JP6135486B2 - Resin molded body - Google Patents

Resin molded body Download PDF

Info

Publication number
JP6135486B2
JP6135486B2 JP2013252577A JP2013252577A JP6135486B2 JP 6135486 B2 JP6135486 B2 JP 6135486B2 JP 2013252577 A JP2013252577 A JP 2013252577A JP 2013252577 A JP2013252577 A JP 2013252577A JP 6135486 B2 JP6135486 B2 JP 6135486B2
Authority
JP
Japan
Prior art keywords
antibacterial
fibroin
resin molded
resin
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013252577A
Other languages
Japanese (ja)
Other versions
JP2015108103A (en
Inventor
阿佑美 岩田
阿佑美 岩田
直人 栗山
直人 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2013252577A priority Critical patent/JP6135486B2/en
Publication of JP2015108103A publication Critical patent/JP2015108103A/en
Application granted granted Critical
Publication of JP6135486B2 publication Critical patent/JP6135486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、抗菌性の樹脂成形体に関するものである。   The present invention relates to an antibacterial resin molded body.

従来、樹脂成形体に抗菌性を付与する手段としては、銀、銅、亜鉛などの抗菌性金属イオンを利用した抗菌剤を、樹脂に混合してその樹脂で成形したり、樹脂成形体の表面にコーティングしたりすることが一般的である。   Conventionally, as a means for imparting antibacterial properties to a resin molded body, an antibacterial agent using an antibacterial metal ion such as silver, copper, or zinc is mixed with the resin and molded with the resin, or the surface of the resin molded body It is common to coat it.

例えば、特許文献1には、脂肪酸の銀塩を混合した樹脂で成形した樹脂成形体が記載されている。また、特許文献2には、特定酵素の活性を阻害する酸化亜鉛等の作用部位と特定酵素を吸着するシリカ等よりなる吸着部位とが表出している複合粉体を、樹脂等に含有させることが記載されている。   For example, Patent Document 1 describes a resin molded body formed of a resin mixed with a fatty acid silver salt. Further, in Patent Document 2, a composite powder in which an action site such as zinc oxide that inhibits the activity of a specific enzyme and an adsorption site made of silica or the like that adsorbs the specific enzyme are included in a resin or the like. Is described.

しかし、例えば人体内や皮膚表面などの人体に触れる箇所で使用する樹脂成形体の場合、抗菌成分には生体適合性と、無毒性等の安全性とが求められるところ、抗菌性金属イオンは人体に金属アレルギーを引き起こすおそれがある。   However, for example, in the case of a resin molded product used in a place where it touches the human body such as the human body or the skin surface, the antibacterial component requires biocompatibility and safety such as non-toxicity. May cause metal allergy.

その他、特許文献3には、植物繊維と、熱可塑性繊維と、抗菌性のあるコーヒー抽出残渣物又は茶抽出残渣物とを、乾式積繊法にて混合・熱処理を施すことにより、シート状にしたものが記載されている。しかし、コーヒー抽出残渣物又は茶抽出残渣物による抗菌性は十分なものといえない。   In addition, Patent Document 3 discloses that a plant fiber, a thermoplastic fiber, and an antibacterial coffee extraction residue or tea extraction residue are mixed and heat-treated by a dry fiber method to form a sheet. It has been described. However, antibacterial properties due to coffee extraction residue or tea extraction residue are not sufficient.

特開2005−48031号公報JP 2005-48031 A 特開2004−204403号公報JP 2004-204403 A 特開2004−137631号公報Japanese Patent Application Laid-Open No. 2004-137631

本発明は、生体適合性と安全性に優れた抗菌性の樹脂成形体を提供することを目的とする。   An object of the present invention is to provide an antibacterial resin molded article excellent in biocompatibility and safety.

本発明の樹脂成形体は、フィブロインにチオシアン酸イオンが結合した抗菌性フィブロインをフィラーとして含有するPMMA樹脂で成形されたことを特徴とする。 The resin molding of the present invention is characterized in that it is molded from a PMMA resin containing antibacterial fibroin in which thiocyanate ions are bonded to fibroin as a filler.

シルクは手術用の縫合糸として用いられており、セリシンを完全に取り除くことで、体内に入れても安全であることが知られている材料である。フィブロインはシルクを脱セリシン処理して得られるものであるから、上記縫合糸の実績により、生体適合性と安全性に優れていることは実証済みといえる。よって、フィブロインをフィラーとして含有する樹脂も、生体適合性と安全性に優れている。   Silk is used as a surgical suture, and is a material known to be safe to put in the body by completely removing sericin. Since fibroin is obtained by removing sericin from silk, it can be said that the biocompatibility and safety are proven based on the results of the suture. Therefore, a resin containing fibroin as a filler is also excellent in biocompatibility and safety.

また、本発明者らは、チオシアン酸イオンが水素結合したβシート構造を含むフィブロインに抗菌性が発現することを見出した。βシート構造(直鎖構造)には、平行βシートと逆平行βシートがある。   In addition, the present inventors have found that fibroin containing a β sheet structure in which thiocyanate ions are hydrogen-bonded exhibits antibacterial properties. The β sheet structure (straight chain structure) includes a parallel β sheet and an antiparallel β sheet.

このフィブロインに抗菌性が発現するメカニズムは、現時点において必ずしも明確ではないが、次のようなものと考えている。すなわち、チオシアン酸イオン(SCN)が、フィブロインに水素結合することにより、HSCNとして安定的に存続する。そのHSCNには抗菌性があると考えられる。しかも、その結合先がβシート構造(直鎖構造)であることにより、HSCNによる抗菌性が発揮されやすくなると考えられる。 The mechanism of antibacterial activity in fibroin is not necessarily clear at the present time, but is considered as follows. That is, thiocyanate ions (SCN ) are stably survived as HSCN by hydrogen bonding to fibroin. The HSCN is considered to have antibacterial properties. And it is thought that the antibacterial property by HSCN becomes easy to exhibit because the coupling | bonding destination is (beta) sheet structure (linear structure).

フィブロインは、αヘリックス構造(螺旋構造)とβシート構造とを含み、αヘリックス構造よりもβシート構造が多いことが好ましい。αヘリックス構造にチオシアン酸イオンが水素結合した場合には、βシート構造にチオシアン酸イオンが水素結合した場合と比べて、HSCNによる抗菌性が発揮されにくいのではないかと考えられるからである。   Fibroin includes an α-helix structure (spiral structure) and a β-sheet structure, and preferably has a β-sheet structure more than the α-helix structure. This is because when the thiocyanate ion is hydrogen-bonded to the α-helix structure, antibacterial activity due to HSCN may be less likely to be exhibited compared to the case where the thiocyanate ion is hydrogen-bonded to the β-sheet structure.

そして、上記の抗菌性フィブロインをフィラーとして含有する樹脂で成形された樹脂成形体も、樹脂成形体の表面に表出した抗菌性フィブロインの効果で、樹脂成形体全体としても抗菌性を発揮すると考えられる。ここで、「表出」は、所定形状の抗菌性フィブロインの一部の表出でもよい。   And the resin molded product molded with the resin containing the above antibacterial fibroin as a filler is also considered to exhibit antibacterial properties as a whole by the effect of the antibacterial fibroin exposed on the surface of the resin molded product. It is done. Here, “expression” may be a partial expression of antibacterial fibroin having a predetermined shape.

本発明によれば、生体適合性と安全性に優れた抗菌性の樹脂成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the antibacterial resin molding excellent in biocompatibility and safety | security can be provided.

樹脂成形体の表面に抗菌性フィブロインが表出する率を高めるためには、抗菌性フィブロインの含有率が1質量%以上であることが好ましく、10質量%以上であることがより好ましい。   In order to increase the rate at which the antibacterial fibroin is exposed on the surface of the resin molded body, the content of the antibacterial fibroin is preferably 1% by mass or more, and more preferably 10% by mass or more.

また、樹脂成形体の強度と加工性のためには、抗菌性フィブロインの含有率が40質量%以下であることが好ましい。   Moreover, it is preferable that the content rate of an antimicrobial fibroin is 40 mass% or less for the intensity | strength and workability of a resin molding.

抗菌性フィブロインの形状としては、特に限定されないが、繊維状、粒状等を例示できる。   Although it does not specifically limit as a shape of an antimicrobial fibroin, A fibrous form, a granular form, etc. can be illustrated.

抗菌性フィブロインが繊維状又は粒状である場合、樹脂成形体の厚さが抗菌性フィブロインの繊維径又は粒径の1〜10倍であることが好ましく、1〜3倍であることがより好ましい。1倍未満では成形が困難になり、10倍を超えると樹脂成形体の表面に抗菌性フィブロインが実質的に表出する率が低くなるからである。   When the antibacterial fibroin is fibrous or granular, the thickness of the resin molding is preferably 1 to 10 times, more preferably 1 to 3 times the fiber diameter or particle size of the antibacterial fibroin. If it is less than 1 time, molding becomes difficult, and if it exceeds 10 times, the rate at which the antibacterial fibroin is substantially exposed on the surface of the resin molded product becomes low.

菌性フィブロインの耐熱温度を考慮し、成形温度は150℃程度までが好ましい。 Considering the heat resistant temperature of the anti-fungal fibroin, the molding temperature is preferably up to about 0.99 ° C..

熱硬化性樹脂であるポリメタクリル酸メチル樹脂(PMMA)を用いる。現に歯科材料、骨セメント等に使用されているPMMAは、生体適合性に優れ、高硬度である点で最も好ましい。 Polymethyl methacrylate resin (PMMA) which is a thermosetting resin is used . PMMA currently used for dental materials, bone cement and the like is most preferable in terms of excellent biocompatibility and high hardness.

抗菌性再生シルクは、グラム陰性菌及びグラム陽性菌に対して抗菌性を有するものとすることができる。グラム陰性菌としては、大腸菌等を例示できる。グラム陽性菌としては、黄色ブドウ球菌、ミュータンス菌等を例示できる。   Antibacterial regenerated silk can have antibacterial properties against gram-negative and gram-positive bacteria. Examples of gram-negative bacteria include Escherichia coli. Examples of gram positive bacteria include Staphylococcus aureus and mutans bacteria.

抗菌性再生シルクは、さらに真菌(細菌と区別される。菌類ともいう。)に対しても抗菌性を有するものとすることができる。真菌としては、カンジダ等を例示できる。   Antibacterial regenerated silk can further have antibacterial properties against fungi (distinguished from bacteria, also referred to as fungi). Candida etc. can be illustrated as fungi.

樹脂成形体の用途先は、特に限定されないが、医療用機器、医療用材料、化粧品材料等が適した用途先として例示できる。   Although the application destination of the resin molded body is not particularly limited, medical equipment, medical materials, cosmetic materials and the like can be exemplified as suitable usage destinations.

特に、樹脂成形体についてJIS Z2801に準拠して測定したミュータンス菌を24時間培養したときの増殖値が−3.0未満であることが好ましい。ミュータンス菌は、人の口腔内に存在する、虫歯の原因菌のひとつであり、これに対する抗菌性の高い(増殖値が−3.0未満)再生シルク含有PMMA樹脂成形体は、入れ歯等の歯科材料として好適だからである。   In particular, it is preferable that the proliferation value when mutans bacteria measured according to JIS Z2801 for the resin molded body is cultured for 24 hours is less than -3.0. A mutans bacterium is one of the causative bacteria of caries present in the oral cavity of humans, and the regenerated silk-containing PMMA resin molded article having a high antibacterial property (the growth value is less than −3.0) is used for dentures, etc. This is because it is suitable as a dental material.

また、抗菌性フィブロインについてJIS L1902に準拠して測定したミュータンス菌を18時間培養したときの増殖値が0.4以下であることが好ましく、0以下であることがより好ましい。この増殖値が0.4以下であれば、樹脂成形体にしたとき抗菌性を発揮できるからである。   Moreover, it is preferable that the proliferation value when mutans bacteria measured according to JIS L1902 about antimicrobial fibroin is cultured for 18 hours is 0.4 or less, and more preferably 0 or less. This is because when the proliferation value is 0.4 or less, antibacterial properties can be exhibited when the resin molded body is formed.

本発明を具体化した実施例の樹脂成形体について、製造方法とともに説明する   About the resin molding of the Example which actualized this invention, it demonstrates with a manufacturing method.

<再生シルク(抗菌性フィブロイン)の製造方法>
まず、再生シルク(抗菌性フィブロイン)を次の方法により製造した。
<Production method of regenerated silk (antibacterial fibroin)>
First, regenerated silk (antibacterial fibroin) was produced by the following method.

1.脱セリシン処理・洗浄工程
家蚕の繭20個を切りきざんで得た9.0gの原料繭を、尿素、メルカプトエタノール及びトリス(ヒドロキシメチル)アミノメタン(Tris)を水に溶かした400mLの処理水(尿素濃度が8M、メルカプトエタノール濃度が2体積%、Tris濃度が50mM)に入れ、80℃で8時間攪拌して、原料繭に含まれているセリシンを処理水中に溶解させた。
その後、この処理水から不溶分のシルク(フィブロイン)をろ別し、ろ別で得られたフィブロインを蒸留水で洗浄した後、30℃の恒温槽中に約半日間静置して乾燥し、6.7gのフィブロインを得た。
1. Desericin treatment / washing process 9.0 g of raw material obtained by chopping 20 rabbit cocoons is treated with 400 mL treated water in which urea, mercaptoethanol and tris (hydroxymethyl) aminomethane (Tris) are dissolved in water ( The urea concentration was 8M, the mercaptoethanol concentration was 2% by volume, and the Tris concentration was 50 mM. The mixture was stirred at 80 ° C. for 8 hours to dissolve sericin contained in the raw material koji in the treated water.
Thereafter, insoluble silk (fibroin) is filtered off from the treated water, and the fibroin obtained by filtration is washed with distilled water, and then left to stand in a thermostatic bath at 30 ° C. for about half a day and dried. 6.7 g of fibroin was obtained.

2.チオシアン酸塩水溶解処理
チオシアン酸リチウム130gを100mLの水に溶かし、水溶液を作成した(pH4.6であった)。
2. Thiocyanate aqueous solution treatment 130 g of lithium thiocyanate was dissolved in 100 mL of water to prepare an aqueous solution (pH 4.6).

このチオシアン酸リチウム塩水溶液に、上記で得られたフィブロインを6.7g浸して溶解させ、約200mLのフィブロイン水溶液を得た。   In this lithium thiocyanate aqueous solution, 6.7 g of the fibroin obtained above was immersed and dissolved to obtain about 200 mL of an aqueous fibroin solution.

3.透析(脱チオシアン酸リチウム処理)
上記で得られた約200mLのフィブロイン水溶液を、再生セルロースからなる10本の透析チューブに約20mLずつ入れた後、処理されるフィブロイン水溶液の約50〜65倍の量(体積)の蒸留水が入れられた容器に各透析チューブを4〜6日間浸して、透析によりチオシアン酸リチウムを除去した。なお、各透析チューブを蒸留水に浸している期間中、各容器中の蒸留水を1日に2回入れ替えた。
3. Dialysis (treatment with lithium dethiocyanate)
About 20 mL of the about 200 mL of fibroin aqueous solution obtained above is put into 10 dialysis tubes made of regenerated cellulose, and then about 50 to 65 times (volume) of distilled water is added to the fibroin aqueous solution to be treated. Each dialysis tube was immersed in the resulting container for 4 to 6 days, and lithium thiocyanate was removed by dialysis. During the period when each dialysis tube was immersed in distilled water, the distilled water in each container was changed twice a day.

4.凍結乾燥(乾燥処理)
上記で得られた、チオシアン酸リチウムが除去されたフィブロイン水溶液を、四等分し、それぞれを−50℃のエタノール浴中に約1時間静置して予備凍結を行った後、1〜2日間凍結乾燥を行い、6.0gの多孔質状の乾燥フィブロインを得た。
4). Freeze drying (drying process)
The fibroin aqueous solution from which lithium thiocyanate was removed, obtained as described above, was divided into four equal parts, each was allowed to stand in an ethanol bath at -50 ° C. for about 1 hour and pre-frozen, and then for 1-2 days. Freeze drying was performed to obtain 6.0 g of porous dry fibroin.

5.HFIP溶解処理
上記で得られた乾燥フィブロインを1gにつき、10mLのヘキサフルオロイソプロパノール(HFIP)に入れ、すなわち、HFIPに対してフィブロインを約10質量%入れ、密閉し、50℃で2日間攪拌して、フィブロインHFIP溶液を得た。
5. HFIP dissolution treatment 1 g of the dried fibroin obtained above was put in 10 mL of hexafluoroisopropanol (HFIP), that is, about 10% by mass of fibroin was added to HFIP, sealed, and stirred at 50 ° C. for 2 days. A fibroin HFIP solution was obtained.

6.紡糸(糸状再生シルク成形処理)
上記で得られたフィブロインHFIP溶液を、内径0.25mm、長さ10mmのノズルが付けられた2.5mLのシリンジに入れ、ノズルの先端部をエタノール中につけた状態で、フィブロインHFIP溶液をノズルの先端開口からエタノール中に吐出して、フィブロインを糸状に成形してなる、直径が約120μmの再生シルクを得た。
6). Spinning (filament regenerated silk molding process)
The fibroin HFIP solution obtained above was put into a 2.5 mL syringe with a nozzle having an inner diameter of 0.25 mm and a length of 10 mm, and the fibroin HFIP solution was added to the nozzle with the tip of the nozzle in ethanol. A regenerated silk having a diameter of about 120 μm, which was formed by discharging fibroin into a thread, was discharged into ethanol from the opening at the tip.

7.熱処理(オートクレーブ処理)
上記で得られた糸状の再生シルク(抗菌性フィブロイン)を、オートクレーブの内部に置き、121℃、100kPa、15分の条件で高温高圧蒸気処理をした。同処理後、再生シルク(抗菌性フィブロイン)に残存するHFIPの残存量を、燃焼イオンクロマトグラフィー(三菱化学社製、AQF−100、GA−100)により測定したところ、510ppmであった。
7). Heat treatment (autoclave treatment)
The filamentous regenerated silk (antibacterial fibroin) obtained above was placed in an autoclave and subjected to high-temperature and high-pressure steam treatment under conditions of 121 ° C., 100 kPa, 15 minutes. After the treatment, the residual amount of HFIP remaining on the regenerated silk (antibacterial fibroin) was measured by combustion ion chromatography (AQF-100, GA-100, manufactured by Mitsubishi Chemical Corporation) and found to be 510 ppm.

<再生シルク(抗菌性フィブロイン)の抗菌性試験>
上記の製造方法で得られた糸状再生シルクを、JIS L1902:2008(繊維製品の抗菌性試験方法及び抗菌効果)に準拠し、標準布には綿を用いて、抗菌性試験した。
<Antimicrobial test of regenerated silk (antimicrobial fibroin)>
The filamentous regenerated silk obtained by the above production method was tested for antibacterial properties using cotton as a standard fabric in accordance with JIS L1902: 2008 (antibacterial test method and antibacterial effect of textile products).

ア.試験条件
定量試験:菌液吸収法
生菌数の測定法:混釈平板培養法
試験菌種:大腸菌(NBRC3301、グラム陰性の桿菌で通性嫌気性菌)
:黄色ぶどう球菌(NBRC12732、グラム陽性の球菌で通性嫌気性菌)
:ミュータンス菌(IFO13955、グラム陽性の連鎖球菌で通性嫌気性菌)
:カンジダ(NBRC1594、真菌に属する無色の不完全酵母)
検体数:各試料3
検体重さ:0.2g
接種菌液量:0.1mL
試験菌懸濁液:非イオン界面活性剤0.05%添加
A. Test conditions Quantitative test: Bacterial solution absorption method Viable count method: Pour plate culture method Test strain: E. coli (NBRC3301, Gram-negative bacilli and facultative anaerobes)
: Staphylococcus aureus (NBRC12732, Gram-positive cocci and facultative anaerobe)
: Mutans bacteria (IFO13955, Gram-positive streptococci and facultative anaerobes)
: Candida (NBRC1594, colorless incomplete yeast belonging to fungi)
Number of specimens: each sample 3
Sample weight: 0.2g
Inoculum volume: 0.1 mL
Test bacteria suspension: 0.05% nonionic surfactant added

イ.試験操作
バイアル瓶中に検体(0.2g)を入れ、菌液(0.1mL)を検体に接種した後、バイアル瓶のキャップを締める。その後、37℃で18時間培養した。その後、検体から菌を洗い出して、生菌数を測定した。
A. Test operation Put a sample (0.2 g) in a vial, inoculate the sample with a bacterial solution (0.1 mL), and then tighten the cap of the vial. Then, it culture | cultivated at 37 degreeC for 18 hours. Thereafter, the bacteria were washed out from the specimen, and the number of viable bacteria was measured.

ウ.測定項目
各試料ごとに生菌数の常用対数値の平均値(以下「生菌対数」という。)を求めた。
C. Measurement item The average value of the common logarithm of the viable cell count (hereinafter referred to as “viable cell logarithm”) was determined for each sample.

エ.試験結果
表1に各試料の生菌対数を示す。増殖値は「培養後の生菌対数−接種直後の生菌対数」の値である。また、比較例として、次の各繊維についても、上記と同様の抗菌性試験を行い、測定結果を表1に並記した。
・綿繊維(無加工品)
・繭繊維(上記「1.脱セリシン処理・洗浄工程」を行う前の繊維)
・脱セリシン繭繊維(上記「1.脱セリシン処理・洗浄工程」のみ行って得た繊維)
・ポリエステル繊維(PET繊維)
・ナイロン繊維
D. Test results Table 1 shows the logarithm of viable bacteria of each sample. The proliferation value is a value of “logarithm of viable bacteria after culturing−logarith of viable bacteria immediately after inoculation”. In addition, as a comparative example, the following antibacterial tests were also performed on the following fibers, and the measurement results are listed in Table 1.
・ Cotton fiber (unprocessed product)
・ Cotton fiber (fiber before performing “1. Desericin treatment / washing process” above)
・ Desericin cocoon fiber (fiber obtained by performing only “1. Desericin treatment / washing process” above)
・ Polyester fiber (PET fiber)
・ Nylon fiber

Figure 0006135486
Figure 0006135486

表1に示すとおり、大腸菌については、比較例としての綿繊維、繭繊維、脱セリシン繭繊維、PET繊維、ナイロン繊維はいずれも抗菌性がないが、再生シルク(抗菌性フィブロイン)は抗菌性があった。   As shown in Table 1, for Escherichia coli, cotton, cocoon fiber, de-sericin cocoon fiber, PET fiber, and nylon fiber as comparative examples are all antibacterial, but regenerated silk (antibacterial fibroin) has antibacterial properties. there were.

黄色ぶどう球菌についても、比較例としての綿繊維、繭繊維、脱セリシン繭繊維、PET繊維、ナイロン繊維はいずれも抗菌性がないが、再生シルク(抗菌性フィブロイン)は抗菌性があった。   As for Staphylococcus aureus, cotton fiber, wrinkle fiber, de-sericin wrinkle fiber, PET fiber, and nylon fiber as comparative examples were all non-antibacterial, but regenerated silk (antibacterial fibroin) was antibacterial.

ミュータンス菌については、比較例としての綿繊維及び脱セリシン繭繊維は抗菌性がないが、再生シルク(抗菌性フィブロイン)は抗菌性があった。   As for the mutans bacteria, the cotton fiber and the de-sericin silk fiber as comparative examples have no antibacterial property, but the regenerated silk (antibacterial fibroin) has the antibacterial property.

カンジダについては、比較例としての綿繊維及び脱セリシン繭繊維は抗菌性がなく、再生シルク(抗菌性フィブロイン)も培養中に菌数を顕著に減らすまでの抗菌性はなかった。しかし、綿繊維及び脱セリシン繭繊維と比べて、再生シルク(抗菌性フィブロイン)培養中の菌数の増加がほとんど無く、ある程度の抗菌性が期待できる(後述する樹脂成形体の抗菌性試験結果を参照)。   As for Candida, cotton fibers and de-sericin koji fibers as comparative examples had no antibacterial property, and regenerated silk (antibacterial fibroin) also did not have antibacterial properties until the number of bacteria was significantly reduced during culture. However, compared to cotton fiber and de-sericin silk fiber, there is almost no increase in the number of bacteria during regenerated silk (antibacterial fibroin) culture, and a certain degree of antibacterial activity can be expected (the antibacterial test results of resin moldings described below) reference).

<樹脂成形体の製造方法>
次に、上記の再生シルク(抗菌性フィブロイン)をフィラーとして含有するPMMA樹脂により、樹脂成形体を次の方法で成形した。
<Production method of resin molding>
Next, the resin molding was shape | molded with the following method with PMMA resin which contains said reproduction | regeneration silk (antibacterial fibroin) as a filler.

1.上記の再生シルク(抗菌性フィブロイン)を長さ2〜3mmになるように短く切った。
2.メタクリル酸エステル重合体1gに対し、上記1の再生シルクを0.55g(成形体の25質量%)加え、よく混ぜた。なお、後述するカンジダに対する抗菌性試験については、上記1の再生シルクを0.28g(成形体の15質量%)加えたものと、1.1g(成形体の40質量%)加えたものも作製した。
3.上記2の原料へメタクリル酸メチル0.6gを滴下し、よく混ぜた。
4.上記3の原料を室温にて25分間静置した。
5.上記4の原料を鉄板製の上下型で上下挟み、板間距離0.2mmとなるよう、20MPa、90℃、30分間の条件で加熱プレス成形した。
6.上記5で成形した厚さ0.2mmの樹脂成形体を上下型から取り出し、イオン交換水中で30分間洗浄した。
7.上記6の樹脂成形体を乾燥させた。
1. The regenerated silk (antibacterial fibroin) was cut into a length of 2 to 3 mm.
2. To 1 g of the methacrylic acid ester polymer, 0.55 g (25% by mass of the molded product) of the above-mentioned 1 recycled silk was added and mixed well. In addition, about the antibacterial property test with respect to Candida mentioned later, what added 0.28g (15 mass% of a molded object) of said 1 reproduction | regeneration silk and what added 1.1g (40 mass% of a molded object) are also produced. did.
3. 0.6 g of methyl methacrylate was added dropwise to the above raw material 2 and mixed well.
4). The above 3 raw materials were allowed to stand at room temperature for 25 minutes.
5. The above 4 raw materials were sandwiched between upper and lower molds made of iron plate and hot press molded under the conditions of 20 MPa, 90 ° C. and 30 minutes so that the distance between the plates was 0.2 mm.
6). The 0.2 mm-thick resin molded body molded in 5 above was taken out from the upper and lower molds and washed in ion-exchanged water for 30 minutes.
7). The resin molded body of the above 6 was dried.

また比較例として、ポリエチレン(PE)樹脂単体よりなるフィルムを使用した。   Moreover, the film which consists of a polyethylene (PE) resin single-piece | unit was used as a comparative example.

また別の比較例として、天然シルクをフィラーとして含有するPMMA樹脂により、樹脂成形体を上記と同様の方法で成形した。天然シルクの配合量は0.55g(成形体の25質量%)である。   As another comparative example, a resin molded body was molded by the same method as described above using a PMMA resin containing natural silk as a filler. The blending amount of natural silk is 0.55 g (25% by mass of the molded product).

さらに別の比較として、PMMA樹脂単体よりなる樹脂成形体を次の方法で成形した。
1.メタクリル酸エステル重合体1gに対し、メタクリル酸メチル0.6gを滴下し、よく混ぜた。
2.上記1の原料を室温にて25分間静置した。
3.上記2の原料を鉄板製の上下型で上下挟み、板間距離0.2mmとなるよう、20MPa、90℃、30分間の条件で加熱プレス成形した。
4.上記3で成形した厚さ0.2mmの樹脂成形体を上下型から取り出し、イオン交換水中で30分間洗浄した。
5.上記4の樹脂成形体を乾燥させた。
As yet another comparison, a resin molded body made of a single PMMA resin was molded by the following method.
1. To 1 g of the methacrylic acid ester polymer, 0.6 g of methyl methacrylate was dropped and mixed well.
2. The raw material 1 was allowed to stand at room temperature for 25 minutes.
3. The above two raw materials were sandwiched between upper and lower molds made of iron plate and hot press molded under the conditions of 20 MPa, 90 ° C. and 30 minutes so that the distance between the plates was 0.2 mm.
4). The resin molded body having a thickness of 0.2 mm molded in the above 3 was taken out from the upper and lower molds and washed in ion exchange water for 30 minutes.
5. The resin molded body of the above 4 was dried.

<樹脂成形体の抗菌性試験>
上記の製造方法で得られた樹脂成形体を、JIS Z2801:2010(抗菌加工製品−抗菌性試験方法・抗菌効果)に準拠し、抗菌性試験した。
<Antimicrobial test of resin molding>
The resin molding obtained by the above production method was subjected to an antibacterial test in accordance with JIS Z2801: 2010 (antibacterial processed product-antibacterial test method / antibacterial effect).

ア.試験条件
試験菌種:大腸菌(NBRC3972)
:黄色ぶどう球菌(NBRC12732)
:ミュータンス菌(IFO13955)
:カンジダ(NBRC1594)
検体数:各試料3
検体寸法:5cm×5cm
接種菌液量:0.4mL
試験用培地:SCDLP培地
A. Test conditions Test strain: E. coli (NBRC3972)
: Staphylococcus aureus (NBRC12732)
: Mutans bacteria (IFO13955)
: Candida (NBRC1594)
Number of specimens: each sample 3
Sample size: 5cm x 5cm
Inoculum volume: 0.4 mL
Test medium: SCDLP medium

イ.試験操作
未加工試験片および抗菌加工を行なった試験片のそれぞれについて、試験菌液を滴下し、フィルムをかぶせ、シャーレ内で35℃で24時間培養した。培養後の試験溶液をフィルムと試験片から洗い出した後、溶液中の菌数を寒天平板培養法により測定し、それぞれの試験片の単位面積当たりの生菌数を測定した。
A. Test operation About each of the unprocessed test piece and the test piece which performed antibacterial processing, the test microbe liquid was dripped, the film was covered, and it culture | cultivated at 35 degreeC in the petri dish for 24 hours. After culturing the test solution from the film and the test piece, the number of bacteria in the solution was measured by an agar plate culture method, and the number of viable bacteria per unit area of each test piece was measured.

ウ.測定項目
上記の生菌数から生菌対数を求めた。培養後の生菌対数が接種直後の生菌対数未満であった場合を抗菌性ありとし、接種直後の生菌対数以上であった場合を抗菌性なしと評価した。
C. Measurement item The logarithm of viable bacteria was determined from the above viable cell count. The case where the log of live bacteria after culture was less than the log of live bacteria immediately after inoculation was regarded as antibacterial, and the case where it was greater than the log of live bacteria immediately after inoculation was evaluated as having no antibacterial properties.

エ.試験結果
表2に各試験片の生菌対数を示す。
D. Test results Table 2 shows the logarithm of viable bacteria of each test piece.

Figure 0006135486
Figure 0006135486

表2に示すとおり、大腸菌については、PEフィルムと天然シルク含有PMMA樹脂成形体は抗菌性がなく、PMMA樹脂成形体は抗菌性があったが、このPMMA樹脂成形体と比べても、再生シルク含有PMMA樹脂成形体は抗菌性が高かった。   As shown in Table 2, for E. coli, the PE film and the natural silk-containing PMMA resin molded product had no antibacterial properties, and the PMMA resin molded product had antibacterial properties. The contained PMMA resin molded product had high antibacterial properties.

黄色ぶどう球菌については、PEフィルムは抗菌性がなく、天然シルク含有PMMA樹脂成形体は抗菌性が若干あり、PMMA樹脂成形体と再生シルク含有PMMA樹脂成形体は抗菌性が高かった。   As for Staphylococcus aureus, the PE film had no antibacterial property, the natural silk-containing PMMA resin molded product had some antibacterial properties, and the PMMA resin molded product and the regenerated silk-containing PMMA resin molded product had high antibacterial properties.

ミュータンス菌については、PEフィルムは抗菌性があり、PMMA樹脂成形体は抗菌性が高かったが、このPMMA樹脂成形体と比べても、再生シルク含有PMMA樹脂成形体は抗菌性がさらに高かった(増殖値が−3.0未満)。   Regarding mutans bacteria, the PE film had antibacterial properties and the PMMA resin molded product had high antibacterial properties, but the recycled silk-containing PMMA resin molded product had even higher antibacterial properties than this PMMA resin molded product. (Proliferation value is less than -3.0).

ミュータンス菌は、人の口腔内に存在する、虫歯の原因菌のひとつであるから、これに対する抗菌性の高い再生シルク含有PMMA樹脂成形体は、入れ歯等の歯科材料として好適であるといえる。   Since mutans bacteria are one of the causative bacteria of caries present in the oral cavity of humans, it can be said that the regenerated silk-containing PMMA resin molded article having high antibacterial properties is suitable as a dental material such as dentures.

カンジダについては、PEフィルムとPMMA樹脂成形体は抗菌性がなく、再生シルク含有PMMA樹脂成形体は抗菌性が若干あった。そして、再生シルク含有率が15質量%又は40質量%の場合に対して、25質量%の場合に抗菌性が高かった。   Regarding Candida, the PE film and the PMMA resin molded product had no antibacterial property, and the recycled silk-containing PMMA resin molded product had a slight antibacterial property. And antibacterial property was high in the case of 25 mass% with respect to the case where the reproduction | regeneration silk content rate is 15 mass% or 40 mass%.

なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the meaning of invention, it can change suitably and can be actualized.

Claims (7)

フィブロインにチオシアン酸イオンが結合した抗菌性フィブロインをフィラーとして含有するPMMA樹脂で成形された樹脂成形体。 A resin molded body molded of PMMA resin containing antibacterial fibroin in which thiocyanate ions are bound to fibroin as a filler. 抗菌性フィブロインの含有率が、1質量%以上である請求項1記載の樹脂成形体。   The resin molding according to claim 1, wherein the content of the antibacterial fibroin is 1% by mass or more. 抗菌性フィブロインの含有率が、40質量%以下である請求項2記載の樹脂成形体。   The resin molding according to claim 2, wherein the content of the antibacterial fibroin is 40% by mass or less. 抗菌性フィブロインが繊維状であり、樹脂成形体の厚さが抗菌性フィブロインの繊維径の1〜10倍である請求項1〜3のいずれか一項に記載の樹脂成形体。   The resin molded body according to any one of claims 1 to 3, wherein the antibacterial fibroin is fibrous and the thickness of the resin molded body is 1 to 10 times the fiber diameter of the antibacterial fibroin. 抗菌性フィブロインが粒状であり、樹脂成形体の厚さが抗菌性フィブロインの粒径の1〜10倍である請求項1〜3のいずれか一項に記載の樹脂成形体。   The resin molded body according to any one of claims 1 to 3, wherein the antibacterial fibroin is granular and the thickness of the resin molded body is 1 to 10 times the particle size of the antibacterial fibroin. 樹脂成形体についてJIS Z2801に準拠して測定したミュータンス菌を24時間培養したときの増殖値が−3.0未満である請求項1記載の樹脂成形体。   The resin molded article according to claim 1, wherein the proliferation value when mutans bacteria measured according to JIS Z2801 is cultured for 24 hours is less than -3.0. 抗菌性フィブロインについてJIS L1902に準拠して測定したミュータンス菌を18時間培養したときの増殖値が0.4以下である請求項1記載の樹脂成形体。   The resin molding according to claim 1, wherein the antibacterial fibroin has a proliferation value of 0.4 or less when mutans bacteria measured according to JIS L1902 are cultured for 18 hours.
JP2013252577A 2013-12-06 2013-12-06 Resin molded body Expired - Fee Related JP6135486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252577A JP6135486B2 (en) 2013-12-06 2013-12-06 Resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252577A JP6135486B2 (en) 2013-12-06 2013-12-06 Resin molded body

Publications (2)

Publication Number Publication Date
JP2015108103A JP2015108103A (en) 2015-06-11
JP6135486B2 true JP6135486B2 (en) 2017-05-31

Family

ID=53438702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252577A Expired - Fee Related JP6135486B2 (en) 2013-12-06 2013-12-06 Resin molded body

Country Status (1)

Country Link
JP (1) JP6135486B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135151A (en) * 2018-09-14 2019-01-04 太和县中科蓝海智能医疗设备有限公司 A kind of degradable medical syringe material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113312A (en) * 2001-10-01 2003-04-18 Japan Science & Technology Corp Silk fibroin/cellulose crystallite composite material and method for producing the same
KR101318162B1 (en) * 2004-08-10 2013-10-23 이데아텍스 재팬 가부시키가이샤 Modified powder, fluid composition containing said modified powder, formed article, and method for producing modified powder
CA2774643A1 (en) * 2009-09-29 2011-04-07 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
JP2013144736A (en) * 2012-01-13 2013-07-25 Shinshu Univ Cellulose composite and method for producing the same

Also Published As

Publication number Publication date
JP2015108103A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
Pollini et al. Bioinspired materials for wound healing application: the potential of silk fibroin
Kim et al. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility
Pereira et al. Bombyx mori silk fibers: an outstanding family of materials
Zafar et al. Potential use of natural silk for bio-dental applications
Rnjak‐Kovacina et al. The effect of sterilization on silk fibroin biomaterial properties
Dams‐Kozlowska et al. Purification and cytotoxicity of tag‐free bioengineered spider silk proteins
Kim et al. Bioengineered osteoinductive broussonetia kazinoki/silk fibroin composite scaffolds for bone tissue regeneration
Wang et al. Protein composites from silkworm cocoons as versatile biomaterials
Jana et al. Engineering vascularizing electrospun dermal grafts by integrating fish collagen and ion-doped bioactive glass
Dwivedi et al. Fabrication and assessment of gentamicin loaded electrospun nanofibrous scaffolds as a quick wound healing dressing material
Kweon et al. In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method
Kumar et al. Design and fabrication of a dual protein-based trilayered nanofibrous scaffold for efficient wound healing
Valarmathi et al. Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications
Kaminagakura et al. Nanoskin® to treat full thickness skin wounds
JP2013245427A (en) Method for producing antibacterial regenerated silk
JP6135486B2 (en) Resin molded body
Goldade et al. Antimicrobial fibers for textile clothing and medicine: current state
KR102158145B1 (en) A method for preparing antibacterial fiber
Amarjargal et al. A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds
Kumar et al. Native honeybee silk membrane: a potential matrix for tissue engineering and regenerative medicine
US20190125923A1 (en) Jellyfish extract nanofibers
CN114272443A (en) Preparation method and application of zinc silicate nanoparticle composite fiber scaffold
CN107233609B (en) Ligustrum-lysozyme anti-infection dressing and preparation method and application thereof
EL-SHANSHORY et al. Preparation of antibacterial electrospun PVA/regenerated silk fibroin nanofibrous composite containing ciprofloxacin hydrochloride as a wound dressing
JP6102708B2 (en) Method for producing filamentous antibacterial recycled silk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees