JP4714179B2 - Biological information measuring device and method for controlling biological information measuring device - Google Patents

Biological information measuring device and method for controlling biological information measuring device Download PDF

Info

Publication number
JP4714179B2
JP4714179B2 JP2007113691A JP2007113691A JP4714179B2 JP 4714179 B2 JP4714179 B2 JP 4714179B2 JP 2007113691 A JP2007113691 A JP 2007113691A JP 2007113691 A JP2007113691 A JP 2007113691A JP 4714179 B2 JP4714179 B2 JP 4714179B2
Authority
JP
Japan
Prior art keywords
light
light source
biological information
information measuring
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007113691A
Other languages
Japanese (ja)
Other versions
JP2008264327A (en
Inventor
孝規 清倉
純一 嶋田
恒之 芳賀
尚愛 多々良
和則 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007113691A priority Critical patent/JP4714179B2/en
Publication of JP2008264327A publication Critical patent/JP2008264327A/en
Application granted granted Critical
Publication of JP4714179B2 publication Critical patent/JP4714179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、生体からの散乱光を利用して生体の血流及び脈拍を測定する生体情報測定装置に関する。   The present invention relates to a biological information measuring apparatus that measures blood flow and pulse of a living body using scattered light from the living body.

高齢化社会を迎え、成人病と関連の深い血液循環を測定できる血流計への関心が高まっている。特に、レーザ血流計は、超音波血流計に比較して格段に分解能が高く、超音波血流計では困難であった末梢組織の毛細血管の血流も非侵襲で測定できることから注目されている。従来のレーザ血流計としては、例えば、非特許文献1で開示される技術がある。
Dennis Watkins and G.Allen Holloway,Jr.,An Instrument to measure cutaneous blood flow using the Doppler shift of laser light,IEEE TRANSCTIONS ON BIOMEDICAL ENGINNERING,Vol.BME−25,No.1,January 28−33(1978)
With the aging of society, there is an increasing interest in blood flow meters that can measure blood circulation deeply associated with adult diseases. In particular, laser blood flow meters are attracting attention because they have much higher resolution than ultrasonic blood flow meters and can measure blood flow in capillaries in peripheral tissues, which was difficult with ultrasonic blood flow meters. ing. As a conventional laser blood flow meter, for example, there is a technique disclosed in Non-Patent Document 1.
Dennis Watkins and G. Allen Holloway, Jr. , An Instrument to measure cutaneous blood flowing the Doppler shift of laser light, IEEE TRANSACTIONS ON BIOMEDAL ENGINNERING. BME-25, No. 1, January 28-33 (1978)

ここで、血流情報には心拍に同期して変動する脈拍成分が含まれているため、血流量の変動から脈拍数及び脈拍間隔を推定することは可能である。このような推定する方法で得られた脈拍数及び脈拍間隔は、脈拍を測定したものではないため、細かな変動等の情報が正確に得られない問題がある。正確な脈拍を得るために、従来から光電脈波測定で用いられる発光ダイオード(LED)とフォトダイオード(PD)を組み合わせた光電センサを設ける必要があり、従来のレーザ血流計は、小型化及び低消費電力化が困難であり、携帯型の血流計として採用できていない。   Here, since the blood flow information includes a pulse component that varies in synchronization with the heartbeat, it is possible to estimate the pulse rate and the pulse interval from the variation in the blood flow. Since the pulse rate and pulse interval obtained by such an estimation method are not obtained by measuring the pulse, there is a problem that information such as fine fluctuations cannot be obtained accurately. In order to obtain an accurate pulse, it is necessary to provide a photoelectric sensor that combines a light-emitting diode (LED) and a photodiode (PD) that have been conventionally used in photoelectric pulse wave measurement. Low power consumption is difficult, and it cannot be adopted as a portable blood flow meter.

本発明は、小型で消費電力が低く、血流及び脈拍を測定可能な生体情報測定装置及びその生体情報測定装置の制御方法を提供することを目的とする。   An object of the present invention is to provide a biological information measuring device that is small in size, consumes less power, and can measure blood flow and pulse, and a control method for the biological information measuring device.

本発明者らは、生体からの散乱光をそのまま使用して光電脈波を測定するとレーザ発振光のスペックル干渉により受光素子の出力が乱れ、脈拍の測定が困難であるが、レーザ注入電流が弱いときは光がレーザ発振せずに自然放出し、LEDを用いた場合と同様に脈拍を測定できることを見出し、本発明を完成させた。   When the present inventors measured the photoelectric pulse wave using the scattered light from the living body as it is, the output of the light receiving element is disturbed due to speckle interference of the laser oscillation light, and it is difficult to measure the pulse. When it was weak, light was spontaneously emitted without laser oscillation, and it was found that the pulse can be measured as in the case of using an LED, and the present invention was completed.

具体的には、本発明に係る生体情報測定装置は、生体に向けて出射光を出射する光源と、前記光源からの前記出射光によって前記生体で発生する散乱光を受光して光電流を出力する受光素子と、前記光源を駆動し、前記受光素子からの前記光電流によって前記生体の血流及び前記生体の脈拍を測定する駆動測定回路と、を備える生体情報測定装置であって、前記光源は、変調強度を変化させることにより、レーザ発振光及び自然放出光を切り替えて前記出射光として出射し、前記駆動測定回路は、前記光源が前記レーザ発振光を出射するときに前記生体の血流を測定し、前記光源が前記自然放出光を出射するときに前記生体の脈拍を測定する。 Specifically, the biological information measuring apparatus according to the present invention outputs a photocurrent by receiving a light source that emits outgoing light toward the living body, and scattered light generated in the living body by the outgoing light from the light source. A biological information measuring device comprising: a light receiving element that drives the light source; and a drive measurement circuit that measures the blood flow of the living body and the pulse of the living body by the photocurrent from the light receiving element, Switches the laser oscillation light and the spontaneous emission light by changing the modulation intensity and emits the emitted light as the emission light, and the drive measurement circuit detects the blood flow of the living body when the light source emits the laser oscillation light. The pulse of the living body is measured when the light source emits the spontaneous emission light.

上記生体情報測定装置は、小型で消費電力が低く、血流及び脈拍を測定することができる。   The biological information measuring device is small and has low power consumption, and can measure blood flow and pulse.

本発明に係る生体情報測定装置では、前記駆動測定回路は、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように低周波で前記出射光をパルス状に強度変調することにより、前記光源にレーザ発振光及び自然放出光を切り替えさせることが好ましい。 In the biological information measuring apparatus according to the present invention, the drive measuring circuit, by intensity modulation in the outgoing light pulsed at a low frequency so that it contains the lasing threshold of the laser oscillation light of the light source intensity modulation region The light source is preferably switched between laser oscillation light and spontaneous emission light .

上記生体情報測定装置は、略同時に血流及び脈拍を測定することができる。   The biological information measuring device can measure blood flow and pulse at substantially the same time.

本発明に係る生体情報測定装置では、前記駆動測定回路は、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように高周波で前記出射光を正弦波状に強度変調することにより、前記光源にレーザ発振光及び自然放出光を切り替えさせることが好ましい。 In the biological information measuring apparatus according to the present invention, the drive measurement circuit performs intensity modulation of the emitted light in a sine wave shape at a high frequency so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light of the light source , The light source is preferably switched between laser oscillation light and spontaneous emission light .

上記生体情報測定装置は、略同時に血流及び脈拍を測定することができる。   The biological information measuring device can measure blood flow and pulse at substantially the same time.

本発明に係る生体情報測定装置では、前記駆動測定回路は、血流の測定に利用するドップラーシフト周波数以外の周波数で前記出射光を強度変調し、周波数スペクトル領域における線スペクトルの強度ピークの時間変化から前記生体の脈拍情報を測定することが好ましい。   In the biological information measuring apparatus according to the present invention, the drive measurement circuit intensity-modulates the emitted light at a frequency other than the Doppler shift frequency used for blood flow measurement, and the time change of the intensity peak of the line spectrum in the frequency spectrum region Preferably, the pulse information of the living body is measured.

上記生体情報測定装置は、血流量の測定に影響を与えずに脈拍数の測定精度を高くすることができる。   The biological information measuring device can increase the measurement accuracy of the pulse rate without affecting the blood flow measurement.

本発明に係る生体情報測定装置の制御方法は、生体に向けて出射光を出射する光源、前記光源からの前記出射光によって前記生体で発生する散乱光を受光して光電流を出力する受光素子、及び、前記光源を駆動し、前記受光素子からの前記光電流によって前記生体の血流及び前記生体の脈拍を測定する駆動測定回路を有する生体情報測定装置の制御方法であって、前記光源に、変調強度を変化させることにより、レーザ発振光及び自然放出光を切り替えさせて前記出射光として出射させる出射ステップと、前記駆動測定回路に、前記光源が前記レーザ発振光を出射するときに前記生体の血流を測定させ、前記光源が前記自然放出光を出射するときに前記生体の脈拍を測定させる測定ステップと、を順に備える。 The control method of the biological information measuring apparatus according to the present invention includes a light source that emits outgoing light toward a living body, a light receiving element that receives scattered light generated in the living body by the outgoing light from the light source and outputs a photocurrent , and the driving of the light source, a control method of the biological information measuring apparatus having a drive measuring circuit for measuring the pulse of the blood flow and the biological of the living body by the photocurrent from the light receiving element, said light source An emission step in which laser oscillation light and spontaneous emission light are switched by changing the modulation intensity and emitted as the emission light; and the living body when the light source emits the laser oscillation light to the drive measurement circuit And measuring step of measuring the pulse of the living body when the light source emits the spontaneous emission light.

上記生体情報測定装置の制御方法は、小型で消費電力が低く、血流及び脈拍を測定可能な前記生体情報測定装置を実現することができる。   The control method of the biological information measuring device can realize the biological information measuring device that is small in size, has low power consumption, and can measure blood flow and pulse.

本発明に係る生体情報測定装置の制御方法では、前記出射ステップは、前記駆動測定回路に、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように低周波で前記出射光をパルス状に強度変調させることにより、前記光源に、レーザ発振光及び自然放出光を切り替えさせることが好ましい。 In the control method of the biological information measuring device according to the present invention, the emission step includes emitting the emitted light at a low frequency so that the drive measurement circuit includes an oscillation threshold value of the laser oscillation light of the light source in the intensity modulation region. It is preferable to cause the light source to switch between laser oscillation light and spontaneous emission light by modulating the intensity in pulses.

上記生体情報測定装置の制御方法は、前記生体情報測定装置に、略同時に血流及び脈拍を測定させることができる。   The biological information measuring device control method can cause the biological information measuring device to measure blood flow and pulse at substantially the same time.

本発明に係る生体情報測定装置の制御方法では、前記出射ステップは、前記駆動測定回路に、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように高周波で前記出射光を正弦波状に強度変調させることにより、前記光源に、レーザ発振光及び自然放出光を切り替えさせることが好ましい。 In the control method of the biological information measuring apparatus according to the present invention, the emission step sine the emission light at a high frequency so that the drive measurement circuit includes an oscillation threshold value of the laser oscillation light of the light source in the intensity modulation region. It is preferable to cause the light source to switch between laser oscillation light and spontaneous emission light by modulating the intensity in a wave shape.

上記生体情報測定装置の制御方法は、前記生体情報測定装置に、略同時に血流及び脈拍を測定させることができる。   The biological information measuring device control method can cause the biological information measuring device to measure blood flow and pulse at substantially the same time.

本発明に係る生体情報測定装置の制御方法では、前記出射ステップは、前記駆動測定回路に、血流の測定に利用するドップラーシフト周波数以外の周波数で前記出射光を強度変調させ、前記測定ステップは、前記駆動測定回路に、周波数スペクトル領域における線スペクトルの強度ピークの時間変化から前記生体の脈拍情報を測定させることが好ましい。   In the control method of the biological information measuring device according to the present invention, the emission step causes the drive measurement circuit to intensity-modulate the emitted light at a frequency other than a Doppler shift frequency used for blood flow measurement, and the measurement step includes It is preferable that the drive measurement circuit measures the pulse information of the living body from the time change of the intensity peak of the line spectrum in the frequency spectrum region.

上記生体情報測定装置の制御方法は、血流量の測定に影響を与えずに前記生体情報測定装置の脈拍数の測定精度を高くさせることができる。   The biological information measuring device control method can increase the pulse rate measurement accuracy of the biological information measuring device without affecting the blood flow measurement.

本発明は、小型で消費電力が低く、血流及び脈拍を測定可能な生体情報測定装置及びその生体情報測定装置の制御方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a biological information measuring device that is small in size, consumes low power, and can measure blood flow and pulse and a method for controlling the biological information measuring device.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。また、各実施形態に係る生体情報測定装置の構成を示す図において、電源、あるいは全体の動作を制御する制御部などの通常の技術により実現できる部分は図示していない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. Moreover, in the figure which shows the structure of the biological information measuring device which concerns on each embodiment, the part which can be implement | achieved by normal techniques, such as a power supply or a control part which controls the whole operation | movement, is not shown in figure.

図1に、本実施形態に係る生体情報測定装置の概略図を示した。本実施形態に係る生体情報測定装置100は、生体99に向けて出射光を出射する光源110と、光源110からの出射光によって生体99で発生する散乱光を受光して光電流を出力する受光素子120と、受光素子120からの光電流によって生体99の血流及び生体99の脈拍を測定する駆動測定回路130と、を備える生体情報測定装置100であって、光源110は、レーザ発振光及び自然放出光を切り替えて出射光として出射し、駆動測定回路130は、光源110がレーザ発振光を出射するときに生体99の血流を測定し、光源110が自然放出光を出射するときに生体99の脈拍を測定する。生体99は、例えば、人又は動物である。光源110としては、例えば、分布帰還型(DFB)半導体レーザ光源がある。受光素子120としては、例えば、フォトダイオードがある。生体情報測定装置100の詳細について、具体例を図示して以下説明する。   FIG. 1 shows a schematic diagram of a biological information measuring apparatus according to the present embodiment. The biological information measuring apparatus 100 according to this embodiment includes a light source 110 that emits emitted light toward the living body 99, and a light reception that receives scattered light generated in the living body 99 by the emitted light from the light source 110 and outputs a photocurrent. The biological information measuring apparatus 100 includes an element 120 and a drive measurement circuit 130 that measures the blood flow of the living body 99 and the pulse of the living body 99 by the photocurrent from the light receiving element 120, and the light source 110 includes laser oscillation light and The spontaneous emission light is switched and emitted as outgoing light. The drive measurement circuit 130 measures the blood flow of the living body 99 when the light source 110 emits laser oscillation light, and the living body when the light source 110 emits spontaneous emission light. Measure 99 pulses. The living body 99 is, for example, a person or an animal. Examples of the light source 110 include a distributed feedback (DFB) semiconductor laser light source. An example of the light receiving element 120 is a photodiode. Details of the biological information measuring apparatus 100 will be described below with reference to specific examples.

図2に、本実施形態に係る生体情報測定装置の第1形態を示した。図2の生体情報測定装置100は、センサ112及び駆動測定回路130を備える。センサ112は、センサチップ114及び増幅器116を有する。また、駆動測定回路130は、アナログデジタル変換器131、切替部132、デジタル信号プロセッサ133、脈拍解析部134、血流信号出力端子135、脈拍信号出力端子136、LDドライバ137及び制御回路138を有する。   FIG. 2 shows a first form of the biological information measuring apparatus according to the present embodiment. The biological information measuring apparatus 100 in FIG. 2 includes a sensor 112 and a drive measurement circuit 130. The sensor 112 includes a sensor chip 114 and an amplifier 116. The drive measurement circuit 130 includes an analog-digital converter 131, a switching unit 132, a digital signal processor 133, a pulse analysis unit 134, a blood flow signal output terminal 135, a pulse signal output terminal 136, an LD driver 137, and a control circuit 138. .

センサチップ114は、半導体基板上に発光素子及び受光素子が集積化されたものであり(例えば、特許文献1を参照。)、光源及び受光素子としての機能を有する。増幅器116は、センサチップ114の受光素子が受光した生体からの散乱光を増幅する。図2の生体情報測定装置100は、光源と受光素子をセンサ112として一体化でき、小型化及び省電力化を図り、生体に容易に装着できる形状とすることが可能である。
特開2002−330936号公報
The sensor chip 114 has a light emitting element and a light receiving element integrated on a semiconductor substrate (see, for example, Patent Document 1), and has a function as a light source and a light receiving element. The amplifier 116 amplifies scattered light from the living body received by the light receiving element of the sensor chip 114. The living body information measuring apparatus 100 of FIG. 2 can integrate a light source and a light receiving element as a sensor 112, can be reduced in size and power consumption, and can have a shape that can be easily attached to a living body.
JP 2002-330936 A

LDドライバ137は、センサ112を駆動し、センサ112に出射光を出射させる。アナログデジタル変換器131は、センサ112が受光した生体(不図示)からの散乱光をアナログデジタル変換し、信号を出力する。切替部132は、アナログデジタル変換器131からの信号を、デジタル信号プロセッサ133又は脈拍解析部134のいずれかに切り替えて出力する。デジタル信号プロセッサ133は、受信した信号から血流を求めるための演算を行い、その結果を血流信号出力端子135に出力する。ここで、デジタル信号プロセッサ133は、血流量、血液量、血流速度等の血流を測定しても良い。脈拍解析部134は、受信した信号から脈拍を求めるための演算を行い、その結果を脈拍信号出力端子136に出力する。制御回路138は、LDドライバ137を制御してセンサ112にレーザ発振光又は自然放出光のいずれかを出射光として出射させる。また、制御回路138は、センサ112がレーザ発振光を出射するときは切替部132をデジタル信号プロセッサ133に切り替える。一方、制御回路138は、センサ112が自然放出光を出射するときは切替部132を脈拍解析部134に切り替える。図2の生体情報測定装置100は、駆動測定回路130全体を1個のLSI(Large Scale Integration Circuit)に実装でき、小型化を図ることができる。   The LD driver 137 drives the sensor 112 and causes the sensor 112 to emit outgoing light. The analog-to-digital converter 131 performs analog-to-digital conversion on scattered light from a living body (not shown) received by the sensor 112 and outputs a signal. The switching unit 132 switches the signal from the analog-digital converter 131 to either the digital signal processor 133 or the pulse analysis unit 134 and outputs it. The digital signal processor 133 performs a calculation for obtaining a blood flow from the received signal, and outputs the result to the blood flow signal output terminal 135. Here, the digital signal processor 133 may measure blood flow such as blood flow volume, blood volume, and blood flow velocity. The pulse analysis unit 134 performs a calculation for obtaining a pulse from the received signal, and outputs the result to the pulse signal output terminal 136. The control circuit 138 controls the LD driver 137 to cause the sensor 112 to emit either laser oscillation light or spontaneous emission light as emission light. The control circuit 138 switches the switching unit 132 to the digital signal processor 133 when the sensor 112 emits laser oscillation light. On the other hand, the control circuit 138 switches the switching unit 132 to the pulse analysis unit 134 when the sensor 112 emits spontaneous emission light. The biometric information measuring apparatus 100 of FIG. 2 can mount the entire drive measurement circuit 130 on one LSI (Large Scale Integration Circuit), and can be downsized.

血流信号出力端子135には、ディスプレイやプリンタを接続し、血流を表示又は印刷しても良い(不図示)。また、脈拍信号出力端子136には、ディスプレイやプリンタを接続し、脈拍を表示又は印刷しても良い(不図示)。   The blood flow signal output terminal 135 may be connected to a display or a printer to display or print the blood flow (not shown). The pulse signal output terminal 136 may be connected to a display or a printer to display or print the pulse (not shown).

図2に示す生体情報測定装置100は、センサ112のセンサヘッド(不図示)において、生体からの散乱光と生体内の毛細血管中を移動している赤血球(散乱粒子)からの散乱光(血流速度に応じてドップラーシフトΔfを受けた散乱光)を検波、例えば、ヘテロダイン検波する。生体情報測定装置100は、センサ112の増幅部116において、散乱光の干渉成分が増幅される。そして、生体情報測定装置100は、センサ112がレーザ発振光を出射するときは、デジタル信号プロセッサ133が散乱光の干渉成分の周波数解析を行う。ここで、散乱光の干渉成分の周波数が血流速度に相当し、散乱光の強度が血流量に相当する。一方、生体情報測定装置100は、センサ112が自然放出光を出射するときは脈拍解析部134が脈拍を計測する。ここで、生体情報測定装置100は、センサ112からの光電流の振幅変動によって脈波を得ることができる。以上のように、生体情報測定装置100は、血流及び脈拍を測定することができる。   2 has a sensor head (not shown) of a sensor 112, and scattered light (blood) from scattered light from a living body and red blood cells (scattered particles) moving through capillaries in the living body. Scattered light that has undergone Doppler shift Δf according to the flow velocity) is detected, for example, heterodyne detection. In the biological information measuring apparatus 100, the interference component of the scattered light is amplified in the amplification unit 116 of the sensor 112. In the biological information measuring apparatus 100, when the sensor 112 emits laser oscillation light, the digital signal processor 133 performs frequency analysis of the interference component of the scattered light. Here, the frequency of the interference component of the scattered light corresponds to the blood flow velocity, and the intensity of the scattered light corresponds to the blood flow rate. On the other hand, in the biological information measuring apparatus 100, when the sensor 112 emits spontaneously emitted light, the pulse analysis unit 134 measures the pulse. Here, the biological information measuring apparatus 100 can obtain a pulse wave by the amplitude fluctuation of the photocurrent from the sensor 112. As described above, the biological information measuring apparatus 100 can measure blood flow and pulse.

図3に、本実施形態に係る生体情報測定装置の第2形態を示した。なお、図3は、説明を容易にするため、生体情報測定装置100を分解した状態で示した。図3の生体情報測定装置100は、光源110、受光素子120、基板140、光導波路150及び遮光ブロック160を備える。基板140は、駆動測定回路(不図示)が実装され、光源110及び受光素子120を搭載する。光導波路150は、光源110が出射した出射光を発散光又は集束光にして生体(不図示)に向ける。遮光ブロック160は、光源110が出射した出射光を遮蔽し、受光素子120に直接入射しないようにする。図3の生体情報測定装置100は、基板140に光源110及び受光素子120を搭載できることから、小型化を図ることができ、光ファイバの取り回しが不要であるため受光素子120の出力が乱れることがない。   FIG. 3 shows a second form of the biological information measuring apparatus according to this embodiment. FIG. 3 shows the biological information measuring device 100 in an exploded state for ease of explanation. 3 includes a light source 110, a light receiving element 120, a substrate 140, an optical waveguide 150, and a light shielding block 160. A driving measurement circuit (not shown) is mounted on the substrate 140, and the light source 110 and the light receiving element 120 are mounted thereon. The optical waveguide 150 turns emitted light emitted from the light source 110 into divergent light or focused light and directs it toward a living body (not shown). The light blocking block 160 blocks the outgoing light emitted from the light source 110 so that it does not directly enter the light receiving element 120. 3 can mount the light source 110 and the light receiving element 120 on the substrate 140. Therefore, the biological information measuring apparatus 100 can be miniaturized, and the output of the light receiving element 120 can be disturbed because it is not necessary to handle the optical fiber. Absent.

生体情報測定装置100は、以下のように制御することができる。図4に、本実施形態に係る生体情報測定装置の制御方法のフローを示した。本実施形態に係る生体情報測定装置の制御方法は、生体に向けて出射光を出射する光源、光源からの出射光によって生体で発生する散乱光を受光して光電流を出力する受光素子、及び、受光素子からの光電流によって生体の血流及び生体の脈拍を測定する駆動測定回路を有する生体情報測定装置の制御方法であって、光源に、レーザ発振光及び自然放出光を切り替えさせて出射光として出射させる出射ステップS110と、駆動測定回路に、光源がレーザ発振光を出射するときに生体の血流を測定させ、光源が自然放出光を出射するときに生体の脈拍を測定させる測定ステップS120と、を順に備える。以上のように、本実施形態に係る生体情報測定装置の制御方法は、小型で消費電力が低く、血流及び脈拍を測定可能な生体情報測定装置を実現することができる。   The biological information measuring apparatus 100 can be controlled as follows. FIG. 4 shows a flow of a control method of the biological information measuring apparatus according to the present embodiment. The control method of the biological information measuring apparatus according to the present embodiment includes a light source that emits outgoing light toward the living body, a light receiving element that receives scattered light generated in the living body by the outgoing light from the light source and outputs a photocurrent, and A method for controlling a biological information measuring apparatus having a driving measurement circuit for measuring a blood flow and a pulse of a living body by a photocurrent from a light receiving element, wherein the light source switches between laser oscillation light and spontaneous emission light. An emission step S110 for emitting light, and a measurement step for causing the drive measurement circuit to measure the blood flow of the living body when the light source emits laser oscillation light and to measure the pulse of the living body when the light source emits spontaneous emission light. S120 in order. As described above, the biological information measuring device control method according to this embodiment can realize a biological information measuring device that is small in size, consumes low power, and can measure blood flow and pulse.

図3に示す生体情報測定装置100は、利用者にレーザ発振光及び自然放出光を切り替えさせるスイッチ(不図示)を備えても良い。このとき、生体情報測定装置100は、利用者の要求に応じて血流又は脈拍をそれぞれ測定することができる。一方、生体情報測定装置100は、レーザ発信光と自然放出光の出射を交互に繰り返しても良い。このとき、生体情報測定装置100は、血流及び脈拍を交互に測定することができる。以下、生体情報測定装置100が血流及び脈拍を交互に測定することについて詳細に説明する。   The biological information measuring device 100 shown in FIG. 3 may include a switch (not shown) that allows the user to switch between laser oscillation light and spontaneous emission light. At this time, the biological information measuring apparatus 100 can measure the blood flow or the pulse according to the user's request. On the other hand, the biological information measuring apparatus 100 may alternately repeat the emission of the laser transmission light and the spontaneous emission light. At this time, the biological information measuring apparatus 100 can alternately measure the blood flow and the pulse. Hereinafter, it will be described in detail that the biological information measuring apparatus 100 alternately measures blood flow and pulse.

図5に、低周波で出射光をパルス状に強度変調した場合の受光素子の受光強度と時間との関係図を示した。図5には、光源がレーザ発振光を出射する時間、すなわち、生体情報測定装置が血流を測定する時間を符号a及び光源が自然放出光を出射する時間、すなわち、生体情報測定装置が脈拍を測定する時間を符号bで示した。本実施形態に係る生体情報測定装置では、駆動測定回路は、強度変調領域に光源のレーザ発振光の発振閾値が含まれるように低周波で出射光をパルス状に強度変調することが好ましい。また、本実施形態に係る生体情報測定装置の制御方法では、出射ステップは、駆動測定回路に、強度変調領域に光源の前記レーザ発振光の発振閾値が含まれるように低周波で出射光をパルス状に強度変調させることが好ましい。図5では、例えば、毎秒5回の周期で上記の強度変調を行っている。レーザ注入電流が弱く、変調強度が発振閾値を超えなければ光源は自然放出光を出射し、一方、光源のレーザ注入電流を強くし、変調強度が発振閾値以上であれば光源はレーザ発振光を出射する。すなわち、強度変調領域に光源のレーザ発振光の発振閾値が含まれるように強度変調を行えば、光源がレーザ発振光と自然放出光を交互に出射する。これによって、生体情報測定装置は、交互に血流及び脈拍を測定することができる。この強度変調を高速に行えば、血流及び脈拍を略同時に測定することができる。   FIG. 5 shows a relationship diagram between the received light intensity of the light receiving element and time when the intensity of the emitted light is modulated in a pulse shape at a low frequency. FIG. 5 shows the time when the light source emits laser oscillation light, that is, the time when the biological information measuring device measures blood flow, and the time when the light source emits spontaneous emission light, ie, the biological information measuring device is pulsed. The time for measuring is indicated by symbol b. In the biological information measuring apparatus according to the present embodiment, the drive measurement circuit preferably modulates the intensity of the emitted light in a pulsed manner at a low frequency so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light of the light source. Further, in the control method of the biological information measuring apparatus according to the present embodiment, in the emission step, the drive measurement circuit pulses the emitted light at a low frequency so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light of the light source. It is preferable to modulate the intensity in a shape. In FIG. 5, for example, the intensity modulation is performed at a cycle of 5 times per second. If the laser injection current is weak and the modulation intensity does not exceed the oscillation threshold, the light source emits spontaneous emission light. On the other hand, if the laser injection current of the light source is increased and the modulation intensity exceeds the oscillation threshold, the light source emits laser oscillation light. Exit. That is, if intensity modulation is performed so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light from the light source, the light source emits laser oscillation light and spontaneous emission light alternately. Thereby, the biological information measuring device can alternately measure the blood flow and the pulse. If this intensity modulation is performed at high speed, blood flow and pulse can be measured substantially simultaneously.

図6に、高周波で出射光を正弦波状に強度変調した場合の受光素子の受光強度と時間との関係図を示した。本実施形態に係る生体情報測定装置では、駆動測定回路は、強度変調領域に光源のレーザ発振光の発振閾値が含まれるように高周波で出射光を正弦波状に強度変調することが好ましい。また、本実施形態に係る生体情報測定装置の制御方法では、出射ステップは、駆動測定回路に、強度変調領域に光源のレーザ発振光の発振閾値が含まれるように高周波で出射光を正弦波状に強度変調させることが好ましい。図5の場合と同様に、生体情報測定装置は、略同時に血流及び脈拍を測定することができる。   FIG. 6 shows a relationship between the light receiving intensity of the light receiving element and time when the intensity of the emitted light is sinusoidally modulated at a high frequency. In the biological information measuring apparatus according to the present embodiment, it is preferable that the drive measurement circuit intensity-modulates the emitted light at a high frequency in a sinusoidal manner so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light of the light source. Further, in the control method of the biological information measuring apparatus according to the present embodiment, in the emission step, the emitted light is sinusoidally shaped at a high frequency so that the drive measurement circuit includes the oscillation threshold value of the laser oscillation light of the light source in the intensity modulation region. It is preferable to modulate the intensity. Similar to the case of FIG. 5, the biological information measuring apparatus can measure the blood flow and the pulse almost simultaneously.

図7に、高周波で出射光を正弦波状に強度変調した場合における周波数と受光強度の関係図を示した。図7では、例えば、25kHzの周波数に対応する線スペクトルが現れ、その強度ピークの時間変化を符号cで示す。本実施形態に係る生体情報測定装置では、駆動測定回路は、血流の測定に利用するドップラーシフト周波数以外の周波数で出射光を強度変調し、周波数スペクトル領域における線スペクトルの強度ピークの時間変化cから生体の脈拍情報を測定することが好ましい。また、本実施形態に係る生体情報測定装置の制御方法では、出射ステップは、駆動測定回路に、血流の測定に利用するドップラーシフト周波数以外の周波数で出射光を強度変調させ、測定ステップは、駆動測定回路に、周波数スペクトル領域における線スペクトルの強度ピークの時間変化cから生体の脈拍情報を測定させることが好ましい。   FIG. 7 shows the relationship between the frequency and the received light intensity when the intensity of the emitted light is modulated in a sinusoidal shape at a high frequency. In FIG. 7, for example, a line spectrum corresponding to a frequency of 25 kHz appears, and the time change of the intensity peak is indicated by a symbol c. In the biological information measuring apparatus according to the present embodiment, the drive measurement circuit intensity-modulates the emitted light at a frequency other than the Doppler shift frequency used for blood flow measurement, and the time change c of the intensity peak of the line spectrum in the frequency spectrum region c. It is preferable to measure the pulse information of the living body. Further, in the control method of the biological information measuring device according to the present embodiment, the emission step causes the drive measurement circuit to intensity-modulate the emitted light at a frequency other than the Doppler shift frequency used for blood flow measurement, and the measurement step includes: It is preferable to cause the drive measurement circuit to measure the pulse information of the living body from the time change c of the intensity peak of the line spectrum in the frequency spectrum region.

血流の測定に利用するドップラーシフト周波数以外の周波数とは、4Hz以上25Hz以下、又は、20kHz以上40kHz以下の周波数であり、好ましくは、10Hz以上20Hz以下、又は、20kHz以上30kHz以下の周波数である。   The frequency other than the Doppler shift frequency used for blood flow measurement is a frequency of 4 Hz to 25 Hz, or a frequency of 20 kHz to 40 kHz, preferably a frequency of 10 Hz to 20 Hz, or 20 kHz to 30 kHz. .

血流の測定に利用するドップラーシフト周波数以外の周波数を用いることで、生体情報測定装置は、血流量の測定に影響を与えずに脈拍数の測定精度を高くすることができる。また、周波数スペクトル領域における線スペクトルの強度ピークの時間変化を容易に求めることができるので、生体情報測定装置は、生体の脈拍情報を容易に測定することができる。さらに、生体情報測定装置は、パルス状又は正弦波状に強度変調することによって、光源が連続して出射光を出射する場合に比べて消費電力を低くすることができる。   By using a frequency other than the Doppler shift frequency used for blood flow measurement, the biological information measurement device can increase the measurement accuracy of the pulse rate without affecting the measurement of blood flow. In addition, since the time change of the intensity peak of the line spectrum in the frequency spectrum region can be easily obtained, the biological information measuring device can easily measure the pulse information of the living body. Furthermore, the biological information measuring apparatus can reduce power consumption by performing intensity modulation in a pulse shape or a sine wave shape as compared with the case where the light source continuously emits the emitted light.

本発明に係る生体情報測定装置は、消費電力が少ないことから携帯型のレーザ血流計に利用することができる。また、本発明に係る生体情報測定装置の制御方法は、その生体情報測定装置の制御に利用することができる。   The biological information measuring device according to the present invention can be used for a portable laser blood flow meter because of low power consumption. Moreover, the control method of the biological information measuring device according to the present invention can be used for controlling the biological information measuring device.

本実施形態に係る生体情報測定装置の概略図である。It is a schematic diagram of a living body information measuring device concerning this embodiment. 本実施形態に係る生体情報測定装置の第1形態を示す図である。It is a figure showing the 1st form of the living body information measuring device concerning this embodiment. 本実施形態に係る生体情報測定装置の第2形態を示す図である。It is a figure which shows the 2nd form of the biological information measuring device which concerns on this embodiment. 本実施形態に係る生体情報測定装置の制御方法のフローである。It is a flow of the control method of the biological information measuring device concerning this embodiment. 低周波で出射光をパルス状に強度変調した場合の受光素子の受光強度と時間との関係図である。FIG. 6 is a relationship diagram between light reception intensity of a light receiving element and time when intensity of emitted light is modulated in pulses at a low frequency. 高周波で出射光を正弦波状に強度変調した場合の受光素子の受光強度と時間との関係図である。FIG. 4 is a relationship diagram between the light receiving intensity of a light receiving element and time when intensity of outgoing light is modulated in a sinusoidal shape at a high frequency. 高周波で出射光を正弦波状に強度変調した場合における周波数と受光強度の関係図である。FIG. 6 is a relationship diagram between frequency and received light intensity when emitted light is intensity-modulated in a sinusoidal shape at a high frequency.

符号の説明Explanation of symbols

99 生体
100 生体情報測定装置
110 光源
112 センサ
114 センサチップ
116 増幅器
120 受光素子
130 駆動測定回路
131 アナログデジタル変換器
132 切替部
133 デジタル信号プロセッサ
134 脈拍解析部
135 血流信号出力端子
136 脈拍信号出力端子
137 LDドライバ
138 制御回路
140 基板
150 光導波路
160 遮光ブロック
S110 出射ステップ
S120 測定ステップ
a 光源がレーザ発振光を出射する時間
b 光源が自然放出光を出射する時間
c 線スペクトルの強度ピークの時間変化
99 Living body 100 Biological information measuring device 110 Light source 112 Sensor 114 Sensor chip 116 Amplifier 120 Light receiving element 130 Drive measurement circuit 131 Analog to digital converter 132 Switching unit 133 Digital signal processor 134 Pulse analysis unit 135 Blood flow signal output terminal 136 Pulse signal output terminal 137 LD driver 138 Control circuit 140 Substrate 150 Optical waveguide 160 Shading block S110 Emission step S120 Measurement step a Time when the light source emits laser oscillation light b Time when the light source emits spontaneous emission c Time change of intensity peak of the line spectrum

Claims (8)

生体に向けて出射光を出射する光源と、
前記光源からの前記出射光によって前記生体で発生する散乱光を受光して光電流を出力する受光素子と、
前記光源を駆動し、前記受光素子からの前記光電流によって前記生体の血流及び前記生体の脈拍を測定する駆動測定回路と、を備える生体情報測定装置であって、
前記光源は、変調強度を変化させることにより、レーザ発振光及び自然放出光を切り替えて前記出射光として出射し、
前記駆動測定回路は、前記光源が前記レーザ発振光を出射するときに前記生体の血流を測定し、前記光源が前記自然放出光を出射するときに前記生体の脈拍を測定することを特徴とする生体情報測定装置。
A light source that emits emitted light toward a living body;
A light receiving element that receives scattered light generated in the living body by the emitted light from the light source and outputs a photocurrent; and
A biological information measuring device comprising: a driving measurement circuit that drives the light source and measures the blood flow of the living body and the pulse of the living body by the photocurrent from the light receiving element;
The light source switches the laser oscillation light and the spontaneous emission light by changing the modulation intensity and emits it as the emission light,
The drive measurement circuit measures the blood flow of the living body when the light source emits the laser oscillation light, and measures the pulse of the living body when the light source emits the spontaneous emission light. Biological information measuring device.
前記駆動測定回路は、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように低周波で前記出射光をパルス状に強度変調することにより、前記光源にレーザ発振光及び自然放出光を切り替えさせることを特徴とする請求項1に記載の生体情報測定装置。 The drive measurement circuit modulates the intensity of the emitted light in a pulsed manner at a low frequency so that the intensity modulation region includes the oscillation threshold of the laser oscillation light of the light source, so that the laser oscillation light and spontaneous emission are emitted to the light source. The biological information measuring device according to claim 1, wherein light is switched . 前記駆動測定回路は、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように高周波で前記出射光を正弦波状に強度変調することにより、前記光源にレーザ発振光及び自然放出光を切り替えさせることを特徴とする請求項1に記載の生体情報測定装置。 The drive measurement circuit modulates the intensity of the emitted light in a sinusoidal shape at a high frequency so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light of the light source, thereby causing the light source to emit laser oscillation light and spontaneous emission light. The biological information measuring device according to claim 1, wherein the biological information measuring device is switched . 前記駆動測定回路は、血流の測定に利用するドップラーシフト周波数以外の周波数で前記出射光を強度変調し、周波数スペクトル領域における線スペクトルの強度ピークの時間変化から前記生体の脈拍情報を測定することを特徴とする請求項3に記載の生体情報測定装置。   The drive measurement circuit modulates the intensity of the emitted light at a frequency other than the Doppler shift frequency used for blood flow measurement, and measures the pulse information of the living body from the time change of the intensity peak of the line spectrum in the frequency spectrum region. The biological information measuring device according to claim 3. 生体に向けて出射光を出射する光源、前記光源からの前記出射光によって前記生体で発生する散乱光を受光して光電流を出力する受光素子、及び、前記光源を駆動し、前記受光素子からの前記光電流によって前記生体の血流及び前記生体の脈拍を測定する駆動測定回路を有する生体情報測定装置の制御方法であって、
前記光源に、変調強度を変化させることにより、レーザ発振光及び自然放出光を切り替えさせて前記出射光として出射させる出射ステップと、
前記駆動測定回路に、前記光源が前記レーザ発振光を出射するときに前記生体の血流を測定させ、前記光源が前記自然放出光を出射するときに前記生体の脈拍を測定させる測定ステップと、を順に備えることを特徴とする生体情報測定装置の制御方法。
A light source that emits outgoing light toward the living body, a light receiving element that receives scattered light generated in the living body by the outgoing light from the light source and outputs a photocurrent, and a light source that drives the light source, A method for controlling a biological information measuring apparatus having a driving measurement circuit for measuring the blood flow of the living body and the pulse of the living body by the photocurrent of
An emission step of causing the light source to switch between laser oscillation light and spontaneous emission light by changing the modulation intensity, and to emit as the emitted light; and
A measurement step for causing the drive measurement circuit to measure a blood flow of the living body when the light source emits the laser oscillation light, and to measure a pulse of the living body when the light source emits the spontaneous emission light; In order. The control method of the biological information measuring device characterized by the above-mentioned.
前記出射ステップは、前記駆動測定回路に、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように低周波で前記出射光をパルス状に強度変調させることにより、前記光源に、レーザ発振光及び自然放出光を切り替えさせることを特徴とする請求項5に記載の生体情報測定装置の制御方法。 In the emission step, the drive measurement circuit causes the light source to modulate the intensity of the emitted light in a pulse shape at a low frequency so that the intensity modulation region includes the oscillation threshold value of the laser oscillation light of the light source. the method of the biological information measuring apparatus according to claim 5, characterized in that to switch the laser oscillation light and spontaneous emission light. 前記出射ステップは、前記駆動測定回路に、強度変調領域に前記光源の前記レーザ発振光の発振閾値が含まれるように高周波で前記出射光を正弦波状に強度変調させることにより、前記光源に、レーザ発振光及び自然放出光を切り替えさせることを特徴とする請求項5に記載の生体情報測定装置の制御方法。 In the emission step, the drive measurement circuit modulates the intensity of the emitted light in a sinusoidal shape at a high frequency so that the intensity modulation region includes the oscillation threshold of the laser oscillation light of the light source, thereby causing the light source to emit laser light. the method of the biological information measuring apparatus according to claim 5, characterized in that to switch the oscillation light and spontaneous emission light. 前記出射ステップは、前記駆動測定回路に、血流の測定に利用するドップラーシフト周波数以外の周波数で前記出射光を強度変調させ、
前記測定ステップは、前記駆動測定回路に、周波数スペクトル領域における線スペクトルの強度ピークの時間変化から前記生体の脈拍情報を測定させることを特徴とする請求項7に記載の生体情報測定装置の制御方法。
The emission step causes the drive measurement circuit to modulate the intensity of the emitted light at a frequency other than the Doppler shift frequency used for blood flow measurement,
8. The method of controlling a biological information measuring apparatus according to claim 7, wherein the measuring step causes the driving measurement circuit to measure pulse information of the living body from a time change of an intensity peak of a line spectrum in a frequency spectrum region. .
JP2007113691A 2007-04-24 2007-04-24 Biological information measuring device and method for controlling biological information measuring device Active JP4714179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113691A JP4714179B2 (en) 2007-04-24 2007-04-24 Biological information measuring device and method for controlling biological information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113691A JP4714179B2 (en) 2007-04-24 2007-04-24 Biological information measuring device and method for controlling biological information measuring device

Publications (2)

Publication Number Publication Date
JP2008264327A JP2008264327A (en) 2008-11-06
JP4714179B2 true JP4714179B2 (en) 2011-06-29

Family

ID=40044666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113691A Active JP4714179B2 (en) 2007-04-24 2007-04-24 Biological information measuring device and method for controlling biological information measuring device

Country Status (1)

Country Link
JP (1) JP4714179B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862754B2 (en) * 2014-12-11 2016-02-16 セイコーエプソン株式会社 Pulse sensor and pulse meter
JP6988061B2 (en) * 2016-07-15 2022-01-05 富士フイルムビジネスイノベーション株式会社 Biometric information measuring device and biometric information measuring program
JP6907475B2 (en) * 2016-07-15 2021-07-21 富士フイルムビジネスイノベーション株式会社 Biometric information measuring device and biometric information measuring program
WO2020122164A1 (en) 2018-12-14 2020-06-18 ソニー株式会社 Biosignal measurement apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183042A (en) * 1987-01-26 1988-07-28 キヤノン株式会社 Blood flowmeter
JPH11276448A (en) * 1998-03-31 1999-10-12 Seiko Epson Corp Signal extract device and signal extract method
JP2002330936A (en) * 2001-02-02 2002-11-19 Nippon Telegr & Teleph Corp <Ntt> Hemodromometer and sensor part of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183042A (en) * 1987-01-26 1988-07-28 キヤノン株式会社 Blood flowmeter
JPH11276448A (en) * 1998-03-31 1999-10-12 Seiko Epson Corp Signal extract device and signal extract method
JP2002330936A (en) * 2001-02-02 2002-11-19 Nippon Telegr & Teleph Corp <Ntt> Hemodromometer and sensor part of the same

Also Published As

Publication number Publication date
JP2008264327A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
US20100056887A1 (en) Emission sensor device and bioinformation detecting method
JP4104991B2 (en) Light wave distance meter
JP2018525606A (en) Laser sensor for particle density detection
KR101303371B1 (en) Method of measuring relative movement of an object and an optical input device over a range of speeds
JP2018502623A (en) Optical vital sign sensor
JP4714179B2 (en) Biological information measuring device and method for controlling biological information measuring device
KR101851732B1 (en) Method of operating a smi sensor and corresponding sensor device
JP6830545B2 (en) How to determine the operating conditions of a laser-based particle detector
JP2013094482A (en) Pulse wave signal processing device and pulse wave measuring device
CN109917415A (en) A kind of laser range finder
JP3651442B2 (en) Blood flow meter and blood flow sensor
CN107233088A (en) Biological information detecting device
JP4718324B2 (en) Optical sensor and sensor unit thereof
JP2008272085A (en) Blood-flow sensor
JP4719713B2 (en) Biological information measuring device
JPH10211176A (en) Reflected light detector and pulse wave detector
JP2013180031A (en) Pulse wave measuring apparatus
US7128716B2 (en) Blood flowmeter and sensor part of the blood flowmeter
JP6417594B2 (en) Biological information measuring device
US10660552B2 (en) Detection device and detection method
WO2019188371A1 (en) Optical measuring device and toothbrush provided with same
JP4962234B2 (en) Pulse oximeter
JP5392919B2 (en) Biological information measuring apparatus and biological information measuring method
JP6137375B2 (en) Pulse wave sensor and pulse wave measuring device
JP2013116210A (en) Pulse wave measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4714179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350