JP6137375B2 - Pulse wave sensor and pulse wave measuring device - Google Patents

Pulse wave sensor and pulse wave measuring device Download PDF

Info

Publication number
JP6137375B2
JP6137375B2 JP2016083415A JP2016083415A JP6137375B2 JP 6137375 B2 JP6137375 B2 JP 6137375B2 JP 2016083415 A JP2016083415 A JP 2016083415A JP 2016083415 A JP2016083415 A JP 2016083415A JP 6137375 B2 JP6137375 B2 JP 6137375B2
Authority
JP
Japan
Prior art keywords
light
pulse wave
light emitting
light receiving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016083415A
Other languages
Japanese (ja)
Other versions
JP2016152965A (en
Inventor
敦 成澤
敦 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016083415A priority Critical patent/JP6137375B2/en
Publication of JP2016152965A publication Critical patent/JP2016152965A/en
Application granted granted Critical
Publication of JP6137375B2 publication Critical patent/JP6137375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、脈波センサー及び脈波測定装置に関する。 The present invention relates to a pulse wave sensor and a pulse wave measurement device.

特許文献1には、光を生体に照射し、生体中の血液で反射された光を受光素子で検出して脈拍を測定する生体情報計測装置が開示されている。この生体情報計測装置は、青色LED(Light Emitting Diode)と赤色LEDを有している。また、生体情報計測装置は、互いに透過波長特性の異なる2つのフィルターが貼り付けられたフォトディテクターを有している。生体情報計測装置は、青色LEDから照射されて血液で反射した光と、赤色LEDから照射されて血液で反射した光を一つのフォトディテクターで交互に検出する。そして、生体情報計測装置は、フォトディテクターから出力された信号を用いて脈拍数を検出する。   Patent Document 1 discloses a biological information measuring apparatus that irradiates a living body with light, detects light reflected by blood in the living body with a light receiving element, and measures a pulse. This biological information measuring device has a blue LED (Light Emitting Diode) and a red LED. In addition, the biological information measuring apparatus has a photodetector on which two filters having different transmission wavelength characteristics are attached. The biological information measuring apparatus alternately detects light reflected from the blood emitted from the blue LED and light reflected from the blood emitted from the red LED using a single photodetector. Then, the biological information measuring apparatus detects the pulse rate using the signal output from the photodetector.

特開2005−52385号公報JP 2005-52385 A

ところで、血管の密度は部位によって異なり、更に、同じ部位であっても血管径は時間の経過に伴って変化し、血液容量が変化する。このとき、複数の波長の光を用いて脈波を測定する際に、各波長の受光素子と発光素子とをそれぞれ個別に設ける場合には、それぞれの波長の光でそれぞれ異なる部位の脈波を測定してしまうことがあり、同じ血液組成から反射した光を検出できなくなるため、脈波を正確に測定できない場合がある。
本発明は、上述した事情に鑑みてなされたものであり、複数の光源を用いて脈波の測定を行う装置において、測定の精度を高くすることのできる技術を提供することを目的とする。
By the way, the density of blood vessels varies from site to site, and even at the same site, the blood vessel diameter changes with time and the blood volume changes. At this time, when measuring a pulse wave using light of a plurality of wavelengths, if a light receiving element and a light emitting element of each wavelength are individually provided, pulse waves of different parts are respectively provided with light of each wavelength. In some cases, the pulse wave cannot be accurately measured because light reflected from the same blood composition cannot be detected.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a technique capable of increasing the accuracy of measurement in an apparatus that measures pulse waves using a plurality of light sources.

本発明に係る脈波測定装置は、脈波を測定する測定部位に予め定められた第1の波長の光を照射する第1の発光部と、前記測定部位に照射された前記第1の波長の光が該測定部位で反射した光を受光し、受光量に基づく測定信号を出力する第1の受光部と、前記測定部位に予め定められた第2の波長の光を照射する第2の発光部と、前記測定部位に照射された前記第2の波長の光が該測定部位で反射した光を受光し、受光量に基づく測定信号を出力する第2の受光部であって、前記測定部位からみた場合に前記第1の発光部と前記第1の受光部とを結ぶ第1の線分と、前記第2の発光部と前記第2の受光部とを結ぶ第2の線分とが交差する位置に設けられた第2の受光部と、前記第1の受光部が出力する第1の測定信号及び前記第2の受光部が出力する第2の測定信号の少なくともいずれか一方に基づいて脈波を示す脈波信号を生成する生成部とを備えることを特徴とする。この構成によれば、複数の光源を用いて脈波の測定を行う装置において、測定の精度を高くすることができる。   The pulse wave measurement device according to the present invention includes a first light emitting unit that irradiates light having a predetermined first wavelength to a measurement site that measures pulse waves, and the first wavelength that is irradiated to the measurement site. A first light receiving unit that receives the light reflected by the measurement site and outputs a measurement signal based on the amount of received light, and a second light that irradiates the measurement site with light having a predetermined second wavelength. A light emitting unit and a second light receiving unit configured to receive light reflected by the measurement site and output a measurement signal based on the amount of received light. A first line connecting the first light emitting part and the first light receiving part, and a second line connecting the second light emitting part and the second light receiving part when viewed from a part; A second light receiving portion provided at a position where the first light receiving portion, the first measurement signal output from the first light receiving portion, and the second light receiving portion. Characterized in that it comprises a generator for generating a pulse wave signal indicating the pulse wave based on at least one of the second measurement signal output. According to this configuration, the accuracy of measurement can be increased in an apparatus that measures pulse waves using a plurality of light sources.

また、本発明に係る脈波測定装置は、上記脈波測定装置において、前記第1の発光部、前記第1の受光部、前記第2の発光部及び前記第2の受光部は、前記測定部位からみた場合に、前記第1の線分の中点と前記第2の線分の中点とが重なる位置、又は、前記第1の線分の中点と前記第2の線分の中点との距離が、前記第1の発光部と前記第2の発光部との距離よりも小さく、かつ前記第1の受光部と前記第2の受光部との距離よりも小さい位置に設けられることとしてもよい。この構成によれば、複数の光源を用いて脈波の測定を行う装置において、測定の精度を高くすることができる。   The pulse wave measuring device according to the present invention is the above-described pulse wave measuring device, wherein the first light emitting unit, the first light receiving unit, the second light emitting unit, and the second light receiving unit are the measurement unit. The position where the midpoint of the first line segment and the midpoint of the second line segment overlap when viewed from a part, or the midpoint of the first line segment and the second line segment The distance from the point is provided at a position smaller than the distance between the first light emitting unit and the second light emitting unit and smaller than the distance between the first light receiving unit and the second light receiving unit. It is good as well. According to this configuration, the accuracy of measurement can be increased in an apparatus that measures pulse waves using a plurality of light sources.

また、本発明に係る脈波測定装置は、上記脈波測定装置において、前記第1の波長は前記第2の波長よりも長いものであり、前記測定部位からみた場合の前記第1の発光部と前記第1の受光部の距離は、前記第2の発光部と前記第2の受光部の距離よりも大きいこととしてもよい。この構成によれば、複数の光源を用いて脈波の測定を行う装置において、波長の短い光による測定結果の精度の低下を抑制することができる。   Further, the pulse wave measurement device according to the present invention is the above pulse wave measurement device, wherein the first wavelength is longer than the second wavelength, and the first light emitting unit when viewed from the measurement site, The distance between the first light receiving unit and the second light emitting unit may be greater than the distance between the second light receiving unit and the second light receiving unit. According to this configuration, in an apparatus that measures pulse waves using a plurality of light sources, it is possible to suppress a decrease in accuracy of measurement results due to light having a short wavelength.

また、本発明に係る脈波測定装置は、上記脈波測定装置において、前記第1の波長は前記第2の波長よりも長いものであり、前記第1の発光部は前記測定部位に対して前記第2の発光部よりも遠い位置に設けられることとしてもよい。この構成によれば、複数の光源を用いて脈波の測定を行う装置において、波長の短い光による測定結果の精度の低下を抑制することができる。   The pulse wave measuring device according to the present invention is the above pulse wave measuring device, wherein the first wavelength is longer than the second wavelength, and the first light emitting unit is It is good also as providing in a position far from a 2nd light emission part. According to this configuration, in an apparatus that measures pulse waves using a plurality of light sources, it is possible to suppress a decrease in accuracy of measurement results due to light having a short wavelength.

また、本発明に係る脈波測定装置は、上記脈波測定装置において、前記測定部位に予め定められた第3の波長の光を照射する第3の発光部と、前記測定部位に照射された前記第3の波長の光が該測定部位で反射した光を受光し、受光量に基づく測定信号を出力する第3の受光部であって、前記測定部位からみた場合に前記第3の発光部と前記第3の受光部とを結ぶ第3の線分が前記第1の線分及び前記第2の線分と交差する位置に設けられた第3の受光部とを具備し、前記生成部は、前記第1の測定信号、前記第2の測定信号及び前記第3の受光部が出力する第3の測定信号の少なくともいずれかひとつに基づいて前記脈波信号を生成することとしてもよい。この構成によれば、3以上の光源を用いて脈波の測定を行う装置において、測定の精度を高くすることができる。   The pulse wave measuring device according to the present invention is the above-described pulse wave measuring device, wherein the measurement site is irradiated with a third light emitting unit that irradiates light having a predetermined third wavelength, and the measurement site is irradiated. A third light-receiving unit that receives light reflected by the measurement site by the light having the third wavelength and outputs a measurement signal based on the amount of received light, and the third light-emitting unit when viewed from the measurement site And a third light receiving part provided at a position where a third line segment connecting the first light receiving part and the third light receiving part intersects the first line segment and the second line segment, and the generation part May generate the pulse wave signal based on at least one of the first measurement signal, the second measurement signal, and the third measurement signal output by the third light receiving unit. According to this configuration, the accuracy of measurement can be increased in an apparatus that measures pulse waves using three or more light sources.

本発明の実施形態に係る脈波測定装置1の外観図。1 is an external view of a pulse wave measurement device 1 according to an embodiment of the present invention. 脈波測定装置の構成例を示すブロック図。The block diagram which shows the structural example of a pulse-wave measuring apparatus. 発光素子と受光素子の位置関係を説明するための図。The figure for demonstrating the positional relationship of a light emitting element and a light receiving element. 脈波測定装置の動作を表す動作フロー図。The operation | movement flowchart showing operation | movement of a pulse-wave measuring apparatus. 脈波測定装置の動作を表す動作フロー図。The operation | movement flowchart showing operation | movement of a pulse-wave measuring apparatus. 発光素子と受光素子の位置関係を説明するための図。The figure for demonstrating the positional relationship of a light emitting element and a light receiving element. 発光素子と受光素子の位置関係を説明するための図。The figure for demonstrating the positional relationship of a light emitting element and a light receiving element. 発光素子と受光素子の位置関係を説明するための図。The figure for demonstrating the positional relationship of a light emitting element and a light receiving element.

<構成>
図1は、本実施形態に係る脈波測定装置の外観を示す図である。図1(a)は、脈波測定装置1を上面から見た図である。脈波測定装置1は、生体2の手首に装着される装置本体10と、脈波を測定する測定部位に装着される脈波センサー20とをケーブル30で接続して構成されている。本実施形態では、脈波センサー20は、図1(b)に示すように、人差指の根元の手のひら側にバンド40によって固定される。装置本体10には、ディスプレイ15と脈波測定装置1を操作するための操作スイッチ16が設けられている。また、装置本体10には加速度センサー17が内蔵されている。加速度センサー17は、生体2の動き(体動)に伴って装置本体10が動くと、動いた装置本体10の加速度を測定し、測定した加速度を表す信号を出力する。以下、脈波測定装置1の各構成を脈波センサー20、装置本体10の順に説明する。
<Configuration>
FIG. 1 is a diagram illustrating an appearance of a pulse wave measurement device according to the present embodiment. FIG. 1A is a view of the pulse wave measuring device 1 as viewed from above. The pulse wave measuring device 1 is configured by connecting a device main body 10 attached to a wrist of a living body 2 and a pulse wave sensor 20 attached to a measurement site for measuring a pulse wave by a cable 30. In the present embodiment, the pulse wave sensor 20 is fixed to the palm side of the base of the index finger by a band 40 as shown in FIG. The apparatus main body 10 is provided with an operation switch 16 for operating the display 15 and the pulse wave measuring apparatus 1. In addition, the apparatus main body 10 includes an acceleration sensor 17. When the apparatus main body 10 moves in accordance with the movement (body movement) of the living body 2, the acceleration sensor 17 measures the acceleration of the moved apparatus main body 10, and outputs a signal representing the measured acceleration. Hereinafter, each component of the pulse wave measuring device 1 will be described in the order of the pulse wave sensor 20 and the device main body 10.

図2は、脈波測定装置1の構成を表すブロック図である。受発光部210は、緑色光の波長の光を照射するLED(Light Emitting Diode)などの第1発光素子211Aと、緑色光を受光するフォトダイオードなどの第1受光素子212Aとを有する。第1発光素子211Aは、本発明に係る第1の発光部の一例である。第1受光素子212Aは、本発明に係る第1の受光部の一例であり、第1発光素子211Aによって照射された光が測定部位で反射した反射光を受光し、受光量に応じた信号を出力する。   FIG. 2 is a block diagram showing the configuration of the pulse wave measuring device 1. The light emitting / receiving unit 210 includes a first light emitting element 211A such as an LED (Light Emitting Diode) that emits light having a wavelength of green light, and a first light receiving element 212A such as a photodiode that receives green light. The first light emitting element 211A is an example of a first light emitting unit according to the present invention. The first light receiving element 212A is an example of a first light receiving unit according to the present invention. The first light receiving element 212A receives the reflected light reflected from the measurement site by the light emitted by the first light emitting element 211A, and outputs a signal corresponding to the amount of light received. Output.

また、受発光部210は、赤色光の波長の光を照射するLEDなどの第2発光素子211Bと、赤色光を受光するフォトダイオードなどの第2受光素子212Bとを有する。第2発光素子211Bは、本発明に係る第2の発光部の一例である。第2受光素子212Bは、本発明に係る第2の受光部の一例であり、第2発光素子211Bによって照射された光が測定部位で反射した反射光を受光し、受光量に応じた信号を出力する。駆動部220には、第1発光素子211A及び第2発光素子211Bの発光強度と発光タイミングを制御する制御信号がアナログ制御回路(不図示)から供給される。駆動部220は、この制御信号の振幅に応じた大きさの電流を受発光部210の第1発光素子211A及び第2発光素子211Bに供給する。   The light emitting / receiving unit 210 includes a second light emitting element 211B such as an LED that emits light having a wavelength of red light, and a second light receiving element 212B such as a photodiode that receives red light. The second light emitting element 211B is an example of a second light emitting unit according to the present invention. The second light receiving element 212B is an example of a second light receiving unit according to the present invention. The second light receiving element 212B receives the reflected light reflected from the measurement site by the light emitted by the second light emitting element 211B, and outputs a signal corresponding to the amount of light received. Output. A control signal for controlling the light emission intensity and the light emission timing of the first light emitting element 211A and the second light emitting element 211B is supplied to the driving unit 220 from an analog control circuit (not shown). The driving unit 220 supplies a current having a magnitude corresponding to the amplitude of the control signal to the first light emitting element 211A and the second light emitting element 211B of the light emitting / receiving unit 210.

図1(b)において、測定部位(指)と接触している脈波センサー20の部分には、ガラス板などの光を透過させる透過板(図示略)が設けられており、透過板の下方に受発光部210が設けられている。第1発光素子211Aは透過板の方向が光軸方向となるように固定され、第1受光素子212Aは透過板の方向に受光面が向くように固定されている。第2発光素子211Bと第2受光素子212Bも同様であり、第2発光素子211Bは透過板の方向が光軸方向となるように固定され、第2受光素子212Bは透過板の方向に受光面が向くように固定されている。第1発光素子211Aが発した光は透過板を透過して測定部位に照射され、測定部位で反射した光を、透過板を介して第1受光素子212Aが受光する。同様に、第2発光素子211Bが発した光は透過板を通過して測定部位に照射され、測定部位から反射した光を、透過板を介して第2受光素子212Bが受光する。第1受光素子212A及び第2受光素子212Bは、受光量に応じた大きさの電流の測定信号を、ケーブル30を介して装置本体10に送出する。   In FIG. 1B, a portion of the pulse wave sensor 20 that is in contact with the measurement site (finger) is provided with a transmission plate (not shown) that transmits light, such as a glass plate, below the transmission plate. A light emitting / receiving unit 210 is provided. The first light emitting element 211A is fixed so that the direction of the transmission plate is the optical axis direction, and the first light receiving element 212A is fixed so that the light receiving surface faces the direction of the transmission plate. The same applies to the second light emitting element 211B and the second light receiving element 212B. The second light emitting element 211B is fixed so that the direction of the transmission plate is the optical axis direction, and the second light receiving element 212B is the light receiving surface in the direction of the transmission plate. It is fixed so that it faces. The light emitted from the first light emitting element 211A is transmitted through the transmission plate and irradiated to the measurement site, and the light reflected by the measurement site is received by the first light receiving device 212A via the transmission plate. Similarly, the light emitted from the second light emitting element 211B passes through the transmission plate and is irradiated to the measurement site, and the light reflected from the measurement site is received by the second light receiving element 212B through the transmission plate. The first light receiving element 212 </ b> A and the second light receiving element 212 </ b> B send a current measurement signal having a magnitude corresponding to the amount of received light to the apparatus body 10 via the cable 30.

図3の(a),(b)は、第1発光素子211A、第1受光素子212A、第2発光素子211B、第2受光素子212Bの位置関係を示す図である。図3の(a)は、第1発光素子211A、第1受光素子212A、第2発光素子211B、第2受光素子212Bを測定部位の方向からみた場合の位置関係を示す図であり、図3の(b)は、図3の(a)に示す矢印A1方向からみた図である。線分L1は、測定部位の方向からみた場合の第1発光素子211Aと第1受光素子212Aとを結ぶ線分(第1の線分)であり、線分L2は、第2発光素子211Bと第2受光素子212Bとを結ぶ線分(第2の線分)である。図示のように、この実施形態では、測定部位からみた場合に、線分L1と線分L2とが交差するような位置関係で、第1発光素子211A、第1受光素子212A、第2発光素子211B及び第2受光素子212Bが設けられている。更に、図3の(a)に示す例では、第1発光素子211A、第1受光素子212A、第2発光素子211B及び第2受光素子212Bは、線分L1の中点m1と線分L2の中点m2との距離が、第1発光素子211Aと第2発光素子211Bとの距離d1よりも小さく、かつ第1受光素子212Aと第2受光素子212Bとの距離d2よりも小さい位置に設けられている。このとき、第1発光素子211A、第1受光素子212A、第2発光素子211B及び第2受光素子212Bは、線分L1の中点と線分L2の中点が重なる位置関係であってもよい。   3A and 3B are diagrams showing the positional relationship between the first light emitting element 211A, the first light receiving element 212A, the second light emitting element 211B, and the second light receiving element 212B. FIG. 3A is a diagram showing a positional relationship when the first light emitting element 211A, the first light receiving element 212A, the second light emitting element 211B, and the second light receiving element 212B are viewed from the direction of the measurement site. (B) of FIG. 3 is a view seen from the direction of the arrow A1 shown in (a) of FIG. The line segment L1 is a line segment (first line segment) connecting the first light emitting element 211A and the first light receiving element 212A when viewed from the direction of the measurement site, and the line segment L2 is the same as the second light emitting element 211B. This is a line segment (second line segment) connecting the second light receiving element 212B. As illustrated, in this embodiment, when viewed from the measurement site, the first light emitting element 211A, the first light receiving element 212A, and the second light emitting element are in a positional relationship such that the line segment L1 and the line segment L2 intersect. 211B and a second light receiving element 212B are provided. Further, in the example shown in FIG. 3A, the first light emitting element 211A, the first light receiving element 212A, the second light emitting element 211B, and the second light receiving element 212B have the midpoint m1 and the line segment L2 of the line segment L1. The distance from the midpoint m2 is provided at a position smaller than the distance d1 between the first light emitting element 211A and the second light emitting element 211B and smaller than the distance d2 between the first light receiving element 212A and the second light receiving element 212B. ing. At this time, the first light emitting element 211A, the first light receiving element 212A, the second light emitting element 211B, and the second light receiving element 212B may have a positional relationship in which the midpoint of the line segment L1 and the midpoint of the line segment L2 overlap. .

上述したように、第1発光素子211Aが発した光は測定部位に照射され、測定部位で反射した光を第1受光素子212Aが受光する。また、第2発光素子211Bが発した光は測定部位に照射され、測定部位で反射した光を第2受光素子212Bが受光する。上述したように、第1発光素子211A、第1受光素子212A、第2発光素子211B及び第2受光素子212Bは、測定部位の方向からみて線分L1と線分L2とが交わる位置関係となるように構成されている。そのため、第1受光素子212Aが受光する光の反射位置と第2受光素子212Bが受光する光の反射位置は近接した位置となる。   As described above, the light emitted from the first light emitting element 211A is applied to the measurement site, and the first light receiving element 212A receives the light reflected from the measurement site. The light emitted from the second light emitting element 211B is applied to the measurement site, and the second light receiving element 212B receives the light reflected from the measurement site. As described above, the first light-emitting element 211A, the first light-receiving element 212A, the second light-emitting element 211B, and the second light-receiving element 212B have a positional relationship where the line segment L1 and the line segment L2 intersect when viewed from the direction of the measurement site. It is configured as follows. Therefore, the reflection position of the light received by the first light receiving element 212A and the reflection position of the light received by the second light receiving element 212B are close to each other.

図2に示すように、装置本体10は、制御部110、信号処理部120、表示部150、操作部160、加速度センサー17及び記憶部180を有する。制御部110は、CPU(Central Processing Unit)とメモリー(ROM(Read Only Memory)及びRAM(Random Access Memory)を有し、ROMに記憶されている制御プログラムをCPUが実行することにより制御部110と接続されている各部を制御する。具体的には、制御部110は、受発光部210から出力される信号に応じた脈波信号を生成する処理を行う。   As illustrated in FIG. 2, the apparatus main body 10 includes a control unit 110, a signal processing unit 120, a display unit 150, an operation unit 160, an acceleration sensor 17, and a storage unit 180. The control unit 110 includes a CPU (Central Processing Unit), a memory (ROM (Read Only Memory), and a RAM (Random Access Memory)), and the CPU executes a control program stored in the ROM so that the control unit 110 Specifically, the control unit 110 performs processing for generating a pulse wave signal corresponding to a signal output from the light emitting / receiving unit 210.

信号処理部120は、本発明に係る生成部の一例であり、第1受光素子212Aが出力する測定信号及び第2受光素子212Bが出力する測定信号の少なくともいずれか一方に基づいて脈波を表す脈波信号を生成する。信号処理部120は、脈波センサー20の受発光部210から出力される測定信号を取得して増幅するアンプ(図示略)と、増幅した信号を予め定められたサンプリング周波数で量子化する第1のA/D変換回路(図示略)とを有する。また、信号処理部120は、加速度センサー17から供給される信号を予め定められたサンプリング周波数で量子化する第2のA/D変換回路(図示略)を有する。計時部130は、クロック供給部140の計時クロック信号をカウントして時刻を計時する。クロック供給部140は、発振回路と分周回路とを有し、発振回路によって基準クロック信号を制御部110へ供給するとともに、分周回路により計時用の計時クロック信号を生成して制御部110へ供給する。表示部150は、ディスプレイ15を有し、制御部110の制御の下、計時部130で計時された時刻の情報や脈波を測定するためのメニュー画面、測定結果などの各種画像を表示する。操作部160は、操作スイッチ16を有し、操作スイッチ16が操作された操作信号を制御部110へ送出する。記憶部180は各種データを記憶する。   The signal processing unit 120 is an example of a generation unit according to the present invention, and represents a pulse wave based on at least one of the measurement signal output from the first light receiving element 212A and the measurement signal output from the second light receiving element 212B. A pulse wave signal is generated. The signal processing unit 120 obtains and amplifies a measurement signal output from the light emitting / receiving unit 210 of the pulse wave sensor 20 and a first that quantizes the amplified signal at a predetermined sampling frequency. A / D conversion circuit (not shown). Further, the signal processing unit 120 includes a second A / D conversion circuit (not shown) that quantizes the signal supplied from the acceleration sensor 17 at a predetermined sampling frequency. The clock unit 130 counts the clock signal from the clock supply unit 140 and clocks the time. The clock supply unit 140 includes an oscillation circuit and a frequency dividing circuit. The clock supply unit 140 supplies a reference clock signal to the control unit 110 by the oscillation circuit, and generates a time measuring clock signal for time measurement by the frequency dividing circuit to the control unit 110. Supply. The display unit 150 includes a display 15, and displays various images such as time information measured by the time measuring unit 130, a menu screen for measuring pulse waves, and measurement results under the control of the control unit 110. The operation unit 160 includes an operation switch 16 and sends an operation signal indicating that the operation switch 16 has been operated to the control unit 110. The storage unit 180 stores various data.

制御部110は、信号処理部120から出力される測定信号の波形におけるピークの時間間隔を脈拍間隔とし、測定信号の波形において所定時間毎のピークの出現頻度を脈拍数として、脈拍間隔及び脈拍数を示す情報を表示部150に出力する。   The control unit 110 sets a pulse time interval as a peak time interval in the waveform of the measurement signal output from the signal processing unit 120, and sets a pulse frequency as a frequency of appearance of a peak every predetermined time in the waveform of the measurement signal. Is output to the display unit 150.

<動作例>
図4は、脈波測定装置1が行う処理の流れを示したフローチャートである。以下、本実施形態に係る脈波測定装置1の動作例を説明する。まず、図示せぬ電源から電力が脈波測定装置1の各部へ供給されると、制御部110においては、ROMに記憶されているプログラムが実行される。制御部110がプログラムの実行を開始した後、操作部160において脈波の測定開始を指示する操作が行われると、(ステップSA1;YES)、制御部110は、動作モードを第1モードにする(ステップSA2)。次に制御部110は、動作モードが第1モードであると(ステップSA3;YES)、第1処理(ステップSA4)を行う。
<Operation example>
FIG. 4 is a flowchart showing a flow of processing performed by the pulse wave measurement device 1. Hereinafter, an operation example of the pulse wave measuring apparatus 1 according to the present embodiment will be described. First, when power is supplied from a power source (not shown) to each unit of the pulse wave measuring device 1, the control unit 110 executes a program stored in the ROM. After the control unit 110 starts executing the program, when an operation for instructing the start of pulse wave measurement is performed in the operation unit 160 (step SA1; YES), the control unit 110 sets the operation mode to the first mode. (Step SA2). Next, when the operation mode is the first mode (step SA3; YES), the control unit 110 performs the first process (step SA4).

制御部110は、第1処理では第1発光素子211A、第2発光素子211Bを点灯させ、測定部位に対して光を照射する(ステップSA4)。第1発光素子211A、第2発光素子211Bから照射されて測定部位にて反射された光は、第1受光素子212A、第2受光素子212Bでそれぞれ受光され、受光量に応じた測定信号が出力される。出力された信号は信号処理部120にてA/D変換され、A/D変換されたデータは時系列にRAMに記憶される。制御部110は、測定信号の波形におけるピークの時間間隔を脈拍間隔とし、測定信号の波形において所定時間毎のピークの出現頻度を脈拍数として検出し、検出した脈拍間隔と脈拍数とを示す画像を表示部150に表示させる。なお、制御部110は、操作部160を介して脈波を測定する操作を受け付けなければ(ステップSA1;NO)、操作がなされるまで待機する。   In the first process, the controller 110 turns on the first light emitting element 211A and the second light emitting element 211B, and irradiates the measurement site with light (step SA4). The light emitted from the first light emitting element 211A and the second light emitting element 211B and reflected at the measurement site is received by the first light receiving element 212A and the second light receiving element 212B, and a measurement signal corresponding to the amount of received light is output. Is done. The output signal is A / D converted by the signal processing unit 120, and the A / D converted data is stored in the RAM in time series. The controller 110 detects the peak time interval in the waveform of the measurement signal as the pulse interval, detects the frequency of appearance of the peak every predetermined time in the waveform of the measurement signal as the pulse rate, and shows the detected pulse interval and the pulse rate Is displayed on the display unit 150. In addition, if control unit 110 does not accept an operation for measuring a pulse wave via operation unit 160 (step SA1; NO), control unit 110 stands by until the operation is performed.

操作部160において測定の終了を指示する操作が行われた場合(ステップSA6;YES)、制御部110は、第1発光素子211A、第2発光素子211Bを消灯し(ステップSA7)、処理の流れをステップSA1に戻す。一方、制御部110は、ステップSA6でNOと判断した場合、処理の流れをステップSA3に戻す。   When an operation for instructing the end of measurement is performed in the operation unit 160 (step SA6; YES), the control unit 110 turns off the first light emitting element 211A and the second light emitting element 211B (step SA7), and the flow of processing. Is returned to step SA1. On the other hand, when it is determined NO in step SA6, control unit 110 returns the process flow to step SA3.

なお、制御部110は、図4の処理と並行して図5の処理を行っている。具体的には、制御部110は、信号処理部120から順次入力される測定信号について、図5に示した処理を行っている。まず、制御部110は、一定期間を計るためのカウンターnの値を初期化して「0」にする(ステップSB1)。この後、加速度センサーによって検出された加速度が予め定められた閾値(以下「加速度閾値」という)以上である場合(ステップSB2;YES)、制御部110は、動作のモードを第1モードにする(ステップSB3)。なお、加速度閾値については、体動の影響が測定信号に表れる時の加速度を閾値とするが、設計により適宜設定してもよい。   The control unit 110 performs the process of FIG. 5 in parallel with the process of FIG. Specifically, the control unit 110 performs the process illustrated in FIG. 5 on the measurement signals sequentially input from the signal processing unit 120. First, the control unit 110 initializes the value of the counter n for measuring a certain period and sets it to “0” (step SB1). Thereafter, when the acceleration detected by the acceleration sensor is equal to or greater than a predetermined threshold (hereinafter referred to as “acceleration threshold”) (step SB2; YES), the control unit 110 sets the operation mode to the first mode ( Step SB3). As for the acceleration threshold, the acceleration when the influence of body motion appears in the measurement signal is used as the threshold, but may be set as appropriate depending on the design.

一方、制御部110は、加速度センサーによって検出された加速度の値が加速度閾値未満である場合(ステップSB2;NO)、カウンターnの値に「1」を加える(ステップSB4)。この後、制御部110は、カウンターnの値が予め定められた閾値(以下「カウンター閾値」という)以上であるか判断する。ここで、制御部110は、カウンターnの値がカウンター閾値未満である場合、処理の流れをステップSB2に移す。一方、制御部110は、カウンターnの値が閾値以上である場合(ステップSB5;YES)、体動による加速度が一定期間の間において加速度閾値未満であったと判断する。制御部110は、ここで生体2の体動が小さいまたは無いものと判断し、動作のモードを第2モードにする(ステップSB6)。そして、処理の流れをステップSB2に移す。   On the other hand, when the acceleration value detected by the acceleration sensor is less than the acceleration threshold value (step SB2; NO), the control unit 110 adds “1” to the value of the counter n (step SB4). Thereafter, control unit 110 determines whether the value of counter n is equal to or greater than a predetermined threshold (hereinafter referred to as “counter threshold”). Here, when the value of the counter n is less than the counter threshold value, the control unit 110 moves the process flow to step SB2. On the other hand, when the value of counter n is equal to or greater than the threshold value (step SB5; YES), control unit 110 determines that the acceleration due to body movement is less than the acceleration threshold value during a certain period. The control unit 110 determines that the body movement of the living body 2 is small or absent here, and sets the operation mode to the second mode (step SB6). Then, the process flow proceeds to step SB2.

制御部110は、処理の流れがステップSA3に戻った際に図5の処理によって動作モードが第2モードとされている場合には第2処理を行う(ステップSA5)。具体的には、制御部110は、第1発光素子211Aを消灯させ、第2発光素子211Bを点灯させる。このように、本実施形態では、体動が小さな状態が続いた場合には、第1発光素子211Aを消灯して脈の測定を行うため、体動の大小に関係なく第1発光素子211A、第2発光素子211Bの両方を点灯させて脈の測定を行う構成と比較して消費電力が抑えられる。   When the flow of processing returns to step SA3, control unit 110 performs the second processing if the operation mode is set to the second mode by the processing of FIG. 5 (step SA5). Specifically, the control unit 110 turns off the first light emitting element 211A and turns on the second light emitting element 211B. As described above, in the present embodiment, when the body movement continues to be small, the first light emitting element 211A is turned off and the pulse is measured, so the first light emitting element 211A, Power consumption can be suppressed compared to a configuration in which both of the second light emitting elements 211B are turned on to measure a pulse.

また、この実施形態では、上述したように、測定部位の方向からみた場合に、第1発光素子211Aと第1受光素子212Aとを結ぶ線分L1と、第2発光素子211Bと第2受光素子212Bとを結ぶ線分L2とが交差するような位置関係となっている。これにより、第1受光素子212Aが受光する光(以下「第1光」という)による測定値と、第2受光素子212Bが受光する光(以下「第2光」という)による測定値との間の相関を高くすることができる。   In this embodiment, as described above, when viewed from the direction of the measurement site, the line segment L1 connecting the first light emitting element 211A and the first light receiving element 212A, the second light emitting element 211B, and the second light receiving element. The positional relationship is such that the line segment L2 connecting 212B intersects. Thereby, between the measurement value by the light (hereinafter referred to as “first light”) received by the first light receiving element 212A and the measurement value by the light (hereinafter referred to as “second light”) received by the second light receiving element 212B. It is possible to increase the correlation.

第1光の反射位置と第2光の反射位置がずれてしまうと、反射位置における血液の量が異なっている場合があり、そのような場合には第1光による脈波の測定値と第2光による脈波の測定値とは相関の低いものとなってしまう。それに対しこの実施形態では、線分L1と線分L2とが交わるような位置関係で、発光素子と受光素子とを配置するから、第1光の反射位置と第2光の反射位置とを近接させることができ、これにより、脈波の測定値の精度を高くすることができる。   If the reflection position of the first light and the reflection position of the second light are deviated, the amount of blood at the reflection position may be different. It becomes a thing with a low correlation with the measured value of the pulse wave by two lights. On the other hand, in this embodiment, since the light emitting element and the light receiving element are arranged in such a positional relationship that the line segment L1 and the line segment L2 intersect, the reflection position of the first light and the reflection position of the second light are close to each other. Thereby, the accuracy of the measured value of the pulse wave can be increased.

更に、この実施形態では、測定部位の方向からみて、線分L1の中点m1と線分L2の中点m2との距離が距離d1(図3参照)よりも小さく、かつ、距離d2(図3参照)よりも小さい位置関係となるように、第1発光素子211A、第1受光素子212A、第2発光素子211B及び第2受光素子212Bが構成されている。これにより、第1光の反射位置と第2光の反射位置とをより近接させて、測定値の精度を高くすることができる。   Furthermore, in this embodiment, the distance between the midpoint m1 of the line segment L1 and the midpoint m2 of the line segment L2 is smaller than the distance d1 (see FIG. 3) and the distance d2 (see FIG. 3). 3), the first light emitting element 211A, the first light receiving element 212A, the second light emitting element 211B, and the second light receiving element 212B are configured. Thereby, the reflective position of 1st light and the reflective position of 2nd light can be brought closer, and the precision of a measured value can be made high.

<変形例>
本発明は、上述した実施形態に限定されるものではなく、以下のように変形させて実施してもよい。また、以下の変形例を組み合わせてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and may be carried out by being modified as follows. Further, the following modifications may be combined.

(1)上述した実施形態では、図1に示す脈波測定装置1を示したが、脈波測定装置1の構成はこれに限定されるものではなく、他の構成であってもよい。例えば、装置本体10が、腕や足などの体の他の部位に装着される形状であってもよい。また、例えば、装置本体10が携帯電話機や携帯情報端末などの装置であってもよい。 (1) In the above-described embodiment, the pulse wave measuring device 1 shown in FIG. 1 is shown. However, the configuration of the pulse wave measuring device 1 is not limited to this, and may be another configuration. For example, the apparatus main body 10 may have a shape that is attached to another part of the body such as an arm or a leg. Further, for example, the device body 10 may be a device such as a mobile phone or a portable information terminal.

また、上述の実施形態では、装置本体10と脈波センサー20とをケーブル30で接続する構成としたが、これに限らず、装置本体10と脈波センサー20とを無線通信により接続する構成としてもよい。また、上述した実施形態では、脈波測定装置1は、装置本体10と脈波センサー20とをケーブル30で接続して構成される例であったが、これに限らず、例えば、装置本体10と脈波センサー20とが一体となったひとつの装置として構成されていてもよい。この場合は、例えば、脈波測定装置を腕時計のように手首に装着して用いる形状とし、この脈波測定装置と装着部位(手首)とが接触する位置に脈波センサーを設ける構成としてもよい。
また、上述の実施形態では、脈波センサー20が装着される測定部位が人差指の例を説明したが、これに限らず、手の甲、手首、上腕等の他の部位であってもよい。
In the above-described embodiment, the apparatus main body 10 and the pulse wave sensor 20 are connected by the cable 30. However, the present invention is not limited to this, and the apparatus main body 10 and the pulse wave sensor 20 are connected by wireless communication. Also good. In the above-described embodiment, the pulse wave measuring device 1 is an example in which the device main body 10 and the pulse wave sensor 20 are connected by the cable 30, but the present invention is not limited thereto. And the pulse wave sensor 20 may be configured as one device. In this case, for example, the pulse wave measuring device may be configured to be worn on the wrist like a wristwatch, and the pulse wave sensor may be provided at a position where the pulse wave measuring device and the attachment site (wrist) are in contact with each other. .
Further, in the above-described embodiment, an example in which the measurement site on which the pulse wave sensor 20 is mounted is an index finger has been described, but the measurement site is not limited to this and may be another site such as the back of the hand, the wrist, or the upper arm.

(2)上述の実施形態では、受発光部210は、緑色光の波長の光を発する第1発光素子211Aと緑色光の波長光を受光する第1受光素子212Aと赤色光の波長の光を発する第2発光素子211Bと赤色光の波長の光を受光する第2受光素子212Bとを有していた。受発光部が発光及び受光する光は緑色光や赤色光に限らず、青色光や赤外光等、他の波長の光であってもよい。 (2) In the above-described embodiment, the light receiving and emitting unit 210 receives the first light emitting element 211A that emits light having the wavelength of green light, the first light receiving element 212A that receives light having the wavelength of green light, and the light having the wavelength of red light. It had the 2nd light emitting element 211B to emit, and the 2nd light receiving element 212B which receives the light of the wavelength of red light. The light emitted and received by the light emitting / receiving unit is not limited to green light and red light, but may be light of other wavelengths such as blue light and infrared light.

また、上述の実施形態では、異なる2つの波長の光(緑色光と赤色光)を用いて脈波を測定する構成としたが、光の種類は2に限定されるものではなく、これより多くてもよい。例えば、3つの波長の光を用いて脈波を測定するようにしてもよい。この場合も、上述した実施形態と同様に、測定部位の方向からみた場合に、発光素子と受光素子を結ぶ線分が交わる位置関係となるように、複数の発光素子と複数の受光素子が設けられる構成であればよい。   In the above-described embodiment, the pulse wave is measured using light of two different wavelengths (green light and red light). However, the type of light is not limited to 2, but more than this. May be. For example, you may make it measure a pulse wave using the light of three wavelengths. In this case as well, as in the above-described embodiment, a plurality of light emitting elements and a plurality of light receiving elements are provided so that the line segments connecting the light emitting elements and the light receiving elements intersect when viewed from the direction of the measurement site. Any configuration can be used.

図6は、3つ発光素子と3つの受光素子を用いて脈波の測定を行う場合について、発光素子と受光素子の位置関係を説明するための図である。図において、線分L1は第1発光素子211Aと第1受光素子212Aを結ぶ線分であり、線分L2は第2発光素子211Bと第2受光素子212Bを結ぶ線分であり、線分L3は第3発光素子211Cと第3受光素子212Cを結ぶ線分(第3の線分)である。図6に示す例では、線分L1、L2、L3が、測定部位の方向からみて交わる位置関係となるように、各発光素子及び各受光素子が設けられている。このような構成をとることにより、各受光素子の受光量に基づく脈波の測定値の相関を高くすることができる。   FIG. 6 is a diagram for explaining the positional relationship between the light emitting element and the light receiving element in the case of measuring the pulse wave using three light emitting elements and three light receiving elements. In the drawing, a line segment L1 is a line segment connecting the first light emitting element 211A and the first light receiving element 212A, and a line segment L2 is a line segment connecting the second light emitting element 211B and the second light receiving element 212B. Is a line segment (third line segment) connecting the third light emitting element 211C and the third light receiving element 212C. In the example shown in FIG. 6, the light emitting elements and the light receiving elements are provided so that the line segments L1, L2, and L3 are in a positional relationship that intersects when viewed from the direction of the measurement site. By adopting such a configuration, it is possible to increase the correlation between measured values of pulse waves based on the amount of light received by each light receiving element.

(3)上述の実施形態では、測定部位の方向からみた場合に、線分L1の中点m1(図3参照)と、線分L2の中点m2(図3参照)との距離が、距離d1(図3参照)よりも小さく、かつ距離d2(図3参照)よりも小さい位置関係となるように、各発光素子及び各受光素子が設けられていた。各発光素子及び各受光素子の位置関係はこれに限らず、要は、測定部位の方向からみた場合に、第1発光素子211Aと第1受光素子212Aとを結ぶ線分と、第2発光素子211Bと第2受光素子212Bとを結ぶ線分とが交わるような位置関係であればよい。この態様においても、上述した実施形態と同様に、線分L1と線分L2とが交わる位置関係とすることで、第1光の反射位置と第2光の反射位置とを、線分L1と線分L2とが交わらない位置関係と比して近接させることができる。そのため、第1受光素子212Aの受光量に基づく測定値と第2受光素子212Bの受光量に基づく測定値との相関を高くすることができる。 (3) In the above-described embodiment, the distance between the midpoint m1 (see FIG. 3) of the line segment L1 and the midpoint m2 (see FIG. 3) of the line segment L2 is the distance when viewed from the direction of the measurement site. Each light emitting element and each light receiving element are provided so as to have a positional relationship smaller than d1 (see FIG. 3) and smaller than the distance d2 (see FIG. 3). The positional relationship between each light-emitting element and each light-receiving element is not limited to this. In short, when viewed from the direction of the measurement site, the line segment connecting the first light-emitting element 211A and the first light-receiving element 212A and the second light-emitting element The positional relationship may be such that the line segment connecting 211B and the second light receiving element 212B intersects. Also in this aspect, as in the above-described embodiment, by setting the positional relationship where the line segment L1 and the line segment L2 intersect, the reflection position of the first light and the reflection position of the second light are changed to the line segment L1. Compared with the positional relationship where the line segment L2 does not intersect, it can be made closer. Therefore, the correlation between the measured value based on the amount of light received by the first light receiving element 212A and the measured value based on the amount of light received by the second light receiving element 212B can be increased.

また、上述の実施形態において、第1発光素子211Aが照射する光の波長が、第2発光素子211Bが照射する光の波長よりも長い場合に、下記のような位置関係で各発光素子及び各受光素子を設ける構成としてもよい。すなわち、図7に例示するように、測定部位からみた場合の第1発光素子211Aと第1受光素子212Aの距離(L1の長さ)が、第2発光素子211Bと第2受光素子212Bの距離(L2の長さ)よりも小さいような位置関係で配置される構成としてもよい。緑色光等の波長が短い光は散乱し易いため、発光素子と受光素子の距離が短いことが好ましいが、赤色光等の波長が長い光は散乱し難いため、発光素子と受光素子の距離がある程度離れていても計測可能である。発光素子や受光素子はある程度の物理的な大きさがあるため、各素子を近接して配置するには限度があるが、波長の長い光に対応する素子を外側に配置することで、測定精度を高くすることができる。   In the above-described embodiment, when the wavelength of light emitted from the first light emitting element 211A is longer than the wavelength of light emitted from the second light emitting element 211B, each light emitting element and each It is good also as a structure which provides a light receiving element. That is, as illustrated in FIG. 7, the distance (the length of L1) between the first light emitting element 211A and the first light receiving element 212A when viewed from the measurement site is the distance between the second light emitting element 211B and the second light receiving element 212B. It is good also as a structure arrange | positioned by the positional relationship smaller than (length of L2). Since light with a short wavelength such as green light is likely to scatter, it is preferable that the distance between the light emitting element and the light receiving element is short. However, since light with a long wavelength such as red light is difficult to scatter, the distance between the light emitting element and the light receiving element is small. It can be measured even if it is some distance away. Light emitting elements and light receiving elements have a certain physical size, so there is a limit to disposing each element close to each other, but measurement accuracy can be improved by placing elements corresponding to light with a long wavelength outside. Can be high.

また、各発光素子と各受光素子の位置関係は上述したものに限定されるものではなく、例えば、図8に例示するように、第1発光素子211Aが測定部位に対して第2発光素子211Bよりも遠い位置に設けられていてもよい。より具体的には、例えば、波長の短い光を照射する発光素子については測定部位との間の距離が短くなるような位置に設ける構成とし、逆に、波長の長い光を照射する発光素子の場合は測定部位との間の距離が長くなるような位置に設けるようにしてもよい。受光素子についても同様であり、波長の短い光を受光する受光素子については測定部位との間の距離が短くなるような位置に設ける構成としてもよい。すなわち、第1受光素子212Aが測定部位に対して第2受光素子212Bよりも遠い位置に設けられる構成としてもよい。   Further, the positional relationship between each light emitting element and each light receiving element is not limited to that described above. For example, as illustrated in FIG. 8, the first light emitting element 211 </ b> A has a second light emitting element 211 </ b> B with respect to the measurement site. It may be provided in a position farther away. More specifically, for example, a light emitting element that emits light having a short wavelength is provided at a position where the distance to the measurement site is short, and conversely, a light emitting element that emits light having a long wavelength is used. In such a case, it may be provided at a position where the distance to the measurement site is long. The same applies to the light receiving element, and the light receiving element that receives light having a short wavelength may be provided at a position where the distance from the measurement site is shortened. That is, the first light receiving element 212A may be provided at a position farther from the measurement site than the second light receiving element 212B.

(4)上述の実施形態では、2種類の波長の光の制御として、加速度の検出結果に応じた制御を行うようにしたが、2種類の光の制御の態様はこれに限定されるものではなく、他の態様であってもよい。例えば、制御部110が、脈波センサー20から出力される測定信号の振幅を求め、予め測定された基準信号を用いて、基準信号の振幅に対する測定信号の振幅の比を測定信号の振幅の変動幅として算出し、変動幅に応じて発光制御を行うようにしてもよい。具体的な処理の一例としては、例えば、制御部110は、算出した変動幅が予め定められた閾値未満である場合には、うっ血していないと判定して1種類の発光素子のみを点灯させる。一方、変動幅が閾値以上である場合には、制御部110は、測定部位がうっ血していると判定し、2種類の発光素子を点灯させるように制御するようにしてもよい。要は、制御部110が、複数の波長の光を用いて脈波の測定を行うものであればどのようなものであってもよい。 (4) In the above-described embodiment, control according to the detection result of acceleration is performed as control of light of two types of wavelengths, but the mode of control of two types of light is not limited to this. There may be other modes. For example, the control unit 110 obtains the amplitude of the measurement signal output from the pulse wave sensor 20, and uses the reference signal measured in advance to calculate the ratio of the amplitude of the measurement signal to the amplitude of the reference signal. It may be calculated as a width and light emission control may be performed according to the fluctuation width. As an example of specific processing, for example, when the calculated fluctuation range is less than a predetermined threshold, the control unit 110 determines that the blood is not congested and turns on only one type of light emitting element. . On the other hand, when the fluctuation range is equal to or greater than the threshold value, the control unit 110 may determine that the measurement site is congested and control the two types of light emitting elements to light up. In short, any control unit 110 may be used as long as it measures pulse waves using light of a plurality of wavelengths.

1…脈波測定装置、2…生体、10…装置本体、15…ディスプレイ、16…操作スイッチ、17…加速度センサー、20…脈波センサー、30…ケーブル、40…バンド、110…制御部、120…信号処理部、130…計時部、140…クロック供給部、150…表示部、160…操作部、180…記憶部、210…受発光部、220…駆動部。   DESCRIPTION OF SYMBOLS 1 ... Pulse wave measuring device, 2 ... Living body, 10 ... Apparatus main body, 15 ... Display, 16 ... Operation switch, 17 ... Acceleration sensor, 20 ... Pulse wave sensor, 30 ... Cable, 40 ... Band, 110 ... Control part, 120 ... Signal processing unit, 130 ... Timekeeping unit, 140 ... Clock supply unit, 150 ... Display unit, 160 ... Operation unit, 180 ... Storage unit, 210 ... Light emitting / receiving unit, 220 ... Drive unit.

Claims (8)

測定部位に第1の波長の光を照射する第1の発光部と、
前記測定部位で反射した前記第1の発光部からの光を受光する第1の受光部と、
前記測定部位に第2の波長の光を照射する第2の発光部と、
前記測定部位で反射した前記第2の発光部からの光を受光する第2の受光部と、を備え、
前記第1の発光部と前記第1の受光部とを結ぶ第1の線分、前記第2の発光部と前記第2の受光部とを結ぶ第2の線分と交差
前記第1の線分は、前記第2の線分よりも短いことを特徴とする脈波センサー
A first light emitting unit that irradiates the measurement site with light of a first wavelength;
A first light receiving unit that receives light from the first light emitting unit reflected by the measurement site;
A second light emitting unit for irradiating the measurement site with light of a second wavelength;
A second light receiving unit that receives light from the second light emitting unit reflected by the measurement site ,
First line segment connecting the first light emitting portion and the first light receiving portion crosses the second line segment connecting the said second light emitting portion and the second light receiving portion,
The pulse wave sensor , wherein the first line segment is shorter than the second line segment .
請求項1に記載の脈波センサーであって、  The pulse wave sensor according to claim 1,
前記第1の発光部は緑色の光を照射し、前記第2の発光部は赤色の光を照射することを特徴とする脈波センサー。  The pulse wave sensor, wherein the first light emitting unit emits green light and the second light emitting unit emits red light.
請求項1または2に記載の脈波センサーであって、  The pulse wave sensor according to claim 1 or 2,
光を透過させる透過板を備え、  A transmission plate that transmits light;
前記第1の発光部は前記透過板に向かう方向が光軸方向となるように配置され、前記第1の受光部は前記透過板に向かう方向に受光面が向くように配置されていることを特徴とする脈波センサー。  The first light emitting unit is disposed such that a direction toward the transmission plate is an optical axis direction, and the first light receiving unit is disposed such that a light receiving surface faces in a direction toward the transmission plate. Characteristic pulse wave sensor.
請求項1乃至3のいずれか一項に記載の脈波センサーと、  The pulse wave sensor according to any one of claims 1 to 3,
前記第1の受光部からの第1の測定信号と前記第2の受光部からの第2の測定信号とを取得し、前記第1の測定信号及び前記第2の測定信号の少なくともいずれかに基づいて脈波情報を出力する制御部を備えた脈波測定装置。  A first measurement signal from the first light receiving unit and a second measurement signal from the second light receiving unit are acquired, and at least one of the first measurement signal and the second measurement signal is obtained. A pulse wave measuring device including a control unit that outputs pulse wave information based on the pulse wave information.
請求項4に記載の脈波測定装置において、  In the pulse wave measuring device according to claim 4,
前記制御部は、前記第1の発光部及び前記第2の発光部の動作モードを、前記第1の発光部及び前記第2の発光部を点灯する第1モードと、前記第1の発光部を消灯し、前記第2の発光部を点灯する第2モードとのいずれかに決定することを特徴とする脈波測定装置。  The control unit includes an operation mode of the first light emitting unit and the second light emitting unit, a first mode in which the first light emitting unit and the second light emitting unit are turned on, and the first light emitting unit. Is turned off, and the pulse wave measuring device is determined to be one of the second mode in which the second light emitting unit is turned on.
請求項5に記載の脈波測定装置において、  In the pulse wave measuring device according to claim 5,
体動に伴う加速度を検出する加速度センサーを有し、  It has an acceleration sensor that detects acceleration accompanying body movement,
前記制御部は、前記加速度センサーからの加速度信号に基づいて前記第1モードまたは前記第2モードのいずれかに決定することを特徴とする脈波検出装置。  The said control part determines in any one of the said 1st mode or the said 2nd mode based on the acceleration signal from the said acceleration sensor, The pulse-wave detection apparatus characterized by the above-mentioned.
請求項6に記載の脈波測定装置において、  In the pulse wave measuring device according to claim 6,
前記制御部は、前記加速度信号に基づいて前記体動に伴う加速度が閾値以上である場合に前記第1モードに決定することを特徴とする脈波検出装置。  The pulse wave detection device according to claim 1, wherein the control unit determines the first mode based on the acceleration signal when an acceleration accompanying the body movement is greater than or equal to a threshold value.
請求項5乃至7のいずれか一項に記載の脈波測定装置において、  In the pulse wave measuring device according to any one of claims 5 to 7,
前記脈波情報は、脈波波形、脈拍間隔及び脈拍数の少なくともいずれかを含むことを特徴とする脈波測定装置。  The pulse wave measurement apparatus, wherein the pulse wave information includes at least one of a pulse wave waveform, a pulse interval, and a pulse rate.
JP2016083415A 2016-04-19 2016-04-19 Pulse wave sensor and pulse wave measuring device Active JP6137375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083415A JP6137375B2 (en) 2016-04-19 2016-04-19 Pulse wave sensor and pulse wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083415A JP6137375B2 (en) 2016-04-19 2016-04-19 Pulse wave sensor and pulse wave measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011264852A Division JP5923952B2 (en) 2011-12-02 2011-12-02 Pulse wave measuring device and pulse wave sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017091622A Division JP6417594B2 (en) 2017-05-02 2017-05-02 Biological information measuring device

Publications (2)

Publication Number Publication Date
JP2016152965A JP2016152965A (en) 2016-08-25
JP6137375B2 true JP6137375B2 (en) 2017-05-31

Family

ID=56760792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083415A Active JP6137375B2 (en) 2016-04-19 2016-04-19 Pulse wave sensor and pulse wave measuring device

Country Status (1)

Country Link
JP (1) JP6137375B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018430A (en) 2018-07-31 2020-02-06 セイコーエプソン株式会社 Biological information measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969412B2 (en) * 1997-09-05 2007-09-05 セイコーエプソン株式会社 Biological information measuring device
JP3547968B2 (en) * 1998-01-19 2004-07-28 株式会社日本自動車部品総合研究所 Pulse waveform detector
KR101007355B1 (en) * 2008-08-28 2011-01-13 한국전자통신연구원 Apparatus and method for pulse wave measuring
EP2292141B1 (en) * 2009-09-03 2015-06-17 The Swatch Group Research and Development Ltd Method and device for taking a patient's pulse using light waves with two wavelengths
JP2011217784A (en) * 2010-04-05 2011-11-04 Seiko Epson Corp Measuring device and program

Also Published As

Publication number Publication date
JP2016152965A (en) 2016-08-25

Similar Documents

Publication Publication Date Title
KR101303371B1 (en) Method of measuring relative movement of an object and an optical input device over a range of speeds
JP2010156711A (en) Device and method for distance measurement
KR100697986B1 (en) Electronic distance measuring apparatus using laser and supersonic waves
JP6417594B2 (en) Biological information measuring device
JP2018007894A (en) Measuring device, measuring method, and measuring program
US10271747B2 (en) Living-body information measuring device
JP2016169985A (en) Light wave range finder
JP5923952B2 (en) Pulse wave measuring device and pulse wave sensor
JP6137375B2 (en) Pulse wave sensor and pulse wave measuring device
JP2013180031A (en) Pulse wave measuring apparatus
WO2016079953A1 (en) Measuring device and measuring method
JP2009247679A (en) Pulse wave detection method and pulse wave detector
US20180168465A1 (en) Measurement device and measurement method
JP4714179B2 (en) Biological information measuring device and method for controlling biological information measuring device
US11096592B2 (en) Sensor module and biological information display system
WO2010089893A1 (en) System for measuring pulse wave of blood vessel
JP2013094222A (en) Congestion determination device, pulse wave measuring device and congestion determination method
US20180146903A1 (en) Sensor module and biological information displaying system
KR20150025380A (en) Portable device and method of measuring distance using the same
JP2019180823A (en) Living body analyzer and living body analysis method
JP2019174381A (en) Ultrasonic distance measuring apparatus and ultrasonic distance measuring method
JP2019033900A (en) Organism analyzer, organism analysis method and program
JP2019042004A (en) Optical measuring device and optical measuring program
WO2015198584A1 (en) Measurement device and measurement method
US20170224235A1 (en) Measurement apparatus and measurement method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6137375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150