JP6135951B2 - Material for vibration absorption structure - Google Patents
Material for vibration absorption structure Download PDFInfo
- Publication number
- JP6135951B2 JP6135951B2 JP2015173641A JP2015173641A JP6135951B2 JP 6135951 B2 JP6135951 B2 JP 6135951B2 JP 2015173641 A JP2015173641 A JP 2015173641A JP 2015173641 A JP2015173641 A JP 2015173641A JP 6135951 B2 JP6135951 B2 JP 6135951B2
- Authority
- JP
- Japan
- Prior art keywords
- partition
- vibration
- resin
- foamed resin
- structural material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 153
- 238000010521 absorption reaction Methods 0.000 title description 10
- 229920005989 resin Polymers 0.000 claims description 109
- 239000011347 resin Substances 0.000 claims description 109
- 238000005192 partition Methods 0.000 claims description 97
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 24
- 239000003063 flame retardant Substances 0.000 claims description 24
- 239000010419 fine particle Substances 0.000 claims description 16
- 238000005187 foaming Methods 0.000 claims description 8
- 239000006260 foam Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 238000002156 mixing Methods 0.000 description 15
- 238000000465 moulding Methods 0.000 description 12
- 238000000576 coating method Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000004566 building material Substances 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000004114 Ammonium polyphosphate Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 2
- 229920001276 ammonium polyphosphate Polymers 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、可燃性発泡樹脂からなり、優れた不燃性と振動吸収性を有する構造用材料に関する。 The present invention relates to a structural material made of a combustible foamed resin and having excellent incombustibility and vibration absorption.
発泡樹脂からなる発泡体は、軽量であり加工性もよく、耐水性、断熱性、衝撃吸収性などに優れることから、食材の容器や緩衝材など今日の生活において幅広く利用されている。しかしながら、発泡体を構成する発泡樹脂が可燃性であることから、耐燃性に問題があった。 Foams made of foamed resins are lightweight, have good workability, and are excellent in water resistance, heat insulation, shock absorption, etc., and are therefore widely used in today's lives such as food containers and cushioning materials. However, since the foamed resin constituting the foam is flammable, there is a problem in flame resistance.
そこで、不燃性の発泡体を実現するために、いくつかの報告例がある。例えば特許文献1には、ポリスチレン系樹脂に対して、ハロゲン化環状脂肪族化合物を除くハロゲン化脂肪族化合物或いはその誘導体からなる難燃剤と、難燃剤の分解温度調整剤とを溶融混合することにより、難燃性及び環境衛生上に優れた難燃性ポリスチレン系樹脂押出発泡体が開示されている。 Therefore, there are some reported examples in order to realize a nonflammable foam. For example, Patent Document 1 discloses that a polystyrene-based resin is melt-mixed with a flame retardant composed of a halogenated aliphatic compound other than a halogenated cycloaliphatic compound or a derivative thereof, and a decomposition temperature adjusting agent for the flame retardant. In addition, a flame-retardant polystyrene resin extruded foam excellent in flame retardancy and environmental hygiene is disclosed.
また、特許文献2には、可燃性樹脂の表面に非ほう酸系の難燃剤とレゾール樹脂からなるコーティング層を形成した断熱材用コーティングビーズが開示されている。かかるビーズを用いて発泡体を成型することにより、コーティング層が可燃性樹脂の表面を被覆していることから、不燃性の発泡体を得ることができる。また、特許文献2と類似する発明として、特許文献3には、可燃性発泡樹脂の表面に難燃性無機材、熱硬化性樹脂、難燃性剤を含む混合層を形成した発泡体の製造方法が開示されている。 Patent Document 2 discloses a coating bead for a heat insulating material in which a coating layer made of a non-boric acid flame retardant and a resole resin is formed on the surface of a flammable resin. By molding the foam using such beads, since the coating layer covers the surface of the combustible resin, a nonflammable foam can be obtained. As an invention similar to Patent Document 2, Patent Document 3 describes the production of a foam in which a mixed layer containing a flame-retardant inorganic material, a thermosetting resin, and a flame retardant is formed on the surface of a combustible foam resin. A method is disclosed.
本発明は、特許文献3に記載の発泡体を改良したものである。すなわち、本発明は、可燃性発泡樹脂からなり、優れた不燃性と振動吸収性を有する構造用材料を提供することを課題とする。具体的には、可燃性発泡樹脂が不燃性の仕切で仕切られていることにより構造用材料が優れた不燃性を有するとともに、不燃性の仕切が微細空隙を含むことにより優れた振動吸収性を有する。また、不燃性の仕切が微細空隙を含むことにより、材料の軽量化を図ることができる。 The present invention is an improvement of the foam described in Patent Document 3. That is, this invention makes it a subject to provide the structural material which consists of a combustible foaming resin and has the outstanding nonflammability and vibration absorption. Specifically, the structural material has excellent non-flammability because the flammable foamed resin is partitioned by a non-flammable partition, and the vibration-absorbing property is excellent because the non-flammable partition includes fine voids. Have. Moreover, the weight reduction of a material can be achieved because a nonflammable partition contains a fine space | gap.
上述した課題を解決するために、第一の発明として、可燃性発泡樹脂からなる構造用材料であって、前記可燃性発泡樹脂は微細空隙を含む不燃性の仕切で仕切られている振動吸収構造用材料を提供する。 In order to solve the above-described problem, as a first invention, a vibration-absorbing structure is a structural material made of a combustible foamed resin, and the combustible foamed resin is partitioned by a noncombustible partition including fine voids. Providing materials for use.
また、第二の発明として、前記微細空隙は1μm〜30μmである第一の発明に記載の振動吸収構造用材料を提供する。 As a second invention, there is provided the vibration-absorbing structure material according to the first invention, wherein the fine voids are 1 μm to 30 μm.
また、第三の発明として、前記仕切で仕切られた領域は最大幅が1mm〜5mmである第一又は第二の発明に記載の振動吸収構造用材料を提供する。 Moreover, as a third invention, the region partitioned by the partition provides the vibration-absorbing structure material according to the first or second invention, wherein the maximum width is 1 mm to 5 mm.
また、第四の発明として、前記仕切は厚さが10μm〜300μmである第一から第三の発明のいずれか一に記載の振動吸収構造用材料を提供する。 According to a fourth aspect of the present invention, there is provided the vibration absorbing structure material according to any one of the first to third aspects, wherein the partition has a thickness of 10 μm to 300 μm.
また、第五の発明として、前記仕切は難燃性樹脂と不燃性微細粒との混合材料である第一から第四の発明のいずれか一に記載の振動吸収構造用材料を提供する。 According to a fifth aspect of the present invention, there is provided the vibration absorbing structure material according to any one of the first to fourth aspects, wherein the partition is a mixed material of a flame retardant resin and incombustible fine particles.
また、第六の発明として、密度が30kg/m3〜150kg/m3である第一から第五の発明のいずれか一に記載の振動吸収構造用材料を提供する。 Further, a sixth invention, the density is to provide a vibration-absorbing structural material according to any one of the first fifth invention is 30kg / m 3 ~150kg / m 3 .
本発明の構造用材料は優れた不燃性を有するため、不燃物としての建材での使用が可能となるなど、耐燃性を必要とする箇所に使用することができる。また、優れた振動吸収性を有するため、振動吸収性を有する建材としての利用も好適である。 Since the structural material of the present invention has excellent nonflammability, it can be used in places requiring flame resistance, such as being able to be used in building materials as nonflammable materials. Moreover, since it has excellent vibration absorption, it is also suitable for use as a building material having vibration absorption.
以下、本発明の各実施形態について図面と共に説明する。なお、本発明は本明細書の記載に何ら限定されるものではなく、その要旨を逸脱しない範囲内において、様々な態様で実施しうる。
<構成>
Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to description of this specification at all, and can be implemented with various aspects within the range which does not deviate from the summary.
<Configuration>
図1は、振動吸収構造用材料の一例を示す概要図であり、(a)は斜視図を、(b)は拡大図を示す。本発明の振動吸収構造用材料(0100)は、主に可燃性発泡樹脂(0101)と、仕切(0102)と、からなり、可燃性発泡樹脂は微細空隙(0103)を含む不燃性の仕切で仕切られている。 FIG. 1 is a schematic view showing an example of a vibration-absorbing structural material, where (a) is a perspective view and (b) is an enlarged view. The vibration-absorbing structural material (0100) of the present invention mainly comprises a combustible foamed resin (0101) and a partition (0102), and the combustible foamed resin is a noncombustible partition including fine voids (0103). It is partitioned.
可燃性発泡樹脂(0101)は、可燃性の樹脂を発泡させたものであり、樹脂中に無数の気孔が形成された多孔質構造を有している。例えば可燃性発泡樹脂の材料として、ポリウレタン、ポリスチレン、ポリオレフィン、ポリエチレン、ポリプロピレン、フェノール樹脂、ポリ塩化ビニル、ユリア樹脂、シリコーン、ポリイミド、メラミン樹脂などが知られているが、本発明の振動吸収構造用材料において可燃性の樹脂からなる発泡体であれば特にこれらに限定するものではない。 The combustible foamed resin (0101) is obtained by foaming a combustible resin and has a porous structure in which countless pores are formed in the resin. For example, polyurethane, polystyrene, polyolefin, polyethylene, polypropylene, phenol resin, polyvinyl chloride, urea resin, silicone, polyimide, melamine resin, and the like are known as combustible foamed resin materials. If it is a foam which consists of combustible resin in material, it will not specifically limit to these.
仕切(0102)は不燃性であり、可燃性発泡樹脂を仕切るように構成される。通常の発泡体の場合、発泡樹脂がそれぞれ結合することにより発泡体が形成されているが、本発明の振動吸収構造用材料は、可燃性発泡樹脂の表面が仕切で覆われており、隣接する可燃性発泡樹脂どうしは不燃性の仕切を介して結合されている。 The partition (0102) is nonflammable and is configured to partition the combustible foamed resin. In the case of a normal foam, the foam is formed by bonding the foamed resin, but the vibration-absorbing structural material of the present invention has a combustible foamed resin surface covered with a partition and adjacent to it. The combustible foamed resins are connected to each other through a noncombustible partition.
ここで、一般に不燃性とは燃焼しない性質を示しているが、本発明において「不燃性の仕切」とは燃焼しない性質を示す仕切のみならず、一般に難燃性といわれる燃焼しにくい性質を示す仕切や、自己消火性といわれる炎が取り去られると消火する性質を示す仕切なども含まれている。 Here, in general, nonflammability indicates a property that does not burn, but in the present invention, the term “nonflammable partition” indicates not only a partition that does not burn, but also a property that is generally referred to as flame retardant and is difficult to burn. It also includes a partition and a partition that shows the property of extinguishing when a flame called self-extinguishing is removed.
本発明の振動吸収構造用材料において、仕切は微細空隙を含んでいる。微細空隙は1μm〜30μmであることが好ましい。すなわち、微細空隙の最大幅が1μm〜30μmであることが好ましい。通常の発泡体は、無数の微細空隙を含む可燃性樹脂から構成されており、微細空隙中の空気が振動を吸収することにより、優れた振動吸収性を得ることができる。本発明の構造用材料も可燃性発泡樹脂から構成されており、可燃性発泡樹脂の内部には無数の微細空隙が含まれているから、可燃性発泡樹脂は振動吸収性を有しているが、可燃性発泡樹脂が仕切で仕切られており、仕切が微細空隙を含んでいない場合には、仕切を介して振動が伝播されてしまうため、通常の発泡体と比較して振動吸収性が劣ってしまう。そこで、仕切が微細空隙を含む構成とすることにより、仕切においても微細空隙中の空気に振動を吸収させる構成とすることにより、可燃性発泡樹脂が仕切により仕切られていても、振動吸収性を低下させることのない振動吸収構造用材料とすることができる。また、不燃性の仕切が微細空隙を含むことにより、材料の軽量化を図ることができる。なお、微細空隙が小さいと、優れた振動吸収性が得られない。また、微細空隙が大きいと、優れた振動吸収性を得られるだけでなく、振動吸収構造用材料の強度が低下してしまう。 In the vibration-absorbing structural material of the present invention, the partition includes fine voids. The fine voids are preferably 1 μm to 30 μm. That is, it is preferable that the maximum width of the fine gap is 1 μm to 30 μm. A normal foam is composed of a flammable resin containing innumerable fine voids, and the air in the fine voids absorbs vibration, so that excellent vibration absorbability can be obtained. The structural material of the present invention is also composed of a flammable foamed resin, and the flammable foamed resin contains innumerable microscopic voids. Therefore, the flammable foamed resin has vibration absorption. If the flammable foamed resin is partitioned by a partition and the partition does not contain fine voids, vibrations are propagated through the partition, so vibration absorption is inferior compared to ordinary foams. End up. Therefore, by adopting a configuration in which the partition includes fine voids, even in the partition, by adopting a configuration in which vibrations are absorbed by the air in the fine voids, even if the combustible foamed resin is partitioned by the partition, vibration absorption is achieved. It can be set as the vibration-absorbing structure material which is not lowered. Moreover, the weight reduction of a material can be achieved because a nonflammable partition contains a fine space | gap. In addition, when the fine gap is small, excellent vibration absorbability cannot be obtained. In addition, when the fine gap is large, not only excellent vibration absorbability can be obtained, but also the strength of the vibration absorbing structure material is lowered.
仕切で仕切られた領域は最大幅が1mm〜5mmであることが好ましい。仕切で仕切られた領域が小さければ小さいほど、振動吸収構造用材料にしめる仕切の割合が大きいことを示しており、振動吸収構造用材料の不燃性を高めることができる。しかしながら、仕切は可燃性発泡樹脂と比較してコストが高いため、仕切の割合の増加とともに振動吸収構造用材料のコストも増大してしまう。また、仕切は可燃性発泡樹脂よりも重いため、仕切の割合の増加とともに振動吸収構造用材料自体の重さも増大してしまうこととなる。すると、あまりに仕切で仕切られた領域を小さくしてしまうと、振動吸収構造用材料自身の重みにより振動吸収構造用材料が崩壊してしまう恐れが生じる。なお、仕切で仕切られた領域の最大幅は、振動吸収構造用材料の製造時において、可燃性発泡樹脂の予備発泡樹脂の粒径により調整することができる。 The region partitioned by the partition preferably has a maximum width of 1 mm to 5 mm. This indicates that the smaller the area partitioned by the partition, the larger the ratio of the partition that is made into the vibration absorbing structure material, and the nonflammability of the vibration absorbing structure material can be increased. However, since the cost of the partition is higher than that of the flammable foamed resin, the cost of the vibration-absorbing structure material increases as the ratio of the partition increases. Moreover, since the partition is heavier than the flammable foamed resin, the weight of the vibration absorbing structure material itself increases as the ratio of the partition increases. Then, if the area partitioned by the partition is made too small, the vibration absorbing structure material may collapse due to the weight of the vibration absorbing structure material itself. Note that the maximum width of the region partitioned by the partition can be adjusted by the particle size of the pre-foamed resin of the combustible foamed resin at the time of manufacturing the vibration-absorbing structural material.
また、仕切は厚さが10μm〜300μmであることが好ましい。仕切の厚さが厚いほど、振動吸収構造用材料の不燃性を向上させることができるものの、あまりに仕切の厚さが厚いと振動吸収構造用材料に占める仕切の割合が大きくなってしまうから、振動吸収構造用材料のコストや重量の増大といった問題点が生じてしまう。なお、仕切の厚さは振動吸収構造用材料の製造時において、可燃性発泡樹脂の予備発泡樹脂への仕切材料の被膜の厚さにより調整することができる。 The partition preferably has a thickness of 10 μm to 300 μm. The thicker the partition, the more the non-flammability of the vibration-absorbing structural material can be improved. However, if the partition thickness is too thick, the proportion of the partition in the vibration-absorbing structural material increases. Problems such as an increase in the cost and weight of the absorbent structural material arise. The thickness of the partition can be adjusted by the thickness of the partition material coating on the pre-foamed resin of the combustible foamed resin at the time of manufacturing the vibration-absorbing structural material.
また、仕切で仕切られる領域は多面体であることが好ましい。すなわち、仕切は曲面ではなく平面で構成されることが好ましい。仕切が曲面で構成される場合と比較して、仕切が平面で構成される構成とすると、振動吸収構造用材料の強度を増加させることができる。 Moreover, it is preferable that the area | region divided by a partition is a polyhedron. That is, it is preferable that the partition is constituted by a plane rather than a curved surface. Compared with the case where the partition is configured by a curved surface, the configuration of the partition configured by a plane can increase the strength of the vibration absorbing structure material.
さらに、仕切は振動吸収構造用材料の材料表面(0103)に対して略垂直に設けられることが好ましい。「略垂直」とは、振動吸収構造用材料の材料表面と接触している仕切と、材料表面とのなす角度が80〜90度であることを示している。なお、「材料表面」とは振動吸収構造用材料の成型時の材料表面であって、例えば成型後に振動吸収構造用材料を切断した際の切断面については材料表面とは区別される。かかる構成とすると、振動吸収構造用材料の材料表面に対して略垂直に設けられた仕切が、振動吸収構造用材料の材料表面の面方向への延焼量を抑えることができ、振動吸収構造用材料の不燃性を向上させることができる。 Furthermore, the partition is preferably provided substantially perpendicular to the material surface (0103) of the vibration-absorbing structural material. “Substantially perpendicular” indicates that the angle formed between the partition in contact with the material surface of the vibration-absorbing structural material and the material surface is 80 to 90 degrees. The “material surface” is a material surface at the time of molding the vibration absorbing structure material. For example, a cut surface when the vibration absorbing structure material is cut after molding is distinguished from the material surface. With this configuration, the partition provided substantially perpendicular to the material surface of the vibration absorbing structure material can suppress the amount of fire spread in the surface direction of the material surface of the vibration absorbing structure material. The nonflammability of the material can be improved.
また、振動吸収構造用材料は、仕切で囲まれた不燃性の底面仕切又は/及び上面仕切をさらに有していても良い。「仕切で囲まれた」とは、底面仕切又は/及び上面仕切の外周が仕切で囲まれていることを示している。上述したように、振動吸収構造用材料の材料表面に対して略垂直の仕切を設けることにより、材料表面の面方向に対する延焼を防止することができるとともに、底面仕切又は/及び上面仕切を設ける構成とすると、材料表面に対して垂直方向への延焼を防止することができる。 Moreover, the vibration-absorbing structural material may further include a nonflammable bottom surface partition and / or a top surface partition surrounded by the partition. “Enclosed by a partition” indicates that the outer periphery of the bottom partition and / or the top partition is surrounded by the partition. As described above, by providing a partition that is substantially perpendicular to the material surface of the vibration-absorbing structural material, it is possible to prevent fire spread in the surface direction of the material surface, and to provide a bottom partition or / and a top partition Then, it is possible to prevent the spread of fire in the direction perpendicular to the material surface.
ここで、仕切は難燃性樹脂と不燃性微細粒との混合材料であっても良い。「難燃性樹脂」としては、例えばレゾール樹脂、ポリ塩化ビニル、ポリフェニレンオキサイド、EPゴム、ポリエチレン、クロロプレンゴム、ポリビニリデンフロライド、シリコーンゴム、テトラフロロエチレンなどが好適である。これらの樹脂は熱硬化性樹脂であって、構造用材料が加熱された際には硬化して、振動吸収構造用材料の形状を保つように作用する。 Here, the partition may be a mixed material of a flame-retardant resin and non-flammable fine particles. As the “flame retardant resin”, for example, resole resin, polyvinyl chloride, polyphenylene oxide, EP rubber, polyethylene, chloroprene rubber, polyvinylidene fluoride, silicone rubber, tetrafluoroethylene and the like are suitable. These resins are thermosetting resins, which act when the structural material is heated to maintain the shape of the vibration-absorbing structural material.
また、「不燃性微細粒」として、例えば難燃剤として知られている赤リンやポリリン酸アンモニウムなどを用いることができる。赤リンやポリリン酸アンモニウムは、振動吸収構造用材料が加熱された際には炭化して、振動吸収構造用材料内の可燃性発泡樹脂への酸素の供給を遮断することで、可燃性発泡樹脂の燃焼を防止するよう作用する。 Moreover, as “incombustible fine particles”, for example, red phosphorus or ammonium polyphosphate known as a flame retardant can be used. Red phosphorus and ammonium polyphosphate are carbonized when the vibration-absorbing structural material is heated, and block the supply of oxygen to the combustible foamed resin in the vibration-absorbing structural material. It works to prevent the burning of.
また、「不燃性微細粒」として、水酸化アルミニウムや水酸化マグネシウムなどを用いることもできる。水酸化アルミニウムや水酸化マグネシウムは、結晶内部に結晶水を保持しており、結晶水のかい離反応時に大きな吸熱を伴うから、可燃性発泡樹脂の燃焼が防止される。 Moreover, aluminum hydroxide, magnesium hydroxide, etc. can also be used as “incombustible fine particles”. Aluminum hydroxide or magnesium hydroxide retains crystallization water inside the crystal and is accompanied by a large endotherm during the separation reaction of crystallization water, so that combustion of the flammable foamed resin is prevented.
また、「不燃性微細粒」として雲母を用いることもできる。雲母は不燃性微細粒として、可燃性発泡樹脂の燃焼を防止するよう作用するとともに、雲母の添加によって難燃性樹脂の粘度を調整することができる。すると、不燃性微細粒として使用されている微粒子が仕切から脱落することを防止できるほか、粘度の調整により構造用材料の強度も調整することができる。 Moreover, mica can also be used as “incombustible fine particles”. Mica acts as nonflammable fine particles to prevent combustion of the flammable foamed resin, and the viscosity of the flame retardant resin can be adjusted by adding mica. Then, the fine particles used as nonflammable fine particles can be prevented from falling off the partition, and the strength of the structural material can be adjusted by adjusting the viscosity.
本発明の構造用材料は、密度が30kg/m3〜150kg/m3であることが好ましい。可燃性発泡樹脂の密度と比較すると、本発明の構造用材料は可燃性発泡樹脂に加えて仕切の分だけ密度が大きくなる。なお、構造用材料の密度は、仕切で仕切られた領域のサイズや、仕切の厚さにより変化する。 Structural material of the present invention, it is preferable density of 30kg / m 3 ~150kg / m 3 . Compared with the density of the combustible foamed resin, the structural material of the present invention has a density corresponding to the partition in addition to the combustible foamed resin. The density of the structural material varies depending on the size of the area partitioned by the partition and the thickness of the partition.
なお、本発明の構造用材料の別の一例として、構造用材料の材料表面に金属膜が貼り付けられていても良い。金属膜としてどのような膜を用いても良く、例えばアルミ箔を用いても良い。構造用材料の材料表面に金属膜を貼り付けると、金属膜が熱を反射することにより、構造用材料の材料表面が加熱された場合にも、構造用材料の材料表面の温度上昇をある程度抑えることができ、構造用材料の不燃性をさらに向上させることができる。なお、金属膜は構造用材料の表面に接着剤を介して貼り付けられても良い。
<製造方法>
As another example of the structural material of the present invention, a metal film may be attached to the material surface of the structural material. Any film may be used as the metal film, for example, an aluminum foil may be used. When a metal film is attached to the surface of a structural material, the metal film reflects heat, so that even if the material surface of the structural material is heated, the temperature rise on the surface of the structural material is suppressed to some extent. And the nonflammability of the structural material can be further improved. The metal film may be attached to the surface of the structural material via an adhesive.
<Manufacturing method>
図2に、本発明の振動吸収構造用材料の製造方法の一例を示す。振動吸収構造用材料の製造方法について、特に限定するものではないが、例えば予備発泡プロセス(S0201)、仕切材料混合プロセス(S0202)、発泡樹脂被覆プロセス(S0203)、成型プロセス(S0204)、から構成される。 FIG. 2 shows an example of a method for producing the vibration-absorbing structural material of the present invention. The method for manufacturing the vibration-absorbing structural material is not particularly limited, and includes, for example, a preliminary foaming process (S0201), a partition material mixing process (S0202), a foamed resin coating process (S0203), and a molding process (S0204). Is done.
(予備発泡プロセス)
予備発泡プロセス(S0201)において、可燃性発泡樹脂を予備発泡させる。すなわち、ブタンやペンタンなどの発泡剤を含浸させた直径0.2mm〜1mm程度の樹脂粒に蒸気、輻射熱、温風などをあてて加熱することにより、樹脂粒の内部の発泡剤が気化して、樹脂粒を予備発泡樹脂とする。予備発泡樹脂のサイズについては特に限定するものではないが、例えば予備発泡前の樹脂粒の体積に対して予備発泡樹脂の体積が10〜90倍程度となるように調整しても良い。
(Pre-foaming process)
In the prefoaming process (S0201), the combustible foamed resin is prefoamed. That is, by applying steam, radiant heat, hot air, etc. to resin grains having a diameter of about 0.2 mm to 1 mm impregnated with a foaming agent such as butane or pentane, the foaming agent inside the resin grains is vaporized. The resin particles are pre-foamed resin. The size of the prefoamed resin is not particularly limited. For example, the prefoamed resin may be adjusted so that the volume of the prefoamed resin is about 10 to 90 times the volume of the resin particles before the prefoaming.
このとき、予備発泡プロセスにおける予備発泡樹脂の粒径によって、振動吸収構造用材料における不燃性の仕切の間隔が定まる。すなわち、予備発泡樹脂の粒径が小さい場合は、振動吸収構造用材料の不燃性の仕切の間隔も短いものとなるし、逆に予備発泡樹脂の粒径が大きい場合には、振動吸収構造用材料の不燃性の仕切の間隔は長いものとなる。上述したように、構造用材料における不燃性の仕切の間隔によって振動吸収構造用材料の不燃性を変化させることができるから、予備発泡プロセスにおける予備発泡樹脂のサイズを調整することにより、振動吸収構造用材料の不燃性を調整することができる。 At this time, the interval of the non-combustible partition in the vibration absorbing structure material is determined by the particle size of the prefoamed resin in the prefoaming process. That is, when the particle size of the pre-foamed resin is small, the interval between the incombustible partitions of the vibration-absorbing structural material is also short, and conversely, when the particle size of the pre-foamed resin is large, the vibration-absorbing structural material is used. The interval between the non-combustible partitions of the material is long. As described above, since the incombustibility of the vibration-absorbing structural material can be changed by the interval of the non-combustible partition in the structural material, the vibration-absorbing structure can be adjusted by adjusting the size of the pre-foamed resin in the pre-foaming process. The non-flammability of the material can be adjusted.
(仕切材料混合プロセス)
仕切材料混合プロセス(S0202)において、仕切を構成する難燃性樹脂及び不燃性微細粒を混合する。難燃性樹脂と不燃性微細粒の配合比について、特に限定するものではないが、例えば可燃性発泡樹脂を20〜30重量%としたときに、難燃性樹脂としてフェノール樹脂を20〜30重量%、不燃性微細粒として水酸化アルミニウムを30〜40%、雲母を1〜5重量%、赤リンを1〜5重量%として混合しても良い。
(Partition material mixing process)
In the partition material mixing process (S0202), the flame-retardant resin and the non-flammable fine particles constituting the partition are mixed. The blending ratio of the flame retardant resin and the non-flammable fine particles is not particularly limited. For example, when the flammable foam resin is 20 to 30% by weight, the phenol resin is 20 to 30% by weight as the flame retardant resin. %, Aluminum hydroxide 30 to 40%, mica 1 to 5% by weight, red phosphorus 1 to 5% by weight as nonflammable fine particles may be mixed.
なお、難燃性樹脂と不燃性微細粒をそのまま混合すると、難燃性樹脂の粘度が高い場合には、混合に時間を要してしまう。また、難燃性樹脂の粘度が高い場合には、後述する発泡樹脂被覆プロセスにおいて可燃性発泡樹脂の表面に均一に仕切材料を被覆させることができない。そこで、仕切材料混合プロセスにおいて、難燃性樹脂や不燃性微細粒に加えてメタノールを混合することにより、仕切材料の粘度を調整しても良い。メタノールは、後述する発泡樹脂被覆プロセスにおいて、仕切材料から揮発してしまうので、振動吸収構造用材料には残らない。 In addition, if the flame retardant resin and the non-flammable fine particles are mixed as they are, mixing takes time if the viscosity of the flame retardant resin is high. When the flame-retardant resin has a high viscosity, the partition material cannot be uniformly coated on the surface of the flammable foamed resin in the foamed resin coating process described later. Therefore, in the partition material mixing process, the viscosity of the partition material may be adjusted by mixing methanol in addition to the flame-retardant resin and the non-flammable fine particles. Methanol is volatilized from the partition material in the foamed resin coating process described later, and therefore does not remain in the vibration absorbing structure material.
なお、仕切材料混合プロセスにおいて、難燃性樹脂及び不燃性微細粒に加えてさらに硬化剤を添加しても良い。硬化剤としては、フェノールスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸などが用いられる。硬化剤の添加量としては、上述の難燃性樹脂と不燃性微細粒の各配合比に対して、硬化剤を1〜5重量%含有させても良い。 In the partition material mixing process, a curing agent may be further added in addition to the flame-retardant resin and the non-flammable fine particles. As the curing agent, phenolsulfonic acid, benzenesulfonic acid, toluenesulfonic acid or the like is used. As addition amount of a hardening | curing agent, you may contain 1-5 weight% of hardening | curing agents with respect to each compounding ratio of the above-mentioned flame-retardant resin and a nonflammable fine particle.
(発泡樹脂被覆プロセス)
発泡樹脂被覆プロセス(S0203)において、予備発泡樹脂の表面を仕切材料混合プロセスにおいて混合された仕切材料で被覆する。仕切材料の被覆方法について、特に限定するものではないが、例えば、予備発泡樹脂の表面に対して、仕切材料をスプレー状に噴射することにより、予備発泡樹脂の表面に仕切材料を定着させる構成としてもよい。なお、予備発泡樹脂と仕切材料との配合比によって、予備発泡樹脂の表面に被覆される仕切材料の膜厚が決定され、すなわち構造用材料の仕切の厚さが決定される。
(Foamed resin coating process)
In the foamed resin coating process (S0203), the surface of the prefoamed resin is coated with the partition material mixed in the partition material mixing process. Although it does not specifically limit about the coating method of a partition material, For example, as a structure which fixes a partition material on the surface of a pre-foamed resin by spraying a partition material on the surface of a pre-foam resin in a spray form, for example Also good. The film thickness of the partition material coated on the surface of the pre-foamed resin is determined by the blending ratio of the pre-foamed resin and the partition material, that is, the partition thickness of the structural material is determined.
(成型プロセス)
成型プロセス(S0204)において、発泡樹脂被覆プロセスにおいて仕切材料が被覆された予備発泡樹脂を成型機にて成型する。本発明の振動吸収構造用材料は、通常の発泡体と同様の成型機を用いて成型することができる。すなわち、金型内に発泡樹脂被覆プロセス後の予備発泡樹脂を充填し、金型内の予備発泡樹脂に水蒸気を当てることにより、予備発泡樹脂が本発泡するとともに、予備発泡樹脂表面の仕切材料が硬化して、予備発泡樹脂同士が結合される。
(Molding process)
In the molding process (S0204), the pre-foamed resin coated with the partition material in the foamed resin coating process is molded by a molding machine. The vibration-absorbing structural material of the present invention can be molded using a molding machine similar to a normal foam. That is, by filling the mold with the pre-foamed resin after the foam resin coating process and applying water vapor to the pre-foamed resin in the mold, the pre-foamed resin is fully foamed and the partition material on the surface of the pre-foamed resin is Cured to bond the pre-foamed resins together.
成型プロセスにおいて、金型内に充填される予備発泡樹脂の分量は、金型の容積に対して100%より大きく〜150%程度とすることが好ましい。通常の発泡体の場合、成型プロセスにおいて予備発泡樹脂が本発泡することにより発泡樹脂が膨張し、隣接する発泡樹脂が結合するため、金型内に充填される予備発泡樹脂の分量は金型の容積と同程度とすればよい。しかしながら、本発明の振動吸収構造用材料は、予備発泡樹脂が仕切で覆われているから、成型プロセスにおいて予備発泡樹脂は大きく膨張することがない。従って、金型内に充填される予備発泡樹脂の分量を金型の容積に対して増加させておかないと、うまく成型することができない。また、金型の容積に対してあまりに多い予備発泡樹脂を充填してしまうと、予備発泡樹脂が成型プロセスにおいて金型内で十分に発泡することができない。 In the molding process, the amount of the pre-foamed resin filled in the mold is preferably larger than 100% and about 150% with respect to the volume of the mold. In the case of a normal foam, since the foamed resin expands by the main foaming of the prefoamed resin in the molding process and the adjacent foamed resin is bonded, the amount of the prefoamed resin filled in the mold is the amount of the mold. The volume may be approximately the same. However, since the pre-foamed resin is covered with the partition, the pre-foamed resin does not expand greatly in the molding process. Therefore, unless the amount of the pre-foamed resin filled in the mold is increased with respect to the volume of the mold, it cannot be molded successfully. Further, if too much pre-foamed resin is filled with respect to the volume of the mold, the pre-foamed resin cannot be sufficiently foamed in the mold in the molding process.
また、金型内に充填する予備発泡樹脂の分量を金型の容積に対して110〜130%とすると、金型内にて予備発泡樹脂が圧縮した状態で成型されることとなり、成型後の構造用材料の材料表面に対して略垂直に設けられるとともに、仕切により仕切られた領域を多面体とすることができる。
<使用方法>
If the amount of the pre-foamed resin to be filled in the mold is 110 to 130% with respect to the mold volume, the pre-foamed resin is molded in the mold in a compressed state. While being provided substantially perpendicular to the material surface of the structural material, the region partitioned by the partition can be a polyhedron.
<How to use>
本発明の振動吸収構造用材料は、可燃性発泡樹脂から構成されているので軽量であり、かつ十分な不燃性と振動吸収性を有していることから、天井材や床材等の建材、ドアや壁、耐火パネル等の芯材に好適である。また、通常の発泡体同様に任意の形状に成型することができ、加工性も良いことからプラントやタンク、冷凍倉庫、配管器材等の断熱材としての使用も好適である。その他、自動車や鉄道車両、船舶、航空機等の構造材等や、電子機器にも応用することができる。 Since the vibration-absorbing structural material of the present invention is composed of a combustible foamed resin, it is lightweight, and has sufficient incombustibility and vibration absorption, so building materials such as ceiling materials and flooring materials, It is suitable for core materials such as doors, walls and fireproof panels. Moreover, since it can be molded into an arbitrary shape like a normal foam and has good workability, it is also suitable for use as a heat insulating material for plants, tanks, refrigerated warehouses, piping equipment and the like. In addition, the present invention can also be applied to structural materials such as automobiles, railway vehicles, ships, and aircraft, and electronic devices.
表1に本発明の構造用材料における各材料の配合比の一例を示し、図3に表1の各材料の配合比を用いて製造した構造用材料の様子を示す。図3(a)は構造用材料の材料表面を、図3(b)は構造用材料の材料表面付近の断面を、図3(c)は構造用材料の断面を拡大した様子を示している。図3(a)ではわかりにくいが、構造用材料の材料表面(0303)は不燃性の上面仕切で覆われている。また、図3(b)に示すように、可燃性発泡樹脂(0301)は不燃性の仕切(0302)で仕切られており、不燃性の仕切は微細空隙を含んでいるとともに、材料表面に隣接する仕切は材料表面と略垂直に設けられている。さらに、仕切は材料表面においても断面においても多角形形状に設けられていることから、仕切で仕切られた領域が多面体形状であることを示している。 Table 1 shows an example of the mixing ratio of each material in the structural material of the present invention, and FIG. 3 shows the appearance of the structural material manufactured using the mixing ratio of each material in Table 1. 3A shows the material surface of the structural material, FIG. 3B shows a cross section near the material surface of the structural material, and FIG. 3C shows an enlarged view of the cross section of the structural material. . Although it is difficult to understand in FIG. 3A, the material surface (0303) of the structural material is covered with a nonflammable upper surface partition. In addition, as shown in FIG. 3B, the combustible foamed resin (0301) is partitioned by a non-combustible partition (0302), and the non-combustible partition includes fine voids and is adjacent to the material surface. The partition to be provided is provided substantially perpendicular to the material surface. Furthermore, since the partition is provided in a polygonal shape on both the material surface and the cross section, it indicates that the region partitioned by the partition is a polyhedral shape.
本実施例において、建築基準法の規定に基づくコーンカロリーメータを用いた構造用材料の不燃/難燃性試験の試験結果を示す。本試験では、構造用材料の材料表面に厚さ20μm程度のアルミ箔を貼り付けた2種類のサンプルを用いて試験を行った。なお、各サンプルにおける材料の配合比は、実施例1に示すものと同様である。表2に試験条件を示している。表2を確認すると、サンプルAとサンプルBのサイズはほぼ同一であるが、サンプルAの方がサンプルBよりも若干重い。 In a present Example, the test result of the incombustibility / flame retardance test of the structural material using the cone calorimeter based on prescription | regulation of a building standard law is shown. In this test, the test was performed using two types of samples in which an aluminum foil having a thickness of about 20 μm was attached to the surface of the structural material. In addition, the mixture ratio of the material in each sample is the same as that shown in Example 1. Table 2 shows the test conditions. As shown in Table 2, the sizes of Sample A and Sample B are almost the same, but Sample A is slightly heavier than Sample B.
表3は、本実施例における試験結果を示しており、試験中(20分間)のサンプルの総発熱量は、サンプルAにおいて0.01MJ/m2、サンプルBにおいて0.65MJ/m2となった。建築基準法の基準に基づいて材料が準不燃材料として認定されるには、試験中の総発熱量が8MJ/m2以下であることが求められ、本発明の構造用材料は十分に認定基準を満たしている。 Table 3 shows the test results in the present embodiment, the total calorific value of the sample under test (20 minutes), in sample A 0.01 mJ / m 2, a 0.65MJ / m 2 in Sample B It was. In order for a material to be certified as a semi-incombustible material based on the standards of the Building Standards Act, the total calorific value during the test is required to be 8 MJ / m 2 or less, and the structural material of the present invention is sufficiently certified Meet.
本実施例において、UL94 5V規格に基づいた構造用材料の不燃/難燃性試験の試験結果を示す。サンプルにおける材料の配合比は、実施例1に示すものと同様である。なお、125×13×5.0mm(バー)、150×150×5.0mm(板)の2種類のサイズのサンプルを用いて試験を行った。また、サンプルの経時変化による不燃/難燃性への影響についても検討するため、温度23度、湿度50%の雰囲気下で48時間以上放置したもの(As Received)、温度70度、168時間エージング後、温度23度、湿度20%以下のデシケータの中で4時間以上冷却したもの(After Aging)、の2種類を用いて試験を行った。 In this example, test results of non-flammability / flame retardant tests of structural materials based on the UL94 5V standard are shown. The mixing ratio of the materials in the sample is the same as that shown in Example 1. In addition, it tested using the sample of 2 types of sizes, 125x13x5.0mm (bar) and 150x150x5.0mm (plate). In addition, in order to investigate the effect of non-flammability / flame retardant properties due to changes in the sample over time, the sample was left for 48 hours or more in an atmosphere of 23 ° C. and 50% humidity (As Received), temperature 70 ° C., and 168 hours aging. Thereafter, a test was performed using two types of a desiccator having a temperature of 23 degrees and a humidity of 20% or less (cooled for 4 hours or more) (After Aging).
表4は、本実施例における試験結果を示しており、試験に使用した2種類のサンプルともに、UL94 5V規格においてもっとも高い不燃性を示す5VAとの判定結果が得られた。本結果から、本発明の構造用材料が優れた不燃性を有していることが証明された。 Table 4 shows the test results in the present example, and for both of the two types of samples used in the test, a determination result of 5VA indicating the highest nonflammability in the UL94 5V standard was obtained. From this result, it was proved that the structural material of the present invention has excellent nonflammability.
本実施例において、構造用材料の酸素指数の試験結果を示す。酸素指数とは、材料が燃焼を続けるために必要な最低酸素濃度のことを示しており、酸素指数の測定はJIS規格に基づいて行った。サンプルにおける材料の配合比は、実施例1に示すものと同様である。なお、本試験では、実施例1に示す材料の配合比で2種類のサンプルを使用して、試験を行った。 In this example, the test results of the oxygen index of the structural material are shown. The oxygen index indicates the minimum oxygen concentration required for the material to continue to burn, and the oxygen index was measured based on JIS standards. The mixing ratio of the materials in the sample is the same as that shown in Example 1. In this test, the test was performed using two types of samples at the material mixing ratio shown in Example 1.
表5は、本実施例における試験結果を示している。消防法において、酸素指数が26以下のものは指定可燃物とされ、建材として使用される際に種々の制約が生じる。しかしながら、試験に使用した両サンプルともに酸素指数26を大幅に超過しており、本発明の構造用材料は不燃物として、指定可燃物における制約を受けることなく使用することができる。 Table 5 shows the test results in this example. In the Fire Service Act, those with an oxygen index of 26 or less are designated as combustible materials, and various restrictions arise when used as building materials. However, both samples used in the test greatly exceeded the oxygen index 26, and the structural material of the present invention can be used as a nonflammable material without being restricted by the designated combustible material.
0100:構造用材料、0101:可燃性発泡樹脂、0102:仕切、0103:微細空隙 0100: Structural material, 0101: Flammable foamed resin, 0102: Partition, 0103: Fine void
Claims (5)
可燃性発泡樹脂からなる構造用材料であって、
前記可燃性発泡樹脂は難燃性樹脂と不燃性微細粒とからなる微細空隙を含む不燃性の仕切で仕切られている
振動吸収構造用材料。 A structural material comprising a combustible foamed resin in which the degree of foaming of the foamed resin is greater than 66% and less than 100% of the non-pressurized foaming volume ,
The flammable foamed resin is a vibration-absorbing structural material that is partitioned by a non-flammable partition including fine voids composed of a flame-retardant resin and non-flammable fine particles .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015173641A JP6135951B2 (en) | 2015-09-03 | 2015-09-03 | Material for vibration absorption structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015173641A JP6135951B2 (en) | 2015-09-03 | 2015-09-03 | Material for vibration absorption structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017048327A JP2017048327A (en) | 2017-03-09 |
JP6135951B2 true JP6135951B2 (en) | 2017-05-31 |
Family
ID=58278814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015173641A Active JP6135951B2 (en) | 2015-09-03 | 2015-09-03 | Material for vibration absorption structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6135951B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230956A1 (en) | 2021-04-30 | 2022-11-03 | 株式会社カネカ | Fire-resistant article |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS527026B2 (en) * | 1971-12-21 | 1977-02-26 | ||
JPS49147358U (en) * | 1973-04-25 | 1974-12-19 | ||
JP2001164031A (en) * | 1999-12-13 | 2001-06-19 | Takashi Fujimori | Moldings comprising porous foam resin having heat- resistant and flame-retardant resin mixture layer and molding production thereof |
CN101068864A (en) * | 2004-10-22 | 2007-11-07 | 藤森尊 | Process for producing foam |
JP5719231B2 (en) * | 2011-05-12 | 2015-05-13 | 株式会社ジェイエスピー | Composite molded body |
-
2015
- 2015-09-03 JP JP2015173641A patent/JP6135951B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230956A1 (en) | 2021-04-30 | 2022-11-03 | 株式会社カネカ | Fire-resistant article |
Also Published As
Publication number | Publication date |
---|---|
JP2017048327A (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2609044C2 (en) | Panel with fire-protective properties | |
JPWO2006098064A1 (en) | Sound absorbing material and structure using the same | |
JP2009029962A (en) | Heat storage resin coating and board having heat storage property using the same | |
KR101060311B1 (en) | Flame-retardant board complex having excellent insulation property and panel using the same | |
KR101515265B1 (en) | Hvac duct using phenolic foam and method for fabricating the same | |
JP2001164031A (en) | Moldings comprising porous foam resin having heat- resistant and flame-retardant resin mixture layer and molding production thereof | |
US9334380B2 (en) | Protected expanded polyalkylidene terephthalates | |
JP6135951B2 (en) | Material for vibration absorption structure | |
CN102470553A (en) | Method for producing flame-retardant PUR spray (rigid) foams | |
CN105175918B (en) | A kind of polyphenylacetylene combination and its obtained heat-insulating composite panel | |
WO1999025166A1 (en) | Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same | |
KR101489583B1 (en) | Non-Flammable composite for expanded polystyrene foam and manufacturing method thereof | |
JP6217050B2 (en) | Structural materials | |
JP2007047567A (en) | Acoustic material and structure using same | |
KR101093995B1 (en) | Flame-retardant expanded polystyrene bead manufacturing method | |
DK2708667T3 (en) | Process for producing a fire-retardant insulating element, insulating element and using an insulating element | |
KR20180128815A (en) | Method for fabricating of noncombustible styrofoam panel | |
KR101795750B1 (en) | Composition for flame retardant, flame retardant polystyrene foam and manufacturing method of the same | |
JP2019074116A (en) | Heat insulation material and method for producing heat insulation material | |
KR102556207B1 (en) | Organic-inorganic hybrid flame retarding compositions for preparing flame retarding EPS beads, the flame retarding EPS beads coated by the compositions and the method for preparing the same | |
KR20180102784A (en) | Organic insulation including expanding inorganic aggregate | |
KR102118390B1 (en) | a highly flame resisting and heat insulating styrofoam | |
JP3130257B2 (en) | Non-combustible refractory composition and non-combustible refractory foamed plastic | |
DK2708668T3 (en) | Process for producing a fire-retardant insulating element, insulating element and using an insulating element | |
KR102282522B1 (en) | Bead method insulation bead and flame―retardant insulation board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20161220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6135951 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |