JP6135141B2 - UV sterilization method - Google Patents

UV sterilization method Download PDF

Info

Publication number
JP6135141B2
JP6135141B2 JP2013007561A JP2013007561A JP6135141B2 JP 6135141 B2 JP6135141 B2 JP 6135141B2 JP 2013007561 A JP2013007561 A JP 2013007561A JP 2013007561 A JP2013007561 A JP 2013007561A JP 6135141 B2 JP6135141 B2 JP 6135141B2
Authority
JP
Japan
Prior art keywords
ultraviolet
sterilization
intensity
seconds
sterilization method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013007561A
Other languages
Japanese (ja)
Other versions
JP2014136113A (en
Inventor
瑞世 四本
瑞世 四本
浩基 緒方
浩基 緒方
成俊 三井
成俊 三井
周子 矢部
周子 矢部
陽子 溝田
陽子 溝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013007561A priority Critical patent/JP6135141B2/en
Publication of JP2014136113A publication Critical patent/JP2014136113A/en
Application granted granted Critical
Publication of JP6135141B2 publication Critical patent/JP6135141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

この発明は、紫外線ランプにより室内面に紫外線を照射して殺菌を行うための紫外線殺菌方法に関するものである。   The present invention relates to an ultraviolet sterilization method for sterilizing indoor surfaces by irradiating ultraviolet rays with an ultraviolet lamp.

従来、紫外線による殺菌は、薬品による殺菌の場合とは異なり、薬品が残らないため、食品や医薬品の製造工場における室内空気の殺菌や、各種容器の表面殺菌等に広く使用されている。特に、製造工場のクリーンルーム等のクリーンエリアでは、天井部分に紫外線ランプを設置して夜間に紫外線を照射することにより、空気の自然対流を利用した空気殺菌が行われている。この場合、紫外線照射装置の設計は、必要と思われる紫外線強度と殺菌に必要な照射時間を求め、その値に基づいて紫外線ランプの設置場所や本数を決定していた。   Conventionally, sterilization by ultraviolet rays is widely used for sterilization of indoor air in food and pharmaceutical manufacturing factories, surface sterilization of various containers, and the like, unlike the case of sterilization by chemicals. In particular, in a clean area such as a clean room in a manufacturing factory, air sterilization using natural convection of air is performed by installing an ultraviolet lamp on the ceiling and irradiating ultraviolet rays at night. In this case, the design of the ultraviolet irradiation apparatus obtains the ultraviolet intensity and the irradiation time necessary for sterilization, which are considered necessary, and determines the location and number of the ultraviolet lamps based on the values.

一方、紫外線強度は、紫外線ランプからの照射距離が離れるほど小さくなる。しかしながら、紫外線ランプから大きく離れた地点での殺菌効果、すなわち、ごく低い紫外線強度における殺菌効果については、従来から評価データが存在しなかった。よって、前記紫外線照射装置の設計に際しては、紫外線強度が低いほど、殺菌に要する照射時間が長くなることから、照射時間を短くするために、紫外線ランプを殺菌したい箇所にできる限り近付けるともに、紫外線ランプの設置本数を多くして、紫外線強度を高く設定する傾向にあった。 On the other hand, the ultraviolet intensity decreases as the irradiation distance from the ultraviolet lamp increases. However, there has been no evaluation data for the sterilization effect at a point far away from the ultraviolet lamp, that is, the sterilization effect at a very low ultraviolet intensity. Therefore, in designing of the ultraviolet irradiation apparatus, both as UV intensity is low, because the irradiation time is longer required for sterilization, in order to shorten the irradiation time, the close as possible to where you want to sterilize the ultraviolet lamp, ultraviolet There was a tendency to increase the UV intensity by increasing the number of lamps installed.

また、この種の紫外線による殺菌方法としては、例えば特許文献1及び特許文献2に開示されるような方法が従来から提案されている。特許文献1に記載の従来方法では、光源から1m以上離れた被照射対象に400〜410nmに光強度の極大を有する近紫外光を、被照射対象の表面における近紫外光の強度を0.82mW/cm以上に保って、少なくとも2時間照射するようにしている。 As this type of sterilization method using ultraviolet rays, for example, methods disclosed in Patent Document 1 and Patent Document 2 have been proposed. In the conventional method described in Patent Document 1, near-ultraviolet light having a maximum light intensity at 400 to 410 nm is applied to an irradiation target 1 m or more away from the light source, and the intensity of the near-ultraviolet light on the surface of the irradiation target is 0.82 mW. / Cm 2 or more, and irradiation is performed for at least 2 hours.

さらに、特許文献2に記載の従来方法では、建物の壁面及び天井面における微生物の存在、もしくは微生物の発生雰囲気をセンサにより検出し、その検出信号に基づいて微生物の種類に応じた最小の殺菌照射時間をマイクロプロセッシングユニット(MPU)で算定し、その算定された時間だけ紫外線照射装置を動作させて、紫外線を微生物の存在部位に照射して殺菌するようにしている。この場合、紫外線の照射条件は、ランプ出力15W、照射距離1m、紫外線強度0.04mW/cmとして、例えばコウジカビでは照射時間が40分、アオカビでは照射時間が15分となるように設定している。ただし、この特許文献2においては、前記紫外線強度の測定位置は記載されていない。 Furthermore, in the conventional method described in Patent Document 2, the presence of microorganisms on the wall surface and ceiling surface of a building or the generation atmosphere of microorganisms is detected by a sensor, and the minimum sterilization irradiation corresponding to the type of microorganisms is performed based on the detection signal. The time is calculated by a microprocessing unit (MPU), and the ultraviolet irradiation device is operated only for the calculated time, and ultraviolet rays are irradiated to the site where the microorganism is present to sterilize. In this case, the ultraviolet irradiation conditions are set such that the lamp output is 15 W, the irradiation distance is 1 m, and the ultraviolet intensity is 0.04 mW / cm 2. For example, the irradiation time is 40 minutes for Aspergillus and 15 minutes for Blue Mold. Yes. However, in this patent document 2, the measurement position of the said ultraviolet intensity is not described.

特開2010-207278号公報JP 2010-207278 A 特開平7-8541号公報Japanese Patent Laid-Open No. 7-8541

ところが、これらの従来方法においては、殺菌に要する紫外線強度が高く設定されるとともに、紫外線の照射時間が長く設定されている。このため、紫外線ランプの設置本数が多くなって殺菌設備の導入時のコストが高くなるとともに、消費電力のアップやランプ寿命の低下を招いて、運用コストも高くなるという問題があった。   However, in these conventional methods, the ultraviolet intensity required for sterilization is set high, and the ultraviolet irradiation time is set long. For this reason, there are problems that the number of installed ultraviolet lamps increases and the cost at the time of introduction of the sterilization equipment increases, and the operation cost also increases due to an increase in power consumption and a decrease in lamp life.

この発明は、このような従来の技術に存在する問題点に着目してなされたものであって、ごく低い紫外線強度について殺菌効果を評価することにより判明したものである。その目的は、紫外線ランプの設置本数を減らし、ごく低い紫外線強度で細菌やカビの殺菌を行うことができて、殺菌設備の導入時における設備コスト低減を図ることができるとともに、ごく低い紫外線強度を用いた場合でも照射時間を短縮することができ、消費電力の削減及びランプ寿命の延長を図ることができ、運用コストも低減することができる紫外線殺菌方法を提供することにある。   The present invention has been made by paying attention to such problems existing in the prior art, and has been found by evaluating the bactericidal effect for very low ultraviolet intensity. The purpose is to reduce the number of UV lamps installed and sterilize bacteria and mold with extremely low UV intensity, and to reduce equipment costs when introducing sterilization equipment. It is an object of the present invention to provide an ultraviolet sterilization method capable of shortening the irradiation time even when used, reducing power consumption, extending the lamp life, and reducing the operation cost.

上記の目的を達成するために、この紫外線殺菌方法では、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象が大腸菌であって、紫外線強度を0.008〜0.170mW/cm で、照射時間を3分13秒〜37秒とすることを特徴としている。
更に、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象がサルモネラ菌であって、紫外線強度を0.008〜0.170mW/cm で、照射時間を3分12秒〜21秒とすることを特徴としている。
In order to achieve the above object, in this ultraviolet sterilization method, in the ultraviolet sterilization method of irradiating the indoor surface with an ultraviolet lamp, the sterilization target is Escherichia coli , and the ultraviolet intensity is 0.008 to 0.170 mW / cm. 2 and the irradiation time is 3 minutes 13 seconds to 37 seconds.
Furthermore, in the ultraviolet sterilization method of irradiating the interior surface with ultraviolet rays by an ultraviolet lamp, the sterilization target is Salmonella, the ultraviolet intensity is 0.008 to 0.170 mW / cm 2 , and the irradiation time is 3 minutes 12 seconds to 21 seconds. It is characterized by that.

従って、この紫外線殺菌方法によれば、紫外線ランプの設置本数を多くすることなく、ごく低い紫外線強度で、殺菌対象である細菌の殺菌を行うことができて、殺菌設備の導入時におけるコストの低減を図ることができる。また、殺菌効果の評価により、同じ紫外線照射量(紫外線強度×照射時間)においては、(紫外線強度:大×照射時間:短)の場合よりも、(紫外線強度:小×照射時間:長)の場合の方が、殺菌効果が高いことが判明した。よって、ごく低い紫外線強度を用いた場合でも照射時間を短縮することができて、消費電力の削減及びランプ寿命の延長を図ることができ、運用コストも低減することができる。   Therefore, according to this ultraviolet sterilization method, the bacteria to be sterilized can be sterilized with a very low ultraviolet intensity without increasing the number of installed ultraviolet lamps, and the cost when introducing the sterilization equipment can be reduced. Can be achieved. Moreover, by the evaluation of the bactericidal effect, at the same ultraviolet ray irradiation amount (ultraviolet ray intensity × irradiation time), (ultraviolet ray intensity: small × irradiation time: long) than in the case of (ultraviolet ray intensity: large × irradiation time: short). The case was found to have a higher bactericidal effect. Therefore, even when a very low ultraviolet intensity is used, the irradiation time can be shortened, the power consumption can be reduced, the lamp life can be extended, and the operation cost can be reduced.

また、別の紫外線殺菌方法では、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象が芽胞セレウス菌であって、紫外線強度を0.030〜0.170mW/cm で、照射時間を4分35秒〜1分29秒とすることを特徴としている。
更に、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象が芽胞枯草菌であって、紫外線強度を0.030〜0.170mW/cm で、照射時間を5分10秒〜3分26秒とすることを特徴としている。
Moreover, in another ultraviolet sterilization method, in the ultraviolet sterilization method of irradiating the interior surface with ultraviolet rays using an ultraviolet lamp, the sterilization target is spores of Bacillus cereus , and the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 . The time is 4 minutes 35 seconds to 1 minute 29 seconds.
Furthermore, in the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp, the sterilization target is spores Bacillus subtilis, the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 , and the irradiation time is 5 minutes 10 seconds to It is characterized by 3 minutes 26 seconds .

さらに、別の紫外線殺菌方法では、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象がコウジカビであって、紫外線強度を0.030〜0.170mW/cm で、照射時間を9分43秒〜280秒とすることを特徴とすることを特徴としている。
更に、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象がアオカビであって、紫外線強度を0.030〜0.170mW/cm で、照射時
間を8分10秒〜280秒とすることを特徴としている。
また、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、殺菌対象がクラドスポリウム属の菌であって、紫外線強度を0.030〜0.170mW/cm で、照射時間を29分20秒〜5分11秒とすることを特徴としている。
Further, in another ultraviolet sterilization method, in the ultraviolet sterilization method of irradiating ultraviolet rays to the interior surface by an ultraviolet lamp, sterilized it is an Aspergillus, a UV intensity 0.030~0.170mW / cm 2, the irradiation time It is characterized by being 9 minutes 43 seconds- 280 seconds .
Furthermore, in the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp, the sterilization target is blue mold, the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 ,
The interval is set to 8 minutes 10 seconds to 280 seconds.
Moreover, in the ultraviolet sterilization method of irradiating an indoor surface with ultraviolet rays by an ultraviolet lamp, the sterilization target is bacteria of the genus Cladosporium, the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 , and the irradiation time is 29 minutes. It is characterized by being 20 seconds to 5 minutes and 11 seconds .

前記の紫外線殺菌方法によれば、紫外線ランプの設置本数を減らし、ごく低い紫外線強度で細菌やカビの殺菌を行うことができて、殺菌設備の導入時におけるコスト低減を図ることができる。さらに、ごく低い紫外線強度を用いた場合でも照射時間を短縮することができ、消費電力の削減及びランプ寿命の延長を図ることができ、運用コストも低減することができるという効果を発揮する。   According to the ultraviolet sterilization method, the number of ultraviolet lamps can be reduced, bacteria and molds can be sterilized with a very low ultraviolet intensity, and the cost can be reduced when the sterilization equipment is introduced. Furthermore, even when a very low UV intensity is used, the irradiation time can be shortened, the power consumption and the lamp life can be extended, and the operational cost can be reduced.

殺菌対象が芽胞枯草菌である場合の殺菌試験結果について、紫外線照射量と生存菌数との関係を示すグラフ。The graph which shows the relationship between an ultraviolet irradiation amount and the number of living bacteria about the bactericidal test result in case sterilization object is spore Bacillus subtilis. 同じく紫外線照射量と生存率との関係を近似的に示すグラフ。The graph which shows the relationship between ultraviolet irradiation amount and survival rate approximately similarly.

(第1実施形態)
以下、本発明の紫外線殺菌方法を具体化した第1実施形態について説明する。
第1実施形態における紫外線殺菌方法は、紫外線ランプによって室内の壁面,床面,天井面、あるいは各種装置の表面、空調装置の送風ダクト内面等の各種部位に紫外線を照射する方法である。この場合、殺菌対象は細菌であって、紫外線強度は0.008〜0.170mW/cmに設定される。殺菌対象としての室内面は、壁面、床面、天井面等である。細菌としては、例えば大腸菌、サルモネラ菌等が挙げられる。紫外線は、波長が10〜400nmの範囲の電磁波であり、殺菌消毒作用等の化学的作用を発揮する。この紫外線は、紫外線ランプにより殺菌対象から所定の距離をおいて照射される。
(First embodiment)
Hereinafter, a first embodiment embodying the ultraviolet sterilization method of the present invention will be described.
The ultraviolet sterilization method in 1st Embodiment is a method of irradiating an ultraviolet-ray to various parts, such as an indoor wall surface, a floor surface, a ceiling surface, the surface of various apparatuses, the air blower duct inner surface of an air conditioner, with an ultraviolet lamp. In this case, the sterilization target is bacteria, and the ultraviolet intensity is set to 0.008 to 0.170 mW / cm 2 . The indoor surface as a sterilization target is a wall surface, a floor surface, a ceiling surface, or the like. Examples of bacteria include Escherichia coli and Salmonella. Ultraviolet rays are electromagnetic waves having a wavelength in the range of 10 to 400 nm, and exhibit chemical actions such as sterilization and disinfection. This ultraviolet ray is irradiated at a predetermined distance from the object to be sterilized by an ultraviolet lamp.

紫外線強度は前記の範囲に設定されるが、その紫外線強度が0.008mW/cmを下回る場合には、紫外線強度が不足し、長時間に亘って紫外線を照射しなければならなくなる。その一方、紫外線強度が0.170mW/cmを上回る場合には、合成樹脂等の劣化を促進したり、人の目に悪影響を及ぼしたりするおそれがある。 The ultraviolet intensity is set in the above range, but when the ultraviolet intensity is less than 0.008 mW / cm 2 , the ultraviolet intensity is insufficient, and it is necessary to irradiate ultraviolet rays for a long time. On the other hand, when the ultraviolet intensity exceeds 0.170 mW / cm 2 , deterioration of the synthetic resin or the like may be promoted or the human eyes may be adversely affected.

前記殺菌対象が細菌の芽胞形成菌である場合には、紫外線強度が0.030〜0.170mW/cmに設定される。芽胞形成菌としては、芽胞セレウス菌、芽胞枯草菌、ウェルシュ菌等が挙げられる。この芽胞形成菌は細菌の一種ではあるが、前記大腸菌、サルモネラ菌等に比べて耐紫外線性が若干高くなっている。このため、紫外線強度の範囲の下限を0.030mW/cmとする必要がある。紫外線強度が0.030mW/cmに満たない場合には、芽胞形成菌を例えば99%殺菌することが難しくなる。 When the sterilization target is a spore-forming bacterium, the ultraviolet intensity is set to 0.030 to 0.170 mW / cm 2 . Examples of spore-forming bacteria include spores of Bacillus cereus, Bacillus subtilis, and Clostridium perfringens. Although this spore-forming bacterium is a kind of bacteria, it has slightly higher ultraviolet resistance than the aforementioned Escherichia coli, Salmonella, and the like. For this reason, the lower limit of the range of ultraviolet intensity needs to be 0.030 mW / cm 2 . When the ultraviolet intensity is less than 0.030 mW / cm 2 , it becomes difficult to sterilize, for example, 99% of the spore-forming bacteria.

次に、第1実施形態の紫外線殺菌方法について作用を説明する。
さて、室内において大腸菌等の細菌や芽胞セレウス菌等の芽胞形成菌を殺菌する場合には、室内面に対して紫外線を照射する。このとき、殺菌対象が大腸菌等の細菌である場合には紫外線強度を0.008〜0.170mW/cmに設定し、殺菌対象が芽胞セレウス菌等の芽胞形成菌である場合には紫外線強度を0.030〜0.170mW/cmに設定する。すると、前記範囲の紫外線強度を有する紫外線が細菌の細胞内に吸収されて化学変化を起こし、その細菌は新陳代謝が阻害されるとともに、増殖能力を失って死滅するものと推測される。また、その紫外線は細菌の細胞に直接働いて殺菌作用を示すことから、耐性菌の発生が抑制される。
Next, an effect | action is demonstrated about the ultraviolet sterilization method of 1st Embodiment.
Now, in order to sterilize bacteria such as Escherichia coli and spore-forming bacteria such as Bacillus cereus in the room, the interior surface is irradiated with ultraviolet rays. At this time, when the sterilization target is a bacterium such as Escherichia coli, the ultraviolet intensity is set to 0.008 to 0.170 mW / cm 2 , and when the sterilization target is a spore-forming bacterium such as spore Bacillus cereus, the ultraviolet intensity is set. Is set to 0.030 to 0.170 mW / cm 2 . Then, it is presumed that ultraviolet rays having ultraviolet intensity in the above-mentioned range are absorbed into bacterial cells to cause a chemical change, and the bacteria are inhibited from metabolism and lose their growth ability and die. Moreover, since the ultraviolet rays work directly on bacterial cells and exhibit a bactericidal action, the generation of resistant bacteria is suppressed.

従って、この第1実施形態によれば、以下のような効果を得ることができる。
(1)この紫外線殺菌方法においては、紫外線ランプによって室内面に紫外線を照射する殺菌方法において、殺菌対象が大腸菌、サルモネラ菌等の細菌である場合には、紫外線強度を0.008〜0.170mW/cmとしている。また、殺菌対象が芽胞セレウス菌、芽胞枯草菌等の芽胞形成菌である場合には、紫外線強度を0.030〜0.170mW/cmとしている。
Therefore, according to the first embodiment, the following effects can be obtained.
(1) In this ultraviolet sterilization method, when the object to be sterilized is bacteria such as Escherichia coli and Salmonella in the sterilization method of irradiating the indoor surface with an ultraviolet lamp, the ultraviolet intensity is 0.008 to 0.170 mW / cm 2 . Moreover, when the sterilization target is a spore-forming bacterium such as a spore Bacillus cereus or a spore Bacillus subtilis, the ultraviolet intensity is set to 0.030 to 0.170 mW / cm 2 .

よって、この紫外線殺菌方法によれば、紫外線ランプの設置本数を多くすることなく、ごく低い紫外線強度で、殺菌対象である細菌の殺菌を行うことができて、殺菌設備の導入時におけるコストの低減を図ることができる。また、ごく低い紫外線強度を用いた場合でも照射時間を短縮することができて、消費電力の削減及びランプ寿命の延長を図ることができ、運用コストも低減することができる。
(第2実施形態)
次に、本発明の紫外線殺菌方法の第2実施形態を、前記第1実施形態と異なる部分を中心に説明する。
Therefore, according to this ultraviolet sterilization method, it is possible to sterilize the bacteria to be sterilized with a very low ultraviolet intensity without increasing the number of installed ultraviolet lamps, and to reduce the cost when introducing the sterilization equipment. Can be achieved. Further, even when an extremely low ultraviolet intensity is used, the irradiation time can be shortened, power consumption and lamp life can be extended, and the operation cost can be reduced.
(Second Embodiment)
Next, a second embodiment of the ultraviolet sterilization method of the present invention will be described with a focus on differences from the first embodiment.

さて、この第2実施形態の紫外線殺菌方法は、紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法であって、殺菌対象がカビであり、紫外線強度を0.030〜0.170mW/cmとするとともに、紫外線照射時間を30分〜280秒とするものである。殺菌対象のカビとしては、コウジカビ、アオカビ、クロカビ等が挙げられる。 The ultraviolet sterilization method according to the second embodiment is an ultraviolet sterilization method in which the interior surface is irradiated with ultraviolet rays by an ultraviolet lamp, the sterilization target is mold, and the ultraviolet intensity is 0.030 to 0.170 mW / cm 2. In addition, the ultraviolet irradiation time is set to 30 minutes to 280 seconds. Examples of mold to be sterilized include Aspergillus, mold, black mold and the like.

紫外線強度が0.030mW/cmに満たない場合には、紫外線強度が不十分で、紫外線の照射時間を必要以上に長くしなければならなくなる。一方、紫外線強度が0.170mW/cmを超える場合には、室内面を構成する材料の劣化を促進したり、人の目に悪影響を及ぼしたりするおそれがある。また、紫外線照射時間が280秒より短い場合、紫外線の照射量が不足し、カビに対する所望の殺菌効果が得られなくなる。一方、紫外線照射時間が30分より長い場合、紫外線照射量が過剰となり、カビに対する殺菌効果以外に紫外線が照射される対象に弊害を及ぼすおそれがある。 When the ultraviolet intensity is less than 0.030 mW / cm 2 , the ultraviolet intensity is insufficient, and the irradiation time of the ultraviolet ray must be made longer than necessary. On the other hand, when the ultraviolet intensity exceeds 0.170 mW / cm 2 , there is a risk of accelerating deterioration of the material constituting the indoor surface or adversely affecting human eyes. Moreover, when the ultraviolet irradiation time is shorter than 280 seconds, the irradiation amount of ultraviolet rays is insufficient, and a desired sterilizing effect against mold cannot be obtained. On the other hand, when the ultraviolet irradiation time is longer than 30 minutes, the ultraviolet irradiation amount becomes excessive, and there is a possibility of adversely affecting an object irradiated with ultraviolet rays in addition to the bactericidal effect against mold.

従って、この第2実施形態によれば、以下のような効果を得ることができる。
(2)この紫外線殺菌方法においては、紫外線ランプによって室内面に紫外線を照射する殺菌方法において、殺菌対象がコウジカビ、アオカビ等のカビである場合に、紫外線強度を0.030〜0.170mW/cmとするとともに、紫外線照射時間を30分〜280秒としている。
Therefore, according to the second embodiment, the following effects can be obtained.
(2) In this ultraviolet sterilization method, when the object to be sterilized is mold such as Aspergillus or blue mold in the sterilization method of irradiating the interior surface with an ultraviolet lamp, the ultraviolet intensity is 0.030 to 0.170 mW / cm. 2 and the ultraviolet irradiation time is 30 minutes to 280 seconds.

よって、殺菌対象がカビである場合においても、前述した第1実施形態の殺菌対象が細菌である場合と同様に、紫外線ランプの設置本数を多くすることなく、ごく低い紫外線強度で、殺菌対象である細菌の殺菌を行うことができて、殺菌設備の導入時におけるコストの低減を図ることができる。また、ごく低い紫外線強度を用いた場合でも照射時間を短縮することができて、消費電力の削減及びランプ寿命の延長を図ることができ、運用コストも低減することができる。   Therefore, even when the sterilization target is mold, as in the case where the sterilization target of the first embodiment is bacteria, the sterilization target can be sterilized with a very low UV intensity without increasing the number of UV lamps installed. A certain bacterium can be sterilized, and the cost at the time of introduction of the sterilization equipment can be reduced. Further, even when an extremely low ultraviolet intensity is used, the irradiation time can be shortened, power consumption and lamp life can be extended, and the operation cost can be reduced.

以下に、実施例を挙げて前記実施形態をさらに具体的に説明する。
(実施例1〜4)
殺菌対象が細菌として、実施例1では大腸菌、実施例2ではサルモネラ菌、実施例3では芽胞セレウス菌である場合及び実施例4では芽胞枯草菌である場合について、ごく低い紫外線強度で殺菌を行ったときに、どの程度の殺菌効果を発揮できるかの殺菌試験を行った。この場合、各細菌を液体培地又は斜面培地で培養し、定常状態にまで培養後、遠心分離により細菌を集菌し、生理食塩水で洗浄したものを試験用菌液とした。そして、プレート培地(細菌はSCD培地、カビはPDA培地)1枚につき、プレートあたりの菌添加量が10〜10となるように菌液を200μl塗布した。紫外線照射しないものをコントロールサンプルとし、5段階の照射時間で照射したサンプルを試験サンプルとした。
Hereinafter, the embodiment will be described more specifically with reference to examples.
(Examples 1-4)
The bacteria to be sterilized were E. coli in Example 1, Salmonella in Example 2, Spore Bacillus in Example 3, and Spore Bacillus in Example 4, and sterilized with very low UV intensity. Occasionally, a sterilization test was performed to see how much sterilization effect can be exhibited. In this case, each bacterium was cultured in a liquid medium or a slant medium, cultured to a steady state, collected by centrifugation, and washed with physiological saline to obtain a test bacterial solution. Then, 200 μl of the bacterial solution was applied so that the amount of added bacteria per plate was 10 3 to 10 5 per plate medium (bacteria were SCD medium and mold was PDA medium). A sample that was not irradiated with ultraviolet rays was used as a control sample, and a sample that was irradiated with five irradiation times was used as a test sample.

この試験サンプルに、0.170mW/cm、0.085mW/cm、0.030mW/cm、及び0.008mW/cmの4種類又は3種類の紫外線強度条件下で、一定時間紫外線を照射した。紫外線照射後、32℃のインキュベータで2日間培養し、生存菌数(コロニー数)を測定した。そして、紫外線の照射前の菌数と比較評価した。これによって、表3に示すような殺菌試験結果が得られた。なお、表3は殺菌対象が芽胞枯草菌である場合の殺菌試験結果を示すものであるが、他種類の細菌についても同様の殺菌試験結果が得られた。 This test sample, 0.170mW / cm 2, 0.085mW / cm 2, 0.030mW / cm 2, and at four or three UV intensity conditions of 0.008mW / cm 2, the predetermined time UV Irradiated. After ultraviolet irradiation, the cells were cultured in an incubator at 32 ° C. for 2 days, and the number of viable bacteria (colony number) was measured. And it compared with the number of bacteria before irradiation of an ultraviolet-ray, and evaluated. Thereby, the sterilization test results as shown in Table 3 were obtained. Table 3 shows the sterilization test results when the sterilization target is Spore Bacillus subtilis, but similar sterilization test results were obtained for other types of bacteria.

この殺菌試験結果に基づいて、紫外線の照射量0(J/m)の培地で培養されたコロニー数に対する、紫外線照射後に生育したコロニー数との比率で、生存率を求めた。1つのプレートにおける紫外線照射量と生存菌数との関係をグラフ化すると、図1に示すようになった。また、同プレートの紫外線照射量と生存率との関係を近似的にグラフ化すると、図2に示すようになった。この図2に示す直線から、初期の菌数を99.9%殺菌する(1/1000以下にする)ために必要な紫外線照射量を求めたところ、表1及び表2に示すような評価結果が得られた。 Based on the results of this bactericidal test, the survival rate was determined based on the ratio of the number of colonies grown after ultraviolet irradiation to the number of colonies cultured in a medium with an ultraviolet irradiation amount of 0 (J / m 2 ). A graph showing the relationship between the amount of ultraviolet irradiation and the number of viable bacteria on one plate is shown in FIG. Further, when the relationship between the ultraviolet irradiation amount and the survival rate of the plate is approximately graphed, it is as shown in FIG. From the straight line shown in FIG. 2, when the amount of ultraviolet irradiation necessary for sterilizing the initial number of bacteria by 99.9% (less than 1/1000) was determined, the evaluation results as shown in Table 1 and Table 2 were obtained. was gotten.

その結果、殺菌対象が大腸菌やサルモネラ菌である場合、紫外線強度が0.008mW/cmと低い値であっても、3分半以内に初期の菌数の1/1000以下まで殺菌でき
ることが明らかになった。さらに、殺菌対象が殺菌しにくい芽胞枯草菌である場合、紫外線強度が0.030mW/cmと低い値であっても、5分半以内に初期の菌数の1/1000以下まで殺菌できることが判明した。
As a result, when the target of sterilization is Escherichia coli or Salmonella, it is clear that even if the UV intensity is as low as 0.008 mW / cm 2, it can be sterilized to 1/1000 or less of the initial number of bacteria within 3 and a half minutes. became. Furthermore, when the target to be sterilized is a spore Bacillus subtilis that is difficult to sterilize, even if the UV intensity is as low as 0.030 mW / cm 2, it can be sterilized to 1/1000 or less of the initial number of bacteria within 5 and a half minutes. found.

そして、表1及び表2の評価結果から明らかなように、各種の細菌を99.9%殺菌するために必要な紫外線照射量は、紫外線強度が低いほど小さくなる傾向を示した。つまり、同じ紫外線照射量(紫外線強度×照射時間)においては、(紫外線強度:大×照射時間:短)の場合よりも、(紫外線強度:小×照射時間:長)の場合の方が、殺菌効果が高いことが判明した。その結果、殺菌対象が大腸菌、サルモネラ菌等の細菌である場合には、紫外線強度を0.008〜0.170mW/cmとして殺菌を行えば、十分な殺菌効果が得られるとともに、紫外線の照射時間も短くなることが判明した。また、殺菌対象が芽胞枯草菌である場合には、紫外線強度を0.030〜0.170mW/cmとして殺菌を行えば、同様の効果が得られることが判明した。
(実施例5,実施例6及び実施例7)
殺菌対象がコウジカビである実施例5,アオカビである実施例6,クロカビである実施例7について、前記実施例1〜4の場合と同様に、0.170mW/cm、0.085mW/cm 及び0.030mW/cm 3種類のごく低い紫外線強度条件下で殺菌試験を行った。なお、この場合、紫外線照射後の培養期間が、25℃のインキュベータで5日間であることが表1〜3の場合と異なる。それにより、表4に示すような評価結果が得られた。その結果、殺菌対象がコウジカビである場合、紫外線強度が0.030mW/cmと低い値であっても、約10分以内に初期の菌数の1/1000以下まで殺菌できることが判明した。
As is clear from the evaluation results in Tables 1 and 2, the amount of UV irradiation necessary to sterilize 99.9% of various bacteria tended to decrease as the UV intensity decreased. In other words, at the same ultraviolet irradiation amount (ultraviolet intensity × irradiation time), sterilization is more effective in the case of (ultraviolet intensity: small × irradiation time: long) than in the case of (ultraviolet intensity: large × irradiation time: short). It turned out to be highly effective. As a result, when sterilized E. coli, a bacteria such as Salmonella bacteria, by performing the sterilizing ultraviolet intensity as 0.008~0.170mW / cm 2, with sufficient sterilization effect is obtained, the irradiation of ultraviolet light It was found that the time was also shortened. Moreover, when the sterilization object is a spore Bacillus subtilis, it has been found that the same effect can be obtained by performing sterilization with an ultraviolet intensity of 0.030 to 0.170 mW / cm 2 .
(Example 5, Example 6 and Example 7)
Example 5 sterilized is aspergillus, Example 6 is a Penicillium, for Example 7 is Aspergillus niger, as in the case of Examples 1~4, 0.170mW / cm 2, 0.085mW / cm 2 and it was sterilized test in three very low UV intensity conditions of 0.030mW / cm 2. In this case, the culture period after ultraviolet irradiation is 5 days in an incubator at 25 ° C., which is different from the cases shown in Tables 1 to 3. Thereby, the evaluation results as shown in Table 4 were obtained. As a result, it was found that even when the object of sterilization is Aspergillus, even if the ultraviolet intensity is as low as 0.030 mW / cm 2, it can be sterilized to about 1/1000 or less of the initial number of bacteria within about 10 minutes.

また、殺菌対象がアオカビである場合、紫外線強度が0.030mW/cmと低い値であっても、8分半以内に初期の菌数の1/1000以下まで殺菌できることが判明した。さらに、殺菌対象がクロカビ(「クラドスポリウム属の菌」)である場合、紫外線強度が0.030mW/cmと低い値であっても、29分半以内に初期の菌数の1/1000以下まで殺菌できることが判明した。 In addition, when the object of sterilization is blue mold, it has been found that even if the ultraviolet intensity is as low as 0.030 mW / cm 2, it can be sterilized to 1/1000 or less of the initial number of bacteria within 8 minutes and a half . Furthermore, when the object of sterilization is black mold (“Cladosporum spp.”) , Even if the UV intensity is as low as 0.030 mW / cm 2 , 1/1000 of the initial number of bacteria within 29 minutes and a half. It was found that the following can be sterilized.

このことから、殺菌対象がカビである場合には、紫外線強度を0.030〜0.170mW/cmとするとともに、紫外線照射時間を30分〜280秒として殺菌を行えば、十分な殺菌効果が得られることが判明した。 From this, when the object of sterilization is mold, sufficient sterilization effect can be obtained if the sterilization is performed with an ultraviolet intensity of 0.030 to 0.170 mW / cm 2 and an ultraviolet irradiation time of 30 minutes to 280 seconds. Was found to be obtained.

Claims (7)

紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象が大腸菌であって、紫外線強度を0.008〜0.170mW/cm で、照射時間を3分13秒〜37秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
An ultraviolet sterilization method characterized in that the sterilization target is Escherichia coli , the ultraviolet intensity is 0.008 to 0.170 mW / cm 2 , and the irradiation time is 3 minutes 13 seconds to 37 seconds .
紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象がサルモネラ菌であって、紫外線強度を0.008〜0.170mW/cm で、照射時間を3分12秒〜21秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
An ultraviolet sterilization method, wherein the sterilization target is Salmonella , the ultraviolet intensity is 0.008 to 0.170 mW / cm 2 , and the irradiation time is 3 minutes 12 seconds to 21 seconds .
紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象が芽胞セレウス菌であって、紫外線強度を0.030〜0.170mW/cm で、照射時間を4分35秒〜1分29秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
An ultraviolet sterilization method characterized in that an object to be sterilized is Spore cerevisiae, an ultraviolet intensity is 0.030 to 0.170 mW / cm 2 , and an irradiation time is 4 minutes 35 seconds to 1 minute 29 seconds .
紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象が芽胞枯草菌であって、紫外線強度を0.030〜0.170mW/cm で、照射時間を5分10秒〜3分26秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
An ultraviolet sterilization method characterized in that an object to be sterilized is spores Bacillus subtilis , the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 , and the irradiation time is 5 minutes 10 seconds to 3 minutes 26 seconds .
紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象がコウジカビであって、紫外線強度を0.030〜0.170mW/cm で、照射時間を9分43秒〜280秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
Sterilized is an Aspergillus, a UV intensity 0.030~0.170mW / cm 2, UV sterilization method which is characterized in that the irradiation time of 9 minutes 43 seconds to 280 seconds.
紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象がアオカビであって、紫外線強度を0.030〜0.170mW/cm で、照射時間を8分10秒〜280秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
An ultraviolet sterilization method characterized in that the object of sterilization is blue mold , the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 , and the irradiation time is 8 minutes 10 seconds to 280 seconds .
紫外線ランプによって室内面に紫外線を照射する紫外線殺菌方法において、
殺菌対象がクラドスポリウム属の菌であって、紫外線強度を0.030〜0.170mW/cm で、照射時間を29分20秒〜5分11秒とすることを特徴とする紫外線殺菌方法。
In the ultraviolet sterilization method of irradiating the indoor surface with ultraviolet rays by an ultraviolet lamp,
The sterilization target is a bacterium belonging to the genus Cladosporium, the ultraviolet intensity is 0.030 to 0.170 mW / cm 2 , and the irradiation time is 29 minutes 20 seconds to 5 minutes 11 seconds, .
JP2013007561A 2013-01-18 2013-01-18 UV sterilization method Active JP6135141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007561A JP6135141B2 (en) 2013-01-18 2013-01-18 UV sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007561A JP6135141B2 (en) 2013-01-18 2013-01-18 UV sterilization method

Publications (2)

Publication Number Publication Date
JP2014136113A JP2014136113A (en) 2014-07-28
JP6135141B2 true JP6135141B2 (en) 2017-05-31

Family

ID=51413966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007561A Active JP6135141B2 (en) 2013-01-18 2013-01-18 UV sterilization method

Country Status (1)

Country Link
JP (1) JP6135141B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261994B2 (en) * 2016-08-10 2023-04-21 パナソニックIpマネジメント株式会社 Antibacterial method and antibacterial device
US10898600B2 (en) 2016-08-10 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Disinfecting method and disinfecting apparatus
KR20180075123A (en) 2016-12-26 2018-07-04 엘지전자 주식회사 Control method for sterilization of water purifying apparatus
EP4109493A4 (en) * 2020-02-18 2023-11-08 Ushio Denki Kabushiki Kaisha Bacteriostatic method
JP7099500B2 (en) * 2020-08-25 2022-07-12 ウシオ電機株式会社 Inactivating device and inactivating method
CN113842481B (en) * 2021-09-29 2023-03-17 华南农业大学 Ultraviolet sterilization synergist lime essential oil and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058819A (en) * 1991-01-24 1993-01-19 Yokohama Rubber Co Ltd:The Food conveying device
JPH06181969A (en) * 1992-12-21 1994-07-05 Nishimura Seisakusho:Kk Slitter
JPH078541A (en) * 1993-06-28 1995-01-13 Fujita Corp Method for sterilizing building
JPH11169440A (en) * 1997-12-15 1999-06-29 Lion Corp Method and device for sterilizing storage tank for storing liquid raw material
JP2001245960A (en) * 2000-03-08 2001-09-11 Takenaka Komuten Co Ltd Accommodation body, sterile room using it, and sterilizing method
JP2002080017A (en) * 2000-06-26 2002-03-19 Hoshin Kagaku Sangyosho:Kk Sterilization device
JP2003225288A (en) * 2001-11-29 2003-08-12 Iida Kensetsu:Kk Vessel for sterilization
US20030223904A1 (en) * 2002-06-04 2003-12-04 Lucas Lakhdar Bacha UV bulk mail irradiation system
JP2005168858A (en) * 2003-12-12 2005-06-30 Keishin Aoki Portable mildew-proof device
JP2007327192A (en) * 2006-06-06 2007-12-20 Paruka:Kk Mildewproof structure
KR101685456B1 (en) * 2011-04-15 2016-12-12 사무엘 리차드 트라파니 Room sterilization method and system

Also Published As

Publication number Publication date
JP2014136113A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6135141B2 (en) UV sterilization method
Nerandzic et al. Sorting through the wealth of options: comparative evaluation of two ultraviolet disinfection systems
Menetrez et al. The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination
JP5435619B2 (en) Surface sterilizer
WO2010087831A8 (en) Improved method and apparatus for producing a high level of disinfection in air and surfaces
US20130202479A1 (en) Plasma sterilizer, plasma sterilization system, and plasma sterilization method
JP6042369B2 (en) Ultraviolet laser sterilization system
CN203861628U (en) All-intelligent dynamic air sterilization and purification machine
CN105465978A (en) Domestic bathroom intelligent purification system
FI20175639A1 (en) System and method for controlling growth of microorganisms
KR101990846B1 (en) System and Method for Monitoring Air Contamination by Using Ultraviolet Air Sterilizer
WO2019061035A1 (en) Ultraviolet system for disinfection and ultraviolet disinfection method
Holtkamp et al. Ultraviolet C (UVC) Standards and Best Practices for the Swine Industry
WO2020052249A1 (en) Cleaning operation area microorganism control system and use method therefor
CN104503273A (en) Toilet disinfection control system
Shintani et al. Sterilization efficiency of the photocatalyst against environmental microorganisms in a health care facility
JPH078541A (en) Method for sterilizing building
CN106277114A (en) Circulating water disinfection equipment
Mally et al. Simulation based design of an UVC-LED emitter for disinfection of high-touch environmental surfaces
US20210275705A1 (en) Combination ultra-violet a (uva) and ultra-violet c (uvc) system for reduction and inhibition of growth of pathogens
Arkusz et al. Shedding light on the problem: Influence of the radiator power, source-sample distance, and exposure time on the performance of UV-C lamps in laboratory and real-world conditions
Kulkarni et al. Optical filter enabled continuous disinfection of hospital rooms using multi-sensor feedback aided light source
RU124567U1 (en) FOOD PROCESSING DEVICE
CN208617813U (en) Disinfector is used in a kind of production of bamboo wine
KR102558645B1 (en) Management control system including IoT-based air sterilizers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150