JP6135523B2 - Plate actuator - Google Patents

Plate actuator Download PDF

Info

Publication number
JP6135523B2
JP6135523B2 JP2014010096A JP2014010096A JP6135523B2 JP 6135523 B2 JP6135523 B2 JP 6135523B2 JP 2014010096 A JP2014010096 A JP 2014010096A JP 2014010096 A JP2014010096 A JP 2014010096A JP 6135523 B2 JP6135523 B2 JP 6135523B2
Authority
JP
Japan
Prior art keywords
elastic
shape memory
actuator
memory alloy
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014010096A
Other languages
Japanese (ja)
Other versions
JP2015137603A (en
Inventor
広幸 橋本
広幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014010096A priority Critical patent/JP6135523B2/en
Publication of JP2015137603A publication Critical patent/JP2015137603A/en
Application granted granted Critical
Publication of JP6135523B2 publication Critical patent/JP6135523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造体を変形するためのアクチュエータに係り、より詳細には、移動体のボディ等の構造体の変形に有利に用いられる板状アクチュエータに係る。   The present invention relates to an actuator for deforming a structure, and more particularly to a plate actuator that is advantageously used for deformation of a structure such as a body of a moving body.

種々の構造体の変形のためのアクチュエータの一つの形式として、従来より、温度によって寸法が伸縮する形状記憶合金を用い、形状記憶合金の伸縮により構造体の一部を変形させ或いは可動部分を駆動する構成が種々提案されている。例えば、特許文献1には、マイクロマシン等に利用される小型のアクチュエータとして、形状記憶合金から成る線状伸縮体をポリマー等により形成された弾性体内埋め込んだアクチュエータが提案されている。このアクチュエータは、伸縮体の長さの変化によって対象となる構造体の一部を変形させる形式のものである。また、特許文献2、3に於いては、血圧測定器、マッサージ機等の可動部分や手足の運動の補助等などの利用を想定したアクチュエータとして、形状記憶合金から成る線状伸縮体を網目状又はらせん状に配列し、長さと直径が伸縮する円筒形状に構成されたものなどが開示されている。更に、移動体のボディやその他の構造体の一部に、アクチュエータとして温度によって寸法が伸縮する形状記憶合金を用い、形状記憶合金の伸縮により構造体の一部を変形させ或いは可動部分を駆動する構成が種々提案されている(例えば、特許文献4−10)。更に、人工食道などの輸送管の構成として、管上の複数の個所に帯状の形状記憶合金を巻き付けて、管の蠕動(ぜんどう)が惹起するように帯状形状記憶合金の伸縮をスイッチング制御することにより、管内にて物質を移動する構成も提案されている(特許文献11)。   As one type of actuator for deformation of various structures, a conventional shape memory alloy whose dimensions expand and contract with temperature is used, and part of the structure is deformed or movable parts are driven by expansion and contraction of the shape memory alloy. Various configurations have been proposed. For example, Patent Document 1 proposes an actuator in which a linear elastic body made of a shape memory alloy is embedded in an elastic body formed of a polymer or the like as a small actuator used in a micromachine or the like. This actuator is of a type that deforms a part of a target structure by changing the length of the stretchable body. In Patent Documents 2 and 3, a linear expansion / contraction body made of a shape memory alloy is used as a mesh as an actuator that is supposed to be used for moving parts such as blood pressure measuring instruments and massage machines, and assisting movement of limbs. Or what was arranged in the shape of a cylinder which is arranged in a spiral shape and expands and contracts in length and diameter is disclosed. Furthermore, a shape memory alloy whose size is expanded and contracted as a temperature is used as an actuator for a part of the body of the moving body and other structures, and a part of the structure is deformed or a movable part is driven by the expansion and contraction of the shape memory alloy. Various configurations have been proposed (for example, Patent Documents 4-10). Furthermore, as a structure of a transport pipe such as an artificial esophagus, a band-shaped shape memory alloy is wound around a plurality of locations on the pipe, and the expansion and contraction of the band-shaped shape memory alloy is controlled so as to cause the pipe to move. Therefore, a configuration for moving a substance in a pipe has also been proposed (Patent Document 11).

特開平06−341369JP 06-341369 特開2005−98241JP-A-2005-98241 特開2005−48658JP 2005-48658 A 特開平09−257398JP 09-257398 A 実開昭62−112971Shokai 62-112971 実開昭59−123674ACT 59-123674 実開昭61−113174Japanese Utility Model Sho 61-113174 特開2002−319343JP 2002-319343 特開平09−126116JP 09-126116 A 特開2007−92556JP2007-92556A 特開2005−104722JP-A-2005-104722

条件(温度、電圧等)に応じて伸縮又は変形する形状記憶合金等の変形素子を用いる場合、変形素子自体を変形されるべき構造体の一部として組み込むことが可能なので、アクチュエータ自体の占有する空間は、比較的小さくすることが可能である。しかしながら、それらの変形素子の単位長さ当たりの変位量は、一般に小さく、変形素子の変形から直接的に大きな変位を得ようとする場合には、変形素子を大型化することが必要となる。即ち、典型的な変形素子に於ける結晶格子間距離の変位量又は相構造の変化の際の寸法の変位量は、最大の場合でも、30%であり、長さLの素子の最大変位δは、たかだか、δ=0.3L程度となるので、アクチュエータによって発生させたい要求変位量Δが、素子の単位長さ当たりの最大変位よりも相当に大きい場合には、素子の最大変位δが要求変位量Δを十分に達成できるように、素子の長さLを大きくせざるをえず、かくして、アクチュエータが大型化されることとなる。即ち、上記の例に挙げられている如き従前のアクチュエータを移動体のボディ等の構造体の変形のために利用すべく、高荷重(若しくは高出力)及び高変位を両立させようとすると、一般に、アクチュエータが大型化し、軽量化及び省スペース化を図ることが困難である。   When using a deforming element such as a shape memory alloy that expands or contracts depending on conditions (temperature, voltage, etc.), the deforming element itself can be incorporated as a part of the structure to be deformed, and therefore is occupied by the actuator itself. The space can be made relatively small. However, the amount of displacement per unit length of these deformation elements is generally small, and in order to obtain a large displacement directly from the deformation of the deformation elements, it is necessary to enlarge the deformation elements. That is, the displacement amount of the distance between crystal lattices or the displacement amount of the dimension when the phase structure changes in a typical deformation element is 30% at the maximum, and the maximum displacement δ of the element of length L Is at most about δ = 0.3L, so if the required displacement amount Δ desired to be generated by the actuator is considerably larger than the maximum displacement per unit length of the element, the maximum displacement δ of the element is required. The length L of the element must be increased so that the displacement amount Δ can be sufficiently achieved, and thus the actuator is increased in size. That is, in order to use a conventional actuator as exemplified in the above example for deformation of a structure such as a body of a moving body, generally, when trying to achieve both high load (or high output) and high displacement, The actuator becomes large, and it is difficult to reduce the weight and space.

そこで、本発明の発明者は、特願2013−111400に於いて、移動体のボディ等の構造体の変形に有利に利用可能な形状記憶合金を用いたアクチュエータであって、アクチュエータ本体の占有空間をさほどに大きくせずに、構造体に於いて(従前に比して)大きな変位を与えることのできる板状のアクチュエータの構成を提案した。上記特願に記載されている板状アクチュエータは、端的に述べれば、図8(A)に例示されている如く、可撓性の湾曲した板状部材2’と、板状部材に装着された伸縮可能な帯状の形状記憶合金から成る変形素子4’とを含み(図中、複数の変形素子4’が配列されている。)、長さの変化した変形素子4’の位置が(例えば、図8(B)の如く、端から順に)変更されることにより板状部材の蠕動が発生させられる。ここで、「湾曲した板状構造の蠕動」とは、湾曲した板状構造に於いて、その湾曲方向に沿って局所的に伸縮した部分(湾曲面の内方へ窪んだ凹領域又は湾曲面の外方へ突出した凸領域)が湾曲方向に対して概ね垂直な方向に沿って移動していく運動であり、その移動する凹領域又は凸領域が変形されるべき構造体の一部を押すことによって構造体の変形が達成されることとなる。かかる構成によれば、まず、力を発する部位は、凹領域又は凸領域であり、力の作用する部位は、凹領域又は凸領域に接触したボディの一部の可動部分となるので、力点と作用点とが略一致することとなり、作用点にそのまま力点で発生した力が作用されることとなるので、発生した力の低減量が小さくなる。また、湾曲した板状構造に於いて凹領域又は凸領域が長い距離に亘って移動できるよう構成することによって、大きな変位を得ることが可能となる。そして、アクチュエータ自体の形状は、湾曲した板状であるので、アクチュエータ本体の占有空間をさほどに大きくしないで済み、アクチュエータの更なる軽量化及び省スペース化が可能となる。   In view of this, the inventor of the present invention disclosed in Japanese Patent Application No. 2013-111400 an actuator using a shape memory alloy that can be advantageously used for deformation of a structure such as a body of a moving body. The structure of the plate-like actuator that can give a large displacement in the structure (compared to the past) without increasing the size of the structure is proposed. In short, the plate-like actuator described in the above-mentioned patent application is mounted on the plate-like member having a flexible curved plate-like member 2 ′ as illustrated in FIG. 8A. Deformation element 4 ′ made of a stretchable band-shaped shape memory alloy (in the figure, a plurality of deformation elements 4 ′ are arranged), and the position of deformation element 4 ′ whose length has changed (for example, As shown in FIG. 8B, the plate-like member is caused to swing by being changed (in order from the end). Here, “peristration of the curved plate-like structure” means a portion of the curved plate-like structure that is locally expanded and contracted along the bending direction (a concave region or a curved surface that is recessed inward of the curved surface). Is a movement that moves along a direction substantially perpendicular to the bending direction, and the moving concave region or convex region pushes a part of the structure to be deformed. As a result, the deformation of the structure is achieved. According to such a configuration, first, the portion that generates the force is a concave region or a convex region, and the portion where the force acts is a movable part of the body that is in contact with the concave region or the convex region. The action point substantially coincides with the force, and the force generated at the power point is directly applied to the action point, so that the amount of reduction of the generated force is reduced. In addition, a large displacement can be obtained by configuring the concave region or the convex region to move over a long distance in the curved plate-like structure. Since the shape of the actuator itself is a curved plate, it is not necessary to increase the space occupied by the actuator body, and the actuator can be further reduced in weight and space.

ところで、上記の特願2013−111400の実施の形態に於いて例示されている形状記憶合金から成る変形素子4’は、基本的には、図8(C)に例示されている如く、絶縁材料から成る外套膜7a’に覆われた帯状の伸縮素子7’によって構成され、板状部材の縁5に位置する伸縮素子7’の両端には、電極8’が設けられる。この構成に於いて、電極8’を介して伸縮素子7’に電流が流されると、それにより発生するジュール熱によって温度が上昇し、伸縮素子7’がその長さ方向に収縮し、これにより、板状部材に於いて、局所的に凹領域が発生することとなる。そして、電流を切ると、伸縮素子7’の長さは、伸長するが、長さが完全に復元しない場合があるので、通電停止後の長さの復元を確実にすべく、伸縮素子7の下面又は側面に於いて配置された板ばね9’が配置される。   By the way, the deforming element 4 ′ made of the shape memory alloy exemplified in the embodiment of the above Japanese Patent Application No. 2013-111400 basically has an insulating material as shown in FIG. Electrodes 8 'are provided at both ends of the expansion / contraction element 7' located on the edge 5 of the plate-like member. In this configuration, when an electric current is passed through the expansion element 7 'via the electrode 8', the temperature rises due to the Joule heat generated thereby, and the expansion element 7 'contracts in the length direction, thereby In the plate member, a concave region is locally generated. When the current is cut off, the length of the expansion / contraction element 7 'expands, but the length may not be completely restored. Therefore, in order to ensure the restoration of the length after the energization is stopped, A leaf spring 9 'arranged on the lower or side surface is arranged.

図8に例示の如き、変形素子4’の長さを収縮させて蠕動を発生させる構成の場合、その駆動力の大きさは、変形素子4’の収縮力の大きさによって決定される。従って、図示の構成に於いて、更なる高出力化を図ろうとする場合、変形素子4’の収縮力の増大を達成する必要があり、そのためには、帯状の変形素子4’の厚み方向の伸縮素子7’の配列数(重畳数)の増大、及び、板ばね9’の厚みの増大が要件となる。しかしながら、その場合、板状アクチュエータの厚みが増大し、形状記憶合金層から成る伸縮素子に於いて、収縮せずに曲率が変化する板ばねに近い形状記憶合金層と板ばねから遠い形状記憶合金層との間で、曲率のずれによって収縮量にずれが生じることとなる。この点に関し、一般的に、形状記憶合金の複数の層をそれぞれの配列される位置に応じて各層の収縮量を調整することは、煩雑でコスト高の要因となるので、通常、同一の収縮量を有する形状記憶合金層を用いられることとなる。しかし、そうすると、図8の構成の場合には、上記の如き板ばねの表面から距離に依存した形状記憶合金層に於ける収縮量のずれの発生によって、板ばねとの界面に接した形状記憶合金層の収縮力が板ばねとの界面又はその層自身のせん断破壊に消費され、アクチュエータとして外部へ作用する力に使われず、アクチュエータの効率低下或いは破壊を惹起し得ることとなる。また、形状記憶合金は、作動収縮量が比較的大きく(最大5%)、形状記憶合金の線状部材の表面に絶縁膜を被覆することが困難な場合があるところ、上記の如き形状記憶合金の線状部材自体に電流を流して発熱させる形式の場合に、形状記憶合金の複数の層を重畳すると、隣り合う絶縁膜のない形状記憶合金線材同士が接触し、これにより、見かけの電導断面積が増大し、従って、電気抵抗が低下することとなる。そうすると、通電による発熱量が電気抵抗の低下により低減するため、十分な発熱量を得るべく、大電流を流通させる必要が生ずる。一方、形状記憶合金線材同士が接触しないように線材を細密に配列させることは、非常に困難である。即ち、図8に例示の如き帯状の形状記憶合金層からなる伸縮素子7’の配列数の増大には、或る程度の限界があることとなる。   In the case of the configuration in which the length of the deformation element 4 ′ is contracted to generate the peristalsis as illustrated in FIG. 8, the magnitude of the driving force is determined by the magnitude of the contraction force of the deformation element 4 ′. Therefore, in the configuration shown in the figure, when it is intended to further increase the output, it is necessary to increase the contraction force of the deformation element 4 ′. For this purpose, the thickness of the strip-shaped deformation element 4 ′ is increased. An increase in the number of expansion / contraction elements 7 ′ (the number of superpositions) and an increase in the thickness of the leaf spring 9 ′ are requirements. However, in this case, the shape memory alloy layer close to the leaf spring and the shape memory alloy far from the leaf spring in which the thickness of the plate actuator increases and the curvature of the expansion / contraction element composed of the shape memory alloy layer changes without contracting. There is a shift in shrinkage between the layers due to a shift in curvature. In this regard, in general, adjusting the amount of shrinkage of each of the plurality of layers of shape memory alloy in accordance with the position where each layer is arranged is a cumbersome and costly factor, so usually the same shrinkage A shape memory alloy layer having an amount will be used. However, in the case of the configuration of FIG. 8, the shape memory in contact with the interface with the leaf spring is generated by the occurrence of the shrinkage of the shrinkage amount in the shape memory alloy layer depending on the distance from the surface of the leaf spring as described above. The shrinkage force of the alloy layer is consumed in the shear fracture of the interface with the leaf spring or the layer itself, and is not used for the force acting on the outside as the actuator, and the actuator efficiency can be reduced or broken. In addition, the shape memory alloy has a relatively large operating shrinkage (up to 5%), and it may be difficult to coat the surface of the linear member of the shape memory alloy with the shape memory alloy. In the case of a type in which a current is passed through the linear member itself to generate heat, if multiple layers of shape memory alloy are overlapped, adjacent shape memory alloy wires without an insulating film come into contact with each other, and apparent conduction interruption The area increases, and therefore the electrical resistance decreases. As a result, the amount of heat generated by energization is reduced due to a decrease in electrical resistance, so that it is necessary to distribute a large current in order to obtain a sufficient amount of heat generation. On the other hand, it is very difficult to arrange the wires finely so that the shape memory alloy wires do not contact each other. In other words, there is a certain limit to the increase in the number of arrangements of the expansion / contraction elements 7 'formed of the band-shaped shape memory alloy layer as illustrated in FIG.

かくして、本発明の一つの課題は、形状記憶合金から成る選択的に伸縮可能な線状又は帯状の伸縮素子を板状弾性体上に貼りつけ、長さの変化させられた伸縮素子の位置を移動させる形式の板状アクチュエータに於いて、更なる高出力化を図ることのできる新規な構成を提案することである。   Thus, one object of the present invention is to attach a selectively stretchable linear or belt-like stretchable element made of a shape memory alloy on a plate-like elastic body, and determine the position of the stretchable element whose length has been changed. In the moving plate type actuator, a new configuration capable of further increasing the output is proposed.

また、本発明のもう一つの課題は、上記の如きアクチュエータであって、伸縮素子の長さの復元のための湾曲された板ばねを用いず、形状記憶合金そのものを発熱のための電流の回路として用いずに構成されたアクチュエータを提供することである。   Another object of the present invention is an actuator as described above, which does not use a curved leaf spring for restoring the length of the expansion / contraction element, and uses the shape memory alloy itself as a current circuit for heat generation. It is providing the actuator comprised without using as.

本発明によれば、上記の課題は、板状アクチュエータであって、弾性的に変形可能な弾性板状部材と、弾性板状部材の面上にて該面に沿って配置された少なくとも一つの線状変形素子にして、形状記憶合金線材と電気抵抗線材とを所定の配列にて束ねてなる収縮可能な線状の伸縮素子と、伸縮素子の少なくとも一部を囲繞し該伸縮素子の共に長さが弾性的に変形可能な弾性素子と、電気抵抗線材へ選択的に通電する通電手段とを含む線状変形素子とを含み、線状変形素子の長さの変化と共に弾性板状部材が変形し、長さの変化した線状変形素子の位置の変更とともに、弾性板状部材の変形部位が変更される板状アクチュエータによって達成される。   According to the present invention, the above-described problem is a plate-shaped actuator, which is an elastically deformable elastic plate-shaped member, and at least one of the elastic plate-shaped members disposed along the surface. A linear deformable element, a shrinkable linear stretchable element formed by bundling a shape memory alloy wire and an electric resistance wire in a predetermined arrangement, and surrounding both of the stretchable elements by enclosing at least a part of the stretchable element The elastic plate-shaped member is deformed along with the change in the length of the linear deformation element. This is achieved by a plate-like actuator in which the deformation portion of the elastic plate-like member is changed along with the change of the position of the linear deformation element whose length has changed.

かかる構成に於いて、「弾性板状部材」は、可撓性の任意の板状部材であってよく、例えば、ポリウレタン(ウレタンゴム若しくはウレタン樹脂)や熱可塑性エラストマ等の任意の高弾性樹脂膜などが利用されてよい。「線状変形素子」は、上記の如く、形状記憶合金線材と電気抵抗線材とを所定の配列にて束ねた構成であり、高出力化を図るべく、それぞれ、複数本の線材が束ねられる。「形状記憶合金線材」は、上記の如く、温度に依存して長さの変化する(典型的には、温度上昇と共に短縮する)線材であり、「電気抵抗線材」は、選択的に電流が流され、発熱し、形状記憶合金線材の温度上昇を図るためのものである。そして、その場合、好適には、電気抵抗線材の各々の表面は絶縁膜で被覆され、発熱量の増大を図るべく電気抵抗を増大させるために、複数本の電気抵抗線材は、それぞれの端部に於いてのみ、導通されるようになっていてよい。かかる構成によれば、形状記憶合金線材自体には、電流を流通させる必要はないため、絶縁膜で被覆されていない形状記憶合金線材同士を接触させてもよく、収縮力を増大する際には、容易に線材の本数を増加できることとなる。   In this configuration, the “elastic plate-like member” may be any flexible plate-like member, for example, any high-elasticity resin film such as polyurethane (urethane rubber or urethane resin) or thermoplastic elastomer. Etc. may be used. As described above, the “linear deformation element” has a configuration in which a shape memory alloy wire and an electric resistance wire are bundled in a predetermined arrangement, and a plurality of wires are bundled in order to achieve high output. As described above, the “shape memory alloy wire” is a wire whose length changes depending on the temperature (typically, shortens as the temperature rises), and the “electric resistance wire” It is for flowing and generating heat to increase the temperature of the shape memory alloy wire. In that case, preferably, each surface of the electric resistance wire is coated with an insulating film, and in order to increase the electric resistance in order to increase the amount of heat generation, a plurality of electric resistance wires are provided at respective end portions. It may be made conductive only in the case. According to such a configuration, since it is not necessary for the shape memory alloy wire itself to circulate current, the shape memory alloy wires that are not covered with the insulating film may be brought into contact with each other. Thus, the number of wires can be easily increased.

更に、「伸縮素子の少なくとも一部を囲繞し該伸縮素子の共に長さが弾性的に変形可能な弾性素子」とは、長さの変化した伸縮素子の長さの復元のための任意の弾性体であるところ、本発明の場合は、伸縮素子の少なくとも一部を囲繞し、その弾性変形は、長さ方向、即ち、伸縮素子の伸縮方向に生ずることとなる。従って、伸縮素子の伸縮に於いて、曲率の変化は必須ではなくなるので、板ばねを採用した場合のような伸縮素子の収縮量のずれの問題が解消されることとなる。かかる弾性素子としては、つるまきばね、皿ばね、熱可塑性エラストマの等の弾性物質からなる円筒状部材が採用されてよい。また、伸縮素子全長にわたって、弾性素子で囲繞するのではなく、弾性素子と剛体管とを交互に直列に配列した状態であってもよい。   Furthermore, “an elastic element that surrounds at least a part of the elastic element and elastically deforms the length of both of the elastic elements” means any elastic element for restoring the length of the elastic element whose length has changed. In the case of the present invention, in the case of the present invention, at least a part of the expansion / contraction element is surrounded, and elastic deformation thereof occurs in the length direction, that is, the expansion / contraction direction of the expansion / contraction element. Therefore, since the change in the curvature is not essential in the expansion / contraction of the expansion / contraction element, the problem of the displacement of the expansion / contraction amount of the expansion / contraction element as in the case where the leaf spring is adopted is solved. As such an elastic element, a cylindrical member made of an elastic material such as a helical spring, a disc spring, or a thermoplastic elastomer may be employed. Further, the elastic element and the rigid tube may be alternately arranged in series instead of being surrounded by the elastic element over the entire length of the expansion / contraction element.

上記の本発明による板状アクチュエータの作動は、特願2013−111400に記載のアクチュエータと基本的に同様であってよい。線状変形素子の伸縮素子は、通電することにより、長さが収縮するので、伸縮素子に対する通電を適宜制御することにより、長さの収縮した変形素子の位置を移動させ、これにより、弾性板状部材の変形部位を変化又は移動させることにより、その作用力(変形による押圧力又は牽引力)を外部の駆動対象となる構造体に及ぼすこととなる。特に、特願2013−111400の場合と同様に弾性板状部材を湾曲させて使用する場合には、変形素子は、その湾曲方向に沿って延在することとなり、長さの収縮した変形素子の位置の移動によって、「蠕動」が発生することとなる。   The operation of the plate actuator according to the present invention described above may be basically the same as the actuator described in Japanese Patent Application No. 2013-111400. Since the length of the expansion / contraction element of the linear deformation element contracts when energized, the position of the deformation element with the contracted length is moved by appropriately controlling the energization of the expansion / contraction element, and thereby the elastic plate By changing or moving the deformed portion of the member, the acting force (the pressing force or the traction force due to the deformation) is exerted on the external structure to be driven. In particular, when the elastic plate-like member is bent and used in the same manner as in Japanese Patent Application No. 2013-111400, the deformation element extends along the bending direction, and the length of the deformation element with the contracted length is reduced. The “movement” occurs due to the movement of the position.

長さの変化した変形素子の位置を板状部材に於いて変化させる一つの態様としては、複数本の変形素子が互いに隔置されて板状部材に装着され、複数本の変形素子の長さを選択的に変化させることにより、蠕動の進行が生ずるようになっていてよい。かかる構成によれば、後述の実施形態の欄に於いて説明されている如く、板状部材に隔置された複数本の変形素子の長さを選択的に、例えば、隣接する変形素子の長さを順番に伸縮させることにより(変形素子の長さを伸縮するタイミングをずらすことにより)、板状部材上の変形部位が移動していくこととなる。なお、複数本の変形素子の長さを選択的に伸縮する制御は、各変形素子に対する通電のタイミングを制御することによって達成可能である。   As one mode of changing the position of the deforming element whose length has changed in the plate-like member, a plurality of deforming elements are spaced from each other and attached to the plate-like member, and the length of the plural deforming elements is The peristalsis may be advanced by selectively changing. According to such a configuration, as described in the section of the embodiment described later, the length of the plurality of deformation elements spaced apart from the plate member is selectively set, for example, the length of the adjacent deformation elements. By expanding or contracting the length in order (by shifting the timing for expanding or contracting the length of the deformation element), the deformation portion on the plate-like member moves. Control for selectively expanding and contracting the lengths of the plurality of deformation elements can be achieved by controlling the timing of energization of each deformation element.

長さの変化した変形素子の位置を板状部材に於いて変化させる別の態様としては、板状アクチュエータに於いて、更に、板状部材上にて交差することなく延在する2本の帯状導電性領域が設けられ、変形素子がその両端間にて延在する導電部を有し、2本の帯状導電性領域のそれぞれと変形素子の導電部のそれぞれの端とが導通した状態にて変形素子が2本の帯状導電性領域の延在する方向に沿って移動可能に配置されるようになっていてよい。かかる構成に於いては、2本の帯状導電性領域と変形素子の導電部に電流を流すことにより、2本の帯状導電性領域の間に発生する磁場によるローレンツ力によって、長さの変化した変形素子が2本の帯状導電性領域の延在する方向に沿って移動し、従って、長さの変化した変形素子に隣接する板状部材の部分に形成された変形部位が移動することとなる。ここに於いて、変形素子の伸縮は、変形素子に対する通電を制御することにより達成可能である。なお、この態様によれば、一本の変形素子により、板状部材上に於ける変形部位の移動を発生可能であることは、理解されるべきである。   As another mode of changing the position of the deforming element whose length has changed in the plate-like member, in the plate-like actuator, further, two strips extending without intersecting on the plate-like member. A conductive region is provided, the deformation element has a conductive portion extending between both ends thereof, and each of the two strip-shaped conductive regions and each end of the conductive portion of the deformation element are in conduction. The deformation element may be arranged to be movable along the extending direction of the two strip-like conductive regions. In such a configuration, the length is changed by the Lorentz force generated by the magnetic field generated between the two strip-shaped conductive regions by passing a current through the two strip-shaped conductive regions and the conductive portion of the deformation element. The deformation element moves along the extending direction of the two strip-like conductive regions, and accordingly, the deformation portion formed in the portion of the plate-like member adjacent to the deformation element having a changed length moves. . Here, the expansion and contraction of the deformation element can be achieved by controlling energization of the deformation element. In addition, according to this aspect, it should be understood that the movement of the deformation portion on the plate-like member can be generated by one deformation element.

なお、上記の構成において、変形素子に通電した後に、通電を切り、伸縮素子の長さを復元するべく、一旦温度が上昇した伸縮素子を冷却する目的で、伸縮素子の周囲に冷媒を流通させる流路が設けられてよい。具体的には、例えば、伸縮素子が鞘構造に挿入され、鞘構造の内面と伸縮素子の表面とに隙間を設け、かかる隙間を流路として冷媒が流通できるようになっていてよい。   In the above configuration, after energizing the deformable element, the refrigerant is circulated around the expansion / contraction element for the purpose of cooling the expansion / contraction element whose temperature has once increased in order to turn off the energization and restore the length of the expansion / contraction element. A flow path may be provided. Specifically, for example, the expansion / contraction element may be inserted into the sheath structure, a gap may be provided between the inner surface of the sheath structure and the surface of the expansion / contraction element, and the refrigerant may be circulated using the gap as a flow path.

かくして、上記の本発明によれば、形状記憶合金から成る選択的に伸縮可能な線状又は帯状の伸縮素子を板状弾性体上に貼りつけ、長さの変化させられた伸縮素子の位置を移動させる形式の板状アクチュエータに於いて、伸縮素子の長さの復元のための湾曲された板ばねを用いず、形状記憶合金そのものを発熱のための電流の回路として用いずに構成されたアクチュエータが提供される。本発明では、形状記憶合金線材と電気抵抗線とを別体としてそれらの線材の束を伸縮素子として採用し、さらに、伸縮素子の長さを復元するための弾性体として、伸縮素子を囲繞して長さ方向に弾性変形する弾性素子を採用することにより、収縮量のずれや絶縁の構成をほとんど考慮せずに、形状記憶合金の線材の本数を増やすことができることとなり、これにより、更なる高出力化が可能となる。本発明の板状アクチュエータは、任意の構造体の変形に用いられるアクチュエータとして、アクチュエータ本体の占有空間をさほどに大きくせずに、しかも変形素子の持つ駆動力を殆ど低減させずに大きな変位の得ることのできるアクチュエータであり、アクチュエータの形状が板状であることから、移動体のボディの如く、内部に別の機能のための装置又は装備(移動体の駆動装置、操縦装置、座席など)が設けられる場合にも、アクチュエータがボディ内部の空間へ突出する程度を小さく抑えることができる点で有利である。変形素子の長さを制御するための装備は、基本的には、電気回路等のみなので、アクチュエータの作動に必要な装備も比較的小さく、従って、アクチュエータの更なる軽量化及び省スペース化が可能となる点でも有利である。   Thus, according to the present invention described above, a selectively stretchable linear or belt-like stretchable element made of a shape memory alloy is attached to the plate-like elastic body, and the position of the stretchable element whose length has been changed is determined. In a plate-type actuator to be moved, an actuator constructed without using a curved leaf spring for restoring the length of the expansion / contraction element and without using the shape memory alloy itself as a current circuit for heat generation Is provided. In the present invention, the shape memory alloy wire and the electric resistance wire are separated, and a bundle of these wires is adopted as an expansion / contraction element. Further, the elastic element is surrounded as an elastic body for restoring the length of the expansion / contraction element. By adopting an elastic element that elastically deforms in the length direction, the number of shape memory alloy wire rods can be increased with little consideration of displacement of shrinkage and the configuration of insulation. High output is possible. The plate-like actuator according to the present invention is an actuator used for deformation of an arbitrary structure, so that a large displacement can be obtained without greatly reducing the occupied space of the actuator body and reducing the driving force of the deformation element. Since the actuator has a plate shape, there are devices or equipment for other functions (moving body drive device, control device, seat, etc.) inside the body of the moving body. Even when it is provided, it is advantageous in that the degree to which the actuator protrudes into the space inside the body can be kept small. Since the equipment for controlling the length of the deforming element is basically only an electric circuit, etc., the equipment required for the operation of the actuator is relatively small, and therefore the actuator can be further reduced in weight and space. This is also advantageous.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

図1(A)は、本発明による板状アクチュエータの模式的な斜視図であり、図1(B)は、その線状変形素子の端部近傍の拡大された模式的な斜視図である。FIG. 1A is a schematic perspective view of a plate-like actuator according to the present invention, and FIG. 1B is an enlarged schematic perspective view in the vicinity of an end portion of the linear deformation element. 図2(A)は、本発明による板状アクチュエータに於ける変形素子の端部の模式的な斜視図であり、図2(B)は、伸縮素子の端部の模式的な斜視図である。これらの図は、内部を示すべく、一部破断されて描かれている。図2(C)は、伸縮素子の断面であり、形状記憶合金線材(白丸)と電気抵抗線(黒丸)の配列を示している。FIG. 2A is a schematic perspective view of the end portion of the deformation element in the plate-like actuator according to the present invention, and FIG. 2B is a schematic perspective view of the end portion of the expansion / contraction element. . These figures are partially cut away to show the interior. FIG. 2C is a cross section of the expansion / contraction element, and shows an arrangement of shape memory alloy wire (white circle) and electric resistance wire (black circle). 図3(A)は、本発明による板状アクチュエータの変形素子に於ける弾性素子として皿ばねを用いた実施形態を示す変形素子の一部の模式的な斜視図であり、図3(B)は、本発明による板状アクチュエータの変形素子に於ける弾性素子として熱可塑性エラストマから成る円筒部材を用いた実施形態を示す変形素子の一部の模式的な斜視図でありFIG. 3 (A) is a schematic perspective view of a part of a deformation element showing an embodiment in which a disc spring is used as an elastic element in the deformation element of the plate-like actuator according to the present invention. FIG. 4 is a schematic perspective view of a part of a deformation element showing an embodiment using a cylindrical member made of a thermoplastic elastomer as an elastic element in the deformation element of the plate actuator according to the present invention. 図4は、図2(A)と同様の変形素子の端部の模式的な斜視図であり、冷媒を流通させる流路の構成を説明する図である。FIG. 4 is a schematic perspective view of the end portion of the deformation element similar to that in FIG. 2 (A), and is a diagram illustrating the configuration of the flow path through which the refrigerant flows. 図5は、本発明による板状アクチュエータを平面状に展開した場合の変形部位の移動の様子を模式的に表した斜視図である。FIG. 5 is a perspective view schematically showing the state of movement of the deformed portion when the plate-like actuator according to the present invention is developed in a planar shape. 図6(A)は、本発明による板状アクチュエータを湾曲させた場合の変形素子の変形の様子を模式的に表した図であり、図6(B)は、本発明による板状アクチュエータを湾曲させた場合の変形部位の移動の様子を模式的に表した斜視図である。FIG. 6 (A) is a diagram schematically showing the deformation of the deformation element when the plate-like actuator according to the present invention is bent, and FIG. 6 (B) is a diagram showing the curve of the plate-like actuator according to the present invention. It is the perspective view which represented typically the mode of the movement of the deformation | transformation site | part at the time of making it do. 図7は、本発明による板状アクチュエータの板状弾性部材の別の実施形態を模式的に表した斜視図である。FIG. 7 is a perspective view schematically showing another embodiment of the plate-like elastic member of the plate-like actuator according to the present invention. 図8(A)は、特願2013−111400に記載のアクチュエータの模式的な斜視図であり、図8(B)は、蠕動の進行の様子を説明する模式図であり、図8(C)は、特願2013−111400に於ける変形素子の端部の構造を説明する模式的な斜視図である。FIG. 8A is a schematic perspective view of the actuator described in Japanese Patent Application No. 2013-111400, and FIG. 8B is a schematic diagram illustrating how the peristalsis proceeds. FIG. These are the typical perspective views explaining the structure of the edge part of the deformation | transformation element in Japanese Patent Application No. 2013-111400.

1…板状アクチュエータ
100…弾性板状部材
101…ポケット
8…軸支持用部材
9…支持軸
10…線状変形素子
11…支持端部
11h…軸貫通孔
12a〜c…ねじ
13…冷媒流路
14…保持チューブ
15…鞘構造
15a…冷媒流入口
16a…管体
16b…弾性素子(つるまきばね)
17…電気抵抗線
18…形状記憶合金線材
19…剛体管
20…皿ばね
21…エラストマ管部材
200…隙間
DESCRIPTION OF SYMBOLS 1 ... Plate-shaped actuator 100 ... Elastic plate-shaped member 101 ... Pocket 8 ... Shaft support member 9 ... Support shaft 10 ... Linear deformation element 11 ... Support end 11h ... Shaft through-hole 12a-c ... Screw 13 ... Refrigerant flow path DESCRIPTION OF SYMBOLS 14 ... Holding tube 15 ... Sheath structure 15a ... Refrigerant inflow port 16a ... Tube 16b ... Elastic element (helical spring)
17 ... Electric resistance wire 18 ... Shape memory alloy wire 19 ... Rigid pipe 20 ... Belleville spring 21 ... Elastomer pipe member 200 ... Crevice

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

板状アクチュエータの構成
図1(A)、(B)を参照して、本発明による板状アクチュエータ1に於いては、図示の如く、任意の寸法の弾性膜(弾性板状部材)100に於いて、後に詳細に説明される線状の変形素子10を受容する、複条の、弾性膜100と略等長のポケット101が形成される。弾性膜100とポケット101は、典型的には、ポリウレタン(ウレタンゴム若しくはウレタン樹脂)や熱可塑性エラストマ等の任意の高弾性樹脂膜などから成る膜状部材であってよく、ポケット101は、接着又は溶着等により弾性膜100上に所定の間隔にて設けられてよい。線状の変形素子10は、各ポケット101に挿入され、その長さ方向と垂直な方向について位置決めされ、更に、線状変形素子10の端には、それぞれ、軸貫通孔11hを有する支持端部11が取り付けられる。軸貫通孔11hには、支持軸9が貫通され、支持軸9は、弾性膜100の縁部100a上に於いて軸支持用部材8により覆われるように把持され、これにより、支持端部11を介して支持軸9によって、複数の線状変形素子10の長さ方向に位置決めが為されるようになっていてよい。
Diagram of the plate-shaped actuator 1 (A), with reference to (B), is at the plate-shaped actuator 1 according to the present invention, as illustrated, at the elastic membrane (elastic plate-like member) 100 of arbitrary size Thus, a pocket 101 having a length substantially equal to that of the elastic film 100 for receiving the linear deformation element 10 described in detail later is formed. The elastic film 100 and the pocket 101 may typically be a film-like member made of any highly elastic resin film such as polyurethane (urethane rubber or urethane resin) or thermoplastic elastomer, and the pocket 101 may be bonded or It may be provided on the elastic film 100 at a predetermined interval by welding or the like. The linear deformation element 10 is inserted into each pocket 101 and positioned in a direction perpendicular to the length direction thereof. Further, the end of the linear deformation element 10 has a support end portion having a shaft through hole 11h. 11 is attached. The support shaft 9 is passed through the shaft through-hole 11h, and the support shaft 9 is gripped so as to be covered with the shaft support member 8 on the edge portion 100a of the elastic film 100, whereby the support end portion 11 is supported. The plurality of linear deformation elements 10 may be positioned in the length direction by the support shaft 9 through the support shaft 9.

線状変形素子10は、図2(A)〜(C)にて例示されている如く、可撓性の保持チューブ14に覆われた複数本の形状記憶合金線材18と電気抵抗線17との束(17、18)からなる伸縮素子10aと、かかる伸縮素子の両端に取り付けられる円筒状の管体16a(図中、内部を示すために、破断して描かれている。)と、伸縮素子の両端(図中、一方の端部のみ示されている。)の管体16aの間にて伸縮素子10aを囲繞する管状又は円筒状の弾性素子16bとから構成される。   As illustrated in FIGS. 2A to 2C, the linear deformation element 10 includes a plurality of shape memory alloy wires 18 and electric resistance wires 17 covered with a flexible holding tube 14. A telescopic element 10a composed of a bundle (17, 18), a cylindrical tube body 16a attached to both ends of the telescopic element (in the drawing, it is drawn to show the inside), and the telescopic element. Are formed of a tubular or cylindrical elastic element 16b surrounding the expansion / contraction element 10a between tube bodies 16a at both ends (only one end is shown in the figure).

形状記憶合金線材18は、温度上昇に伴って長さ方向に収縮する形状記憶合金からなる任意の線材であってよく、電気抵抗線17は、電流を流通させることによりジュール熱を発する任意の電導性材料から成る表面が絶縁被覆された線材であってよい。形状記憶合金線材18と電気抵抗線17とは、例えば、図2(C)に例示されている如く、断面に於いて最密格子の如き構造を構成するように配列されてよい。電気抵抗線17は、図2(B)にて描かれている如く、束の端部にて折り返された一本の線材であってよく、これにより、伸縮素子に流れる電流量を低く抑えるようになっていてよい。そして、伸縮素子10aは、その両端に於いて、剛体管16cが嵌装され(図示の例では三つ)、ねじ12a〜c等の任意の締結手段により管体16aに固定される。また、電気抵抗線17の両端は、端子17aが管体16aの外部へ引き出され、外部電源(図示せず)に接続される。かくして、端子17aを介して、電気抵抗線17に電流が流通されると、ジュール熱が発生し、形状記憶合金線材18と電気抵抗線17との束である伸縮素子10aの温度が上昇し、形状記憶合金線材18の収縮が生ずることとなるので、伸縮素子10aの長さが収縮されることとなる。そして、電気抵抗線17への通電が切断されると、温度が低下し、形状記憶合金線材18は、元の長さに復元することとなる。なお、伸縮素子10aの収縮力は、束に於ける形状記憶合金線材18の断面積に比例し、各形状記憶合金線材18の収縮力の総和となるので、高出力化を図る際には、形状記憶合金線材18の本数が増大され、また、電流流通時の形状記憶合金線材18の温度上昇を速やかに且つ適切な程度にするために、電気抵抗線17の本数と印加電圧は、適宜調整される。伸縮素子10aの束に於ける形状記憶合金線材18と電気抵抗線17との本数の比率は、実験的に決定されてよい。図2(C)に例示されている如く電気抵抗線17の周囲に形状記憶合金線材18を最密格子の形式にて配列した束の構成によれば、電気抵抗線17は、形状記憶合金線材18の全長に亘り隣接することとなるので、電気抵抗線17で発生した熱が形状記憶合金線材18に速やかに伝達され、迅速な形状記憶合金線材18の収縮応答性が期待される。伸縮素子10aの束に於ける形状記憶合金線材18と電気抵抗線17との本数の比率と線材の径とは、実験的に決定されてよい。図2(C)に例示の配列の場合、形状記憶合金線材18の径と電気抵抗線17の径とは、略等しいことが好ましいがこれに限定されない。   The shape memory alloy wire 18 may be an arbitrary wire made of a shape memory alloy that shrinks in the length direction as the temperature rises, and the electric resistance wire 17 is an arbitrary conductor that generates Joule heat by passing an electric current. The surface which consists of a conductive material may be the wire by which insulation coating was carried out. The shape memory alloy wire 18 and the electric resistance wire 17 may be arranged so as to form a structure such as a close-packed lattice in cross section, as illustrated in FIG. 2C, for example. As illustrated in FIG. 2B, the electric resistance wire 17 may be a single wire folded at the end of the bundle, so that the amount of current flowing through the expansion / contraction element is kept low. It may be. The expansion / contraction element 10a is fitted with rigid pipes 16c (three in the illustrated example) at both ends, and is fixed to the pipe 16a by any fastening means such as screws 12a to 12c. Further, at both ends of the electric resistance wire 17, the terminal 17a is drawn out of the tube body 16a and connected to an external power source (not shown). Thus, when a current is passed through the electrical resistance wire 17 via the terminal 17a, Joule heat is generated, and the temperature of the expansion / contraction element 10a, which is a bundle of the shape memory alloy wire 18 and the electrical resistance wire 17, rises, Since the shape memory alloy wire 18 is contracted, the length of the expansion / contraction element 10a is contracted. And when electricity supply to the electric resistance wire 17 is cut off, the temperature is lowered, and the shape memory alloy wire 18 is restored to its original length. Note that the contraction force of the expansion / contraction element 10a is proportional to the cross-sectional area of the shape memory alloy wire 18 in the bundle and is the sum of the contraction force of each shape memory alloy wire 18, so when increasing the output, The number of the shape memory alloy wires 18 is increased, and the number of the electric resistance wires 17 and the applied voltage are appropriately adjusted in order to quickly and appropriately increase the temperature of the shape memory alloy wire 18 during current flow. Is done. The ratio of the number of the shape memory alloy wire 18 and the electric resistance wire 17 in the bundle of the elastic elements 10a may be determined experimentally. As illustrated in FIG. 2C, according to the configuration of the bundle in which the shape memory alloy wire 18 is arranged in the form of a close-packed lattice around the electric resistance wire 17, the electric resistance wire 17 is formed of the shape memory alloy wire. Therefore, the heat generated in the electric resistance wire 17 is quickly transmitted to the shape memory alloy wire 18, and a rapid shrinkage response of the shape memory alloy wire 18 is expected. The ratio of the number of the shape memory alloy wire 18 and the electric resistance wire 17 in the bundle of the expansion elements 10a and the diameter of the wire may be determined experimentally. In the case of the arrangement illustrated in FIG. 2C, the diameter of the shape memory alloy wire 18 and the diameter of the electric resistance wire 17 are preferably substantially equal, but are not limited thereto.

弾性素子16bは、典型的には、図2(A)に例示されている如く、つるまきばね等の内部が空洞の円筒形状の、長さ方向に伸縮する弾性体であってよく、内側の空洞に伸縮素子10aを受容する。弾性素子16bは、上記の伸縮素子10aの両端の管体16aの間に取り付けられ固定され、これにより、伸縮素子10aの通電による収縮に伴う両端の管体16aの間の距離の短縮により、弾性的に収縮されることとなる。そして、伸縮素子10aに対する通電が切断されると、伸縮素子10aの形状記憶合金線材が伸長するところ、完全に元の長さに復元することを補助すべく、弾性素子16bが、弾性的に両端の管体16aの間を引き離すよう作用することとなる。なお、弾性素子16bは、つるまきばねの他、図3(A)に例示の如く、皿ばね20を数段重ねたもの、或いは、図3(B)に例示の如く、熱可塑性エラストマ材からなる円筒状の部材21であってもよい。また、弾性素子16bは、伸縮素子10aの両端の管体16aの間の全長に亘る長さを有している必要はなく、例えば、図3(A)、(B)に例示されている如く、伸縮素子10aよりも短い複数の弾性体を剛体管19を介して連結してなる構造(例えば、弾性体と剛体管とを交互に直列した構造)であってもよい。特に、薄型のアクチュエータを構成する場合に、両端の管体16aの間が、直径に対して自由長が長い構成(縦横比が極端に高い構成)となるので、弾性素子の軸外変形・破断・塑性変形の回避のために、剛体管19を介在させた構成が有利である。なお、剛体管19を介してn個の弾性素子を連結する場合の各弾性素子の弾性係数kは、全体として要求される弾性係数Kを用いて、k=nKにより与えられる(全ての弾性素子の弾性係数が等しい場合)。   Typically, the elastic element 16b may be an elastic body that extends and contracts in the lengthwise direction, such as a helical spring having a hollow cylindrical shape, as illustrated in FIG. The elastic element 10a is received in the cavity. The elastic element 16b is attached and fixed between the tube bodies 16a at both ends of the expansion element 10a, thereby reducing the distance between the tube bodies 16a at both ends due to contraction due to energization of the expansion element 10a. Will be shrunk. When the energization of the expansion / contraction element 10a is cut, the shape memory alloy wire of the expansion / contraction element 10a expands, and the elastic element 16b elastically supports both ends in order to assist in restoring the original length completely. It will act so that it may pull apart between the tube bodies 16a. In addition, the elastic element 16b is made of, in addition to the helical spring, a structure in which a plurality of disc springs 20 are stacked as illustrated in FIG. 3A, or a thermoplastic elastomer material as illustrated in FIG. 3B. A cylindrical member 21 may be used. Further, the elastic element 16b does not need to have a length over the entire length between the pipe bodies 16a at both ends of the expansion / contraction element 10a. For example, as illustrated in FIGS. Further, a structure in which a plurality of elastic bodies shorter than the expansion and contraction element 10a are connected via the rigid tube 19 (for example, a structure in which elastic bodies and rigid tubes are alternately connected in series) may be used. In particular, when a thin actuator is configured, the tube 16a at both ends has a configuration having a long free length with respect to the diameter (a configuration having an extremely high aspect ratio). In order to avoid plastic deformation, a configuration with a rigid tube 19 interposed is advantageous. The elastic coefficient k of each elastic element when n elastic elements are connected through the rigid tube 19 is given by k = nK using the elastic coefficient K required as a whole (all elastic elements Of the same elastic modulus).

弾性膜100上に上記の線状変形素子10の配置する際には、既に触れた如く、ポケット101に装入され、更に、両端の管体16aに対して、支持端部11の端11bが固定される。支持端部11の頭部11aの孔11hに支持軸9が挿入されてよい。かかる構成によれば、各線状変形素子10の長さ方向の位置が固定され、また、複数の線状変形素子10の端部の位置が弾性膜100の縁にて整列されることとなる。   When arranging the linear deformation element 10 on the elastic membrane 100, as already mentioned, it is inserted into the pocket 101, and further, the end 11b of the support end 11 is connected to the tubular body 16a at both ends. Fixed. The support shaft 9 may be inserted into the hole 11 h of the head 11 a of the support end 11. According to such a configuration, the position of each linear deformation element 10 in the length direction is fixed, and the positions of the end portions of the plurality of linear deformation elements 10 are aligned at the edge of the elastic film 100.

更に、上記の線状変形素子10に於いては、伸縮素子10aの線材17、18の束を覆う保護チューブ14と弾性素子16bとの間に鞘構造15が設けられてよい(即ち、伸縮素子10aは、鞘構造15の内部に挿入され、その状態で、更に、弾性素子16bの内部へ挿入される。)。鞘構造15の内面と保護チューブ14の外面との間には、隙間13が設けられ、更に、鞘構造15の端部は、保護チューブ14の表面上にシールされてよい(15b)。そして、鞘構造15の一部に孔15aが設けられる。かかる孔15aは、鞘構造15の両端近傍にそれぞれ設けられてよく、一方を冷媒流入口として、他方を冷媒流出口として用いて、隙間13を通して、空気又は水等の冷媒を、伸縮素子10aの周囲に流通させるようになっていてよい。かかる冷媒を流通させる構成によれば、通電により一旦温度上昇した伸縮素子10aを、通電切断後に、迅速に冷却し、伸縮素子10aの伸縮応答性の向上が図られることとなる。   Further, in the linear deformation element 10 described above, the sheath structure 15 may be provided between the protective tube 14 covering the bundle of the wire rods 17 and 18 of the expansion / contraction element 10a and the elastic element 16b (that is, the expansion / contraction element). 10a is inserted into the inside of the sheath structure 15, and in this state, is further inserted into the elastic element 16b). A gap 13 is provided between the inner surface of the sheath structure 15 and the outer surface of the protective tube 14, and the end of the sheath structure 15 may be sealed onto the surface of the protective tube 14 (15b). A hole 15 a is provided in a part of the sheath structure 15. Such holes 15a may be provided in the vicinity of both ends of the sheath structure 15, respectively, using one as a refrigerant inlet and the other as a refrigerant outlet, and through the gap 13, a refrigerant such as air or water is supplied to the expansion element 10a. It may be designed to circulate around. According to the configuration in which such a refrigerant is circulated, the expansion / contraction element 10a whose temperature has been once increased by energization is quickly cooled after the energization is cut off, and the expansion / contraction response of the expansion / contraction element 10a is improved.

また、更に、図1(A)の如く、変形素子10が弾性膜100上に配置される場合、変形素子10の収縮の際に、その収縮エネルギーの一部は、弾性膜100の収縮に消費されることとなる。かかるエネルギー消費を低減すべく、図7に示されている如く、弾性膜100に於いて、変形素子10の延在方向と垂直な方向に隙間200が設けられていてよい。この場合、変形素子10の収縮に伴う弾性膜100の変形を許すべく、ポケット101と弾性膜100との接着部位は、図中の矢印に示されている部位のみでよい。かかる構成の場合には、弾性膜は、FRP薄板の如き、やや、面剛性の高い部材であっても利用可能である。   Further, when the deformation element 10 is disposed on the elastic film 100 as shown in FIG. 1A, a part of the contraction energy is consumed for contraction of the elastic film 100 when the deformation element 10 contracts. Will be. In order to reduce the energy consumption, a gap 200 may be provided in the elastic film 100 in a direction perpendicular to the extending direction of the deformation element 10 as shown in FIG. In this case, in order to allow the deformation of the elastic film 100 accompanying the contraction of the deformation element 10, the bonding part between the pocket 101 and the elastic film 100 may be only the part indicated by the arrow in the drawing. In the case of such a configuration, the elastic film can be used even if it is a member having a slightly high surface rigidity such as an FRP thin plate.

板状アクチュエータの作動
上記の板状アクチュエータの作動に於いては、図1(A)の如く、複数の線状変形素子を選択的に収縮させ、その収縮させた線状変形素子の位置を移動させることにより、駆動対象となる任意の構造体に作用力を付与する。各線状変形素子の作動に於いては、既に触れた如く、外部電源から電気抵抗線17に電流が供給されると、電気抵抗線17はジュール熱を発生し、その熱で形状記憶合金線材18が収縮する。その際、弾性素子16bは、その長さ方向に収縮するので、線状変形素子は、基本的には、長さ方向に収縮変形することとなる。そして、電気抵抗線17への通電が停止されると、ジュール熱の発生が無くなるので、形状記憶合金線材18の温度が低下し、形状記憶合金線材18の長さが元の長さに戻る方向に伸長する。その際、完全な復元を補助するよう弾性素子16bが弾性的に伸長する力を付与する。また、鞘構造15による冷媒流通機構が設けられている場合には、形状記憶合金線材18の温度低下が促進され、伸縮応答性の向上が図られることとなる。
Operation of plate actuator In the operation of the above plate actuator, as shown in FIG. 1A, a plurality of linear deformation elements are selectively contracted, and the position of the contracted linear deformation elements is moved. As a result, an acting force is applied to an arbitrary structure to be driven. In the operation of each linear deformation element, as already mentioned, when a current is supplied from the external power source to the electric resistance wire 17, the electric resistance wire 17 generates Joule heat, and the heat causes the shape memory alloy wire 18. Contracts. At this time, since the elastic element 16b contracts in the length direction, the linear deformation element basically contracts and deforms in the length direction. Then, when energization to the electric resistance wire 17 is stopped, Joule heat is no longer generated, so the temperature of the shape memory alloy wire 18 decreases, and the length of the shape memory alloy wire 18 returns to the original length. Elongate. At that time, the elastic element 16b gives a force to elastically extend so as to assist the complete restoration. Moreover, when the refrigerant | coolant distribution mechanism by the sheath structure 15 is provided, the temperature fall of the shape memory alloy wire 18 will be accelerated | stimulated, and the expansion-contraction response will be improved.

図5は、上記の板状アクチュエータを平面状に展開して作動させた場合の様子を模式的に示した図である。なお、図示の例は、支持軸9を装入しないか、可撓性のある軸を用いた場合である。同図を参照して、この場合、一方の縁にある線状変形素子10から他方の縁にある線状変形素子10へ順々に通電のON/OFFが実行される。そうすると、通電された線状変形素子10が収縮することにより、弾性膜100に凹部が形成され、通電する対象を隣の線状変形素子10へ移すと、凹部が矢印の方向へ移動していくこととなる。即ち、板状アクチュエータの縁に於いて、波状構造の移動の発生が達成されることとなる。   FIG. 5 is a view schematically showing a state in which the plate-like actuator is expanded and operated in a planar shape. In the example shown in the figure, the support shaft 9 is not inserted or a flexible shaft is used. Referring to the figure, in this case, energization is sequentially turned on / off from the linear deformation element 10 on one edge to the linear deformation element 10 on the other edge. Then, when the energized linear deformation element 10 contracts, a recess is formed in the elastic film 100, and when the object to be energized is moved to the adjacent linear deformation element 10, the recess moves in the direction of the arrow. It will be. That is, the occurrence of the wave-like structure movement is achieved at the edge of the plate-like actuator.

更に別の例として、図6(B)は、板状アクチュエータを湾曲させて作動させた場合を示している。この場合、剛固な支持軸9が挿入され、線状変形素子10が固定されている。かかる状態に於いて、線状変形素子10へ通電すると、その線状変形素子10が収縮することにより、図6(A)に模式的に描かれている如く、線状変形素子10の曲率が小さくなり、板状アクチュエータの湾曲面に於いて局所的な凹領域が形成される。そして、一方の縁にある線状変形素子10から他方の縁にある線状変形素子10へ順々に通電のON/OFFが実行されると、図6(B)の如く矢印の方向へ凹領域が移動し、蠕動が発生することとなる。   As yet another example, FIG. 6B shows a case where the plate actuator is operated while being bent. In this case, a rigid support shaft 9 is inserted, and the linear deformation element 10 is fixed. In this state, when the linear deformation element 10 is energized, the linear deformation element 10 contracts, so that the curvature of the linear deformation element 10 is schematically illustrated in FIG. It becomes smaller and a local concave region is formed on the curved surface of the plate actuator. Then, when energization is sequentially turned on / off from the linear deformation element 10 on one edge to the linear deformation element 10 on the other edge, a concave is formed in the direction of the arrow as shown in FIG. The area moves and peristalsis occurs.

なお、図示していないが、板状アクチュエータに一本の線状変形素子10を配置し、その線状変形素子10を収縮させた状態で、線状変形素子10の長さ方向に垂直な方向に移動させる機構が用いられてもよく、その場合も、図5、6と略同様の変形作動が得られることとなる。   Although not shown in the drawing, a direction perpendicular to the length direction of the linear deformation element 10 in a state where one linear deformation element 10 is arranged on the plate-like actuator and the linear deformation element 10 is contracted. In this case, a deformation operation substantially similar to that shown in FIGS. 5 and 6 can be obtained.

上記に説明した本発明の有効性を検証するために、以下の如き実験を行った。なお、以下の実施例は、本発明の有効性を例示するものであって、本発明の範囲を限定するものではないことは理解されるべきである。   In order to verify the effectiveness of the present invention described above, the following experiment was conducted. It should be understood that the following examples illustrate the effectiveness of the present invention and do not limit the scope of the present invention.

上記の板状アクチュエータ作成の例を説明する。まず、弾性膜100として、厚み0.2mm、長さ200mmのポリウレタン膜を用い、その表面に、長さ200mmのポリウレタン膜製のポケット101を20mmの間隔にて熱溶着により固定した。一方、直径d1、長さLで5%の収縮の形状記憶をさせたNiTi形状記憶合金線材18と、直径d2のエナメル被覆の施されたニクロム線17を、図2(C)の配列を基本配列として拡張した構成にて束ねた。その際、直径d1と直径d2とは、略同じであってよい。なお、伸縮素子10aの要求出力(収縮力)Wを得るために、出力応力σiの形状記憶合金線材18を利用する場合、その所要本数nは、
n=4W/(πd1σi)
により与えられ、ニクロム線17の本数mは、図2(C)の配列構成によって決定される。σi=約600MPaの時、n=42、m=19とすると、線径d1は、1.8mm程度となる。また、収縮した状態から原形を復帰させる張力がSiである形状記憶合金線材18がn本である基準長Lの伸縮素子に於いて、収縮率εにて収縮した状態を原形に復帰させるためのばね計数Kは、K=nSi/(εL)で与えられるところ、Si=5N、L=200mm、ε=4%、n=42とすると、要求されるバネ定数は、29×10N/mm程度である。
An example of creating the plate actuator will be described. First, a polyurethane film having a thickness of 0.2 mm and a length of 200 mm was used as the elastic film 100, and a pocket 101 made of a polyurethane film having a length of 200 mm was fixed to the surface by thermal welding at intervals of 20 mm. On the other hand, a NiTi shape memory alloy wire 18 having a diameter d1 and a length L of 5% shrinkage and a nichrome wire 17 having a diameter d2 and enamel coating are basically arranged based on the arrangement shown in FIG. Bundled in an expanded configuration as an array. In that case, the diameter d1 and the diameter d2 may be substantially the same. When the shape memory alloy wire 18 having the output stress σi is used to obtain the required output (contraction force) W of the expansion / contraction element 10a, the required number n is:
n = 4W / (πd1 2 σi)
The number m of the nichrome wires 17 is determined by the arrangement configuration of FIG. When σi = about 600 MPa, assuming that n = 42 and m = 19, the wire diameter d1 is about 1.8 mm. Further, in the expansion element of the reference length L in which the shape memory alloy wire 18 having a tension of Si that returns the original shape from the contracted state has n pieces, the contracted state at the contraction rate ε is restored to the original shape. The spring count K is given by K = nSi / (εL). When Si = 5N, L = 200 mm, ε = 4%, and n = 42, the required spring constant is 29 × 10 3 N / mm. Degree.

かくして、上記で得られた形状記憶合金線材18とニクロム線17の束は、内径2mm、厚さ0.5mmのシリコンチューブ(保護チューブ14)に、内径3mm、厚さ0.2mmの金属管を内装した管の内部へ挿入され、金属管のみが引き抜かれた。なお、金属管の挿入離脱が困難な場合は、保護チューブ14の全長に亘って軸方向に切り込みスリットが設けられてよい。次いで、上記の形状記憶合金線材18とニクロム線17の束を挿入した保護チューブ14に、両端近傍の円周側面にてそれぞれ直径2mmの孔15aが設けられた内径4mmの熱収縮チューブ(鞘構造15)を外装し、その端部のみ加熱収縮させ、シール(15b)を形成した。そして、形状記憶合金線材18とニクロム線17の束を内包した保護チューブ14の端部に内径3.1mm、厚さ0.5mmの真鍮等の軟質金属管体16cが嵌装された(図示の例では両端に3つずつである。)。更に、上記の軟質金属管体16cの部位に対して、平断面にて千鳥状に3か所M3の貫通ねじ穴を穿った内径8mmの鋼製管体16aを外装し、貫通ねじ穴にM3ホーローねじをねじ込み、管体16aを伸縮素子10aの端部に装着した。なお、線材17、18の配向乱れ、過張力による破断を防止すべく、ねじの締めつけは、12a、12b、12cの順に行った(図2(A)参照)。そして、一方の端の管体16aに対して、支持端部11をねじ締結によって固定した。   Thus, the bundle of the shape memory alloy wire 18 and the nichrome wire 17 obtained above is a silicon tube (protective tube 14) having an inner diameter of 2 mm and a thickness of 0.5 mm, and a metal tube having an inner diameter of 3 mm and a thickness of 0.2 mm. It was inserted into the interior tube and only the metal tube was pulled out. In addition, when it is difficult to insert and remove the metal tube, an incision slit may be provided in the axial direction over the entire length of the protective tube 14. Next, a heat-shrinkable tube (sheath structure) having an inner diameter of 4 mm, in which a hole 15 a having a diameter of 2 mm is provided on the circumferential side surface near both ends of the protective tube 14 into which the bundle of the shape memory alloy wire 18 and the nichrome wire 17 is inserted. 15) was packaged, and only the ends thereof were heated and shrunk to form a seal (15b). A soft metal tube 16c such as brass having an inner diameter of 3.1 mm and a thickness of 0.5 mm was fitted to the end of the protective tube 14 containing the bundle of the shape memory alloy wire 18 and the nichrome wire 17 (shown in the figure). In the example, there are three at each end.) Further, a steel pipe body 16a having an inner diameter of 8 mm having three M3 through screw holes drilled in a zigzag cross section in a flat cross section with respect to the portion of the soft metal pipe body 16c is sheathed, and M3 is formed in the through screw hole. A hollow screw was screwed in and the tube body 16a was attached to the end of the expansion / contraction element 10a. The screws were tightened in the order of 12a, 12b, and 12c in order to prevent breakage due to disorder of orientation of the wire rods 17 and 18 and over tension (see FIG. 2A). And the support end part 11 was fixed to the pipe body 16a of one end by screw fastening.

次いで、上記までに構成された伸縮素子10aの周囲に、つるまきばね16b、或いは、皿ばね20若しくは弾性体21と剛体管16とを交互に直列に配列した弾性素子を外装した。ばねの仕様について、本作成手順の例の場合には、弾性素子の縦横比が過大であり、つるまきばねでは座屈してしまう場合がある。そこで、本例では、例えば、240MPa程度の圧縮弾性率を有するポリブチレンテレフタレートとポリエーテルのブロック重合体などの熱可塑性エラストマ製で、外径7mm、長さ5mmの弾性体21を10個用い、弾性体21の間に外径7mm、長さ17mmのFRP製剛体管19を介在させてなる弾性素子が好適である(上記の必要なばね定数が得られる。)。そして、上記の弾性素子が装着された伸縮素子、即ち、変形素子が、弾性膜100のポケット101へ装入され、支持端部11の締結がされていない端の管体16aに対して支持端部11が締結された。その後、支持端部11の孔11hにGFRP製支持軸9を通し、FRP製の軸支持用部材8により軸9を覆うようにした弾性膜100に熱溶着により固定し、板状アクチュエータを完成させた。   Next, a helical spring 16b or an elastic element in which the disc springs 20 or the elastic bodies 21 and the rigid tubes 16 are alternately arranged in series is mounted around the expansion / contraction element 10a configured as described above. With regard to the specifications of the spring, in the case of the example of this creation procedure, the aspect ratio of the elastic element is excessive, and the helical spring may be buckled. Therefore, in this example, for example, ten elastic bodies 21 made of a thermoplastic elastomer such as a block polymer of polybutylene terephthalate and polyether having a compression elastic modulus of about 240 MPa, and having an outer diameter of 7 mm and a length of 5 mm are used. An elastic element in which an FRP rigid tube 19 having an outer diameter of 7 mm and a length of 17 mm is interposed between the elastic bodies 21 is preferable (the necessary spring constant can be obtained). The expansion / contraction element to which the elastic element is attached, that is, the deformation element is inserted into the pocket 101 of the elastic film 100, and the support end portion is not fastened to the tube body 16a. Part 11 is fastened. Thereafter, the GFRP support shaft 9 is passed through the hole 11h of the support end 11, and fixed to the elastic film 100 that covers the shaft 9 by the FRP shaft support member 8 by heat welding, thereby completing the plate actuator. It was.

上記の板状アクチュエータに於いて、室温にて、抵抗線17に1Aの電流にて通電−遮断を繰り返したところ、変形素子に於いて、約70℃まで温度上昇が繰り返し発生し、その際、板状アクチュエータの寸法が局所的に約8mmにて伸縮した。   In the above plate actuator, when the resistance wire 17 was repeatedly energized and interrupted at a current of 1 A at room temperature, the temperature of the deformation element repeatedly increased to about 70 ° C., The plate-shaped actuator was locally expanded and contracted at about 8 mm.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.

Claims (1)

板状アクチュエータであって、
弾性的に変形可能な弾性板状部材と、
前記弾性板状部材の面上にて該面に沿って配置された少なくとも一つの線状変形素子にして、形状記憶合金線材と電気抵抗線材とを所定の配列にて束ねてなる収縮可能な線状の伸縮素子と、前記伸縮素子の少なくとも一部を囲繞し該伸縮素子の共に長さが弾性的に変形可能な弾性素子と、前記電気抵抗線材へ選択的に通電する通電手段とを含む線状変形素子とを含み、
前記線状変形素子の長さの変化と共に前記弾性板状部材が変形し、
長さの変化した前記線状変形素子の位置の変更とともに、前記弾性板状部材の変形部位が変更される板状アクチュエータ。
A plate actuator,
An elastically deformable elastic plate member;
A shrinkable wire formed by bundling a shape memory alloy wire and an electric resistance wire in a predetermined arrangement, with at least one linear deformation element arranged along the surface of the elastic plate member. A wire that includes an elastic element, an elastic element that surrounds at least a portion of the elastic element, the length of both of the elastic elements being elastically deformable, and an energization means that selectively energizes the electric resistance wire A deformation element,
The elastic plate member is deformed along with the change in the length of the linear deformation element,
A plate-like actuator in which the deformation portion of the elastic plate-like member is changed along with the change in the position of the linear deformation element whose length has changed.
JP2014010096A 2014-01-23 2014-01-23 Plate actuator Expired - Fee Related JP6135523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010096A JP6135523B2 (en) 2014-01-23 2014-01-23 Plate actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010096A JP6135523B2 (en) 2014-01-23 2014-01-23 Plate actuator

Publications (2)

Publication Number Publication Date
JP2015137603A JP2015137603A (en) 2015-07-30
JP6135523B2 true JP6135523B2 (en) 2017-05-31

Family

ID=53768783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010096A Expired - Fee Related JP6135523B2 (en) 2014-01-23 2014-01-23 Plate actuator

Country Status (1)

Country Link
JP (1) JP6135523B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123674U (en) * 1983-02-09 1984-08-20 小島プレス工業株式会社 actuator
JPS6264883U (en) * 1985-10-14 1987-04-22
JP2001214851A (en) * 2000-01-27 2001-08-10 Matsushita Electric Works Ltd Actuator and control method therefor
JP2003266697A (en) * 2002-03-20 2003-09-24 Ricoh Co Ltd Micro actuator, its manufacturing method, liquid drop discharge head and inkjet recorder
JP4807947B2 (en) * 2004-12-09 2011-11-02 アルパイン株式会社 Display device
JP2010066137A (en) * 2008-09-11 2010-03-25 Fujifilm Corp Radiation detection apparatus and radiation image photographing system

Also Published As

Publication number Publication date
JP2015137603A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6568951B2 (en) Variable hardness actuator
US11471030B2 (en) Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method
US11098701B2 (en) Variable-stiffness actuator
US11117272B2 (en) Variable-stiffness actuator
KR101696880B1 (en) Artificial Muscle Module
US11025178B2 (en) Actuator device
US7888846B2 (en) Actuator
JP5960225B2 (en) Electrothermal composite structure and electrothermal actuator
JP2008502017A (en) Touch display device
US11399704B2 (en) Variable stiffness device, endoscope, and method of varying stiffness of variable stiffness device
US11596294B2 (en) Variable stiffness device and method of varying stiffness
WO2016174741A1 (en) Variable stiffness actuator
JP4947153B2 (en) Actuator array and driving method of actuator array
JP4273902B2 (en) Shape memory alloy actuator
US20190313885A1 (en) Variable stiffness apparatus
JP6135523B2 (en) Plate actuator
CN215804981U (en) Memory alloy corner driver
JP5590958B2 (en) Shape memory alloy actuator
Cottinet et al. Electro-thermo-elastomers for artificial muscles
KR101738069B1 (en) Flexible display device having shape memory alloy
WO2019106944A1 (en) Actuator, actuator apparatus, and massage device
KR101650465B1 (en) Artificial muscle module
JP2005155427A (en) Shape memory alloy actuator
US10148142B1 (en) Buckling loop rotary motor
EP3625442B1 (en) Buckling loop rotary motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R151 Written notification of patent or utility model registration

Ref document number: 6135523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees