JP6139208B2 - Copper alloy sliding member - Google Patents

Copper alloy sliding member Download PDF

Info

Publication number
JP6139208B2
JP6139208B2 JP2013066001A JP2013066001A JP6139208B2 JP 6139208 B2 JP6139208 B2 JP 6139208B2 JP 2013066001 A JP2013066001 A JP 2013066001A JP 2013066001 A JP2013066001 A JP 2013066001A JP 6139208 B2 JP6139208 B2 JP 6139208B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
sliding
sliding member
back metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013066001A
Other languages
Japanese (ja)
Other versions
JP2014001448A (en
Inventor
良政 平井
良政 平井
宮本 武明
武明 宮本
知広 佐藤
知広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2013066001A priority Critical patent/JP6139208B2/en
Publication of JP2014001448A publication Critical patent/JP2014001448A/en
Application granted granted Critical
Publication of JP6139208B2 publication Critical patent/JP6139208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、摺動部材に関する。   The present invention relates to a sliding member.

軸受やブレーキディスクなどの摺動部分を有する摺動部材には、相手部材を損傷しにくく、摺動性が高い銅合金が用いられることが多い。この銅合金の摺動部材には、鋳造により得られた部材をそのまま加工して用いた鋳造品や、アトマイズ法などで作製した銅合金粉末に圧力をかけながら焼結した焼結品などが用いられている。具体的には、摩擦係数が小さいものが好適であり、また、高面圧における使用でも焼き付きしにくい耐焼き付き性のよいものが好適である。これらの性能をまとめて摺動性と呼ぶ。   For a sliding member having a sliding portion such as a bearing or a brake disk, a copper alloy that hardly damages the counterpart member and has high slidability is often used. As the copper alloy sliding member, a cast product obtained by processing a member obtained by casting as it is, a sintered product obtained by applying pressure to a copper alloy powder produced by an atomizing method, or the like is used. It has been. Specifically, those having a small friction coefficient are suitable, and those having good seizure resistance that are difficult to seize even when used at a high surface pressure are suitable. These performances are collectively called slidability.

これら摺動性を向上させるためには、従来は潤滑効果の高い素材を採用するといった改良がなされてきた。例えば、特許文献1には、鉄を0.3質量%以上6.0質量%以下、スズを3.0質量%以上16.0質量%以下、硫黄を0.3質量%以上3.0質量%以下、燐を0.01質量%以上0.3質量%以下含有し、残分が銅と不可避的不純物とからなる青銅系銅合金が、高い摺動性を示すものとして記載されている。   In order to improve these slidability, the improvement of adopting a material having a high lubricating effect has been conventionally made. For example, in Patent Document 1, iron is 0.3 mass% or more and 6.0 mass% or less, tin is 3.0 mass% or more and 16.0 mass% or less, and sulfur is 0.3 mass% or more and 3.0 mass% or less. % Or less, a bronze-based copper alloy containing 0.01 mass% or more and 0.3 mass% or less of phosphorus, and the balance of copper and unavoidable impurities is described as exhibiting high slidability.

特許第4658269号公報Japanese Patent No. 4658269

しかしながら、摺動性のうち特に耐焼き付き性は潤滑特性の向上だけでは限界に近づきつつあり、より耐焼き付き性に優れた摺動部材が求められていた。   However, the seizure resistance, particularly the seizure resistance, is approaching the limit only by improving the lubrication characteristics, and a sliding member having more excellent seizure resistance has been demanded.

そこでこの発明は、耐焼き付き性に優れた摺動部材を製造することを目的とする。   Then, this invention aims at manufacturing the sliding member excellent in the seizure resistance.

この発明は、摺動表面に、銅合金を摩擦圧接又は摩擦攪拌により改質した金属組織を有する摺動部材を用いることで、上記の課題を解決したのである。これら摩擦圧接又は摩擦攪拌による加熱、圧力などを受けて改質された銅合金は、元の材料よりも組織が改質されて、耐焼き付き性に優れたものとなる。   The present invention solves the above problems by using a sliding member having a metal structure obtained by modifying a copper alloy by friction welding or friction stirring on the sliding surface. A copper alloy that has been modified by heating, pressure, or the like by friction welding or friction stirring has a more modified structure than the original material, and has excellent seizure resistance.

摩擦圧接の場合は、摺動表面に用いる銅合金と、それを圧接させるより融点の高い金属材料との接合体を、好適に用いることができる。   In the case of friction welding, a joined body of a copper alloy used for the sliding surface and a metal material having a higher melting point that presses the copper alloy can be suitably used.

また、摺動表面に配する材料として銅合金の中でも特に青銅系銅合金を用いると、元々の摺動性の高さからより優れたものとなる。さらに、硫黄を含有しており、その硫黄の化合物で固体潤滑剤として作用する成分を有していると、より摺動性に優れた摺動部材となる。   In addition, when a bronze-based copper alloy is used as a material to be disposed on the sliding surface, it becomes more excellent from the original high slidability. Furthermore, if it contains sulfur and has a component that acts as a solid lubricant with the sulfur compound, it becomes a sliding member with more excellent slidability.

この発明により、耐焼き付き性に優れた摺動部材を、効率良く高い精度で生産することができる。   According to the present invention, a sliding member having excellent seizure resistance can be efficiently produced with high accuracy.

(a)第一の実施形態で用いる銅合金部材とバックメタル部材の例を示す斜視図、(b)(a)の部材を摺動圧接させた圧接部材の側面図、(c)(b)の圧接部材から切り出した切出部材の斜視図(A) A perspective view showing an example of a copper alloy member and a back metal member used in the first embodiment, (b) a side view of a pressure contact member in which the member of (a) is brought into sliding pressure contact, (c) (b) The perspective view of the cutting member cut out from the press-contact member of (a)第二の実施形態で用いる銅合金部材とバックメタル部材の例を示す斜視図、(b)(a)の部材を摺動圧接させた圧接部材の側面図、(c)(b)の圧接部材から切り出した切分母材の斜視図、(d)(c)から切り出した短冊状摺動部材の斜視図(A) A perspective view showing an example of a copper alloy member and a back metal member used in the second embodiment, (b) a side view of a pressure contact member in which the member of (a) is brought into sliding pressure contact, (c) (b) The perspective view of the cut | judging base material cut out from the press-contact member of this, The perspective view of the strip-shaped sliding member cut out from (d) (c) 第三の実施形態である摩擦攪拌の概念図Conceptual diagram of friction stirring according to the third embodiment 実施例で用いるリングオンディスク摩擦試験機の正面図及び平面図Front view and plan view of a ring-on-disk friction tester used in the examples 実施例1の摺動試験結果を示すグラフThe graph which shows the sliding test result of Example 1 比較例1の摺動試験結果を示すグラフThe graph which shows the sliding test result of the comparative example 1 実施例2の摺動試験結果を示すグラフThe graph which shows the sliding test result of Example 2 比較例2の摺動試験結果を示すグラフThe graph which shows the sliding test result of the comparative example 2

以下、この発明について具体的に説明する。この発明は、銅合金からなる摺動表面を有する摺動部材であり、摩擦圧接又は摩擦攪拌によって、摺動表面を構成する部分について元の青銅系銅合金から金属組織を変質させる改質を行い、耐焼き付き性を向上させたものである。   The present invention will be specifically described below. The present invention is a sliding member having a sliding surface made of a copper alloy, and performs a modification that alters the metal structure from the original bronze-based copper alloy at a portion constituting the sliding surface by friction welding or friction stirring. The seizure resistance is improved.

まず、第一の実施形態として摩擦圧接により摺動部材として用いる金属の組織を改質する形態を、図1を用いて説明する。材料としては、摺動表面を構成することになる円筒形の銅合金部材11と、鋼鉄系材料などの銅よりも融点の高い金属材料からなる同じく円筒形のバックメタル部材12とを用いる。これらの部材の環状底面を構成する外径及び内径は同じである。バックメタル部材12を下に配置して固定し、銅合金部材11を上に配置して、銅合金部材11を環状底面の軸を中心に回転させながら、環状底面11a、12a同士を当接させ、下向きの圧力を掛ける(図1(a))。すると、銅合金部材11とバックメタル部材12との両方が摩擦熱で赤熱するが、銅合金部材11の方がより低温で軟化するため、下向きの圧力によって一部が外径方向にはみ出しながら、銅合金部材11の下方底面近傍は押し潰されていく。全体としてはこの圧縮によって徐々に高さが縮んでいく。適切なところまで圧縮したら銅合金部材11の回転を停止して圧力を加えたまま冷却する。この段階での側面図を図1(b)に示す。合体した圧接部材13の高さは銅合金部材11とバックメタル部材12との合計高さよりも小さいものとなる。   First, the form which modifies | reforms the metal structure | tissue used as a sliding member by friction welding as 1st embodiment is demonstrated using FIG. As materials, a cylindrical copper alloy member 11 that constitutes a sliding surface and a cylindrical back metal member 12 made of a metal material having a melting point higher than copper, such as a steel-based material, are used. The outer diameter and the inner diameter constituting the annular bottom surface of these members are the same. The back metal member 12 is disposed below and fixed, the copper alloy member 11 is disposed above, and the annular bottom surfaces 11a and 12a are brought into contact with each other while the copper alloy member 11 is rotated around the axis of the annular bottom surface. Apply downward pressure (FIG. 1 (a)). Then, both the copper alloy member 11 and the back metal member 12 are red-hot by frictional heat, but the copper alloy member 11 is softened at a lower temperature, so that a part of the copper alloy member 11 and the back metal member 12 protrude in the outer diameter direction due to downward pressure The vicinity of the lower bottom surface of the copper alloy member 11 is crushed. Overall, this compression gradually reduces the height. After compression to an appropriate level, the rotation of the copper alloy member 11 is stopped and cooling is performed while pressure is applied. A side view at this stage is shown in FIG. The combined pressure contact member 13 has a height smaller than the total height of the copper alloy member 11 and the back metal member 12.

この圧接部材13の合体させた当接面の近傍で、元は銅合金部材11及びバックメタル部材12であったそれぞれの部分を輪切りにする。このうち銅合金部材11は、高熱により軟化、圧縮されてから冷却されて固まったことにより、当接面近傍の組織全体が元の組織から改質されている。ただしこの変化は、当接面から離れるほど起こりにくくなるので、できるだけ当接面に近いところで元は銅合金部材11であった部分を切断することが望ましい。また、バックメタル部材12の部分の割合が多い方が全体的な強度は高くなるという点でも、銅合金部材11由来である部分の厚みは小さいことが望ましい。摺動表面の摺動性を上げるために銅合金部材11を設けているので、表面さえ銅合金部材11由来の改質材料で覆われていればよいからである。具体的には、この銅合金部材11由来の部分の厚みLは5mm以下であると好ましく、3mm以下であるとより好ましい。ただし、1mm未満を残して切断することは精度上難しくなるので、1mm以上であることが望ましい。一方、バックメタル部材12であった部分の長さLは特に限定されず、全体として摺動部材として用いる際必要な大きさになるように調製すればよい。ただし、当接面に近すぎると切断精度上の要求が厳しくなるので、2mm以上離れていることが好ましい。 The portions that were originally the copper alloy member 11 and the back metal member 12 in the vicinity of the combined contact surface of the pressure contact member 13 are cut into rings. Among these, the copper alloy member 11 is softened and compressed by high heat and then cooled and solidified, whereby the entire structure near the contact surface is modified from the original structure. However, since this change is less likely to occur as the distance from the contact surface increases, it is desirable to cut the portion that was originally the copper alloy member 11 as close to the contact surface as possible. In addition, it is desirable that the thickness of the portion derived from the copper alloy member 11 is small also in that the overall strength increases as the proportion of the back metal member 12 increases. This is because the copper alloy member 11 is provided in order to improve the slidability of the sliding surface, so that only the surface needs to be covered with the modified material derived from the copper alloy member 11. Specifically, preferably the thickness L 1 of the segment from the copper alloy member 11 is 5mm or less, and more preferably less than 3mm. However, since it is difficult to cut with less than 1 mm, it is desirable that it be 1 mm or more. On the other hand, the back length L 2 of the metal member 12 at a portion is not particularly limited, and may be prepared such that the size required when used as a sliding member as a whole. However, if it is too close to the contact surface, the requirement for cutting accuracy becomes severe, so it is preferable that the distance is 2 mm or more.

ここでは、図1(b)中一点破線のラインで切断したものとする。得られた切出部材14の斜視図を図1(c)に示す。なお、圧縮時にはみ出した部分(11b)も併せて除去している。銅合金部材11であった部分(銅合金層)の切断面11cが、摺動部材の表面となる。ただし、切断直後の状態では表面が粗いため、その後に摺動部材の表面となる切断面11cを摺動部材として一般的な機械加工で仕上げる。この切断面11cは、上記の摩擦圧接の際に圧縮変形されて改質されており、元の銅合金部材11をそのまま摺動部材として用いるよりも、耐焼き付き性が高い優れた材料となる。   Here, it is assumed that it is cut by a dashed line in FIG. A perspective view of the obtained cutting member 14 is shown in FIG. The portion (11b) that protrudes during compression is also removed. The cut surface 11c of the portion (copper alloy layer) that was the copper alloy member 11 becomes the surface of the sliding member. However, since the surface is rough immediately after cutting, the cut surface 11c that becomes the surface of the sliding member is finished as a sliding member by general machining. The cut surface 11c is compressed and deformed during the above-described friction welding, and becomes an excellent material having higher seizure resistance than using the original copper alloy member 11 as a sliding member as it is.

こうして得られた摺動部材の改質された摺動表面は、摩擦熱で赤熱され、かつ冷却時にかけて圧力を加えられているため、面全体が好適に改質され、摺動性に優れたものとなると考えられる。   The modified sliding surface of the sliding member thus obtained is red-hot by frictional heat and pressure is applied during cooling, so that the entire surface is suitably modified and has excellent slidability. It will be a thing.

また、一旦バックメタルと接合した材料の、バックメタル側を切断、或いは研磨して除去した、銅合金由来の部分のみからなる摺動部材としてもよい。   Moreover, it is good also as a sliding member which consists only of the part derived from a copper alloy which cut | disconnected or grind | polished and removed the back metal side of the material once joined with the back metal.

ところで、図1では元々摺動部材として用いることができる円筒状の材料を使用したが、より大径の円盤状の材料同士を摩擦圧接した後、そこから切り出した材料を様々な摺動部材として用いてもよい。切り出した材料をすべり軸受に用いる第二の実施形態を、図2を用いて説明する。   By the way, although the cylindrical material which can be originally used as a sliding member in FIG. 1 was used, after friction welding the larger diameter disk-shaped materials together, the material cut out from there is used as various sliding members. It may be used. A second embodiment in which the cut material is used for a slide bearing will be described with reference to FIG.

銅合金部材21とバックメタル部材22とは、いずれも上記の銅合金部材11及びバックメタル部材12と同様の材料を用いており、円筒形ではなく円柱形をした部材である(図2(a))。上記と同様に底面同士を合わせて圧力を加えながら軸回転させて、銅合金部材21を一部はみ出させながら当接面近傍を圧縮して摩擦圧接する(図2(b))。同様に圧力を加えながら冷却し、得られた圧接部材23から当接面近傍を輪切りにして、円盤状の切分母材24を得る(図2(c))。この切分母材24の表面を平滑に処理した後、短冊状の摺動部材25を切り出す(図2(d))。摺動部材25の一方の面である摺動面21dは、改質された銅合金からなる。この摺動部材25を、摺動面21dが外周側または内周側に位置するようにして一周分巻いて端部同士を接合して、すべり軸受を製造すると、摺動表面が改質によって耐焼き付き性に優れたものとなる。   Each of the copper alloy member 21 and the back metal member 22 uses the same material as the copper alloy member 11 and the back metal member 12 described above, and is a member having a columnar shape instead of a cylindrical shape (FIG. 2A )). In the same manner as above, the bottom surfaces are aligned and rotated while applying pressure, and the copper alloy member 21 is partially protruded and the vicinity of the contact surface is compressed and friction welded (FIG. 2B). Similarly, cooling is performed while applying pressure, and the vicinity of the contact surface is cut from the obtained pressure contact member 23 to obtain a disk-shaped cut base material 24 (FIG. 2C). After the surface of the cut base material 24 is processed smoothly, a strip-shaped sliding member 25 is cut out (FIG. 2D). The sliding surface 21d that is one surface of the sliding member 25 is made of a modified copper alloy. When this sliding member 25 is wound one turn so that the sliding surface 21d is positioned on the outer peripheral side or the inner peripheral side and the ends are joined together to produce a slide bearing, the sliding surface is made resistant by modification. Excellent seizure property.

次に、第三の実施形態として、摩擦攪拌によって改質する場合について説明する。この実施形態では、元々摺動部材として利用可能な形状である銅合金部材31を使用する。これに、熱間ダイス鋼などからなる円柱状のツール32を回転させながら圧力をかけて押し当てる。なお、図3(a)に示したようにツール32の先端は平板ではなく、攪拌を進行させやすくするための突部が中央に設けてある。銅合金部材31のツール32と接している部分は回転による摩擦熱によって加熱され軟化し、表面の組織が攪拌されていく。この攪拌を銅合金部材31の全面に起こさせるように、ツール32を走査していく。走査が終わった部分33は、一旦圧力を掛けられて攪拌した後に冷却されるまでの過程で組織が改質される。これにより、銅合金部材31の全面を改質した耐焼き付き性の優れた材料を得ることができる。   Next, as a third embodiment, a case where modification is performed by friction stirring will be described. In this embodiment, a copper alloy member 31 having a shape that can be originally used as a sliding member is used. A cylindrical tool 32 made of hot die steel or the like is pressed against this while applying pressure. As shown in FIG. 3A, the tip of the tool 32 is not a flat plate, but a protrusion for facilitating stirring is provided in the center. The portion of the copper alloy member 31 that is in contact with the tool 32 is heated and softened by frictional heat generated by rotation, and the surface structure is stirred. The tool 32 is scanned so that this stirring is caused on the entire surface of the copper alloy member 31. In the portion 33 after the scanning, the tissue is reformed in the process of being temporarily pressurized and stirred and then cooled. Thereby, the material excellent in seizure resistance which improved the whole surface of copper alloy member 31 can be obtained.

このような摩擦攪拌による改質では、摩擦圧接による方法と比べて、元々の材料の表面を攪拌するだけでよいため、部材の切断やはみ出し部分の除去などの工程を経る必要がなく、材料の無駄なく改質された摺動表面を得ることができる。ただし、冷却時には圧力を加えられていないため、摩擦圧接に比べると改質効果が劣る場合がある。   Compared to the friction welding method, the modification by friction stirrer only needs to stir the surface of the original material, so there is no need to go through steps such as cutting the member or removing the protruding portion. A modified sliding surface can be obtained without waste. However, since no pressure is applied during cooling, the reforming effect may be inferior compared to friction welding.

いずれの実施形態においても、この発明で用いる銅合金部材の材料としては、青銅系銅合金が、改質による耐焼き付き性の向上が見込みやすく、元々高い摺動性をさらに向上できるので望ましい。具体的な青銅系銅合金の組成としては、一般的な青銅系銅合金に、摩擦係数を低下させる固体潤滑剤を含有させたものを用いてもよい。ここで固体潤滑剤とは例えば、硫化物(Fe−S系化合物、二硫化モリブデン等)やPb、Bi、カーボンなどである。固体潤滑剤を含有することにより低い摩擦係数を維持しながら、さらなる耐焼き付き性を付与し、摺動性を向上することができる。このような材料としては例えば、鉄を0.15質量%以上6.0質量%以下、スズを3.0質量%以上16.0質量%以下、硫黄を0.3質量%以上3.0質量%以下、燐を0.01質量%以上0.3質量%以下含有し、残分が銅と残余成分とからなる青銅系銅合金が挙げられる。なお、上記の残余成分とは、微少成分ながら合金の有益な性質を阻害することなく有益な効果を付与するために意図的に含めても良い成分や、不可避的に含まれてしまう不純物であって上記銅合金部材及び攪拌後の性質を阻害しない程度に含まれるものである。   In any of the embodiments, a bronze-based copper alloy is desirable as a material for the copper alloy member used in the present invention, because it is likely to improve the seizure resistance due to the modification, and the originally high slidability can be further improved. As a specific composition of the bronze-based copper alloy, a general bronze-based copper alloy containing a solid lubricant that reduces the friction coefficient may be used. Here, the solid lubricant is, for example, sulfide (Fe—S compound, molybdenum disulfide, etc.), Pb, Bi, carbon, or the like. By containing a solid lubricant, it is possible to impart further seizure resistance and improve slidability while maintaining a low friction coefficient. As such a material, for example, iron is 0.15 mass% or more and 6.0 mass% or less, tin is 3.0 mass% or more and 16.0 mass% or less, and sulfur is 0.3 mass% or more and 3.0 mass% or less. % Or less, phosphorous is contained in an amount of 0.01% by mass or more and 0.3% by mass or less, and a bronze-based copper alloy in which the balance is made of copper and a residual component is included. The above-mentioned residual component is a component that may be intentionally included to impart a beneficial effect without impairing the beneficial properties of the alloy even though it is a minor component, or an impurity that is inevitably included. Thus, the copper alloy member and the properties after stirring are not included.

以下、この発明にかかる摺動部材を具体的に製造した例を具体的に示す。まず、摩擦圧接により製造する例を示す。   Hereinafter, the example which manufactured the sliding member concerning this invention concretely is shown concretely. First, an example of manufacturing by friction welding will be shown.

(実施例1)
まず、鋳造によりスズ:9.85質量%、硫黄:0.58質量%、鉄:0.23質量%、リン:0.0165質量%、銅:残分の青銅系銅合金からなる、外径52mm、内径24mm、高さ60mmの円筒状銅合金部材を製造した。これ自体は通常の摺動部材として利用可能なものであり、後述する試験では同じものを比較例1として使用する。一方、バックメタル部材として、鋼鉄(S45C材)製で円筒形銅合金部材と形状及び大きさが同一の部材を製造した。円筒状銅合金部材とバックメタル部材とが接する当接面は、どちらも2000番の砥石で仕上げた上で当接させた。
Example 1
First, by casting, tin: 9.85% by mass, sulfur: 0.58% by mass, iron: 0.23% by mass, phosphorus: 0.0165% by mass, copper: remaining bronze copper alloy, outer diameter A cylindrical copper alloy member having a diameter of 52 mm, an inner diameter of 24 mm, and a height of 60 mm was produced. This itself can be used as a normal sliding member, and the same one is used as Comparative Example 1 in the test described later. On the other hand, as a back metal member, a member made of steel (S45C material) and having the same shape and size as a cylindrical copper alloy member was manufactured. The contact surfaces where the cylindrical copper alloy member and the back metal member contact each other were contacted after finishing with a No. 2000 grindstone.

これらを日東精機株式会社製FF−60IICM−K型摩擦圧接機にて摩擦圧接した。具体的な条件は次の通りである。バックメタル部材を固定し、その環状面に向けて、回転数600rpmで予め軸回転させた銅合金部材の環状面を当接させ、2.3kgf/cmの圧力を3秒間加えて、銅合金部材を軟化させた。銅合金部材の軟化後、7.0kgf/cm2の圧力をかけ、当接位置より5mm押し込むまで圧力付加を続けた。次に、回転停止後、7.0kgf/cmの圧力で銅合金部材を押付け、さらに、1mm押し込んだ。(当接面から6mm)なお、接合部分は外径方向に銅合金部材がはみ出していたが、その体積は押し込まれて減少した体積({26mm×26mm−12mm×12mm}×π×6mm)よりも小さいことが目視からも明らかであり、当接面付近で組織が圧縮されていることが確認された。 These were friction welded with a FF-60IICM-K type friction welding machine manufactured by Nitto Seiki Co., Ltd. Specific conditions are as follows. The back metal member is fixed, and the annular surface of the copper alloy member which has been axially rotated at a rotational speed of 600 rpm is brought into contact with the annular surface, and a pressure of 2.3 kgf / cm 2 is applied for 3 seconds to obtain a copper alloy. The member was softened. After the copper alloy member was softened, a pressure of 7.0 kgf / cm 2 was applied, and the pressure was continuously applied until it was pushed in 5 mm from the contact position. Next, after stopping the rotation, the copper alloy member was pressed at a pressure of 7.0 kgf / cm 2 and further pressed by 1 mm. (6mm from the abutment surface) Although the copper alloy member protruded in the outer diameter direction at the joined portion, the volume was pushed and reduced ({26mm × 26mm-12mm × 12mm} × π × 6mm) It was clear from the visual observation that the tissue was compressed near the contact surface.

接合した当接面から銅合金側に7mmの位置と、バックメタル側に1mmの位置とで輪切りにし、接合した部材の外径側のはみ出し部分を削るとともに、バックメタル側から旋盤で機械加工してバックメタル部材を除去して銅合金由来の面を露出させて摺動面とし、接合前の部材と同じ外径及び内径を有し、厚さが5mmの環状摺動部材を得た。この銅合金側の表面を2000番の砥石で鏡面仕上げしたものを実施例1とする。この摺動面は、元の接合面から1mm未満の範囲であり、組織改質による影響を十分に受けた領域である。   Cut from the bonded contact surface at a 7 mm position on the copper alloy side and a 1 mm position on the back metal side, and cut off the protruding part on the outer diameter side of the bonded member, and machine it with a lathe from the back metal side. Then, the back metal member was removed to expose the copper alloy-derived surface as a sliding surface, and an annular sliding member having the same outer diameter and inner diameter as the member before joining and having a thickness of 5 mm was obtained. A copper alloy side surface mirror finished with a No. 2000 grindstone is referred to as Example 1. This sliding surface is a region less than 1 mm from the original bonding surface, and is a region sufficiently affected by the tissue modification.

(実施例2)
まず、鋳造によりスズ:10.15質量%、鉛:9.61質量%、ニッケル:0.58質量%、リン:0.20質量%、銅:残分の、固体潤滑剤として鉛を含有する銅合金からなる、実施例1と同じ形状の円筒状銅合金部材を製造した。これ自体はそのまま比較例2として使用する。一方、実施例1と同じバックメタル部材を用いて、同様に当接面を研磨した上で、実施例1と同じ摩擦圧接機にて同条件で摩擦圧接した。同様に、当接面から銅合金側に7mmの位置と、バックメタル側に1mmの位置とで輪切りにして、はみ出し部分を削って、同様の仕上げを行ったものを実施例2とする。
(Example 2)
First, tin: 10.15% by mass, lead: 9.61% by mass, nickel: 0.58% by mass, phosphorus: 0.20% by mass, copper: residue, containing lead as a solid lubricant A cylindrical copper alloy member made of a copper alloy and having the same shape as in Example 1 was manufactured. This itself is used as Comparative Example 2 as it is. On the other hand, using the same back metal member as in Example 1, the contact surface was similarly polished, and then friction welding was performed under the same conditions using the same friction welding machine as in Example 1. Similarly, Example 2 was obtained by cutting off the protruding portion by cutting a ring at a position of 7 mm on the copper alloy side and a position of 1 mm on the back metal side from the contact surface.

<摺動試験>
試験機として、リングオンディスク摩擦試験機を用いた。実施例1,2(表面研磨)で得られた試料、及びその一部のみである比較例1,2の試料を切削して得た外径50mm、内径26mm、厚み7mmのディスク41面上に、鋼(S45C。硬度:Hv700相当)のリング42(外径40mm、内径30mm、高さ15mm)を当接させ、リングを333rpmの速度で回転させた。このリング42とディスク41の関係を図4に示す。リング上面42a側から荷重を付加し、リング下面42bの接触面において、2.5kg(面圧:0.45kgf/cm)、7.83kg(面圧1.42kgf/cm)、9.89kg(面圧1.80kgf/cm)となるよう調整し、30秒ごとに、段階的に増加させながら、摩擦係数の変化を測定した。その結果を図5〜図8に示す。
<Sliding test>
A ring-on-disk friction tester was used as a tester. On the surface of a disk 41 having an outer diameter of 50 mm, an inner diameter of 26 mm, and a thickness of 7 mm obtained by cutting the samples obtained in Examples 1 and 2 (surface polishing) and the samples of Comparative Examples 1 and 2 which are only a part of them A ring 42 (outer diameter 40 mm, inner diameter 30 mm, height 15 mm) of steel (S45C. Hardness: equivalent to Hv700) was brought into contact with the ring, and the ring was rotated at a speed of 333 rpm. The relationship between the ring 42 and the disk 41 is shown in FIG. Adding a load from the ring upper surface 42a side, the contact surface of the ring lower surface 42b, 2.5 kg (surface pressure: 0.45kgf / cm 2), 7.83kg ( surface pressure 1.42kgf / cm 2), 9.89kg The pressure coefficient was adjusted to (surface pressure 1.80 kgf / cm 2 ), and the change in the friction coefficient was measured while increasing stepwise every 30 seconds. The results are shown in FIGS.

硫化物系化合物を固体潤滑成分として含む合金を摺動により改質した実施例1(図5)は、一旦荷重を増加させた後は安定して推移しており、90秒経過まで試験を続けても大きな変動は無く、摺動材として良好な結果を示した。これに対して、改質していない材料そのままの試料である比較例1(図6)では、60秒経過後(三段階目)から摩擦係数が徐々に増加し始めるのに合わせて試料ががたつき始め、グラフには現れていないが、90秒経過のその瞬間に試料の焼き付きが生じた。   In Example 1 (FIG. 5) in which an alloy containing a sulfide compound as a solid lubricating component was modified by sliding, the load remained stable after increasing the load, and the test was continued until 90 seconds had elapsed. However, there was no significant fluctuation and good results as a sliding material were shown. On the other hand, in Comparative Example 1 (FIG. 6), which is an unmodified material as it is, the sample is removed as the friction coefficient starts to gradually increase after 60 seconds (third stage). Although it did not appear in the graph, the image sticking occurred at the instant of 90 seconds.

Pbを固体潤滑成分として含む合金を摺動により改質した実施例2(図7)は、一旦加重を増加させた後は安定して推移しており、90秒経過まで試験を続けても大きな変動は無く、摺動材として良好な結果を示した。これに対して、改質していない材料そのままの試料である比較例2(図8)では、荷重の増加とともに摩擦係数が上昇していき、75秒経過時点で焼き付いてしまった。   In Example 2 (FIG. 7) in which an alloy containing Pb as a solid lubricating component was modified by sliding, the load remained stable after increasing the load once. There was no fluctuation and good results as a sliding material were shown. On the other hand, in Comparative Example 2 (FIG. 8), which is a sample of an unmodified material as it is, the friction coefficient increased with an increase in load, and burned in at 75 seconds.

いずれの例においても、試料は表面が焼き付いているのに対して、改質した実施例の試料はより高い摺動性、耐焼き付き性を発揮することが示された。   In any of the examples, the surface of the sample was seized, whereas the sample of the modified example exhibited higher slidability and seizure resistance.

11、21 銅合金部材
11a 環状底面
11b はみ出し部分
11c 切断面
12、22 バックメタル部材
12a 環状底面
13、23 圧接部材
14 切出部材
21d 面(摺動面)
24 切分母材
25 摺動部材
29 軸受
31 銅合金部材
32 ツール
33 走査が終わった部分
41 ディスク
42 リング
42a リング上面
43b リング下面
11, 21 Copper alloy member 11a, annular bottom surface 11b, protruding portion 11c, cutting surface 12, 22 back metal member 12a, annular bottom surface 13, 23, pressure contact member 14, cutting member 21d surface (sliding surface)
24 Cut base material 25 Sliding member 29 Bearing 31 Copper alloy member 32 Tool 33 Scanned portion 41 Disk 42 Ring 42a Ring upper surface 43b Ring lower surface

Claims (6)

銅合金を摩擦圧接により改質した金属組織からなる摺動表面を有する摺動部材。 A sliding member having a sliding surface made of a more modified metal structure of copper alloy friction pressure contact. 板状のバックメタル部材と、前記バックメタル部材に接合された銅合金層との少なくとも2層からなり、前記接合は、前記バックメタルに前記銅合金層となる銅合金部材を摩擦圧接することで行われ、上記摺動表面は、前記銅合金部材であった部分のうち、摩擦圧接の際に改質された部分である部材同士の当接面近傍で切断したものである請求項1に記載の摺動部材。   It consists of at least two layers of a plate-like back metal member and a copper alloy layer joined to the back metal member, and the joining is performed by friction welding the copper alloy member serving as the copper alloy layer to the back metal. The said sliding surface is cut | disconnected in the contact surface vicinity of the members which are the parts reformed in the case of friction welding among the parts which were the said copper alloy members. The sliding member. 上記銅合金が青銅系銅合金である請求項1又は2に記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the copper alloy is a bronze-based copper alloy. 上記青銅系銅合金が固体潤滑剤を含有する請求項3に記載の摺動部材。   The sliding member according to claim 3, wherein the bronze-based copper alloy contains a solid lubricant. 上記青銅系銅合金が、鉄を0.15質量%以上6.0質量%以下、スズを3.0質量%以上16.0質量%以下、硫黄を0.3質量%以上3.0質量%以下、燐を0.01質量%以上0.3質量%以下含有し、残分が銅と不可避的不純物とからなる請求項4に記載の摺動部材。   The bronze-based copper alloy is composed of 0.15 mass% or more and 6.0 mass% or less of iron, 3.0 mass% or more and 16.0 mass% or less of tin, and 0.3 mass% or more and 3.0 mass% of sulfur. 5. The sliding member according to claim 4, wherein the sliding member contains 0.01% by mass to 0.3% by mass of phosphorus, and the balance is made of copper and inevitable impurities. 鉄を0.15質量%以上6.0質量%以下、スズを3.0質量%以上16.0質量%以下、硫黄を0.3質量%以上3.0質量%以下、燐を0.01質量%以上0.3質量%以下含有し、残分が銅と不可避的不純物とからなる、固体潤滑剤を含有する青銅系銅合金を摩擦攪拌により改質した金属組織からなる摺動表面を有する摺動部材。 0.15 mass% to 6.0 mass% of iron, 3.0 mass% to 16.0 mass% of tin, 0.3 mass% to 3.0 mass% of sulfur, 0.01% of phosphorus contains more mass% 0.3 mass%, remainder consists of copper and unavoidable impurities, the sliding surface made of modified metal tissue by stirring rubbing friction bronze based copper alloy containing a solid lubricant A sliding member having.
JP2013066001A 2012-05-22 2013-03-27 Copper alloy sliding member Active JP6139208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066001A JP6139208B2 (en) 2012-05-22 2013-03-27 Copper alloy sliding member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012116404 2012-05-22
JP2012116404 2012-05-22
JP2013066001A JP6139208B2 (en) 2012-05-22 2013-03-27 Copper alloy sliding member

Publications (2)

Publication Number Publication Date
JP2014001448A JP2014001448A (en) 2014-01-09
JP6139208B2 true JP6139208B2 (en) 2017-05-31

Family

ID=50034883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066001A Active JP6139208B2 (en) 2012-05-22 2013-03-27 Copper alloy sliding member

Country Status (1)

Country Link
JP (1) JP6139208B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166841A1 (en) * 2015-04-15 2016-10-20 株式会社小松製作所 Method for producing metal member
JPWO2023191053A1 (en) * 2022-03-31 2023-10-05

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161793A (en) * 2007-12-28 2009-07-23 Toyota Central R&D Labs Inc Friction stir coating method
JP4658269B2 (en) * 2008-11-18 2011-03-23 株式会社栗本鐵工所 Copper alloy for sliding members
DE102009002894A1 (en) * 2009-05-07 2010-11-18 Federal-Mogul Wiesbaden Gmbh plain bearing material

Also Published As

Publication number Publication date
JP2014001448A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5021536B2 (en) Plain bearing
JP6125284B2 (en) Sintered bearing
JP5399645B2 (en) Aluminum base bearing alloy
US8273465B2 (en) Slide member
KR101339745B1 (en) Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
KR102206509B1 (en) Lead-free high-tensile brass alloy and high-tensile brass alloy products
JP2006214003A (en) Sintered metallic material and sintered oil-retaining bearing constituted of the metallic material
JP6139208B2 (en) Copper alloy sliding member
US20100190667A1 (en) Lead-free sintered lubricating material and sinter powder for manufacture of the same
WO2018143334A1 (en) Linear friction welding method
WO2015118924A1 (en) Sliding mechanism
JP5231312B2 (en) Plain bearing
JP2007100200A (en) Aluminum alloy for bearing
JP2009530567A (en) Bearing assembly parts
KR101336053B1 (en) Sliding Bearing
JP2002310158A (en) Multiple layered slide material
US11534854B2 (en) Friction stir welding tool and friction stir welding method
US20010055695A1 (en) Lead-free plain bearing and method for its manufacture
JP6530839B2 (en) Sintered bearing and method of manufacturing the same
JP4422255B2 (en) Aluminum base bearing alloy
JP6285760B2 (en) Aluminum rolling alloy and plain bearing for slide bearing
JP6383423B2 (en) Metal member manufacturing equipment
JP6625333B2 (en) Manufacturing method of sintered bearing and sintered bearing
KR102283100B1 (en) Melting and joining method of dissimilar metal materials
WO2023248817A1 (en) Method for manufacturing metal bonded body, and method for bonding diecast member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6139208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150