JP6136971B2 - Method and apparatus for mixing cryogenic liquid in storage tank - Google Patents

Method and apparatus for mixing cryogenic liquid in storage tank Download PDF

Info

Publication number
JP6136971B2
JP6136971B2 JP2014028351A JP2014028351A JP6136971B2 JP 6136971 B2 JP6136971 B2 JP 6136971B2 JP 2014028351 A JP2014028351 A JP 2014028351A JP 2014028351 A JP2014028351 A JP 2014028351A JP 6136971 B2 JP6136971 B2 JP 6136971B2
Authority
JP
Japan
Prior art keywords
liquid
gas
mixing
storage tank
cryogenic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014028351A
Other languages
Japanese (ja)
Other versions
JP2015152136A (en
Inventor
松本 繁則
繁則 松本
以昌 山口
以昌 山口
林 謙年
謙年 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2014028351A priority Critical patent/JP6136971B2/en
Publication of JP2015152136A publication Critical patent/JP2015152136A/en
Application granted granted Critical
Publication of JP6136971B2 publication Critical patent/JP6136971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液化天然ガス(以下、「LNG」と言う場合あり)をはじめとする低温液化ガス(以下、低温液体)が貯留された貯留槽内で発生する低温液体の層状化を防止・解消する技術に関し、特に、貯留槽内低温液体を攪拌混合することで前記層状化を防止・解消する貯留槽内低温液体の混合方法及び装置に関する。   The present invention prevents and eliminates stratification of low-temperature liquid generated in a storage tank in which low-temperature liquefied gas (hereinafter referred to as “LNG”) and other low-temperature liquefied gas (hereinafter referred to as “LNG”) are stored. In particular, the present invention relates to a method and apparatus for mixing a cryogenic liquid in a storage tank that prevents and eliminates the stratification by stirring and mixing the cryogenic liquid in the storage tank.

一般的に、低温液体は複数の成分が混合したものである。例えばLNGは、主成分であるメタンの他にエタン、プロパン、ブタン等のメタンより重質成分が含まれており、その比率はLNGの産地や精製プロセスに依存し一定ではない。そのため、同種の低温液体であっても、その組成の違いによって密度が異なるものとなる。
貯留槽中の低温液体に、成分の違いから密度が異なる低温液体を混入すると、密度の高い方の低温液体はタンクの下層に沈降し、一方、密度の低い方の低温液体は上層に遊離することになり、貯留槽内の低温液体が比重の軽い液(上層)と、比重の重い液(下層)とに層状化される。
Generally, a cryogenic liquid is a mixture of a plurality of components. For example, LNG contains heavier components than methane such as ethane, propane, and butane in addition to methane as a main component, and the ratio thereof is not constant depending on the production area of LNG and the refining process. Therefore, even if it is the same kind of low-temperature liquid, the density differs depending on the composition.
If cryogenic liquids with different densities are mixed into the cryogenic liquid in the storage tank, the denser cryogenic liquid will settle to the lower layer of the tank, while the lower density cryogenic liquid will be released to the upper layer. As a result, the low-temperature liquid in the storage tank is stratified into a liquid having a low specific gravity (upper layer) and a liquid having a high specific gravity (lower layer).

貯留槽内に貯留されている低温液体は、貯留槽周囲からの入熱により常に加熱される状態にあるが、低温液体の温度は、その自由液面からの蒸発作用によって、上昇することなくバランスしている。なお、この時の蒸発成分は、主として沸点の低い軽質成分である。
しかし、貯留槽内で低温液体に層状化が生じた場合、上層の液は自由液面から蒸発できるため温度上昇しないが、下層の液は蒸発できる自由液面を持たないため入熱分が層内に蓄積され温度が上昇していく。すなわち、上層は軽質成分が蒸発して密度が大きくなっていき、逆に下層は温度上昇により密度が小さくなっていく。この上層と下層の密度差がある限界値より小さくなった時、層状化が保てなくなり上層と下層の液が混合しつつ、下層の液が自由液面に達するようになる。下層の液が自由液面に達すると、それまで蓄積されていた入熱分のエネルギーが解放され、蒸発量が急増する。
The cryogenic liquid stored in the storage tank is constantly heated by heat input from the surroundings of the storage tank, but the temperature of the cryogenic liquid is balanced without increasing due to the evaporation from the free liquid surface. doing. The evaporation component at this time is mainly a light component having a low boiling point.
However, when stratification occurs in the low-temperature liquid in the storage tank, the temperature of the upper layer liquid can be evaporated from the free liquid level, so the temperature does not rise, but the lower layer liquid does not have a free liquid level that can be evaporated, so It accumulates inside and the temperature rises. That is, the density of light components increases in the upper layer and the density of the lower layer decreases as the temperature rises. When the density difference between the upper layer and the lower layer becomes smaller than a certain limit value, the stratification cannot be maintained and the upper layer and lower layer liquids are mixed while the lower layer liquid reaches the free liquid level. When the liquid in the lower layer reaches the free liquid level, the energy stored up to that point is released, and the amount of evaporation increases rapidly.

低温液体の貯留槽は、低温液体から蒸発する蒸発ガスを処理する設備を備えているが、蒸発ガス量がその処理能力を上回ると安全弁から放散することになる。低温液体がLNGの場合、その蒸発ガスは可燃性ガスであり、大量の放散は安全上避けるべきである。また、蒸発量が安全弁の処理能力をも上回るほど多くなると、貯留槽内圧が上昇し続け、最悪の場合、貯留槽の破壊にもつながりかねない。
このように、貯留槽内での低温液体の層状化は、蒸発量の急増という危険な現象を伴うため、層状化を確実に防止できる手段が求められている。その手段の一つとして、貯留槽内の低温液体を攪拌して均一に混合することが行われている。
The cryogenic liquid storage tank is equipped with a facility for treating evaporative gas evaporating from the cryogenic liquid. However, when the amount of evaporating gas exceeds its processing capacity, it is dissipated from the safety valve. If the cryogenic liquid is LNG, its evaporative gas is a flammable gas and large amounts of emissions should be avoided for safety. Moreover, if the amount of evaporation increases to exceed the processing capacity of the safety valve, the internal pressure of the storage tank continues to rise, and in the worst case, it may lead to destruction of the storage tank.
Thus, the stratification of the low-temperature liquid in the storage tank is accompanied by a dangerous phenomenon that the amount of evaporation rapidly increases, and therefore means for reliably preventing the stratification is required. As one of the means, the low temperature liquid in the storage tank is agitated and mixed uniformly.

このような、撹拌混合を行う技術としては、特許文献1には、以下に示すような低温液化ガスタンク内の層状化防止装置が提案されている。
「低温液化ガスタンクの内底面上方位置に、下端を液吸込口とし上端を液流出口とする液上昇管を直立状態に且つタンク内底面と液吸込口との間に空間部が形成されるようにして設置し、該液上昇管の下端部に、低温液化ガスタンクに備えられているBOG圧縮機の下流側より分岐させた圧縮BOG配管を連通させ、圧縮BOGを液上昇管内に下端部より噴出させて該液上昇管内に液を導搬させるようにした構成を有することを特徴とする低温液化ガスタンク内の層状化防止装置。」(特許文献1の請求項1参照)
As a technique for performing such stirring and mixing, Patent Document 1 proposes a layering prevention device in a low-temperature liquefied gas tank as shown below.
“In the upper position of the inner bottom of the low-temperature liquefied gas tank, the liquid riser pipe with the lower end as the liquid suction port and the upper end as the liquid outlet is in an upright state, and a space is formed between the tank bottom surface and the liquid suction port. The compressed BOG pipe branched from the downstream side of the BOG compressor provided in the low temperature liquefied gas tank is connected to the lower end of the liquid riser pipe, and the compressed BOG is ejected from the lower end into the liquid riser pipe. And a stratification preventing device in a low-temperature liquefied gas tank, characterized in that the liquid is introduced into the liquid riser pipe ”(see claim 1 of Patent Document 1).

また、特許文献2には、「受入れ液の物理的性状が変わることにより貯槽内に液の層状化を生じる貯槽に備えられる貯槽内液の層状化解消装置であって、側壁の貯槽底部に近い位置に貯槽内部上方に向けて液を噴出する下部ミキシングノズルを配設すると共に、側壁の上下方向中間位置に貯槽内部上方に向けて液を噴出する中間部ミキシングノズルを配設し、前記貯槽内の液を貯槽外部に取り出して前記下部ミキシングノズルと中間部ミキシングノズルに循環供給する循環ポンプを備えたことを特徴とする貯槽内液の層状化解消装置。」(特許文献2の請求項1参照)が提案されている。   Further, Patent Document 2 discloses a “stratification elimination device for liquid in a storage tank that is provided in a storage tank that causes liquid stratification in the storage tank due to a change in the physical properties of the receiving liquid, and is close to the bottom of the storage tank on the side wall. A lower mixing nozzle that ejects liquid upwards in the storage tank is disposed at a position, and an intermediate mixing nozzle that ejects liquid upward in the storage tank is disposed at an intermediate position in the vertical direction of the side wall. A device for removing the stratification of the liquid in the storage tank, comprising a circulation pump for taking out the liquid from the storage tank and circulatingly supplying the liquid to the lower mixing nozzle and the intermediate mixing nozzle ”(refer to claim 1 of Patent Document 2). ) Has been proposed.

特開2000-193196号公報JP 2000-193196 A 特開平9-203500号公報Japanese Patent Laid-Open No. 9-203500

特許文献1の層状化防止装置は、圧縮した気相を低温液化ガスタンク内に鉛直に設置した液上昇管の底部に吹き込み、気泡ポンプとして作用させて低温液化ガスタンク内の低温液化ガスを混合するものである。
しかし、低温液化ガスタンク内の液位は一定ではない。満液時の液位に対して大きく変化するものであり、大きいタンクではその変化量は数十メートルにも達する。液上昇管の上端を満液時の高さ近傍にないように設置すると、低液位の状態では液上昇管の下端部にBOGを吹き込んだとしても、液上昇管の上端から液を流出させることができず、吹き込んだBOGのみが液上昇管内を上昇していくこととなる。すなわち、循環混合効果が発揮できなくなる。
The anti-stratification device of Patent Document 1 blows a compressed gas phase into the bottom of a liquid riser installed vertically in a low-temperature liquefied gas tank, and acts as a bubble pump to mix the low-temperature liquefied gas in the low-temperature liquefied gas tank It is.
However, the liquid level in the low temperature liquefied gas tank is not constant. It changes greatly with respect to the liquid level at the time of full liquid, and the change amount reaches several tens of meters in a large tank. If the upper end of the liquid riser is not located near the full height, even if BOG is blown into the lower end of the liquid riser in the low liquid level state, the liquid flows out from the upper end of the liquid riser. Therefore, only the blown BOG will rise in the liquid riser. That is, the circulation mixing effect cannot be exhibited.

特許文献2の層状化解消装置においては、貯槽内の液を循環ポンプによって下部ミキシングノズルと中間部ミキシングノズルに供給して貯槽内に噴射しているが、噴流は周囲の液体を巻き込んで拡散していくので、到達高さには限界がある。この到達高さは、噴流液密度(重)と周囲液密度(軽)との密度差にも影響を受け、密度差が大きくなるに従って低くなる。
貯槽内の液位が高い場合、噴流が到達しない領域の混合が不十分となるため、中間高さに他のノズルを設置している。
しかし、貯槽の高さが高い場合や密度差が大きい場合には、噴流の到達高さを確保するために循環ポンプの所要動力が大きくなると同時に、ノズルを2本設けても十分でない場合もあり得、また、液位や成層界面位置に応じてノズルを切り替える複雑な制御が必要となるという問題がある。
In the stratification elimination device of Patent Document 2, the liquid in the storage tank is supplied to the lower mixing nozzle and the intermediate mixing nozzle by a circulation pump and injected into the storage tank. However, the jet flows in the surrounding liquid and diffuses. Therefore, there is a limit to the reaching height. This reaching height is also affected by the density difference between the jet liquid density (heavy) and the ambient liquid density (light), and decreases as the density difference increases.
When the liquid level in the storage tank is high, mixing in the region where the jet does not reach becomes insufficient, so another nozzle is installed at an intermediate height.
However, when the height of the storage tank is high or the density difference is large, the required power of the circulation pump increases to ensure the arrival height of the jet, and at the same time, it may not be sufficient to provide two nozzles. In addition, there is a problem that complicated control for switching the nozzles according to the liquid level and the stratified interface position is required.

本発明は、かかる課題を解決するためになされたものであり、簡易な設備で、貯留槽内の低温液体を効果的に撹拌混合できる貯留槽内低温液体の混合方法及び装置を得ることを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method and apparatus for mixing a cryogenic liquid in a storage tank that can effectively stir and mix the low-temperature liquid in the storage tank with simple equipment. It is said.

(1)本発明に係る貯留槽内低温液体の混合方法は、貯留槽内に貯留された低温液体を混合する貯留槽内低温液体の混合方法であって、
前記貯留槽から抜き出した低温液体に前記貯留槽で発生した蒸発ガスを混合することで前記蒸発ガスを凝縮させる蒸発ガス凝縮混合工程と、該蒸発ガス凝縮混合工程によって前記貯留槽内よりも温度上昇した低温液体を液ポンプで圧送して前記貯留槽内の低温液体中に噴出することで減圧沸騰させて気液二相流として噴出させる気液二相流噴出工程とを有し、
前記蒸発ガス凝縮混合工程は、混合済み低温液体の圧力及び温度を検知し、これに基づいて気液二相流噴出工程で減圧沸騰するように混合する蒸発ガス流量を調整することを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、前記蒸発ガス凝縮混合工程は、前記混合済み低温液体の圧力及び温度を検知し、これに基づいて前記混合済み低温液体が飽和温度以下になるように前記蒸発ガスの流量を調節することを特徴とするものである。
(1) The mixing method of the cryogenic liquid in the storage tank according to the present invention is a mixing method of the cryogenic liquid in the storage tank that mixes the cryogenic liquid stored in the storage tank,
An evaporative gas condensing and mixing step of condensing the evaporative gas by mixing the evaporative gas generated in the reserving tank with the low-temperature liquid extracted from the storage tank; and pumping the cryogenic liquid in the liquid pump have a gas-liquid two-phase flow ejection step for ejecting a gas-liquid two phase flow by flash boiling by ejection into a cryogenic liquid in the reservoir,
The evaporative gas condensing and mixing step detects the pressure and temperature of the mixed cryogenic liquid, and adjusts the flow rate of the evaporating gas to be mixed so as to boil under reduced pressure in the gas-liquid two-phase flow ejection step based on the detected pressure and temperature. Is.
(2) Further, in the above (1), the evaporative gas condensation and mixing step detects the pressure and temperature of the mixed cryogenic liquid, and based on this, the mixed cryogenic liquid is brought to a saturation temperature or lower. The flow rate of the evaporative gas is adjusted so as to be.

)また、上記(1)又は(2)に記載のものにおいて、前記蒸発ガス凝縮混合工程を、ベンチュリ型混合ノズルを用いて行うことを特徴とするものである。 ( 3 ) Further, in the above (1) or (2) , the evaporative gas condensation and mixing step is performed using a venturi type mixing nozzle.

)また、上記(1)乃至(3)のいずれかに記載のものにおいて、蒸発ガス凝縮混合工程は、蒸発ガスをガス圧縮機によって圧力を高めて低温液体に混合することを特徴とするものである。 ( 4 ) Further, in any one of the above (1) to (3) , the evaporative gas condensing and mixing step is characterized in that the evaporative gas is mixed with a low-temperature liquid by increasing the pressure by a gas compressor. Is.

(5)本発明に係る貯留槽内低温液体混合装置は、前記貯留槽で発生した蒸発ガスのすべて、または一部を抜き出す蒸発ガス抜出し管と、前記貯留槽の低温液体を抜き出す低温液体抜出し管と、該低温液体抜出し管に設けられて貯留槽内の低温液体を圧送する液ポンプと、前記蒸発ガス抜出し管から抜き出された蒸発ガスを前記低温液体抜出し管から抜き出された低温液体に接触させて前記蒸発ガスを凝縮させて前記低温液体に混合する凝縮混合部と、該凝縮混合部に供給する蒸発ガスの流量を調整する流量調整弁と、前記凝縮混合部によって前記貯留槽内よりも温度上昇した低温液体を前記貯留槽内の低温液体中に導入する低温液体導入管と、該低温液体導入管に設けられて該低温液体導入管によって導入された低温液体を噴出することで減圧沸騰させて気液二相流として噴出させる気液二相流噴出ノズルと、前記低温液体導入管に設けられて混合済み低温液体の圧力を検知する圧力計と、該低温液体導入管に設けられて混合済み低温液体の温度を検知する温度計と、該温度計及び前記圧力計の検知情報を入力して前記気液二相流噴出ノズルの噴出の際に減圧沸騰するように前記流量調整弁を調整する制御部とを備えたことを特徴とするものである。
(6)また、上記(5)に記載のものにおいて、前記制御部は、前記混合済み低温液体の圧力及び温度を検知し、これに基づいて前記混合済み低温液体が飽和温度以下になるように前記流量調整弁を調節することを特徴とするものである。
(5) mixing device storage tank cryogenic liquid according to the present invention, the all off gas generated in the storage tank or the withdrawal evaporated gas extracting a portion tube, withdrawn cryogenic liquid withdrawing cryogenic liquid in the reservoir A pipe, a liquid pump provided in the cryogenic liquid extraction pipe for pumping the cryogenic liquid in the storage tank, and an evaporative gas extracted from the evaporative gas extraction pipe from the cryogenic liquid extraction pipe A condensing and mixing unit that condenses the evaporative gas to be mixed with the low-temperature liquid, a flow rate adjusting valve that adjusts a flow rate of the evaporating gas supplied to the condensing and mixing unit, and the condensing and mixing unit in the storage tank. A cryogenic liquid introduction pipe that introduces a cryogenic liquid whose temperature has risen further into the cryogenic liquid in the storage tank, and a cryogenic liquid that is provided in the cryogenic liquid introduction pipe and is introduced by the cryogenic liquid introduction pipe. A gas-liquid two-phase flow ejection nozzles for ejecting a gas-liquid two phase flow by flash boiling, a pressure gauge for detecting the pressure of the blended cryogenic liquid provided in the cold liquid inlet pipe, provided in the cold liquid inlet pipe A thermometer for detecting the temperature of the mixed cryogenic liquid, and the flow rate adjustment so as to boil under reduced pressure when the gas-liquid two-phase flow jet nozzle is jetted by inputting detection information of the thermometer and the pressure gauge And a control unit for adjusting the valve .
(6) Further, in the above (5), the control unit detects the pressure and temperature of the mixed cryogenic liquid so that the mixed cryogenic liquid becomes a saturation temperature or less based on the detected pressure and temperature. The flow rate adjusting valve is adjusted.

)また、上記(5)又は(6)に記載のものにおいて、前記凝縮混合部は、ベンチュリ型混合ノズルによって構成されていることを特徴とするものである。 ( 7 ) Further, in the above (5) or (6) , the condensing and mixing section is constituted by a venturi type mixing nozzle.

)また、上記(5)乃至(7)のいずれかに記載のものにおいて、前記蒸発ガス抜出し管に蒸発ガスの圧力を高めるガス圧縮機を設けたことを特徴とするものである。 ( 8 ) Further, in any of the above (5) to (7), a gas compressor for increasing the pressure of the evaporated gas is provided in the evaporated gas extraction pipe.

本発明に係る貯留槽内低温液体の混合方法は、貯留槽から抜き出した低温液体に前記貯留槽で発生した蒸発ガスを混合することで前記蒸発ガスを凝縮させる蒸発ガス凝縮混合工程と、該蒸発ガス凝縮混合工程によって前記貯留槽内よりも温度上昇した低温液体を前記貯留槽内の低温液体中に噴出することで減圧沸騰させて気液二相流として噴出させる気液二相流噴出工程とを有することにより、貯留槽内の低温液体中に気液二相状態の気泡含有液体が貯留槽内の液中に噴流として吐出されるので、貯留槽内の低温液体の撹拌効果が高い。   The method for mixing the cryogenic liquid in the storage tank according to the present invention includes an evaporative gas condensing and mixing step of condensing the evaporative gas by mixing the evaporative gas generated in the storage tank with the low-temperature liquid extracted from the storage tank, and the evaporation A gas-liquid two-phase flow jetting step in which a low-temperature liquid whose temperature has risen from the inside of the storage tank by the gas condensation and mixing step is jetted into the low-temperature liquid in the storage tank to be boiled under reduced pressure and jetted as a gas-liquid two-phase flow; Since the bubble-containing liquid in the gas-liquid two-phase state is discharged as a jet into the liquid in the storage tank, the stirring effect of the low-temperature liquid in the storage tank is high.

本発明の一実施の形態における貯留槽内低温液体混合装置の説明図である。It is explanatory drawing of the cryogenic liquid mixing apparatus in the storage tank in one embodiment of this invention. 図1の一部である凝縮混合部の一態様の説明図である。It is explanatory drawing of the one aspect | mode of the condensation mixing part which is a part of FIG. 図1の一部である凝縮混合部の他の態様の一部断面を含む説明図である。It is explanatory drawing containing the partial cross section of the other aspect of the condensation mixing part which is a part of FIG.

本実施の形態の貯留槽内低温液体の混合方法を説明するのに先立って、該方法に用いられる貯留槽内低温液体混合装置について図1に基づいて説明する。
本実施の形態に係る貯留槽内低温液体混合装置1(以下、単に「混合装置1」という)は、貯留槽3で発生した蒸発ガス(BOG)を抜き出す蒸発ガス抜出し管5と、貯留槽3の低温液体7を抜き出す低温液体抜出し管9と、低温液体抜出し管9に設けられて貯留槽3内の低温液体7を圧送する液ポンプ11と、蒸発ガス抜出し管5から抜き出された蒸発ガスを低温液体抜出し管9から抜き出された低温液体7に接触させて蒸発ガスを凝縮させて低温液体7に混合する凝縮混合部13と、凝縮混合部13によって貯留槽3内よりも温度上昇した低温液体(混合済み低温液体)を貯留槽3内の低温液体7中に導入する低温液体導入管15と、低温液体導入管15に設けられて低温液体導入管15によって導入された混合済み低温液体を噴出することで減圧沸騰させて気液二相流として噴出させる気液二相流噴出ノズル17とを備えたものである。
以下、各構成を詳細に説明する。
Prior to describing the method of mixing the cryogenic liquid in the storage tank of the present embodiment, the cryogenic liquid mixing apparatus in the storage tank used in the method will be described with reference to FIG.
The cryogenic liquid mixing apparatus 1 in the storage tank according to the present embodiment (hereinafter simply referred to as “mixing apparatus 1”) includes an evaporating gas extraction pipe 5 for extracting the evaporating gas (BOG) generated in the storage tank 3, and the storage tank 3 The low-temperature liquid extraction pipe 9 for extracting the low-temperature liquid 7, the liquid pump 11 provided in the low-temperature liquid extraction pipe 9 for pumping the low-temperature liquid 7 in the storage tank 3, and the evaporative gas extracted from the evaporative gas extraction pipe 5 Is brought into contact with the low-temperature liquid 7 extracted from the low-temperature liquid extraction pipe 9 to condense the evaporated gas and mix with the low-temperature liquid 7, and the condensation and mixing unit 13 raises the temperature from the inside of the storage tank 3. A cryogenic liquid introduction pipe 15 for introducing a cryogenic liquid (mixed cryogenic liquid) into the cryogenic liquid 7 in the storage tank 3, and a mixed cryogenic liquid provided in the cryogenic liquid introduction pipe 15 and introduced by the cryogenic liquid introduction pipe 15. Squirt In which by flash boiling and a gas-liquid two-phase flow ejection nozzles 17 for ejecting a gas-liquid two-phase flow in the.
Hereinafter, each configuration will be described in detail.

<貯留槽>
貯留槽3は、例えば液化天然ガス(LNG)等の低温液体7を貯留するものである。
<Reservoir>
The storage tank 3 stores a low-temperature liquid 7 such as liquefied natural gas (LNG), for example.

<蒸発ガス抜出し管>
蒸発ガス抜出し管5は、貯留槽3で発生した蒸発ガスのすべて、または一部を抜き出して凝縮混合部13に供給する管であって、一端側が貯留槽3で発生した蒸発ガスを外部に送出する蒸発ガス送出管21から分岐し、他端が凝縮混合部13に連通している。
蒸発ガス送出管21には、図1に示されるように、蒸発ガスを圧縮して圧力を高めるガス圧縮機19が設けられており、蒸発ガス送出管21から抜き出される蒸発ガスはガス圧縮機19によって高圧化された後、そのすべて、または一部が蒸発ガス抜き出し管5を介して凝縮混合部13に供給される。
また、蒸発ガス抜出し管5には、流量調整弁20が設けられ、凝縮混合部13に供給する蒸発ガスの流量を調整できるようになっている。流量調整弁20による流量調整は、後述するように制御部22によって行われる。

ガス圧縮機19による高圧化は必須ではなく、貯留槽3から発生する蒸発ガスをそのまま凝縮混合部13に供給するようにしてもよい。その場合、蒸発ガス抜き出し管5は蒸発ガス送出管21のガス圧縮機19の手前から分岐して設けても良いし、一端側が貯留槽3の低温液体7の液面上方に開口するように、蒸発ガス送出管21とは別に別途設けても良い。
<Vapor extraction pipe>
The evaporative gas extraction pipe 5 is a pipe that extracts all or part of the evaporative gas generated in the storage tank 3 and supplies the evaporative gas generated in the storage tank 3 to the outside. Branching from the evaporative gas delivery pipe 21, the other end communicates with the condensing and mixing unit 13.
As shown in FIG. 1, the evaporative gas delivery pipe 21 is provided with a gas compressor 19 that compresses the evaporative gas to increase the pressure. The evaporative gas extracted from the evaporative gas delivery pipe 21 is a gas compressor. After the pressure is increased by 19, all or part of the pressure is supplied to the condensing and mixing unit 13 through the evaporative gas extraction pipe 5.
Further, the evaporative gas extraction pipe 5 is provided with a flow rate adjusting valve 20 so that the flow rate of the evaporative gas supplied to the condensing and mixing unit 13 can be adjusted. The flow rate adjustment by the flow rate adjustment valve 20 is performed by the control unit 22 as described later.

The high pressure by the gas compressor 19 is not essential, and the evaporating gas generated from the storage tank 3 may be supplied to the condensing and mixing unit 13 as it is. In that case, the evaporative gas extraction pipe 5 may be provided by branching from the front side of the gas compressor 19 of the evaporative gas delivery pipe 21, or one end side may be opened above the liquid surface of the cryogenic liquid 7 of the storage tank 3. It may be provided separately from the evaporative gas delivery pipe 21.

<低温液体抜出し管>
低温液体抜出し管9は、貯留槽3の低温液体7を抜き出す管である。低温液体抜出し管9には、凝縮混合部13に低温液体7を圧送するための液ポンプ11が設けられている。
低温液体抜出し管9は、図1に示すように、低温液体7を外部へ供給するための低温液体送出管27から分岐させるようにしてもよいし、低温液体送出管27とは別に設けてもよい。
低温液体抜出し管9を低温液体送出管27から分岐させる場合には、図1に示すように、分岐部の近傍に第1開閉弁29を設けるようにする。
<Cryogenic liquid extraction pipe>
The cryogenic liquid extraction tube 9 is a tube for extracting the cryogenic liquid 7 from the storage tank 3. The cryogenic liquid extraction pipe 9 is provided with a liquid pump 11 for pumping the cryogenic liquid 7 to the condensing and mixing unit 13.
As shown in FIG. 1, the cryogenic liquid extraction pipe 9 may be branched from a cryogenic liquid delivery pipe 27 for supplying the cryogenic liquid 7 to the outside, or may be provided separately from the cryogenic liquid delivery pipe 27. Good.
When the cryogenic liquid extraction pipe 9 is branched from the cryogenic liquid delivery pipe 27, a first on-off valve 29 is provided in the vicinity of the branching portion as shown in FIG.

<凝縮混合部>
凝縮混合部13は、蒸発ガス抜出し管5から抜き出された蒸発ガスを低温液体抜出し管9から抜き出された低温液体7に接触させて蒸発ガスを凝縮させて低温液体7に混合するものである。
凝縮混合部13の態様としては、例えば図2に示すように、低温液体7及び/又は混合済み低温液体を一時的に貯留できるヘッダ31によって構成し、該ヘッダ31の下部側に蒸発ガスの導入口を設けるようにしてもよい。
ヘッダ31に導入された蒸発ガスは、低温液体7に接触して熱交換によって凝縮して低温液体7に混合され、他方、低温液体7は蒸発ガスから熱を受けて温度が上昇する。
<Condensation mixing section>
The condensing and mixing unit 13 brings the evaporative gas extracted from the evaporative gas extraction pipe 5 into contact with the low temperature liquid 7 extracted from the low temperature liquid extraction pipe 9 to condense the evaporative gas and mix it with the low temperature liquid 7. is there.
As an aspect of the condensing and mixing unit 13, for example, as shown in FIG. 2, the cryogenic liquid 7 and / or the header 31 that can temporarily store the mixed cryogenic liquid is configured, and the evaporative gas is introduced into the lower portion of the header 31. A mouth may be provided.
The evaporative gas introduced into the header 31 contacts the low temperature liquid 7 and is condensed by heat exchange and mixed with the low temperature liquid 7. On the other hand, the low temperature liquid 7 receives heat from the evaporative gas and rises in temperature.

凝縮混合部13の別の態様としては、例えば図3に示すようなベンチュリ型混合ノズル33を用いてもよい。
ベンチュリ型混合ノズル33は、低温液体7が流入する低温液体流入路35と、低温液体流入路35における下流側にあって流路が縮径する縮径部37と、該縮径部37の近傍にあって蒸発ガスが吸入される蒸発ガス吸入部39と、蒸発ガス吸入部39の下流側にあって凝縮した蒸発ガスが混合された混合済み低温液体が吐出する吐出口41とを備えてなるものである。
As another aspect of the condensing and mixing unit 13, for example, a venturi type mixing nozzle 33 as shown in FIG. 3 may be used.
The venturi-type mixing nozzle 33 includes a low-temperature liquid inflow path 35 into which the low-temperature liquid 7 flows, a diameter-reduced part 37 on the downstream side of the low-temperature liquid inflow path 35 and a diameter of the flow path, and the vicinity of the diameter-reduced part 37. The evaporative gas suction part 39 into which the evaporative gas is sucked and a discharge port 41 on the downstream side of the evaporative gas suction part 39 from which the mixed low-temperature liquid mixed with the condensed evaporative gas is discharged. Is.

ベンチュリ型混合ノズル33においては、流入した低温液体7が縮径部37で流速が増し、いわゆるベンチュリ効果によって蒸発ガス吸入部39から蒸発ガスを吸入して低温液体7に巻き込む。ベンチュリ型混合ノズル33を用いることにより、ガス圧縮機19の昇圧幅を低減したり、場合によってはガス圧縮機19そのものを省略することも可能となる。
一方、ガス圧縮機19により蒸発ガスを昇圧することにより、ベンチュリ型混合ノズル33においては、ベンチュリ効果により気相を巻き込むために必要な流速は、気液二相流噴出ノズル17における噴出速度に比べて十分に小さくて済む。すなわち、ベンチュリ効果を発揮するために必要な流路断面積の縮小拡大は比較的小さくて済むことになり、ベンチュリ型混合ノズル33における圧力損失が低減される。
In the venturi-type mixing nozzle 33, the flowing low temperature liquid 7 is increased in flow velocity at the reduced diameter portion 37, and the evaporative gas is sucked from the evaporative gas suction portion 39 by the so-called venturi effect and is entrained in the low temperature liquid 7. By using the venturi-type mixing nozzle 33, the pressure increase range of the gas compressor 19 can be reduced, or the gas compressor 19 itself can be omitted in some cases.
On the other hand, by increasing the pressure of the evaporated gas by the gas compressor 19, in the venturi-type mixing nozzle 33, the flow velocity necessary for entraining the gas phase due to the venturi effect is higher than the ejection speed in the gas-liquid two-phase flow ejection nozzle 17. And small enough. That is, the reduction and enlargement of the flow path cross-sectional area necessary for exhibiting the venturi effect is relatively small, and the pressure loss in the venturi-type mixing nozzle 33 is reduced.

<低温液体導入管>
低温液体導入管15は、凝縮混合部13によって貯留槽3内よりも温度上昇した混合済み低温液体を貯留槽3内の低温液体7中に導入するものである。
低温液体導入管15における凝縮混合部13の近傍には、内部を通流する混合済み低温液体の圧力を検知する圧力計43と、内部を通流する混合済み低温液体の温度を検知する温度計45が設けられている。
また、低温液体導入管15には第2開閉弁47が設けられている。さらに、凝縮混合部13の上流側と第2開閉弁47の下流側とを短絡するバイパス管49が設置され、バイパス管49には第3開閉弁51が設けられている。
<Cryogenic liquid introduction pipe>
The cryogenic liquid introduction pipe 15 introduces the mixed cryogenic liquid whose temperature has been raised by the condensation mixing unit 13 from the inside of the storage tank 3 into the cryogenic liquid 7 in the storage tank 3.
In the vicinity of the condensing and mixing unit 13 in the cryogenic liquid introduction pipe 15, there are a pressure gauge 43 for detecting the pressure of the mixed cryogenic liquid flowing through the inside, and a thermometer for detecting the temperature of the mixed cryogenic liquid flowing through the inside. 45 is provided.
The low temperature liquid introduction pipe 15 is provided with a second on-off valve 47. Further, a bypass pipe 49 that short-circuits the upstream side of the condensing and mixing unit 13 and the downstream side of the second on-off valve 47 is installed, and the bypass pipe 49 is provided with a third on-off valve 51.

<気液二相流噴出ノズル>
気液二相流噴出ノズル17は、低温液体導入管15に設けられて低温液体導入管15によって導入された混合済み低温液体を噴出することで減圧沸騰させて気液二相流として噴出させるものである。
気液二相流噴出ノズル17は低温液体導入管15から供給される混合済み低温液体を高速で噴出するために、吐出口17aの口径が縮径されている。
<Gas-liquid two-phase flow ejection nozzle>
The gas-liquid two-phase flow jet nozzle 17 is provided in the low-temperature liquid introduction pipe 15 and jets the mixed low-temperature liquid introduced by the low-temperature liquid introduction pipe 15 so as to boil under reduced pressure to be jetted as a gas-liquid two-phase flow. It is.
The gas-liquid two-phase flow ejection nozzle 17 has a reduced diameter of the discharge port 17a in order to eject the mixed low-temperature liquid supplied from the low-temperature liquid introduction pipe 15 at high speed.

<制御部>
制御部22は、圧力計43及び温度計45の検知情報を入力して、これに基づいて流量調整弁20を制御することで凝縮混合部13に供給される蒸発ガス流量を調整する。
凝縮混合部13における気相の巻き込み量が多いほど、気液二相流噴出ノズル17から吐出される際の気相の量が多くなり、貯留槽3内の混合撹拌力は向上する。そこで、貯留槽3の混合の様子を監視しながら、気相の巻き込み量を調整するのが好ましい。貯留槽3の混合の様子を監視する方法としては、貯留槽3内の高さ方向に複数点設置された温度計もしくは密度計(図示せず)により貯留槽3内の高さ方向の温度分布や密度分布を計測するのが一例である。
<Control unit>
The control part 22 inputs the detection information of the pressure gauge 43 and the thermometer 45, and controls the flow volume adjusting valve 20 based on this, and adjusts the evaporative gas flow volume supplied to the condensation mixing part 13. FIG.
The greater the amount of gas phase entrained in the condensing and mixing unit 13, the greater the amount of gas phase discharged from the gas-liquid two-phase flow ejection nozzle 17, and the mixing and stirring power in the storage tank 3 is improved. Therefore, it is preferable to adjust the entrainment amount of the gas phase while monitoring the mixing state of the storage tank 3. As a method of monitoring the mixing state of the storage tank 3, the temperature distribution in the height direction in the storage tank 3 by a plurality of thermometers or density meters (not shown) installed in the height direction in the storage tank 3. One example is measuring the density distribution.

もっとも、本発明では気液二相流噴出ノズル17のコンパクト化、凝縮混合部13を出た流体の気液二相流噴出ノズル17への安定供給、液ポンプ動力の低減等の理由から、凝縮混合部13において蒸発ガスを巻き込んだ後は液相になるようにしている。凝縮混合部13から気液二相流噴出ノズル17へ向かう低温液体導入管15は下降流となる場合が多く、気液二相流の状態での下降流は、流動が不安定となったり、圧力損失が大きくなったりするためである。そのため、蒸発ガスの巻き込み量は凝縮混合部13で飽和液の状態になるまでが上限となる。
このような蒸発ガスの流量は、凝縮混合部13の出口側に設けた圧力計43によって混合済み低温液体の圧力を検出し、該検出した圧力に基づいて飽和温度を求め、凝縮混合部13の出口側の低温流体の温度がこの飽和温度以下になっているかを確認し、飽和温度超の場合には蒸発ガスの流量が少なくなるように流量調整弁20を調整して飽和温度以下になるようにすればよい。
However, in the present invention, the gas-liquid two-phase flow ejection nozzle 17 is compact, the fluid that has exited the condensing and mixing unit 13 is stably supplied to the gas-liquid two-phase flow ejection nozzle 17, and the liquid pump power is reduced. After the evaporating gas is entrained in the mixing section 13, the liquid phase is set. The low-temperature liquid introduction pipe 15 heading from the condensing and mixing unit 13 to the gas-liquid two-phase flow ejection nozzle 17 is often a downward flow, and the downward flow in the gas-liquid two-phase flow state is unstable in flow, This is because the pressure loss increases. Therefore, the upper limit of the entrainment amount of the evaporating gas is until the saturated mixing state is obtained in the condensing and mixing unit 13.
The flow rate of such evaporative gas is detected by the pressure gauge 43 provided on the outlet side of the condensing and mixing unit 13 to detect the pressure of the mixed cryogenic liquid, and the saturation temperature is obtained based on the detected pressure. Check whether the temperature of the low-temperature fluid on the outlet side is equal to or lower than the saturation temperature. If the temperature is higher than the saturation temperature, the flow rate adjusting valve 20 is adjusted so that the flow rate of the evaporating gas is reduced so You can do it.

また、制御部22は、貯留槽3内の低温液体7の混合を行うか、低温液体7の通常の送出を行うかを、流量調整弁20、第1開閉弁29、第2開閉弁47及び第3開閉弁51の開閉制御によって切り替える。   In addition, the control unit 22 determines whether to mix the cryogenic liquid 7 in the storage tank 3 or to perform normal delivery of the cryogenic liquid 7, the flow rate adjusting valve 20, the first on-off valve 29, the second on-off valve 47, and Switching is performed by opening / closing control of the third opening / closing valve 51.

以上のように構成された貯留槽内低温液体混合装置1を用いた貯留槽内低温液体の混合方法を説明する。
貯留槽内低温液体の混合を行わない場合には、流量調整弁20を閉、第1開閉弁29を開、第2開閉弁47と第3開閉弁51を閉にする。これによって、貯留槽3内の低温液体7は液ポンプ11によって低温液体送出管27を介して使用側に必要量が供給され、また蒸発ガスはガス圧縮機19で圧縮されて蒸発ガス送出管21を介して、使用側に供給される。
The mixing method of the cryogenic liquid in the storage tank using the cryogenic liquid mixing apparatus 1 in the storage tank configured as described above will be described.
When mixing of the cryogenic liquid in the storage tank is not performed, the flow rate adjustment valve 20 is closed, the first on-off valve 29 is opened, and the second on-off valve 47 and the third on-off valve 51 are closed. As a result, the required amount of the cryogenic liquid 7 in the storage tank 3 is supplied to the use side by the liquid pump 11 via the cryogenic liquid delivery pipe 27, and the evaporative gas is compressed by the gas compressor 19 to be sent to the evaporative gas delivery pipe 21. Is supplied to the use side.

貯留槽3内の混合を行う際には、第2開閉弁47を開、第3開閉弁51を閉にして、流量調整弁20を所定の開度にする。第1開閉弁29は使用側の需要に応じて適宜開度を調整する。
これによって、貯留槽3内の低温液体7は液ポンプ11によって低温液体抜出し管9を介して凝縮混合部13に供給される。他方、蒸発ガスはガス圧縮機19によって圧縮されて蒸発ガス抜出し管5を介して凝縮混合部13に供給される。
凝縮混合部13では、低温の低温液体7に高温の蒸発ガスが接触することで蒸発ガスは凝縮して液体となって低温液体7に混合され、他方、凝縮ガスが混合された低温液体(混合済み低温液体)は貯留槽3内の温度よりも高い温度になる(蒸発ガス凝縮混合工程)。
混合済み低温液体は、液相状態で低温液体導入管15を介して気液二相噴出ノズルに供給される。
気液二相噴出ノズルに供給された混合済み低温液体は気液二相噴出ノズルから高速で噴出することで減圧沸騰して気液二相流として低温液体7中に噴出される(気液二相流噴出工程)。
When mixing in the storage tank 3, the 2nd on-off valve 47 is opened, the 3rd on-off valve 51 is closed, and the flow regulating valve 20 is made into a predetermined opening degree. The first opening / closing valve 29 appropriately adjusts the opening according to the demand on the use side.
As a result, the cryogenic liquid 7 in the storage tank 3 is supplied to the condensing and mixing unit 13 via the cryogenic liquid extraction pipe 9 by the liquid pump 11. On the other hand, the evaporative gas is compressed by the gas compressor 19 and supplied to the condensing and mixing unit 13 through the evaporative gas extraction pipe 5.
In the condensing and mixing unit 13, when the high-temperature evaporative gas comes into contact with the low-temperature low-temperature liquid 7, the evaporative gas condenses into a liquid and is mixed with the low-temperature liquid 7. The low-temperature liquid) becomes a temperature higher than the temperature in the storage tank 3 (evaporative gas condensation and mixing step).
The mixed cryogenic liquid is supplied to the gas-liquid two-phase ejection nozzle via the cryogenic liquid introduction pipe 15 in a liquid phase state.
The mixed low-temperature liquid supplied to the gas-liquid two-phase jet nozzle is boiled under reduced pressure by being jetted at a high speed from the gas-liquid two-phase jet nozzle, and jetted into the low-temperature liquid 7 as a gas-liquid two-phase flow (gas-liquid two Phase flow ejection process).

図1に示すように、貯留槽3内に吐出された気液二相流は、噴流に含まれる気泡の上昇効果によって、液相単相の噴流よりも到達高さが高くなり、撹拌混合効果が向上する。
また、噴流が拡散した後でも、気泡の上昇流に随伴される液相の上昇流が形成され、攪拌混合効果が増大する。
また、攪拌混合能力があまり要求されないような条件においては、第2開閉弁47を閉、第3開閉弁51を開、流量調整弁20を閉にすることによって、液単相噴流により貯留槽3内を攪拌混合することも可能である。
As shown in FIG. 1, the gas-liquid two-phase flow discharged into the storage tank 3 has a higher arrival height than the liquid-phase single-phase jet due to the rising effect of bubbles contained in the jet, and the stirring and mixing effect Will improve.
Further, even after the jet is diffused, a liquid-phase upflow accompanying the upflow of bubbles is formed, and the stirring and mixing effect is increased.
On the condition that the stirring / mixing capacity is not so required, the storage tank 3 is formed by a liquid single-phase jet by closing the second on-off valve 47, opening the third on-off valve 51, and closing the flow rate adjusting valve 20. It is also possible to stir and mix the inside.

以上のように、本実施の形態によれば、気液二相噴出ノズルから気液二相流が貯留槽3内の液中に噴流として吐出されるので、貯留槽3内の低温液体7の撹拌効果が高い。
また、本実施の形態では、本実施の形態の蒸発ガス抜出し管5、低温液体抜出し管9を既設の蒸発ガス送出管21、低温液体送出管27から分岐して設けたので、既設の配管に容易に取り付けることができ、改造費用等を低減することができる。
また、本実施の形態では、凝縮混合部13において低温液体7に接触した蒸発ガスが液相になるようにしているので、凝縮混合部13から気液二相流噴出ノズル17への供給を安定して行うことができ、また気液二相流噴出ノズル17へ供給するための液ポンプ11の動力を小さくすることができる。
さらに、蒸発ガスの一部を凝縮して貯留槽3に戻すことになるため、蒸発ガス送出管21から送出される、他のプロセスによって処理されるべき蒸発ガス量を低減する効果も得られる。
As described above, according to the present embodiment, the gas-liquid two-phase flow is discharged from the gas-liquid two-phase ejection nozzle into the liquid in the storage tank 3 as a jet, so that the low-temperature liquid 7 in the storage tank 3 High stirring effect.
In the present embodiment, the evaporative gas extraction pipe 5 and the low-temperature liquid extraction pipe 9 of the present embodiment are provided by branching from the existing evaporative gas delivery pipe 21 and the low-temperature liquid delivery pipe 27. It can be easily installed, and modification costs can be reduced.
In the present embodiment, the vaporized gas that has come into contact with the low temperature liquid 7 in the condensing and mixing unit 13 is in the liquid phase, so that the supply from the condensing and mixing unit 13 to the gas-liquid two-phase flow ejection nozzle 17 is stable. The power of the liquid pump 11 for supplying to the gas-liquid two-phase flow ejection nozzle 17 can be reduced.
Furthermore, since a part of the evaporated gas is condensed and returned to the storage tank 3, the effect of reducing the amount of evaporated gas to be processed by another process sent from the evaporated gas delivery pipe 21 is also obtained.

なお、上記の説明では制御部22を用いて第1開閉弁29、第2開閉弁47、第3開閉弁51及び流量調整弁20を自動開閉するようにしたが、本発明においては、制御部22を有することなく、これらの弁関係を個別に手動等によって開閉する場合も含む。   In the above description, the first on-off valve 29, the second on-off valve 47, the third on-off valve 51, and the flow rate adjusting valve 20 are automatically opened and closed using the control unit 22, but in the present invention, the control unit This includes a case where these valve relationships are individually opened and closed manually or the like without having 22.

1 貯留槽内低温液体混合装置
3 貯留槽
5 蒸発ガス抜出し管
7 低温液体
9 低温液体抜出し管
11 液ポンプ
13 凝縮混合部
15 低温液体導入管
17 気液二相流噴出ノズル
17a 吐出口
19 ガス圧縮機
20 流量調整弁
21 蒸発ガス送出管
22 制御部
27 低温液体送出管
29 第1開閉弁
31 ヘッダ
33 ベンチュリ型混合ノズル
35 低温液体流入路
37 縮径部
39 蒸発ガス吸入部
41 吐出口
43 圧力計
45 温度計
47 第2開閉弁
49 バイパス管
51 第3開閉弁
DESCRIPTION OF SYMBOLS 1 Low temperature liquid mixing apparatus in storage tank 3 Storage tank 5 Evaporative gas extraction pipe 7 Low temperature liquid 9 Low temperature liquid extraction pipe 11 Liquid pump 13 Condensing mixing part 15 Low temperature liquid introduction pipe 17 Gas-liquid two-phase flow ejection nozzle 17a Discharge port 19 Gas compression Machine 20 Flow rate adjusting valve 21 Evaporative gas delivery pipe 22 Control part 27 Cryogenic liquid delivery pipe 29 First on-off valve 31 Header 33 Venturi type mixing nozzle 35 Cryogenic liquid inflow path 37 Reduced diameter part 39 Evaporative gas suction part 41 Ejection port 43 Pressure gauge 45 Thermometer 47 Second on-off valve 49 Bypass pipe 51 Third on-off valve

Claims (8)

貯留槽内に貯留された低温液体を混合する貯留槽内低温液体の混合方法であって、
前記貯留槽から抜き出した低温液体に前記貯留槽で発生した蒸発ガスを混合することで前記蒸発ガスを凝縮させる蒸発ガス凝縮混合工程と、該蒸発ガス凝縮混合工程によって前記貯留槽内よりも温度上昇した低温液体を液ポンプで圧送して前記貯留槽内の低温液体中に噴出することで減圧沸騰させて気液二相流として噴出させる気液二相流噴出工程とを有し、
前記蒸発ガス凝縮混合工程は、混合済み低温液体の圧力及び温度を検知し、これに基づいて気液二相流噴出工程で減圧沸騰するように混合する蒸発ガス流量を調整することを特徴とする貯留槽内低温液体の混合方法。
A method for mixing cryogenic liquid in a storage tank that mixes cryogenic liquid stored in a storage tank,
An evaporative gas condensing and mixing step of condensing the evaporative gas by mixing the evaporative gas generated in the reserving tank with the low-temperature liquid extracted from the storage tank; and pumping the cryogenic liquid in the liquid pump have a gas-liquid two-phase flow ejection step for ejecting a gas-liquid two phase flow by flash boiling by ejection into a cryogenic liquid in the reservoir,
The evaporative gas condensing and mixing step detects the pressure and temperature of the mixed cryogenic liquid, and adjusts the flow rate of the evaporating gas to be mixed so as to boil under reduced pressure in the gas-liquid two-phase flow ejection step based on the detected pressure and temperature. Mixing method of cryogenic liquid in storage tank.
前記蒸発ガス凝縮混合工程は、前記混合済み低温液体の圧力及び温度を検知し、これに基づいて前記混合済み低温液体が飽和温度以下になるように前記蒸発ガスの流量を調節することを特徴とする請求項1記載の貯留槽内低温液体の混合方法。The evaporative gas condensing and mixing step detects the pressure and temperature of the mixed cryogenic liquid, and adjusts the flow rate of the evaporative gas so that the mixed cryogenic liquid becomes a saturation temperature or less based on the detected pressure and temperature. The method for mixing the cryogenic liquid in the storage tank according to claim 1. 前記蒸発ガス凝縮混合工程を、ベンチュリ型混合ノズルを用いて行うことを特徴とする請求項1又は2に記載の貯留槽内低温液体の混合方法。 The method for mixing a cryogenic liquid in a storage tank according to claim 1 or 2, wherein the evaporative gas condensation and mixing step is performed using a venturi-type mixing nozzle. 蒸発ガス凝縮混合工程は、蒸発ガスをガス圧縮機によって圧力を高めて低温液体に混合することを特徴とする請求項1乃至3のいずれか一項に記載の貯留槽内低温液体の混合方法。 Vapor condensing mixing step, the mixing method of storage tank cryogenic liquid according to any one of claims 1 to 3 characterized by mixing the evaporated gas in the cryogenic liquid to increase the pressure by a gas compressor. 前記貯留槽で発生した蒸発ガスのすべて、または一部を抜き出す蒸発ガス抜出し管と、前記貯留槽の低温液体を抜き出す低温液体抜出し管と、該低温液体抜出し管に設けられて貯留槽内の低温液体を圧送する液ポンプと、前記蒸発ガス抜出し管から抜き出された蒸発ガスを前記低温液体抜出し管から抜き出された低温液体に接触させて前記蒸発ガスを凝縮させて前記低温液体に混合する凝縮混合部と、該凝縮混合部に供給する蒸発ガスの流量を調整する流量調整弁と、前記凝縮混合部によって前記貯留槽内よりも温度上昇した低温液体を前記貯留槽内の低温液体中に導入する低温液体導入管と、該低温液体導入管に設けられて該低温液体導入管によって導入された低温液体を噴出することで減圧沸騰させて気液二相流として噴出させる気液二相流噴出ノズルと、前記低温液体導入管に設けられて混合済み低温液体の圧力を検知する圧力計と、該低温液体導入管に設けられて混合済み低温液体の温度を検知する温度計と、該温度計及び前記圧力計の検知情報を入力して前記気液二相流噴出ノズルの噴出の際に減圧沸騰するように前記流量調整弁を調整する制御部とを備えたことを特徴とする貯留槽内低温液体混合装置。 An evaporative gas extraction pipe for extracting all or part of the evaporative gas generated in the storage tank, a low-temperature liquid extraction pipe for extracting the low-temperature liquid from the storage tank, and a low-temperature liquid in the storage tank provided in the low-temperature liquid extraction pipe A liquid pump that pumps liquid, and the evaporative gas extracted from the evaporative gas extraction pipe is brought into contact with the low-temperature liquid extracted from the low-temperature liquid extraction pipe to condense the evaporative gas and mix it with the low-temperature liquid. A condensing and mixing unit, a flow rate adjusting valve that adjusts the flow rate of the evaporative gas supplied to the condensing and mixing unit, and a cryogenic liquid whose temperature has risen more than that in the storage tank by the condensing and mixing unit into the cryogenic liquid in the storage tank A cryogenic liquid introduction pipe to be introduced, and a gas-liquid two which is provided in the cryogenic liquid introduction pipe and is boiled under reduced pressure by ejecting the cryogenic liquid introduced by the cryogenic liquid introduction pipe and ejected as a gas-liquid two-phase flow A flow jet nozzle, and a thermometer for sensing the pressure gauge, the temperature of the mixture already cryogenic liquid provided in cryogenic fluid inlet tube for detecting the pressure of the blended cryogenic liquid provided in the cold liquid inlet pipe, the And a control unit for inputting the detection information of the thermometer and the pressure gauge and adjusting the flow rate adjusting valve so as to boil under reduced pressure when the gas-liquid two-phase flow ejection nozzle is ejected. Mixing device for cryogenic liquid in the tank. 前記制御部は、前記混合済み低温液体の圧力及び温度を検知し、これに基づいて前記混合済み低温液体が飽和温度以下になるように前記流量調整弁を調節することを特徴とする請求項5記載の貯留槽内低温液体の混合装置。 The said control part detects the pressure and temperature of the said mixed cryogenic liquid, and adjusts the said flow regulating valve so that the said mixed cryogenic liquid may become below saturation temperature based on this. The cryogenic liquid mixing device in the storage tank described. 前記凝縮混合部は、ベンチュリ型混合ノズルによって構成されていることを特徴とする請求項5又は6に記載の貯留槽内低温液体混合装置。 The said condensing mixing part is comprised by the venturi type mixing nozzle, The mixing apparatus of the cryogenic liquid in a storage tank of Claim 5 or 6 characterized by the above-mentioned. 前記蒸発ガス抜出し管に蒸発ガスの圧力を高めるガス圧縮機を設けたことを特徴とする請求項5乃至7のいずれか一項に記載の貯留槽内低温液体混合装置。 The mixing device for a cryogenic liquid in a storage tank according to any one of claims 5 to 7, wherein a gas compressor for increasing a pressure of the evaporation gas is provided in the evaporation gas extraction pipe.
JP2014028351A 2014-02-18 2014-02-18 Method and apparatus for mixing cryogenic liquid in storage tank Expired - Fee Related JP6136971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028351A JP6136971B2 (en) 2014-02-18 2014-02-18 Method and apparatus for mixing cryogenic liquid in storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028351A JP6136971B2 (en) 2014-02-18 2014-02-18 Method and apparatus for mixing cryogenic liquid in storage tank

Publications (2)

Publication Number Publication Date
JP2015152136A JP2015152136A (en) 2015-08-24
JP6136971B2 true JP6136971B2 (en) 2017-05-31

Family

ID=53894622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028351A Expired - Fee Related JP6136971B2 (en) 2014-02-18 2014-02-18 Method and apparatus for mixing cryogenic liquid in storage tank

Country Status (1)

Country Link
JP (1) JP6136971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028276A (en) * 2021-02-24 2021-06-25 四川汇众力低温科技有限公司 Low-temperature gas recovery device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495398U (en) * 1991-01-11 1992-08-18
JPH09203500A (en) * 1996-01-29 1997-08-05 Ishikawajima Harima Heavy Ind Co Ltd Device for eliminating stratification of liquid in reserving tank
JPH1163396A (en) * 1997-08-18 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Boiloff gas condensing device and liquefied gas storage equipment
JP2000193196A (en) * 1998-12-24 2000-07-14 Ishikawajima Harima Heavy Ind Co Ltd Stratification preventing device in low temperature liquefied gas tank
JP5333186B2 (en) * 2009-12-05 2013-11-06 Jfeエンジニアリング株式会社 Evaporative gas reliquefaction equipment

Also Published As

Publication number Publication date
JP2015152136A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
KR101589696B1 (en) Systems for direct steam injection heating of bitumen froth
JP5033921B2 (en) Fountain equipment
KR102208320B1 (en) Liquid natural gas cooling on the fly
US20160183549A1 (en) Deaerator system and method for deaeration
JP2015129631A (en) Device and method of increasing liquid head to support refrigerant liquid feed system
CA2416884C (en) Gas condenser
JP6136971B2 (en) Method and apparatus for mixing cryogenic liquid in storage tank
JP6303796B2 (en) Method and apparatus for mixing cryogenic liquid in storage tank
BR102015024683B1 (en) Carbonation duct for mixing a gas and a beverage and carbonation process
US11851316B2 (en) Tank system for cooling a liquid using thermal stratification
CN110545893B (en) System for preventing air bubbles in oil flow from entering high pressure device and method for preventing air bubbles from entering high pressure device
JP6218867B2 (en) Condensing equipment
JP2014159856A (en) Mixing device of cryogenic liquid in storage tank
JP2007098227A (en) Apparatus and method of generating bubble or droplet in liquid
JP6225281B2 (en) Bubble detection device and condensing equipment using the bubble detection device
US20200368638A1 (en) System and method for separating components from high pressure co2
WO2017187616A1 (en) Gas adjustment device
JP2014062693A (en) Heat recovery apparatus and heat recovery method
JP2015007470A (en) Mixing device for low-temperature liquid in storage tank
KR102562535B1 (en) Sparkling water producing module
KR20230090384A (en) Ejector for improving condensation performance, and system for bunkering of liquefied gas using the same
WO2018131103A1 (en) Condensing equipment
JP4974105B2 (en) Steam injector system and method of operating the same
JP5676976B2 (en) Capacitor cooling water control device for steam injection vacuum pump
KR20230025724A (en) System for bunkering of liquefied gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees