JP6142399B2 - Air secondary battery - Google Patents

Air secondary battery Download PDF

Info

Publication number
JP6142399B2
JP6142399B2 JP2013036739A JP2013036739A JP6142399B2 JP 6142399 B2 JP6142399 B2 JP 6142399B2 JP 2013036739 A JP2013036739 A JP 2013036739A JP 2013036739 A JP2013036739 A JP 2013036739A JP 6142399 B2 JP6142399 B2 JP 6142399B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
compound
metal complex
air secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013036739A
Other languages
Japanese (ja)
Other versions
JP2014165099A (en
Inventor
伸能 古志野
伸能 古志野
章弘 湯浅
章弘 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2013036739A priority Critical patent/JP6142399B2/en
Publication of JP2014165099A publication Critical patent/JP2014165099A/en
Application granted granted Critical
Publication of JP6142399B2 publication Critical patent/JP6142399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、空気二次電池に関するものである。   The present invention relates to an air secondary battery.

空気電池は、当該電池外部から正極活物質である酸素が供給されるため、電池内に正極活物質を収容する必要がなく、電池内に大量の負極活物質を充填することができ、非常に高いエネルギー密度を達成することができるため、期待が寄せられている。   Since the air battery is supplied with oxygen, which is a positive electrode active material, from the outside of the battery, there is no need to store the positive electrode active material in the battery, and a large amount of the negative electrode active material can be filled in the battery. Expectations are high because high energy density can be achieved.

空気電池は、酸素還元能を有する正極触媒を含む正極と、亜鉛、鉄、アルミニウム、マグネシウム、リチウム、水素等を負極活物質とする負極と、電解液とを有する電池である。例えば、負極が亜鉛を含む場合、アルカリ性条件下での空気電池の放電反応は、以下の式で表される。
正極:O+2HO+4e → 4OH
負極:Zn+2OH→ZnO+HO+2e
全反応:2Zn+O →2ZnO
An air battery is a battery having a positive electrode including a positive electrode catalyst having oxygen reducing ability, a negative electrode using zinc, iron, aluminum, magnesium, lithium, hydrogen, or the like as a negative electrode active material, and an electrolytic solution. For example, when the negative electrode contains zinc, the discharge reaction of the air battery under alkaline conditions is represented by the following formula.
Positive electrode: O 2 + 2H 2 O + 4e → 4OH
Negative electrode: Zn + 2OH → ZnO + H 2 O + 2e
Total reaction: 2Zn + O 2 → 2ZnO

また、従来、充電することにより電気を蓄え、繰り返し使用することができる電池(二次電池、充電式電池、蓄電池)が知られており、これは、上述の空気電池のような、空気中の酸素を活物質として使用する電池においても開発が進められている。以下の説明においては、空気中の酸素を活物質として使用し、充電及び放電が繰り返し可能な電池を、上述した空気電池と区別するために「空気二次電池」と称する。   Conventionally, batteries (secondary batteries, rechargeable batteries, storage batteries) that can store electricity by charging and can be used repeatedly are known. Development of batteries using oxygen as an active material is also underway. In the following description, a battery that uses oxygen in the air as an active material and can be repeatedly charged and discharged is referred to as an “air secondary battery” in order to distinguish it from the above-described air battery.

空気二次電池として、例えば、特許文献1には、水に塩化アンモニウムが溶解した電解液を用いた空気二次電池が開示されている。   As an air secondary battery, for example, Patent Document 1 discloses an air secondary battery using an electrolytic solution in which ammonium chloride is dissolved in water.

国際特許公報 WO2012−12558International Patent Publication WO2012-12558

しかしながら、上記のように、空気二次電池に、水に塩化アンモニウムが溶解した電解液を用いると、充電時に塩素ガスが発生するという問題があった。   However, as described above, when an electrolytic solution in which ammonium chloride is dissolved in water is used for the air secondary battery, there is a problem that chlorine gas is generated during charging.

本発明はこのような事情に鑑みてなされたものであり、充電時の塩素ガスの発生が低減される空気二次電池を提供する。   The present invention has been made in view of such circumstances, and provides an air secondary battery in which generation of chlorine gas during charging is reduced.

すなわち本発明は、以下の発明を提供する。
酸素還元活性及び水の酸化活性を有する正極触媒を含む正極と、亜鉛単体及び亜鉛化合物からなる群より選ばれる一種以上を含む負極と、電解液とを備えた空気二次電池であり、前記電解液のpHが1〜13であり、且つ、前記電解液中の塩化物イオンの濃度が1.0質量%以下である空気二次電池。
That is, the present invention provides the following inventions.
An air secondary battery comprising: a positive electrode including a positive electrode catalyst having oxygen reduction activity and water oxidation activity; a negative electrode including at least one selected from the group consisting of zinc alone and a zinc compound; and an electrolyte. An air secondary battery in which the pH of the liquid is 1 to 13 and the concentration of chloride ions in the electrolytic solution is 1.0% by mass or less.

本発明によれば、充電時の塩素ガスの発生が低減される充放電可能な空気二次電池を提供できる。   According to the present invention, it is possible to provide a chargeable / dischargeable air secondary battery in which generation of chlorine gas during charging is reduced.

本実施形態の空気二次電池の一例を示す概略模式図である。It is a schematic diagram which shows an example of the air secondary battery of this embodiment.

以下、本実施形態について詳細に説明する。 Hereinafter, this embodiment will be described in detail.

<空気二次電池>
本実施形態の空気二次電池は、酸素還元活性及び水の酸化活性を有する正極触媒を含む正極と、亜鉛単体及び亜鉛化合物からなる群より選ばれる一種以上の負極活物質を含む負極と、pHが1〜13であり、且つ、塩化物イオンの濃度が1.0質量%以下の電解液とを備えている。
<Air secondary battery>
The air secondary battery of the present embodiment includes a positive electrode including a positive electrode catalyst having oxygen reduction activity and water oxidation activity, a negative electrode including one or more negative electrode active materials selected from the group consisting of zinc alone and a zinc compound, pH 1 to 13 and an electrolyte solution having a chloride ion concentration of 1.0% by mass or less.

図1は、本実施形態に係る空気二次電池の一実施形態を例示する概略断面図である。
ここに示す空気二次電池1は、前記正極触媒を含む正極触媒層11、正極集電体12、前記負極活物質を含む負極活物質層13、負極集電体14、電解液15及びこれらを収容する容器(図示略)を備える。
正極集電体12は正極触媒層11に接触して配置され、これらにより正極が構成されている。また、負極集電体14は負極活物質層13に接触して配置され、これらにより負極が構成されている。また、正極集電体12には正極端子(リード線)120が接続され、負極集電体14には負極端子(リード線)140が接続されている。
正極触媒層11及び負極活物質層13は、対向して配置され、これらの間にこれらに接触するように電解質15が配置されている。
なお、本実施形態に係る空気二次電池は、ここに示すものに限定されず、必要に応じて一部構成が変更されていてもよい。
FIG. 1 is a schematic cross-sectional view illustrating an embodiment of an air secondary battery according to this embodiment.
The air secondary battery 1 shown here includes a positive electrode catalyst layer 11 including the positive electrode catalyst, a positive electrode current collector 12, a negative electrode active material layer 13 including the negative electrode active material, a negative electrode current collector 14, an electrolyte solution 15, and the above. A container (not shown) is provided.
The positive electrode current collector 12 is disposed in contact with the positive electrode catalyst layer 11 to constitute a positive electrode. Further, the negative electrode current collector 14 is disposed in contact with the negative electrode active material layer 13, and these constitute a negative electrode. Further, a positive electrode terminal (lead wire) 120 is connected to the positive electrode current collector 12, and a negative electrode terminal (lead wire) 140 is connected to the negative electrode current collector 14.
The positive electrode catalyst layer 11 and the negative electrode active material layer 13 are disposed to face each other, and the electrolyte 15 is disposed so as to be in contact with them.
The air secondary battery according to the present embodiment is not limited to the one shown here, and a part of the configuration may be changed as necessary.

<正極触媒>
本実施形態の空気二次電池において、前記正極触媒とは、酸素還元活性及び水の酸化活性を有する触媒であり、コバルト原子及びコバルトイオンからなる群より選ばれる一種以上を含んでいることが好ましい。
<Cathode catalyst>
In the air secondary battery of the present embodiment, the positive electrode catalyst is a catalyst having oxygen reduction activity and water oxidation activity, and preferably contains at least one selected from the group consisting of cobalt atoms and cobalt ions. .

前記正極触媒として、好ましくは、金属ポルフィリン、金属フタロシアニンなどの単核金属錯体;1つの分子内に複数の金属原子又は金属イオンを有する多核金属錯体;金属クラスター錯体;ペロブスカイト型、スピネル型、オリビン型などの酸化物などの無機酸化物;白金、銀などの貴金属を用いることができる。   The positive electrode catalyst is preferably a mononuclear metal complex such as metal porphyrin or metal phthalocyanine; a polynuclear metal complex having a plurality of metal atoms or metal ions in one molecule; a metal cluster complex; a perovskite type, a spinel type, an olivine type. Inorganic oxides such as oxides; noble metals such as platinum and silver can be used.

より好ましくは、単核金属錯体、多核金属錯体及び無機酸化物であり、特に好ましくは、単核金属錯体及び多核金属錯体である。   A mononuclear metal complex, a polynuclear metal complex, and an inorganic oxide are more preferable, and a mononuclear metal complex and a polynuclear metal complex are particularly preferable.

単核金属錯体について、具体的な構造式を例示する。Mは、金属原子又は金属イオンを示す。構造式における水素原子は、置換されてもよい。

Figure 0006142399
Specific structural formulas are exemplified for the mononuclear metal complex. M represents a metal atom or a metal ion. The hydrogen atom in the structural formula may be substituted.
Figure 0006142399

多核金属錯体について、具体的な構造式を例示する。Mは、金属原子又は金属イオンを示す。複数あるMは、同一でも異なっていてもよい。構造式における水素原子は、置換されてもよい。なお、多核金属錯体の電荷は省略している。

Figure 0006142399
Specific structural formulas are exemplified for the polynuclear metal complex. M represents a metal atom or a metal ion. A plurality of M may be the same or different. The hydrogen atom in the structural formula may be substituted. Note that the charge of the polynuclear metal complex is omitted.
Figure 0006142399

(金属錯体の製造方法)
次に、本発明で好適に用いられる金属錯体の合成方法について説明する。
本発明の金属錯体は、例えば、本発明の化合物を有機化学的に合成した後、得られた化合物を、金属原子又は金属イオンを付与する反応剤(以下、「金属付与剤」と言う。)と混合し、反応させることにより得られる。反応させる金属付与剤の量は特に限定されず、目的とする金属錯体に応じて、金属付与剤の量を調節すればよいが、通常、配位子に対して過剰量の金属付与剤を反応させることが好ましい。
(Method for producing metal complex)
Next, a method for synthesizing a metal complex suitably used in the present invention will be described.
In the metal complex of the present invention, for example, after the compound of the present invention is organically synthesized, the obtained compound is a reagent that gives a metal atom or metal ion (hereinafter referred to as “metal-imparting agent”). It is obtained by mixing with and reacting. The amount of the metal imparting agent to be reacted is not particularly limited, and the amount of the metal imparting agent may be adjusted according to the target metal complex. Usually, an excess amount of the metal imparting agent is reacted with the ligand. It is preferable to make it.

前記金属付与剤としては、酢酸塩、フッ化物、塩化物、臭化物、ヨウ物、硫酸塩、炭酸塩、硝酸塩、水酸化物、過塩素酸塩、トリフルオロ酢酸塩、トリフルオロメタンスルホン酸、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、テトラフェニルホウ酸塩等が挙げられ、特に酢酸塩が好ましい。酢酸塩としては、例えば、酢酸コバルト(II)、酢酸鉄(II)、酢酸マンガン(II)、酢酸マンガン(III)、酢酸ニッケル(II)、酢酸銅(II)、酢酸亜鉛(II)が挙げられ、好ましくは、酢酸コバルトである。   Examples of the metal-imparting agent include acetate, fluoride, chloride, bromide, iodide, sulfate, carbonate, nitrate, hydroxide, perchlorate, trifluoroacetate, trifluoromethanesulfonic acid, tetrafluoro Examples thereof include borates, hexafluorophosphates, tetraphenyl borates and the like, and acetates are particularly preferable. Examples of the acetate include cobalt (II) acetate, iron (II) acetate, manganese (II) acetate, manganese (III) acetate, nickel (II) acetate, copper (II) acetate, and zinc (II) acetate. Preferably, it is cobalt acetate.

前記金属付与剤は、水和物であってもよく、例えば、酢酸コバルト(II)4水和物、酢酸マンガン(II)4水和物、酢酸マンガン(III)2水和物、酢酸ニッケル(II)4水和物、酢酸銅(II)1水和物、酢酸亜鉛(II)2水和物が挙げられる。   The metal imparting agent may be a hydrate such as cobalt acetate (II) tetrahydrate, manganese acetate (II) tetrahydrate, manganese acetate (III) dihydrate, nickel acetate ( II) Tetrahydrate, copper acetate (II) monohydrate, zinc acetate (II) dihydrate.

前記配位子化合物及び金属付与剤を混合する工程は、適当な溶媒の存在下で行う。反応で用いられる溶媒(反応溶媒)としては、水;酢酸、プロピオン酸等の有機酸類;アンモニア水、トリエチルアミン等のアミン類;メタノール、エタノール、n−プロパノ−ル、イソプロピルアルコール、2−メトキシエタノール、1−ブタノール、1,1−ジメチルエタノール等のアルコール類;エチレングリコール、ジエチルエーテル、1,2−ジメトキシエタン、メチルエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(以下、「THF」と言う。)、ベンゼン、トルエン、キシレン、メシチレン、デュレン、デカリン等の芳香族炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、クロロベンゼン、1,2−ジクロロベンゼン等のハロゲン系溶媒、N,N’−ジメチルホルムアミド(以下、「DMF」と言う。)、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、アセトン、アセトニトリル、ベンゾニトリル、トリエチルアミン、ピリジン等が挙げられる。なお、これらの反応溶媒は、一種単独で用いても二種以上を併用してもよい。また、前記溶媒としては、配位子となる芳香族化合物及び金属付与剤が溶解し得る溶媒が好ましい。   The step of mixing the ligand compound and the metal imparting agent is performed in the presence of a suitable solvent. As a solvent (reaction solvent) used in the reaction, water; organic acids such as acetic acid and propionic acid; amines such as aqueous ammonia and triethylamine; methanol, ethanol, n-propanol, isopropyl alcohol, 2-methoxyethanol, Alcohols such as 1-butanol and 1,1-dimethylethanol; ethylene glycol, diethyl ether, 1,2-dimethoxyethane, methyl ethyl ether, 1,4-dioxane, tetrahydrofuran (hereinafter referred to as “THF”), Aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, durene, decalin; halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, chlorobenzene, 1,2-dichlorobenzene, N, N′-dimethylformamide (hereinafter, "DMF"), N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, acetone, acetonitrile, benzonitrile, triethylamine, pyridine and the like can be mentioned. In addition, these reaction solvents may be used individually by 1 type, or may use 2 or more types together. Moreover, as said solvent, the solvent in which the aromatic compound used as a ligand and a metal provision agent can melt | dissolve is preferable.

前記配位子化合物及び金属付与剤の混合温度は、好ましくは−10℃以上250℃以下、より好ましくは0℃以上200℃以下であり、特に好ましくは0℃以上150℃以下である。   The mixing temperature of the ligand compound and metal imparting agent is preferably −10 ° C. or higher and 250 ° C. or lower, more preferably 0 ° C. or higher and 200 ° C. or lower, and particularly preferably 0 ° C. or higher and 150 ° C. or lower.

また、前記配位子化合物及び金属付与剤の混合時間は、好ましくは1分間以上1週間以下、より好ましくは5分間以上24時間以下、特に好ましくは1時間以上12時間以下である。なお、前記混合温度及び混合時間は、前記配位子化合物及び金属付与剤の種類を考慮して調節することが好ましい。   The mixing time of the ligand compound and the metal-imparting agent is preferably 1 minute or more and 1 week or less, more preferably 5 minutes or more and 24 hours or less, and particularly preferably 1 hour or more and 12 hours or less. In addition, it is preferable to adjust the said mixing temperature and mixing time in consideration of the kind of said ligand compound and a metal provision agent.

生成した前記金属錯体は、公知の再結晶法、再沈殿法、クロマトグラフィー法から適した方法を選択して適用することで、前記溶媒から取り出すことができ、この時、複数の前記方法を組み合わせてもよい。なお、前記溶媒の種類によっては、生成した前記多核金属錯体が析出することがあり、この場合には、析出した前記金属錯体を濾別等で分離した後、洗浄、乾燥等を行えばよい。   The generated metal complex can be removed from the solvent by selecting and applying a suitable method from known recrystallization methods, reprecipitation methods, and chromatography methods. At this time, a plurality of the methods are combined. May be. Depending on the type of the solvent, the produced polynuclear metal complex may precipitate. In this case, the precipitated metal complex may be separated by filtration, and then washed, dried, or the like.

正極触媒層11は、前記正極触媒以外に、導電材及び結着材を含むものが好ましい。前記導電材は、正極触媒層11の導電性を向上させることができるものであればよいが、カーボンが好ましい。   The positive electrode catalyst layer 11 preferably includes a conductive material and a binder in addition to the positive electrode catalyst. The conductive material may be any material that can improve the conductivity of the positive electrode catalyst layer 11, but carbon is preferable.

ここでカーボンとは、前記その他の成分として説明及び例示したカーボンと同じである。前記カーボンとしては、「ノーリット」(NORIT社製)、「ケッチェンブラック」(Lion社製)、「バルカン」(Cabot社製)、「ブラックパールズ」(Cabot社製)、「アセチレンブラック」(電気化学工業社製)(いずれも商品名)等のカーボンブラック;C60、C70等のフラーレン;カーボンナノチューブ、マルチウォールカーボンナノチューブ、ダブルウォールカーボンナノチューブ、シングルウォールカーボンナノチューブ、カーボンナノホーン等のカーボン繊維、グラフェン、グラフェンオキシドが例示でき、カーボンブラックが好ましい。
前記カーボンは、ポリピロール、ポリアニリン等の導電性高分子と組み合わせて用いてもよい。
Here, the carbon is the same as the carbon described and exemplified as the other components. Examples of the carbon include “NORIT” (manufactured by NORIT), “Ketjen Black” (manufactured by Lion), “Vulcan” (manufactured by Cabot), “Black Pearls” (manufactured by Cabot), “acetylene black” (electric) (Manufactured by Kagaku Kogyo Co., Ltd.) (all are trade names) carbon black; fullerenes such as C60 and C70; carbon fibers such as carbon nanotubes, multiwall carbon nanotubes, double wall carbon nanotubes, single wall carbon nanotubes, carbon nanohorns, graphene, Graphene oxide can be exemplified, and carbon black is preferable.
The carbon may be used in combination with a conductive polymer such as polypyrrole or polyaniline.

前記結着材は、前記正極触媒、導電材等を正極集電体12に接着するものであり、例えば、電解液15として使用する電解液に溶解しないものが挙げられ、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン・エチレン共重合体等のフッ素樹脂が好ましい。   Examples of the binder include those that adhere the positive electrode catalyst, the conductive material, and the like to the positive electrode current collector 12. Examples of the binder include those that do not dissolve in the electrolytic solution used as the electrolytic solution 15, and polytetrafluoroethylene (PTFE). ), Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene / A fluororesin such as an ethylene copolymer is preferred.

正極触媒層11の前記正極触媒、導電材及び結着材の含有量は、限定されない。前記正極触媒の触媒活性をより向上させることができるので、導電材の配合量は、前記正極触媒1質量部に対して0.5〜30質量部であることが好ましく、1〜20質量部であることがより好ましく、1〜15質量部であることが特に好ましく、結着材の配合量は、前記正極触媒1質量部に対して0.1〜10質量部であることが好ましく、0.5〜5質量部であることがより好ましく、0.5〜3質量部であることが特に好ましい。   Content of the said positive electrode catalyst of the positive electrode catalyst layer 11, a electrically conductive material, and a binder is not limited. Since the catalytic activity of the positive electrode catalyst can be further improved, the blending amount of the conductive material is preferably 0.5 to 30 parts by mass, and 1 to 20 parts by mass with respect to 1 part by mass of the positive electrode catalyst. More preferably, the amount is 1 to 15 parts by mass, and the amount of the binder is preferably 0.1 to 10 parts by mass with respect to 1 part by mass of the positive electrode catalyst. More preferably, it is 5-5 mass parts, and it is especially preferable that it is 0.5-3 mass parts.

正極触媒層11において、前記正極触媒、導電材及び結着材等の各構成成分は、それぞれ一種を単独で用いてもよいし、二種以上を併用してもよい。   In the positive electrode catalyst layer 11, each constituent component such as the positive electrode catalyst, the conductive material, and the binder may be used alone or in combination of two or more.

正極集電体12の材質は、導電性であればよい。好ましい正極集電体12としては、金属メッシュ、金属焼結体、カーボンペーパー、カーボンクロスが例示できる。
前記金属メッシュ及び金属焼結体における金属としては、ニッケル、クロム、鉄、チタン等の金属の単体;二種以上のこれら金属を含む合金が例示でき、ニッケル、ステンレス(鉄−ニッケル−クロム合金)が好ましい。
The material of the positive electrode current collector 12 may be conductive. Preferred examples of the positive electrode current collector 12 include a metal mesh, a metal sintered body, carbon paper, and carbon cloth.
Examples of the metal in the metal mesh and the metal sintered body include simple metals such as nickel, chromium, iron, and titanium; alloys including two or more of these metals can be exemplified, and nickel, stainless steel (iron-nickel-chromium alloy) Is preferred.

<負極>
本実施形態における負極として、亜鉛単体及び亜鉛化合物からなる群より選ばれる一種以上を負極活物質として用いることができる。亜鉛化合物としては、酸化亜鉛、水酸化亜鉛、亜鉛合金などを例示することができる。
<Negative electrode>
As the negative electrode in the present embodiment, one or more selected from the group consisting of zinc alone and a zinc compound can be used as the negative electrode active material. Examples of the zinc compound include zinc oxide, zinc hydroxide, and zinc alloy.

亜鉛合金としては、1ppm〜3000ppmのビスマス、好ましくは100ppm〜1000ppmのビスマスとの合金を用いてもよい。また、1ppm〜3000ppmのインジウム、好ましくは100〜1000ppmのインジウム、あるいは1ppm〜3000ppmのインジウムと1ppm〜3000ppmのビスマス、好ましくは100ppm〜1000ppmのインジウムと100ppm〜1000ppmのビスマスとの亜鉛合金を用いてもよい。これら亜鉛合金を用いることで、亜鉛の水素過電圧を低減することができ、電池内におけるガス発生を防止できる。   As the zinc alloy, an alloy with 1 ppm to 3000 ppm of bismuth, preferably 100 ppm to 1000 ppm of bismuth may be used. Alternatively, a zinc alloy of 1 ppm to 3000 ppm indium, preferably 100 to 1000 ppm indium, or 1 ppm to 3000 ppm indium and 1 ppm to 3000 ppm bismuth, preferably 100 ppm to 1000 ppm indium and 100 ppm to 1000 ppm bismuth may be used. Good. By using these zinc alloys, hydrogen overvoltage of zinc can be reduced and gas generation in the battery can be prevented.

前記負極は、板状、粒状、ゲル状のいずれの形状で用いてもよい。   The negative electrode may be used in any shape of a plate shape, a granular shape, and a gel shape.

負極集電体14は、正極集電体12と同様のものでよい。   The negative electrode current collector 14 may be the same as the positive electrode current collector 12.

<電解液>
電解液15は、電解質を溶媒に溶解した電解液として用いることが好ましい。溶媒としては、水が好ましい。電解液15のpHは、1〜13であることが好ましく、更に6〜13であることが更に好ましい。pHは、日本工業規格 JIS Z8802「pH測定方法」に定義されているようにガラス電極pH計を用いて測定することができる。
<Electrolyte>
The electrolytic solution 15 is preferably used as an electrolytic solution in which an electrolyte is dissolved in a solvent. As the solvent, water is preferable. The pH of the electrolytic solution 15 is preferably 1 to 13, and more preferably 6 to 13. The pH can be measured using a glass electrode pH meter as defined in Japanese Industrial Standard JIS Z8802 “pH measurement method”.

電解液中の塩化物イオンの濃度は、1.0質量%以下であることが好ましく、より好ましくは0.5質量%以下であり、更に好ましくは、0.1質量%以下である。   The concentration of chloride ions in the electrolytic solution is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.1% by mass or less.

電解液中の電解質として、1〜13の範囲に酸解離定数(pKa)を有する酸の塩を用いることが好ましい。1〜13の範囲に酸解離定数を有する酸の塩を用いることで、電解液の緩衝能が高まりpH安定性に優れることから、本発明の空気二次電池を安定して充放電させる効果がある。   As an electrolyte in the electrolytic solution, an acid salt having an acid dissociation constant (pKa) in the range of 1 to 13 is preferably used. By using an acid salt having an acid dissociation constant in the range of 1 to 13, the buffer capacity of the electrolytic solution is increased and the pH stability is excellent. Therefore, the effect of stably charging and discharging the air secondary battery of the present invention is achieved. is there.

上記電解質としては、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ギ酸ナトリウム、ギ酸カリウム、酢酸ナトリウム、酢酸カリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、ホウ酸ナトリウム、硫酸カリウム、硫酸ナトリウム、炭酸水素アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム、リン酸二水素アンモニウム、硫酸アンモニウム、硫酸水素アンモニウムが例示される。より好ましくは、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ギ酸ナトリウム、ギ酸カリウム、酢酸ナトリウム、酢酸カリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウムなどがあげられ、好ましくは、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ギ酸ナトリウム、ギ酸カリウム、酢酸ナトリウム、酢酸カリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸三ナトリウム、リン酸水素二ナトリウムである。なお、前記電解質は、無水物であっても水和物であってもよい。   Examples of the electrolyte include potassium carbonate, potassium bicarbonate, sodium carbonate, sodium bicarbonate, sodium formate, potassium formate, sodium acetate, potassium acetate, tripotassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, phosphoric acid Trisodium, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium borate, potassium sulfate, sodium sulfate, ammonium bicarbonate, ammonium formate, ammonium acetate, ammonium phosphate, ammonium dihydrogen phosphate, ammonium sulfate, ammonium hydrogen sulfate Is exemplified. More preferably, potassium carbonate, potassium bicarbonate, sodium carbonate, sodium bicarbonate, sodium formate, potassium formate, sodium acetate, potassium acetate, tripotassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, phosphate triphosphate. Examples thereof include sodium, disodium hydrogen phosphate, and sodium dihydrogen phosphate. Preferably, potassium carbonate, potassium bicarbonate, sodium carbonate, sodium bicarbonate, sodium formate, potassium formate, sodium acetate, potassium acetate, triphosphate Potassium, dipotassium hydrogen phosphate, trisodium phosphate, and disodium hydrogen phosphate. The electrolyte may be an anhydride or a hydrate.

また、前記例示した電解質を混合して用いてもよく、更に、上記例示した電解質の他に、水酸化カリウムや水酸化ナトリウムと併用してもよい。   Further, the electrolytes exemplified above may be mixed and used, and in addition to the electrolytes exemplified above, potassium hydroxide or sodium hydroxide may be used in combination.

電解液中の電解質の濃度は、空気二次電池の使用環境により任意に設定することができる。電解質は溶け残っていても構わないが、各電解質の飽和濃度以下であることが好ましい。濃度の下限としては、好ましくは、1質量%以上、より好ましくは、5質量%以上、特に好ましくは10質量%以上である。   The concentration of the electrolyte in the electrolytic solution can be arbitrarily set depending on the use environment of the air secondary battery. The electrolyte may remain undissolved, but it is preferable that the concentration is not more than the saturation concentration of each electrolyte. The lower limit of the concentration is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more.

電解液へ、デンドライトの発生を抑制することを目的としてクエン酸、コハク酸、酒石酸などを、添加剤として加えてもよい。   Citric acid, succinic acid, tartaric acid or the like may be added as an additive to the electrolytic solution for the purpose of suppressing the generation of dendrites.

また、放電時における電解液への亜鉛イオンの溶解を抑制することを目的として、電解液へ酸化亜鉛、水酸化亜鉛、硫酸亜鉛、ギ酸亜鉛、酢酸亜鉛などを、加えてもよい。   Further, zinc oxide, zinc hydroxide, zinc sulfate, zinc formate, zinc acetate and the like may be added to the electrolytic solution for the purpose of suppressing dissolution of zinc ions in the electrolytic solution during discharge.

また、電解液をポリアクリル酸などの吸水性ポリマーへ吸収させた、ゲル状電解質として用いてもよい。この場合、吸水性ポリマーへ吸収させる前の電解液のpHを、本発明における空気二次電池の電解液のpHとして取り扱う。また、吸水性ポリマーへ吸収させる前の電解液中の塩化物イオンの濃度を、本発明における電解液中の塩化物イオンの濃度として取り扱う。   Alternatively, the electrolyte may be used as a gel electrolyte in which a water-absorbing polymer such as polyacrylic acid is absorbed. In this case, the pH of the electrolyte before being absorbed into the water-absorbing polymer is handled as the pH of the electrolyte of the air secondary battery in the present invention. Further, the concentration of chloride ions in the electrolytic solution before absorption into the water-absorbing polymer is treated as the concentration of chloride ions in the electrolytic solution in the present invention.

<その他の構成>
容器は、正極触媒層11、正極集電体12、負極活物質層13、負極集電体14及び電解液15を収容するものである。容器の材質としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS樹脂等の樹脂や、前記正極触媒層11等の収容物とは反応しない金属が例示できる。
<Other configurations>
The container accommodates the positive electrode catalyst layer 11, the positive electrode current collector 12, the negative electrode active material layer 13, the negative electrode current collector 14, and the electrolytic solution 15. Examples of the material of the container include resins such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, and ABS resin, and metals that do not react with the contents such as the positive electrode catalyst layer 11.

空気二次電池1においては、別途、酸素拡散膜を設けてもよい。酸素拡散膜は、正極集電体12の外側(正極触媒層11の反対側)に設けることが好ましい。こうすることで、酸素拡散膜を介して正極触媒層11に酸素(空気)が優先的に供給される。
前記酸素拡散膜は、酸素(空気)を好適に透過できる膜であればよく、樹脂製の不織布又は多孔質膜が例示でき、前記樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂が例示できる。
In the air secondary battery 1, an oxygen diffusion film may be separately provided. The oxygen diffusion film is preferably provided outside the positive electrode current collector 12 (on the opposite side of the positive electrode catalyst layer 11). By doing so, oxygen (air) is preferentially supplied to the positive electrode catalyst layer 11 through the oxygen diffusion film.
The oxygen diffusion film may be a film that can suitably transmit oxygen (air), and examples thereof include a resin nonwoven fabric or a porous film. Examples of the resin include polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene, A fluororesin such as polyvinylidene fluoride can be exemplified.

空気二次電池1においては、正極と負極との接触による短絡を防止するために、これらの間にセパレータを設けてもよい。
セパレータは、電解液15の移動が可能な絶縁材料からなるものであればよく、樹脂製の不織布又は多孔質膜が例示でき、前記樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂が例示できる。また、電解液15を水溶液として用いる場合には、前記樹脂として、親水性化されたものを用いることが好ましい。
In the air secondary battery 1, a separator may be provided between them in order to prevent a short circuit due to contact between the positive electrode and the negative electrode.
The separator may be made of an insulating material that can move the electrolyte solution 15, and examples thereof include a resin nonwoven fabric or a porous membrane, and examples of the resin include polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene, A fluororesin such as polyvinylidene fluoride can be exemplified. When the electrolytic solution 15 is used as an aqueous solution, it is preferable to use a hydrophilic resin as the resin.

本発明の二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、扁平型、角型などが挙げられる。   The shape of the secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a rectangular type.

本実施形態の空気二次電池は、例えば、電気自動車用電源や家庭用電源など大型なものなどに有用であり、また、携帯電話又は携帯用パソコン等のモバイル機器用小型電源としても有用である。   The air secondary battery according to the present embodiment is useful for, for example, a large power source such as an electric vehicle power source or a household power source, and is also useful as a small power source for mobile devices such as a mobile phone or a portable personal computer. .

以下、具体的実施例により、本発明についてさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

[合成例1]
<金属錯体MC1の合成>
以下の反応式(1)、(2)に従い、化合物1、化合物2及び化合物3を経由して化合物4を合成した。そして、以下の反応式(3)に従い、化合物4と金属付与剤とを用いて、金属錯体MC1を合成した。
[Synthesis Example 1]
<Synthesis of Metal Complex MC1>
Compound 4 was synthesized via Compound 1, Compound 2, and Compound 3 according to the following reaction formulas (1) and (2). And according to following Reaction formula (3), the metal complex MC1 was synthesize | combined using the compound 4 and the metal provision agent.

(化合物3の合成) (Synthesis of Compound 3)

Figure 0006142399
…(1)
Figure 0006142399
... (1)

まず、原料となる化合物1を以下の方法で合成した。
1,4−ジブロモ−2,3−ジアミノベンゼンは、文献(Journal of Organic Chemistry,2006,71,3350)記載の方法に従って合成した。次いで、フラスコ内において、0.600g(2.256mmol)の1,4−ジブロモ−2,3−ジアミノベンゼンを含んだ10mLの酢酸溶液を50℃に加熱後、該フラスコ内の気体を1時間かけてアルゴンで置換した。得られた溶液へ0.234g(0.752 mmol)のヘキサケトシクロヘキサンを加えた後、110℃で10時間加熱した。反応液を氷水へ注いだ後、水酸化ナトリウム水で該反応液をアルカリ性とした。その結果、薄緑色の生成物が沈殿物として得られ、沈殿物を濾取後、水とジクロロメタンで順番に洗浄することで、0.499gの化合物1を得た。
なお、次の工程に必要な量を確保するために、前記操作を数回繰り返して行った。得られた化合物1の同定データを以下に示す。
First, compound 1 as a raw material was synthesized by the following method.
1,4-Dibromo-2,3-diaminobenzene was synthesized according to the method described in the literature (Journal of Organic Chemistry, 2006, 71, 3350). Next, 10 mL of acetic acid solution containing 0.600 g (2.256 mmol) of 1,4-dibromo-2,3-diaminobenzene was heated to 50 ° C. in the flask, and then the gas in the flask was allowed to flow for 1 hour. And replaced with argon. 0.234 g (0.752 mmol) of hexaketocyclohexane was added to the resulting solution, and then heated at 110 ° C. for 10 hours. After pouring the reaction solution into ice water, the reaction solution was made alkaline with aqueous sodium hydroxide. As a result, a light green product was obtained as a precipitate, and the precipitate was collected by filtration and washed in turn with water and dichloromethane to obtain 0.499 g of Compound 1.
In order to secure an amount necessary for the next step, the above operation was repeated several times. Identification data for the obtained compound 1 are shown below.

MS(FD,8kV)実測値(m/z):857.5(M);429.7(M2+)、理論値:857.57(M
MS(Maldi−Tof,TCNQ):m/z858(M
MS (FD, 8 kV) Found (m / z): 857.5 (M + ); 429.7 (M 2+ ), Theoretical: 857.57 (M + )
MS (Maldi-Tof, TCNQ): m / z 858 (M + )

次に、上記で得られた化合物1を用いて、化合物2を合成した。
フラスコ内において、1.835g(2.140mmol)の化合物1を含んだ100mLのTHFと40mLのトルエンとの混合溶液へ、4.516g(21.4mmol)の1−N−Boc−ピロール−2−ボロン酸、0.048gのAliquat 336(商品名)及び14.88g(0.107mol)の炭酸カリウムを加えた後、該フラスコ内の気体を1時間かけてアルゴンで置換した。
反応液へ0.890g(0.771mmol)のテトラキス(トリフェニルホスフィン)パラジウム(0)を加えた後、95℃で72時間加熱した後、12mLの脱気した水を加え、更に2日間加熱を続けることで粗生成物を得た。この粗生成物を、シリカゲルカラム(展開溶媒:酢酸エチル/ジクロロメタン/ヘキサン)により精製し、2.745gの化合物2を得た。得られた化合物2の同定データを以下に示す。
Next, Compound 2 was synthesized using Compound 1 obtained above.
In a flask, 4.516 g (21.4 mmol) of 1-N-Boc-pyrrole-2-pyrrole was added to a mixed solution of 100 mL of THF containing 1.835 g (2.140 mmol) of Compound 1 and 40 mL of toluene. After boronic acid, 0.048 g of Aliquat 336 (trade name) and 14.88 g (0.107 mol) of potassium carbonate were added, the gas in the flask was replaced with argon over 1 hour.
After adding 0.890 g (0.771 mmol) of tetrakis (triphenylphosphine) palladium (0) to the reaction solution, the mixture was heated at 95 ° C. for 72 hours, then 12 mL of degassed water was added, and the mixture was further heated for 2 days. The crude product was obtained by continuing. This crude product was purified by a silica gel column (developing solvent: ethyl acetate / dichloromethane / hexane) to obtain 2.745 g of compound 2. Identification data for the obtained compound 2 are shown below.

MS(FD,8kV)実測値(m/z):1374.5、理論値:1374.59   MS (FD, 8 kV) measured value (m / z): 1374.5, theoretical value: 1374.59

その後、上記で得られた化合物2を加熱してピロール基を脱保護することで、化合物3を得た。
0.340gの化合物2を20Paの減圧下において180℃で30分間加熱することにより、化合物3を得た。得られた化合物3の同定データを以下に示す。
Then, the compound 2 obtained above was heated to deprotect the pyrrole group, thereby obtaining the compound 3.
Compound 3 was obtained by heating 0.340 g of Compound 2 at 180 ° C. for 30 minutes under a reduced pressure of 20 Pa. Identification data for the obtained compound 3 are shown below.

MS(FD,8kV)実測値(m/z):386.6(M2+);774,0(M)、理論値:387.14(M2+);774.27(M
MS(Maldi−Tof,TCNQ)実測値(m/z):775(M);1549(2M
MS (FD, 8 kV) Found (m / z): 386.6 (M 2+ ); 774, 0 (M + ), Theoretical: 387.14 (M 2+ ); 774.27 (M + )
MS (Maldi-Tof, TCNQ) measured value (m / z): 775 (M + ); 1549 (2M + )

(化合物4の合成) (Synthesis of Compound 4)

Figure 0006142399
…(2)
Figure 0006142399
... (2)

フラスコ内において、0.207g(0.267mmol)の化合物3を、1mLのトリフルオロメタンスルホン酸、1.5mLのp−n−オクチルベンズアルデヒド及び、3mLのジクロロメタンの混合溶液へ加えた後、該フラスコ内の気体をアルゴンで置換した。得られた溶液をマイクロウェーブ反応装置に入れ、50Wで2時間反応させた。反応液へ水酸化アンモニウムを加え、水で有機層を洗浄し、得られた有機層をエバポレーターで乾固させ、更に、水とヘキサンで順番に洗浄することにより、0.349g(0.254 mmol)の化合物4を95%の収率で得た。得られた化合物4の同定データを以下に示す。   In the flask, 0.207 g (0.267 mmol) of Compound 3 was added to a mixed solution of 1 mL of trifluoromethanesulfonic acid, 1.5 mL of pn-octylbenzaldehyde and 3 mL of dichloromethane, The gas was replaced with argon. The obtained solution was put into a microwave reactor and reacted at 50 W for 2 hours. Ammonium hydroxide was added to the reaction solution, the organic layer was washed with water, the obtained organic layer was dried with an evaporator, and further washed with water and hexane in order to obtain 0.349 g (0.254 mmol). ) Was obtained in a yield of 95%. Identification data for the obtained compound 4 are shown below.

MS(FD,8kV)実測値(m/z):1375.5(M)、理論値:1375.74(M
MS(Maldi−Tof,TCNQ)実測値(m/z):1373(M);2746(2M
MS (FD, 8 kV) Measured value (m / z): 1335.5 (M + ), Theoretical value: 1375.74 (M + )
MS (Maldi-Tof, TCNQ) measured value (m / z): 1373 (M + ); 2746 (2M + )

(金属錯体MC1の合成)
以下の反応式(3)に従って、金属錯体MC1を合成した。
(Synthesis of metal complex MC1)
Metal complex MC1 was synthesized according to the following reaction formula (3).

Figure 0006142399
…(3)
Figure 0006142399
... (3)

0.125g(0.091mmol)の化合物4と0.079g(0.318mmol)の酢酸コバルト4水和物とをマイクロウェーブ用試験管に入れ、そこに、5mLのDMFを加え、マイクロウェーブ装置を用いて200℃、出力200Wにて2時間反応させた。反応液を25mLの冷水に注ぎ、生成した沈殿を濾取し、水及びヘキサンで順番に洗浄して、多核金属錯体MC1を得た。得られた金属錯体MC1の同定データを以下に示す。   Place 0.125 g (0.091 mmol) of compound 4 and 0.079 g (0.318 mmol) of cobalt acetate tetrahydrate in a microwave test tube, add 5 mL of DMF to it, and The mixture was reacted at 200 ° C. and an output of 200 W for 2 hours. The reaction solution was poured into 25 mL of cold water, and the resulting precipitate was collected by filtration and washed in turn with water and hexane to obtain a polynuclear metal complex MC1. Identification data of the obtained metal complex MC1 are shown below.

MS(Maldi−Tof,TCNQ)実測値(m/z):1543(M);1569(M+CN);1595(M+2CN);1621(M+3CN)、理論値:1543.5(MMS (Maldi-Tof, TCNQ) Found (m / z): 1543 (M + ); 1569 (M + + CN ); 1595 (M + + 2CN ); 1621 (M + + 3CN ), Theoretical value: 1543 .5 (M + )

[合成例2]
<金属錯体MC2の合成>
以下の反応式(4)〜(6)に従い、化合物5及び化合物6を経由して化合物7を合成した。そして、以下の反応式(7)に従い、化合物7と金属付与剤とを用いて、金属錯体MC2を合成した。
[Synthesis Example 2]
<Synthesis of Metal Complex MC2>
Compound 7 was synthesized via Compound 5 and Compound 6 according to the following reaction formulas (4) to (6). And according to the following Reaction formula (7), the metal complex MC2 was synthesize | combined using the compound 7 and the metal provision agent.

(化合物(A)の合成) (Synthesis of Compound (A))

Figure 0006142399
…(4)
(式中、Bocはtert−ブトキシカルボニル基であり、dbaはジベンジリデンアセトンである。)
Figure 0006142399
... (4)
(In the formula, Boc is a tert-butoxycarbonyl group, and dba is dibenzylideneacetone.)

反応容器内をアルゴンガス雰囲気とした後、3.945gの2,9−(3’−ブロモ−5’−tert−ブチル−2’−メトキシフェニル)−1,10−フェナントロリン(Tetrahedron.,1999,55,8377.の記載に従って合成した。)、3.165gの1−N−Boc−ピロール−2−ボロン酸、0.138gのトリス(ベンジリデンアセトン)ジパラジウム、0.247gの2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル及び、5.527gのリン酸カリウムを、200mLのジオキサンと20mLの水との混合溶媒に加えて溶解させ、60℃にて6時間攪拌した。反応終了後、放冷して蒸留水及びクロロホルムを加えて、有機層を抽出した。得られた有機層を濃縮して、黒い残留物を得た。これを、シリカゲルカラムを用いて精製し、化合物5を得た。得られた化合物5の同定データを以下に示す。   After making the inside of the reaction vessel an argon gas atmosphere, 3.945 g of 2,9- (3′-bromo-5′-tert-butyl-2′-methoxyphenyl) -1,10-phenanthroline (Tetrahedron., 1999, 55, 8377.) 3.165 g of 1-N-Boc-pyrrole-2-boronic acid, 0.138 g of tris (benzylideneacetone) dipalladium, 0.247 g of 2-dicyclohexylphosphino -2 ′, 6′-dimethoxybiphenyl and 5.527 g of potassium phosphate were dissolved in a mixed solvent of 200 mL of dioxane and 20 mL of water, and the mixture was stirred at 60 ° C. for 6 hours. After completion of the reaction, the mixture was allowed to cool, distilled water and chloroform were added, and the organic layer was extracted. The resulting organic layer was concentrated to give a black residue. This was purified using a silica gel column to obtain Compound 5. Identification data for the obtained compound 5 are shown below.

H−NMR(300MHz,CDCl):δ(ppm)=1.34(s,18H),1.37(s,18H),3.30(s,6H),6.21(m,2H),6.27(m,2H),7.37(m,2H),7.41(s,2H),7.82(s,2H),8.00(s,2H),8.19(d,J=8.6Hz,2H),8.27(d,J=8.6Hz,2H). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.34 (s, 18H), 1.37 (s, 18H), 3.30 (s, 6H), 6.21 (m, 2H) ), 6.27 (m, 2H), 7.37 (m, 2H), 7.41 (s, 2H), 7.82 (s, 2H), 8.00 (s, 2H), 8.19 (D, J = 8.6 Hz, 2H), 8.27 (d, J = 8.6 Hz, 2H).

(化合物6の合成) (Synthesis of Compound 6)

Figure 0006142399
…(5)
(式中、Bocはtert−ブトキシカルボニル基である。)
Figure 0006142399
... (5)
(In the formula, Boc is a tert-butoxycarbonyl group.)

反応容器内を窒素ガス雰囲気とした後、0.904gの化合物5を10mLの無水ジクロロメタンに溶解させた。得られたジクロロメタン溶液を−78℃に冷却しながら、ここに8.8mLの三臭化ホウ素(1.0Mジクロロメタン溶液)をゆっくり滴下した。滴下後、10分間そのまま攪拌し、室温になるまでさらに攪拌しながら放置した。3時間後、反応液を0℃まで冷却し、飽和炭酸水素ナトリウム水溶液を加えた後、クロロホルムを加えて抽出し、有機層を濃縮した。得られた褐色の残留物を、シリカゲルカラムで精製し、化合物6を得た。得られた化合物6の同定データを以下に示す。   After making the inside of the reaction vessel a nitrogen gas atmosphere, 0.904 g of compound 5 was dissolved in 10 mL of anhydrous dichloromethane. While the obtained dichloromethane solution was cooled to −78 ° C., 8.8 mL of boron tribromide (1.0 M dichloromethane solution) was slowly added dropwise thereto. After dropping, the mixture was stirred as it was for 10 minutes, and was left with further stirring until it reached room temperature. After 3 hours, the reaction solution was cooled to 0 ° C., a saturated aqueous sodium hydrogen carbonate solution was added, and extracted by adding chloroform, and the organic layer was concentrated. The resulting brown residue was purified with a silica gel column to give compound 6. Identification data for the obtained compound 6 are shown below.

H−NMR(300MHz,CDCl):δ(ppm)=1.40(s,18H),6.25(m,2H),6.44(m,2H),6.74(m,2H),7.84(s,2H),7.89(s,2H),7.92(s,2H),8.35(d,J=8.4Hz,2H),8.46(d,J=8.4Hz,2H),10.61(s,2H),15.88(s,2H). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.40 (s, 18H), 6.25 (m, 2H), 6.44 (m, 2H), 6.74 (m, 2H) ), 7.84 (s, 2H), 7.89 (s, 2H), 7.92 (s, 2H), 8.35 (d, J = 8.4 Hz, 2H), 8.46 (d, J = 8.4 Hz, 2H), 10.61 (s, 2H), 15.88 (s, 2H).

(配位子化合物7の合成) (Synthesis of Ligand Compound 7)

Figure 0006142399
…(6)
Figure 0006142399
(6)

反応容器内において、0.061gの化合物6と0.012gのベンズアルデヒドを5mLのプロピオン酸に溶解させ、140℃で7時間加熱した。その後、得られた反応液からプロピオン酸を留去して、得られた黒い残渣をシリカゲルカラムで精製して、配位子化合物7を得た。得られた配位子化合物7の同定データを以下に示す。   In a reaction vessel, 0.061 g of compound 6 and 0.012 g of benzaldehyde were dissolved in 5 mL of propionic acid and heated at 140 ° C. for 7 hours. Thereafter, propionic acid was distilled off from the obtained reaction solution, and the resulting black residue was purified with a silica gel column to obtain a ligand compound 7. Identification data for the obtained ligand compound 7 are shown below.

H−NMR(300MHz,CDCl):δ(ppm)=1.49(s,18H),6.69(d,J=4.8Hz,2H),7.01(d,J=4.8Hz,2H),7.57(m,5H),7.90(s,4H),8.02(s,2H),8.31(d,J=8.1Hz,2H),8.47(d,J=8.1Hz,2H). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.49 (s, 18H), 6.69 (d, J = 4.8 Hz, 2H), 7.01 (d, J = 4. 8 Hz, 2H), 7.57 (m, 5H), 7.90 (s, 4H), 8.02 (s, 2H), 8.31 (d, J = 8.1 Hz, 2H), 8.47 (D, J = 8.1 Hz, 2H).

(金属錯体MC2の合成) (Synthesis of metal complex MC2)

Figure 0006142399
…(7)
(式中、Acはアセチル基であり、Meはメチル基である。)
Figure 0006142399
... (7)
(In the formula, Ac is an acetyl group, and Me is a methyl group.)

反応容器内を窒素ガス雰囲気とした後、0.045gの化合物7と、0.040gの酢酸コバルト4水和物を含んだ3mLのメタノール及び3mLのクロロホルムの混合溶液とを混合し、80℃に加熱しながら5時間攪拌した。得られた溶液を濃縮乾固させて、青色固体を得た。これを水で洗浄することにより、金属錯体MC2を得た。なお、前記反応式中の金属錯体MC2において、「(OAc)」は、1当量の酢酸イオンが対イオンとして存在することを示す。得られた金属錯体MC2の同定データを以下に示す。
ESI−MS[M+・]:m/z=866.0
After making the inside of the reaction vessel into a nitrogen gas atmosphere, 0.045 g of compound 7 and 3 mL of a mixed solution of 0.040 g of cobalt acetate tetrahydrate and 3 mL of chloroform were mixed, and the mixture was heated to 80 ° C. The mixture was stirred for 5 hours while heating. The resulting solution was concentrated to dryness to give a blue solid. This was washed with water to obtain a metal complex MC2. In the metal complex MC2 in the above reaction formula, “(OAc)” indicates that 1 equivalent of acetate ion is present as a counter ion. Identification data for the obtained metal complex MC2 are shown below.
ESI-MS [M + ·]: m / z = 866.0

<塩素の発生の有無>
[参考例1]
上記で得られた金属錯体MC1を正極触媒にもちいて、回転ディスク電極により、水の酸化反応を行った。具体的には、以下の通りである。
電極には、ディスク部がグラッシーカーボン(直径6.0mm)であるディスク電極を用いた。
金属錯体MC1が1mg入ったサンプル瓶へ、0.5質量%のナフィオン(登録商標)溶液(5質量%ナフィオン(登録商標)溶液をエタノールにて10倍希釈した溶液)を1mL加えた後、超音波を照射して15分間分散させた。得られた懸濁液7.2μLを前記電極のディスク部に滴下して乾燥させた後、80℃に加熱した乾燥機にて3時間乾燥させることで、測定用電極を得た。電解質に炭酸カリウム(Wako純薬社製、製品コード162−03495)を用いて、20質量%の炭酸カリウム水溶液を調製した。溶液のpHは、11.4であった。銀/塩化銀電極に対して2Vの電位を印加して10分間、水の酸化反応を行った。反応は、以下の反応装置及び反応条件で行った。
<Chlorine generation>
[Reference Example 1]
The metal complex MC1 obtained above was used as a positive electrode catalyst, and a water oxidation reaction was performed with a rotating disk electrode. Specifically, it is as follows.
As the electrode, a disk electrode having a disk portion made of glassy carbon (diameter 6.0 mm) was used.
After adding 1 mL of a 0.5% by mass Nafion (registered trademark) solution (a solution obtained by diluting a 5% by mass Nafion (registered trademark) solution 10 times with ethanol) to a sample bottle containing 1 mg of the metal complex MC1, The sound wave was irradiated and dispersed for 15 minutes. After 7.2 μL of the obtained suspension was dropped on the disk portion of the electrode and dried, the electrode for measurement was obtained by drying in a dryer heated to 80 ° C. for 3 hours. A 20 mass% potassium carbonate aqueous solution was prepared using potassium carbonate (product code 162-03495, manufactured by Wako Pure Chemical Industries, Ltd.) as an electrolyte. The pH of the solution was 11.4. A voltage of 2 V was applied to the silver / silver chloride electrode, and water was oxidized for 10 minutes. The reaction was carried out using the following reaction apparatus and reaction conditions.

(反応装置)
日厚計測社製RRDE−1回転リングディスク電極装置
ALSモデル701Cデュアル電気化学アナライザー
(反応条件)
溶液温度:25℃
参照電極:銀/塩化銀電極(飽和塩化カリウム)
カウンター電極:白金ワイヤー
掃引速度:10mV/秒
電極回転速度:900rpm
(Reactor)
RRDE-1 rotating ring disk electrode device manufactured by Nisatsu Keiki Co., Ltd. ALS model 701C dual electrochemical analyzer (reaction conditions)
Solution temperature: 25 ° C
Reference electrode: Silver / silver chloride electrode (saturated potassium chloride)
Counter electrode: platinum wire Sweep speed: 10 mV / sec Electrode rotation speed: 900 rpm

残留塩素試験紙(日産化学工業社製、アクアチェックLC)を電解液に60秒間浸漬した。発色は見られず、塩素の発生はなかった。   Residual chlorine test paper (manufactured by Nissan Chemical Industries, Ltd., Aqua Check LC) was immersed in the electrolytic solution for 60 seconds. No color was seen and no chlorine was generated.

[参考例2]
参考例1において、金属錯体MC1を金属錯体MC2に変えて正極触媒として用いた。金属錯体MC2が1mg入ったサンプル瓶へ、0.5質量%のナフィオン(登録商標)溶液(5質量%ナフィオン(登録商標)溶液をエタノールにて10倍希釈した溶液)を1mL加えた後、超音波を照射して15分間分散させた。得られた懸濁液7.2μLを前記電極のディスク部に滴下して乾燥させた後、80℃に加熱した乾燥機にて3時間乾燥させることで、測定用電極を得た。電解質にリン酸三カリウム一水和物(Fluka社製、製品コード60492)を用いて、20質量%のリン酸カリウム水溶液を調製した。溶液のpHは、13.0であった。銀/塩化銀電極に対して2Vの電位を印加して10分間、水の酸化反応を行った。反応は、参考例1と同じ反応装置及び反応条件で行った。残留塩素試験紙(日産化学工業社製、アクアチェックLC)を電解液に60秒間浸漬した。発色は見られず、塩素の発生はなかった。
[Reference Example 2]
In Reference Example 1, the metal complex MC1 was changed to the metal complex MC2 and used as the positive electrode catalyst. After adding 1 mL of a 0.5% by mass Nafion (registered trademark) solution (a solution obtained by diluting a 5% by mass Nafion (registered trademark) solution 10 times with ethanol) to a sample bottle containing 1 mg of the metal complex MC2, The sound wave was irradiated and dispersed for 15 minutes. After 7.2 μL of the obtained suspension was dropped on the disk portion of the electrode and dried, the electrode for measurement was obtained by drying in a dryer heated to 80 ° C. for 3 hours. A 20 mass% potassium phosphate aqueous solution was prepared using tripotassium phosphate monohydrate (product code 60492, manufactured by Fluka) as an electrolyte. The pH of the solution was 13.0. A voltage of 2 V was applied to the silver / silver chloride electrode, and water was oxidized for 10 minutes. The reaction was carried out in the same reaction apparatus and reaction conditions as in Reference Example 1. Residual chlorine test paper (manufactured by Nissan Chemical Industries, Ltd., Aqua Check LC) was immersed in the electrolytic solution for 60 seconds. No color was seen and no chlorine was generated.

[参考例3]
電解質として塩化アンモニウムを用いて、20質量%の塩化アンモニウム水溶液を調製した。電解液のpHは、4.7であった。参考例1と同様にして水の酸化反応を行った。残留塩素試験紙(日産化学工業社製、アクアチェックLC)によって電解液の塩素濃度を測定すると0.3ppmの塩素が発生していた。
[Reference Example 3]
A 20% by mass ammonium chloride aqueous solution was prepared using ammonium chloride as an electrolyte. The pH of the electrolytic solution was 4.7. A water oxidation reaction was carried out in the same manner as in Reference Example 1. When the chlorine concentration of the electrolytic solution was measured with a residual chlorine test paper (manufactured by Nissan Chemical Industries, Ltd., Aqua Check LC), 0.3 ppm of chlorine was generated.

[空気二次電池での充放電試験]
[実施例1]
正極触媒としての金属錯体MC1と、導電材としてのアセチレンブラックと、結着材としてのPTFE粉末とを、金属錯体MC1:アセチレンブラック:PTFE=1:10:1(質量比)で混合し、そこにエタノールをピペットで5滴加え、これらをメノー乳鉢で混合した後、薄膜化し、正極触媒層1を得る。正極触媒層1を、撥水性PTFEシートと、ステンレスメッシュとで両側から挟み、プレス機で圧着することで、空気二次電池用正極1を得る。
[Charge / discharge test with air secondary battery]
[Example 1]
Metal complex MC1 as a positive electrode catalyst, acetylene black as a conductive material, and PTFE powder as a binder are mixed in a metal complex MC1: acetylene black: PTFE = 1: 10: 1 (mass ratio), After adding 5 drops of ethanol to the sample with a pipette, these were mixed in a menor mortar, and then thinned to obtain the positive electrode catalyst layer 1. The positive electrode catalyst layer 1 is sandwiched between a water-repellent PTFE sheet and a stainless mesh from both sides, and is subjected to pressure bonding with a press machine, whereby the positive electrode 1 for an air secondary battery is obtained.

負極となる亜鉛板(アルドリッチ社製、)を多孔質金属体(セルメット#8、富山住友電工株式会社製)で挟み、プレス機でプレスする。前記作製した空気二次電池用正極1と共に空気二次電池を組み立て、電解液として20質量%炭酸カリウム水溶液(pH=11.4)を満たす。充放電試験機(東洋システム社製、製品名:TOSCAT−3000U)に接続し、充放電サイクル試験を行う。
充放電サイクル試験は、以下のステップ1〜4を10回繰り返して行う。
ステップ1:定電流10mAにて20分間充電
ステップ2:5分間休止
ステップ3:定電流10mAにて放電。電圧が0.5Vとなった時点でステップ4へ移る。
ステップ4:5分間休止
A zinc plate (manufactured by Aldrich) serving as a negative electrode is sandwiched between porous metal bodies (Celmet # 8, manufactured by Toyama Sumitomo Electric Co., Ltd.) and pressed with a press. An air secondary battery is assembled together with the produced positive electrode 1 for an air secondary battery, and a 20 mass% potassium carbonate aqueous solution (pH = 11.4) is filled as an electrolytic solution. Connect to a charge / discharge tester (manufactured by Toyo System Co., Ltd., product name: TOSCAT-3000U) and perform a charge / discharge cycle test.
In the charge / discharge cycle test, the following steps 1 to 4 are repeated 10 times.
Step 1: Charge for 20 minutes at a constant current of 10 mA Step 2: Stop for 5 minutes Step 3: Discharge at a constant current of 10 mA. When the voltage reaches 0.5V, go to Step 4.
Step 4: Pause for 5 minutes

10回の充放電サイクル後、残留塩素試験紙(日産化学工業社製、アクアチェックLC)を電解液に60秒間浸漬する。発色は見られず、塩素の発生は確認されない。
[実施例2]
正極触媒として金属錯体MC2を、電解液として、20質量%リン酸三カリウム水溶液(pH=13.0)を用いて、実施例1と同様に、充放電サイクル試験を行う。10回の充放電サイクル後、残留塩素試験紙(日産化学工業社製、アクアチェックLC)を電解液に60秒間浸漬する。発色は見られず、塩素の発生は確認されない。
[比較例1]
正極触媒として金属錯体MC1を、電解液として、20質量%塩化アンモニウム水溶液(pH=4.7)を用いて、実施例1と同様に、充放電サイクル試験を行う。10回の充放電サイクル後、残留塩素試験紙(日産化学工業社製、アクアチェックLC)を電解液に60秒間浸漬する。試験しに発色が見られ、塩素の発生は確認される。
After 10 charge / discharge cycles, a residual chlorine test paper (manufactured by Nissan Chemical Industries, Ltd., Aqua Check LC) is immersed in the electrolytic solution for 60 seconds. Color development is not seen and generation of chlorine is not confirmed.
[Example 2]
A charge / discharge cycle test is performed in the same manner as in Example 1 using the metal complex MC2 as the positive electrode catalyst and the 20% by mass tripotassium phosphate aqueous solution (pH = 13.0) as the electrolytic solution. After 10 charge / discharge cycles, a residual chlorine test paper (manufactured by Nissan Chemical Industries, Ltd., Aqua Check LC) is immersed in the electrolytic solution for 60 seconds. Color development is not seen and generation of chlorine is not confirmed.
[Comparative Example 1]
A charge / discharge cycle test is performed in the same manner as in Example 1 using the metal complex MC1 as the positive electrode catalyst and the 20% by mass ammonium chloride aqueous solution (pH = 4.7) as the electrolytic solution. After 10 charge / discharge cycles, a residual chlorine test paper (manufactured by Nissan Chemical Industries, Ltd., Aqua Check LC) is immersed in the electrolytic solution for 60 seconds. Color development is observed in the test, and generation of chlorine is confirmed.

本発明の空気二次電池は、充電時に有害な塩素ガスを発生することがなく、エネルギー分野で利用可能である。   The air secondary battery of the present invention does not generate harmful chlorine gas during charging and can be used in the energy field.

1…空気二次電池、11…正極触媒層、12…正極集電体、120…正極端子、13…負極活物質層、14…負極集電体、140…負極端子、15…電解液   DESCRIPTION OF SYMBOLS 1 ... Air secondary battery, 11 ... Positive electrode catalyst layer, 12 ... Positive electrode collector, 120 ... Positive electrode terminal, 13 ... Negative electrode active material layer, 14 ... Negative electrode collector, 140 ... Negative electrode terminal, 15 ... Electrolyte

Claims (3)

酸素還元活性及び水の酸化活性を有する正極触媒を含む正極と、亜鉛単体及び亜鉛化合物からなる群より選ばれる一種以上を含む負極と、電解液とを備えた空気二次電池であり、
前記電解液のpHが〜13であり
前記電解液中の塩化物イオンの濃度が1.0質量%以下であり、
前記電解液が、溶媒に炭酸カリウムを溶解した電解液であり、
前記正極触媒が、コバルト原子を有する単核金属錯体、コバルトイオンを有する単核金属錯体、およびコバルト原子とコバルトイオンとのいずれか一方または両方を含む多核金属錯体からなる群より選ばれる一種以上の正極触媒である空気二次電池。
An air secondary battery comprising a positive electrode including a positive electrode catalyst having oxygen reduction activity and water oxidation activity, a negative electrode including at least one selected from the group consisting of zinc alone and a zinc compound, and an electrolyte solution,
The pH of the electrolyte is 6 a to 13,
Wherein Ri der concentration of chloride ions is 1.0 mass% or less in the electrolytic solution,
The electrolytic solution is an electrolytic solution in which potassium carbonate is dissolved in a solvent,
The positive electrode catalyst is at least one selected from the group consisting of a mononuclear metal complex having a cobalt atom, a mononuclear metal complex having a cobalt ion, and a polynuclear metal complex containing either or both of a cobalt atom and a cobalt ion. An air secondary battery which is a positive electrode catalyst .
前記電解液中の塩化物イオンの濃度が0.1質量%以下である請求項1に記載の空気二次電池。   The air secondary battery according to claim 1, wherein a concentration of chloride ions in the electrolytic solution is 0.1% by mass or less. 前記電解液中の電解質の濃度が1質量%以上飽和濃度以下である請求項1または2に記載の空気二次電池。 Air secondary cell according to claim 1 or 2 concentration of electrolytic substance of the electrolyte solution is not more than 1 mass% or more saturation concentration.
JP2013036739A 2013-02-27 2013-02-27 Air secondary battery Expired - Fee Related JP6142399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036739A JP6142399B2 (en) 2013-02-27 2013-02-27 Air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036739A JP6142399B2 (en) 2013-02-27 2013-02-27 Air secondary battery

Publications (2)

Publication Number Publication Date
JP2014165099A JP2014165099A (en) 2014-09-08
JP6142399B2 true JP6142399B2 (en) 2017-06-07

Family

ID=51615519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036739A Expired - Fee Related JP6142399B2 (en) 2013-02-27 2013-02-27 Air secondary battery

Country Status (1)

Country Link
JP (1) JP6142399B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6195154B2 (en) * 2013-08-29 2017-09-13 独立行政法人国立高等専門学校機構 Zinc secondary battery with reduced generation of dendrites
JP6281532B2 (en) * 2015-07-13 2018-02-21 トヨタ自動車株式会社 Electrolyte for metal-air battery and metal-air battery
WO2017180062A1 (en) * 2016-04-13 2017-10-19 National University Of Singapore Porous polymer and production methods thereof
US10950910B2 (en) 2016-09-20 2021-03-16 Maxell Holdings, Ltd. Air cell and patch
JP6454824B1 (en) * 2017-09-28 2019-01-16 マクセルホールディングス株式会社 Sheet air battery and patch
EP3531501A4 (en) * 2017-09-28 2019-12-04 Maxell Holdings, Ltd. Sheet-shaped air battery, production method therefor, and patch
JP7017354B2 (en) * 2017-09-28 2022-02-08 マクセル株式会社 Sheet air battery and patch
KR102202630B1 (en) * 2019-04-17 2021-01-13 국방과학연구소 Metal air battery comprising sparked graphene oxide - silver cathode and method producing thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220690A (en) * 1979-06-28 1980-09-02 Institute Of Gas Technology Secondary zinc/oxygen electrochemical cells using inorganic oxyacid electrolytes
JP2001313093A (en) * 2000-05-02 2001-11-09 Furukawa Co Ltd Air cell
US20030077512A1 (en) * 2001-10-18 2003-04-24 Allen Charkey Electrolyte for alkaline rechargeable batteries
JP2004241224A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction, and battery
EP1859505B1 (en) * 2005-03-10 2009-11-18 Eveready Battery Company, Inc. Air cell with improved leakage resistance
JP3996629B2 (en) * 2005-08-25 2007-10-24 松下電器産業株式会社 Oxygen reduction electrode
US20100203394A1 (en) * 2009-02-06 2010-08-12 In Tae Bae Thin metal-air batteries
US10115972B2 (en) * 2009-04-30 2018-10-30 University Of Florida Research Foundation, Incorporated Single wall carbon nanotube based air cathodes
WO2012111134A1 (en) * 2011-02-17 2012-08-23 富士通株式会社 Filter and air cell
KR20120119228A (en) * 2011-04-20 2012-10-31 삼성전기주식회사 Metal air battery and method for preparing the same
WO2012147952A1 (en) * 2011-04-27 2012-11-01 住友化学株式会社 Cathode catalyst for air secondary battery and air secondary battery

Also Published As

Publication number Publication date
JP2014165099A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP6142399B2 (en) Air secondary battery
Sohrabi et al. A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions
US8475968B2 (en) Direct liquid fuel cell having hydrazine or derivatives thereof as fuel
WO2017073467A1 (en) Magnesium air battery electrode, magnesium air battery, aromatic compound, and metal complex
JP2013527567A (en) Soluble oxygen evolution catalyst for rechargeable metal-air batteries
JP6716364B2 (en) Liquid phase catalyst for lithium-air batteries
JPWO2009025176A1 (en) Catalyst for oxygen reduction electrode and oxygen reduction electrode
JP6545622B2 (en) Positive electrode catalyst for air secondary battery, positive electrode catalyst layer for air secondary battery and air secondary battery
Xue et al. Aqueous formate‐based Li‐CO2 battery with low charge overpotential and high working voltage
Thomas et al. Suppression of water absorption by molecular design of ionic liquid electrolyte for Li–air battery
JP6296879B2 (en) Electrode and air secondary battery using the same
Zhu et al. Confinement of SnCuxO2+ x Nanoclusters in Zeolites for High‐Efficient Electrochemical Carbon Dioxide Reduction
JP5170702B2 (en) Catalysts for electrochemical oxidation of hydrides
WO2012169548A1 (en) Positive-electrode catalyst for air secondary battery, and air secondary battery
CN108140920A (en) Magnesium air electrode for cell and magnesium air battery and aromatic compound and metal complex
Wang et al. A Highly Active Bifunctional Catalyst of Mn–Co–Fe–N/S@ CNT for Rechargeable Zinc-Air Batteries
JP2013016474A (en) Positive electrode catalyst for air secondary battery and air secondary battery
JP2006309973A (en) Fuel cell electrode catalyst and fuel cell
JP2015138581A (en) Nonaqueous electrolyte air secondary battery
CN115715230B (en) Catalyst for oxygen reduction, method for selecting same, liquid composition or electrode containing catalyst for oxygen reduction, and air cell or fuel cell provided with electrode
JP6830320B2 (en) Electrodes for magnesium-air batteries and magnesium-air batteries
JP2010167390A (en) Oxygen reduction catalyst, fuel cell and air cell using the same, and manufacturing method of oxygen reduction catalyst
JP5692701B2 (en) Catalysts for electrochemical oxidation of hydrides
US10193162B2 (en) Electrode catalyst and method for producing the same
JP6666186B2 (en) Electrode for oxygen reduction, air battery and metal complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170418

R150 Certificate of patent or registration of utility model

Ref document number: 6142399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees