-03 2013-10-03 Ammonia recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208671A JP6143627B2 (en) 2013-10-03 2013-10-03 Ammonia recovery method

Publications (2)

Publication Number Publication Date
JP2015071512A JP2015071512A (en) 2015-04-16
JP6143627B2 true JP6143627B2 (en) 2017-06-07

Family

ID=53014200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208671A Expired - Fee Related JP6143627B2 (en) 2013-10-03 2013-10-03 Ammonia recovery method

Country Status (1)

Country Link
JP (1) JP6143627B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265812A (en) * 1997-03-24 1998-10-06 Sumitomo Metal Mining Co Ltd Production of superfine silver particle
JP3751154B2 (en) * 1998-10-22 2006-03-01 同和鉱業株式会社 Silver powder manufacturing method
JP5163843B2 (en) * 2006-07-28 2013-03-13 三菱マテリアル株式会社 Method for producing silver fine particles
JP5211911B2 (en) * 2008-07-24 2013-06-12 住友金属鉱山株式会社 Silver powder manufacturing method
JP5568255B2 (en) * 2009-06-17 2014-08-06 住友金属鉱山株式会社 Silver powder and method for producing the same
JP2013139589A (en) * 2011-12-28 2013-07-18 Toda Kogyo Corp Silver fine particles, method for producing the same, and conductive paste, conductive film, and electronic device containing the silver fine particles

Also Published As

Publication number Publication date
JP2015071512A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP4430014B2 (en) Method for producing high purity zinc oxide powder
CN105132693B (en) The technique of Recover palladium in a kind of sour palladium waste liquid after activation from colloidal activating palladium
CN102942278A (en) Method for treating acidic copper-containing waste liquid
CN103695653A (en) Method of extracting noble metals on circuit board by wet process
KR20170019246A (en) A recovery method for valuable metal from the LED wastes or electronic wastes
WO2014156300A1 (en) Precious metal recovery method using copper halide-containing organic solvent system
JP6143417B2 (en) Method for producing tungsten
JP6379179B2 (en) Method for concentrating metal from scrap containing metal
US20150211091A1 (en) Silver Recovery Methods and Silver Products Produced Thereby
US8623113B2 (en) Metal component collection agent and method for collecting metal component
JP5211911B2 (en) Silver powder manufacturing method
JP6143627B2 (en) Ammonia recovery method
CN113373307A (en) Method for carrying out photocatalytic metal dissolution by using phosphate radical modified photocatalyst
JP2014019923A (en) Method for producing silver powder
KR100713662B1 (en) Manufacturing Process of Sphere Shape Silver Powder from Silver Scrap
KR102031753B1 (en) A method for preparing copper nano powder improved in oxidation stability
KR101383756B1 (en) Method and apparatus for separation of calcium and magnesium
WO2014131401A9 (en) Hydrometallurgical process for recovery of metals and/or semimetals from waste materials containing compound semiconductor materials and/or back contact materials and/or transparent electrically conducting oxides (tcos)
CN103667706A (en) Separation and purification method of gold in gold platinum alloy waste
WO2016194658A1 (en) Aqueous cobalt chloride solution purification method
JP5984895B2 (en) Method for producing tungsten oxide and method for treating tungsten oxide
JP2010184835A (en) Method for recovering iodine
KR101578389B1 (en) Method of recovering silver
JP4821239B2 (en) Method for removing arsenic from germanium
TW201839143A (en) Treating method for recycling noble metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6143627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees