JP6130207B2 - Floating structure for offshore wind power generation - Google Patents

Floating structure for offshore wind power generation Download PDF

Info

Publication number
JP6130207B2
JP6130207B2 JP2013099441A JP2013099441A JP6130207B2 JP 6130207 B2 JP6130207 B2 JP 6130207B2 JP 2013099441 A JP2013099441 A JP 2013099441A JP 2013099441 A JP2013099441 A JP 2013099441A JP 6130207 B2 JP6130207 B2 JP 6130207B2
Authority
JP
Japan
Prior art keywords
floating structure
wind power
mooring line
tension
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013099441A
Other languages
Japanese (ja)
Other versions
JP2014218186A (en
Inventor
哲郎 堀
哲郎 堀
哲次 白枝
哲次 白枝
孟 石原
孟 石原
明彦 今北
明彦 今北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
University of Tokyo NUC
Shimizu Corp
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
University of Tokyo NUC
Shimizu Corp
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, University of Tokyo NUC, Shimizu Corp, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2013099441A priority Critical patent/JP6130207B2/en
Publication of JP2014218186A publication Critical patent/JP2014218186A/en
Application granted granted Critical
Publication of JP6130207B2 publication Critical patent/JP6130207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Description

本発明は、浮体式洋上風力発電に用いられる浮体構造物に関し、特に波浪による動揺を抑制する機構を備えた浮体構造物に関するものである。   The present invention relates to a floating structure used for floating offshore wind power generation, and more particularly to a floating structure having a mechanism for suppressing fluctuations caused by waves.

従来、浮体式洋上風力発電用の浮体構造物として、図4に示すようなセミサブ式、TLP(緊張係留)式、スパー式などのタイプが知られている。様々な機器で構成される風力発電機にとって振動・動揺は故障の原因となるため、浮体式洋上風力発電においては、風力発電機の基礎として使用される浮体構造物の振動・動揺を如何に抑えるかが従来より重要な課題となっている。   Conventionally, as a floating structure for floating offshore wind power generation, types such as a semi-sub type, a TLP (tension mooring) type, and a spar type as shown in FIG. 4 are known. Since vibration and shaking are a cause of failure for wind generators composed of various devices, in floating offshore wind power generation, how to suppress vibration and shaking of floating structures used as the foundation of wind power generators Is a more important issue than before.

セミサブ式やTLP式は水線面積の小さい半没水型浮体を使用し、波浪による動揺(上下揺れ・横揺れ・回転)を軽減するタイプであり、特にTLP式は浮体を強制的に水中に引き込むことで大きな浮力・係留力を作用させ、波浪により荷重の変動が生じても常に浮力・係留力が作用するため、セミサブ式では対応できない上下揺れを軽減できる方式として知られている。   The semi-sub type and TLP type use a semi-submersible type floating body with a small waterline area to reduce the shaking caused by waves (vertical shaking, rolling, rotation), especially the TLP type forcing the floating body into water. It is known as a method that can reduce the up and down motion that cannot be handled by the semi-sub type because a large buoyancy and mooring force are applied by pulling in and buoyancy and mooring force always act even if a load fluctuates due to waves.

なお、セミサブ式に関連する従来の技術としては例えば特許文献1〜9が提案されており、またTLP式に関しては例えば特許文献10〜14が、スパー式に関しては例えば特許文献15〜20が提案されている。   For example, Patent Documents 1 to 9 have been proposed as conventional techniques related to the semi-sub system, and for example, Patent Documents 10 to 14 have been proposed for the TLP system, and for example, Patent Documents 15 to 20 have been proposed for the spar system. ing.

特開2010−247646号公報JP 2010-247646 A 特開2010−216273号公報JP 2010-216273 A 特開2009−85167号公報JP 2009-85167 A 特開2007−263077号公報JP 2007-263077 A 特開2005−351087号公報Japanese Patent Laid-Open No. 2005-351087 特開2004−225859号公報JP 2004-225859 A 特開2004−36517号公報JP 2004-36517 A 特開2002−285952号公報JP 2002-285951 A 特開2002−285951号公報JP 2002-285951 A 特開2010−234965号公報JP 2010-234965 A 特開2010−64649号公報JP 2010-64649 A 特開2010−64648号公報JP 2010-64648 A 特開2010−30379号公報JP 2010-30379 A 特開2010−18129号公報JP 2010-18129 A 特開2010−223114号公報JP 2010-223114 A 特開2010−223113号公報JP 2010-223113 A 特開2009−248792号公報JP 2009-248792 A 特開2007−518912号公報JP 2007-518912 A 特開2003−343447号公報JP 2003-343447 A 特開2002−188557号公報JP 2002-188557 A

上記のTLP式浮体構造物では、浮体・係留系の固有振動数が波浪の周期(約4〜18秒)を外すよう設計され、特に波力の大きい長周期側を避けて4秒以下に設計される。しかし、風力発電機のローターの回転数は通常約10〜50回転/分(周期約1〜6秒)であり、浮体・係留系の固有振動数と一致して共振する可能性があることから、浮体構造物に風力発電機を搭載する場合には、共振対策が必要である。   In the above TLP type floating structure, the natural frequency of the floating body and mooring system is designed to remove the wave period (about 4-18 seconds), especially designed to be 4 seconds or less, avoiding the long period side where the wave force is large. Is done. However, the number of rotations of the rotor of a wind power generator is usually about 10 to 50 rotations / minute (period is about 1 to 6 seconds), and there is a possibility of resonating in accordance with the natural frequency of the floating body and mooring system. When a wind power generator is mounted on a floating structure, a countermeasure against resonance is required.

また、動揺する浮体構造物には付加質量力や造波減衰力が作用するが、上下揺れのモードでは水線面積の変化が少なく造波減衰力の効果が乏しいため、風力発電機のローターによる共振を避けたとしても動揺が収まり難いという問題がある。   In addition, additional mass force and wave-damping force act on the floating structure that is swaying, but in the vertical shaking mode, the change of the waterline area is small and the effect of wave-damping force is poor. Even if the resonance is avoided, there is a problem that it is difficult to settle.

本発明は、上記に鑑みてなされたものであって、風力発電機による起振力を抑えるとともに、波浪による上下揺れを軽減することができる洋上風力発電用浮体構造物を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a floating structure for offshore wind power generation that can suppress the vibration generated by the wind power generator and can reduce ups and downs caused by waves. To do.

上記した課題を解決し、目的を達成するために、本発明に係る洋上風力発電用浮体構造物は、洋上風力発電における風力発電機の基礎として用いられる浮体構造物であって、前記浮体構造物の浮力中心とアンカーとを連結し前記浮体構造物を緊張して係留する緊張係留索と、前記浮体構造物と前記緊張係留索との間に介装され前記浮体構造物の上下揺れを減衰させる動揺減衰機構と、前記動揺減衰機構と前記緊張係留索との間に介装され、前記動揺減衰機構と前記緊張係留索とを係合して一体化する作動状態と、前記動揺減衰機構と前記緊張係留索とを切り離して前記一体化を解除する非作動状態とに切り替え可能なストッパー機構とを備え、通常時には前記ストッパー機構を作動状態にして前記動揺減衰機構と前記緊張係留索とを一体化する一方、暴風波浪時や地震時などの非常時には前記ストッパー機構を非作動状態にして前記動揺減衰機構と前記緊張係留索とを切り離し、作用する荷重に応じて前記緊張係留索の緊張力を調整可能にしたことを特徴とする。 To solve the problems described above and achieve the object, offshore wind power generation floating construction according to the present onset Ming, a floating structure for use as the basis of a wind power generator in offshore wind, the floating structure A tension mooring line that connects and anchors the buoyancy center of an object and an anchor and tensions the floating structure, and is interposed between the floating structure and the tension mooring line to attenuate the vertical swing of the floating structure. A vibration damping mechanism, an operating state interposed between the vibration damping mechanism and the tension mooring line to engage and integrate the vibration damping mechanism and the tension mooring line, and the vibration damping mechanism, A stopper mechanism that can be switched to a non-operating state in which the tension mooring line is disconnected and the integration is released, and the sway damping mechanism and the tension mooring line are integrated with the stopper mechanism in an operating state in normal times. Turn into On the other hand, in the event of an emergency such as a storm wave or an earthquake, the stopper mechanism can be deactivated to separate the sway damping mechanism from the tension mooring line, and the tension force of the tension mooring line can be adjusted according to the applied load characterized in that the.

また、本発明に係る洋上風力発電用浮体構造物は、上述した発明において、浮体および係留系の固有振動数を調整するための固有振動数調整機構をさらに備えることを特徴とする。 Moreover, offshore wind power generation floating construction according to the present onset bright is the invention described above, and further comprising the natural frequency adjusting mechanism for adjusting the natural frequency of the floating body and mooring system.

また、本発明に係る洋上風力発電用浮体構造物は、上述した発明において、前記浮体構造物をカテナリー式で係留するカテナリー係留索をさらに備えることを特徴とする。 Moreover, offshore wind power generation floating construction according to the present onset bright is the invention described above, and further comprising a catenary mooring for anchoring the floating structure in catenary formulas.

本発明によれば、洋上風力発電における風力発電機の基礎として用いられる浮体構造物であって、前記浮体構造物の浮力中心とアンカーとを連結し前記浮体構造物を緊張して係留する緊張係留索と、前記浮体構造物と前記緊張係留索との間に介装され前記浮体構造物の上下揺れを減衰させる動揺減衰機構とを備えるので、耐航性に優れるセミサブ式やTLP式などの浮体構造物によっても対応することが困難な風力発電機からの起振力を抑えることが可能であるとともに、波浪による浮体構造物の上下揺れを軽減することができる。この共振対策と波浪動揺対策によって、風力発電機の機器保全が確保された浮体式洋上風力発電システムを提供することができるという効果を奏する。また、本発明によれば、塩害対策を施す程度の措置で既存の陸上設置型の風力発電機を流用できる可能性があり、他形態の浮体式洋上風力発電システムに対してコスト競争力において優位になると考えられる。   According to the present invention, a floating structure used as a foundation of a wind power generator in offshore wind power generation, wherein the buoyancy center of the floating structure and an anchor are connected to tension and moor the floating structure. A floating body such as a semi-sub type or a TLP type that is excellent in seaworthiness because it includes a cable and a vibration damping mechanism that is interposed between the floating structure and the tension mooring line and attenuates the vertical swing of the floating structure. It is possible to suppress the vibration force from the wind power generator, which is difficult to cope with even with the structure, and to reduce the vertical swing of the floating structure due to the waves. The resonance countermeasure and the wave sway countermeasure can provide an effect of providing a floating offshore wind power generation system in which equipment maintenance of the wind power generator is ensured. In addition, according to the present invention, there is a possibility that an existing on-shore wind power generator can be diverted with measures to take measures against salt damage, and it is superior in cost competitiveness to other types of floating offshore wind power generation systems. It is thought that it becomes.

また、本発明の他の構成によれば、浮体および係留系の固有振動数を調整するための固有振動数調整機構をさらに備えるので、浮体および係留系の固有振動数を風力発電機のローターの固有振動数と一致しないように調整することで共振現象をより確実に防止することができるという効果を奏する。   In addition, according to another configuration of the present invention, since the natural frequency adjusting mechanism for adjusting the natural frequency of the floating body and the mooring system is further provided, the natural frequency of the floating body and the mooring system is set to By adjusting the frequency so as not to coincide with the natural frequency, there is an effect that the resonance phenomenon can be more reliably prevented.

また、本発明の他の構成によれば、前記動揺減衰機構と前記緊張係留索との間に介装され、前記動揺減衰機構と前記緊張係留索とを係合して一体化する作動状態と、前記動揺減衰機構と前記緊張係留索とを切り離して前記一体化を解除する非作動状態とに切り替え可能なストッパー機構をさらに備え、通常時には前記ストッパー機構を作動状態にして前記動揺減衰機構と前記緊張係留索とを一体化する一方、暴風波浪時や地震時などの非常時には前記ストッパー機構を非作動状態にして前記動揺減衰機構と前記緊張係留索とを切り離し、作用する荷重に応じて前記緊張係留索の緊張力を調整可能にしている。   Further, according to another configuration of the present invention, an operation state that is interposed between the oscillation damping mechanism and the tension mooring line, and engages and integrates the oscillation damping mechanism and the tension mooring line; , Further comprising a stopper mechanism that can be switched to a non-operating state in which the sway damping mechanism and the tension mooring line are separated to release the integration, and the sway damping mechanism and the In the event of an emergency such as a storm wave or an earthquake, the tension mooring line is integrated, and the stopper mechanism is deactivated to separate the sway damping mechanism and the tension mooring line, and the tension mooring line depends on the applied load. The tension of the mooring line is adjustable.

常時大きな張力が作用している緊張係留索に対して、暴風波浪時や地震時に過大な変動荷重が作用すると破損等の支障が生じる危険があるが、上記の構成によれば、暴風波浪時や地震時に容易に緊張係留索の緊張力を緩めて損傷の危険を回避するとともに、危険の可能性がなくなったら緊張力を回復させて動揺減衰機構の機能を再び発揮させることができる。これにより、台風や地震が非常に多い日本の海域特性に適合した浮体式洋上風力発電システムを提供することができるという効果を奏する。   If a tension mooring line that is constantly subjected to a large tension is subject to excessive fluctuating loads during storm waves or earthquakes, there is a risk of damage and other problems.However, according to the above configuration, In the event of an earthquake, the tension of the tension mooring line can be easily relaxed to avoid the risk of damage, and when the possibility of danger disappears, the tension can be restored and the function of the sway damping mechanism can be exhibited again. As a result, there is an effect that it is possible to provide a floating offshore wind power generation system that is suitable for the characteristics of the Japanese sea area where typhoons and earthquakes are very common.

また、本発明の他の構成によれば、前記浮体構造物をカテナリー式で係留するカテナリー係留索をさらに備えるので、浮体構造物が漂流するのを防ぐことができるという効果を奏する。   Moreover, according to the other structure of this invention, since the catenary mooring line which moored the said floating structure by catenary type is further provided, there exists an effect that a floating structure can be prevented from drifting.

図1は、本発明に係る洋上風力発電用浮体構造物の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a floating structure for offshore wind power generation according to the present invention. 図2は、図1のA部分の拡大図(通常時)である。FIG. 2 is an enlarged view (normal time) of portion A in FIG. 図3は、図1のA部分の拡大図(暴風波浪時・地震時)である。FIG. 3 is an enlarged view of portion A in FIG. 1 (when a storm wave or an earthquake occurs). 図4は、従来の浮体式洋上風力発電用の浮体構造物を例示する図である。FIG. 4 is a diagram illustrating a conventional floating structure for floating offshore wind power generation.

以下に、本発明に係る洋上風力発電用浮体構造物の実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments of a floating structure for offshore wind power generation according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1に示すように、本発明に係る洋上風力発電用浮体構造物10は、洋上風力発電における風力発電機12の基礎として用いられる浮体構造物であって、浮体構造物10の浮力中心Cに配した緊張係留索14とダンパー16(動揺減衰機構)とを備える。   As shown in FIG. 1, a floating structure 10 for offshore wind power generation according to the present invention is a floating structure used as a foundation of a wind power generator 12 in offshore wind power generation, and is located at a buoyancy center C of the floating structure 10. A tension mooring line 14 and a damper 16 (sway damping mechanism) are provided.

浮体構造物10は、下側部分が海水面18下に水没した半没水型浮体であり、中央浮体20と外側浮体22とこれらの下部間を連結する連結部材24とから構成してある。中央浮体20と外側浮体22の平面的な位置関係はここには図示しないが、中央浮体20を中心とする円周上に複数個(例えば3個)の外側浮体22を周方向等間隔に配置したものであり、中央浮体20が浮体構造物10の浮力中心Cに位置するようにしてある。   The floating structure 10 is a semi-submerged floating body whose lower part is submerged under the seawater surface 18, and includes a central floating body 20, an outer floating body 22, and a connecting member 24 that connects these lower portions. Although the planar positional relationship between the central floating body 20 and the outer floating body 22 is not shown here, a plurality of (for example, three) outer floating bodies 22 are arranged at equal intervals in the circumferential direction on the circumference centering on the central floating body 20. The central floating body 20 is positioned at the buoyancy center C of the floating structure 10.

また、浮体構造物10が漂流するのを防ぐため、浮体構造物10は外側浮体22の下端に連結したカテナリー係留索26によってカテナリー式で係留してある。   Further, in order to prevent the floating structure 10 from drifting, the floating structure 10 is moored in a catenary manner by a catenary mooring line 26 connected to the lower end of the outer floating body 22.

このように、浮体構造物10としてセミサブ式やTLP式で用いられる半没水型浮体を使用して波浪による横揺れ・回転を軽減するとともに、TLP式で用いる緊張係留索14を浮体構造物10の浮力中心Cに配すことで、波浪による縦揺れを軽減するようになっている。   As described above, the semi-submersible floating body used in the semi-sub type or the TLP type is used as the floating structure 10 to reduce the rolling / rotation caused by the waves, and the tension mooring line 14 used in the TLP type is used as the floating structure 10. By arranging it at the buoyancy center C, the pitching caused by waves is reduced.

中央浮体20、外側浮体22は円柱部材で構成してあり、外側浮体22はその内部にバラスト水を注入することで浮力を調整可能になっている。これに加えて中央浮体20の内部にバラスト水を注入することで浮力を調整可能にしてもよい。連結部材24は棒状部材で構成され、その内部にバラスト水を注入可能な中空または中実な部材で構成することができる。   The central floating body 20 and the outer floating body 22 are constituted by cylindrical members, and the outer floating body 22 can adjust buoyancy by injecting ballast water therein. In addition to this, the buoyancy may be adjusted by injecting ballast water into the central floating body 20. The connecting member 24 is composed of a rod-shaped member, and can be composed of a hollow or solid member into which ballast water can be injected.

また、中央浮体20の上面にはタワー36が立設しており、その頂部には風車38およびローターを備える風力発電機12が取り付けてある。さらに、中央浮体20には上下面を貫通する貫通孔28が浮力中心Cに沿って設けてあり、緊張係留索14が挿通されている。   A tower 36 is erected on the upper surface of the central floating body 20, and a wind turbine 12 including a windmill 38 and a rotor is attached to the top of the tower 36. Further, the central floating body 20 is provided with a through hole 28 penetrating the upper and lower surfaces along the buoyancy center C, and the tension mooring line 14 is inserted therethrough.

緊張係留索14は、タワー36の下端に設置した巻回ドラム30から貫通孔28を通り抜けて浮力中心Cに沿って鉛直下方に延び、海底32に沈設されたアンカー34に連結してあり、浮体構造物10の浮力によって生じる緊張力を利用して浮体構造物10を係留するようになっている。   The tension mooring line 14 extends from the winding drum 30 installed at the lower end of the tower 36 through the through hole 28, extends vertically downward along the buoyancy center C, and is connected to an anchor 34 sunk in the seabed 32. The floating structure 10 is moored using the tension generated by the buoyancy of the structure 10.

また、タワー36の下端内部には凹状のダンパー室40(図1中のA部分)が形成してある。   Further, a concave damper chamber 40 (portion A in FIG. 1) is formed inside the lower end of the tower 36.

図2は図1のA部分の拡大図(通常時)を示しており、図3は図1のA部分の拡大図(暴風波浪時・地震時)を示している。   FIG. 2 shows an enlarged view (normal time) of portion A of FIG. 1, and FIG. 3 shows an enlarged view of portion A of FIG. 1 (during storm waves and earthquakes).

図2または図3に示すように、ダンパー室40には、ダンパー16(動揺減衰機構)とバネ42(固有振動数調整機構)とストッパー機構44とが設けてある。また、ダンパー室40の上面には緊張係留索14を上方の巻回ドラム30に導くための開口46が設けてある。   As shown in FIG. 2 or FIG. 3, the damper chamber 40 is provided with a damper 16 (a vibration damping mechanism), a spring 42 (a natural frequency adjusting mechanism), and a stopper mechanism 44. Further, an opening 46 for guiding the tension mooring cable 14 to the upper winding drum 30 is provided on the upper surface of the damper chamber 40.

ダンパー16は、浮体構造物10の上下揺れを減衰させるための動揺減衰機構であり、タワー36(すなわちこれと連結した中央浮体20)と緊張係留索14との間に介装してある。このダンパー16は、シリンダー16aとピストンロッド16bとからなる油圧式のオイルダンパーであり、本実施例では緊張係留索14を挟んで左右に設けてある。   The damper 16 is a vibration damping mechanism for damping the vertical swing of the floating structure 10, and is interposed between the tower 36 (that is, the central floating body 20 connected thereto) and the tension mooring line 14. The damper 16 is a hydraulic oil damper including a cylinder 16a and a piston rod 16b. In the present embodiment, the damper 16 is provided on the left and right sides of the tension mooring line 14.

このように緊張係留索14にダンパー16を配置することで、浮体構造物10の上下揺れを減衰することができる。なお、本実施例においては動揺減衰機構としてダンパー16を用いて説明しているが、これに限るものではなく、波浪による浮体構造物10の上下揺れを減衰可能な機構であればいかなる機構を用いてもよい。   By arranging the damper 16 on the tension mooring line 14 in this way, the vertical swing of the floating structure 10 can be attenuated. In this embodiment, the damper 16 is described as the vibration damping mechanism. However, the present invention is not limited to this, and any mechanism can be used as long as the mechanism can attenuate the vertical swing of the floating structure 10 due to waves. May be.

バネ42は、浮体および係留系の固有振動数を調整するための固有振動数調整機構であり、ダンパー16のシリンダー16aとダンパー室40上面との間に介装してある。このように緊張係留索14と浮体構造物10との間にバネ42を設ける一方で、浮体・係留系の固有振動数を風力発電機12のローターの固有振動数と一致しないように調整することで、風力発電機12のローターとの共振現象をより確実に防止することができる。なお、バネ42を設ける代わりに、緊張係留索14自身の剛性を小さくすることなどにより浮体・係留系の固有振動数を調整して共振を防止してもよい。   The spring 42 is a natural frequency adjusting mechanism for adjusting the natural frequency of the floating body and the mooring system, and is interposed between the cylinder 16 a of the damper 16 and the upper surface of the damper chamber 40. Thus, while providing the spring 42 between the tension mooring line 14 and the floating structure 10, the natural frequency of the floating body and the mooring system is adjusted so as not to coincide with the natural frequency of the rotor of the wind power generator 12. Thus, the resonance phenomenon with the rotor of the wind power generator 12 can be more reliably prevented. Instead of providing the spring 42, resonance may be prevented by adjusting the natural frequency of the floating body / tethering system by reducing the rigidity of the tension mooring cable 14 itself.

ストッパー機構44は、ベース44aとパッド44bとからなり、ダンパー16と緊張係留索14との間に介装してあり、本実施例では緊張係留索14を挟んで左右に設けてある。このストッパー機構44は、ダンパー16と緊張係留索14とを係合して一体化する作動状態と、ダンパー16と緊張係留索14とを切り離して一体化を解除する非作動状態とに切り替え可能としてある。   The stopper mechanism 44 includes a base 44a and a pad 44b, and is interposed between the damper 16 and the tension mooring line 14. In this embodiment, the stopper mechanism 44 is provided on the left and right sides of the tension mooring line 14. The stopper mechanism 44 can be switched between an operation state in which the damper 16 and the tension mooring line 14 are engaged and integrated, and a non-operation state in which the damper 16 and the tension mooring line 14 are disconnected and the integration is released. is there.

より具体的には、ストッパー機構44の各ベース44aはその上方のダンパー16のピストンロッド16bと連結している。ストッパー機構44の作動状態においては、図2に示すように、ベース44a上の内方端部に対向配置したパッド44bを互いに押圧して緊張係留索14を左右から挟み込むことでダンパー16のピストンロッド16bと緊張係留索14とを係合させるようになっている。一方、非作動状態においては、図3に示すように、パッド44bを緊張係留索14から引き離してダンパー16のピストンロッド16bとの係合を解くようになっている。   More specifically, each base 44a of the stopper mechanism 44 is connected to the piston rod 16b of the damper 16 above it. In the operating state of the stopper mechanism 44, as shown in FIG. 2, the pistons 44 of the damper 16 are pressed by pressing the pads 44b arranged opposite to the inner ends on the base 44a to sandwich the tension mooring line 14 from the left and right. 16b and the tension mooring line 14 are engaged. On the other hand, in the non-actuated state, as shown in FIG. 3, the pad 44b is pulled away from the tension mooring line 14 to disengage the damper 16 from the piston rod 16b.

上記構成において、通常時には、図2に示すようにストッパー機構44を作動状態にしてダンパー16と緊張係留索14とを一体化させるようにする。この状態においては波浪による浮体構造物10の上下揺れは、バネ42とダンパー16を介しベース44bとパッド44aを経由して緊張係留索14に伝達する。この場合、浮体構造物10の上下揺れはダンパー16の機能によって減衰されることになる。   In the above configuration, at the normal time, as shown in FIG. 2, the damper mechanism 16 and the tension mooring line 14 are integrated with the stopper mechanism 44 in an activated state. In this state, the vertical shaking of the floating structure 10 due to the waves is transmitted to the tension mooring line 14 via the spring 42 and the damper 16 via the base 44b and the pad 44a. In this case, the vertical swing of the floating structure 10 is attenuated by the function of the damper 16.

また、暴風波浪時や地震時などの非常時には、図3に示すようにストッパー機構44を非作動状態にしてダンパー16と緊張係留索14とを切り離す。そして、浮体構造物10に作用する動揺荷重に応じて、緊張係留索14の緊張力を巻回ドラム30の回転により調整するようにする。   In an emergency such as a storm wave or an earthquake, the stopper mechanism 44 is deactivated and the damper 16 and the tension mooring line 14 are disconnected as shown in FIG. Then, the tension force of the tension mooring line 14 is adjusted by the rotation of the winding drum 30 according to the swaying load acting on the floating structure 10.

常時大きな張力が作用している緊張係留索14は、過大な変動荷重が作用する暴風波浪時や地震時には破損等の支障が生じるおそれがあるが、本発明によれば、暴風波浪時や地震時にストッパー機構44を非作動状態にすることで容易に緊張係留索14の緊張力を緩めて損傷の危険を回避することができる。その後、危険の可能性がなくなったらストッパー機構44を作動状態にして緊張係留索14の緊張力を回復させることによりダンパー16の機能を再び発揮させることができる。これにより、台風や地震が非常に多い日本の海域特性に適合した浮体式洋上風力発電システムを提供することができる。   The tension mooring line 14 to which a large tension is always applied may cause damage such as breakage during a storm wave or an earthquake in which an excessively variable load is applied. However, according to the present invention, during a storm wave or an earthquake. By disabling the stopper mechanism 44, the tension force of the tension mooring line 14 can be easily relaxed and the risk of damage can be avoided. After that, when the possibility of danger disappears, the function of the damper 16 can be exhibited again by restoring the tension of the tension mooring line 14 by operating the stopper mechanism 44. As a result, it is possible to provide a floating offshore wind power generation system that is suitable for the characteristics of Japan's marine areas, where typhoons and earthquakes are very common.

なお、通常時の浮体・係留系の状態に戻す場合には、例えば外側浮体22や中央浮体20の内部バラストにポンプにより海水を注入して喫水を下げ、ストッパー機構44を効かせてからバラスト水をポンプにより外部へ排水し、緊張係留索14に張力を作用させるようにすればよい。   When returning to a normal floating body / tethered state, for example, seawater is injected into the internal ballast of the outer floating body 22 or the central floating body 20 by a pump to lower the draft, and after the stopper mechanism 44 is activated, the ballast water May be drained to the outside by a pump so that tension is applied to the tension mooring line 14.

このため、本発明に係る洋上風力発電用浮体構造物によれば、耐航性に優れるセミサブ式やTLP式などの浮体構造物によっても対応することが困難な風力発電機からの起振力を抑えることが可能であるとともに、波浪による浮体構造物の上下揺れを軽減することができる。この共振対策と波浪動揺対策によって、風力発電機の機器保全が確保された浮体式洋上風力発電システムを提供することができる。   For this reason, according to the floating structure for offshore wind power generation according to the present invention, the exciting force from the wind power generator that is difficult to cope with even with a floating structure such as a semi-sub type or a TLP type having excellent seaworthiness. While being able to suppress, the up-and-down swing of the floating structure by a wave can be reduced. A floating offshore wind power generation system in which equipment maintenance of the wind power generator is ensured can be provided by the countermeasures against resonance and wave vibration.

また、暴風波浪時や地震時に容易に緊張係留索の張力を緩めて損傷の危険を回避し、危険の可能性がなくなったら緊張力を回復させて動揺減衰機構の機能を再び発揮させることができる。これにより、台風や地震が非常に多い日本の海域特性に適合した浮体式洋上風力発電システムを提供することができる。   In addition, the tension mooring line can be easily relaxed during storm waves or earthquakes to avoid the risk of damage, and when the possibility of danger disappears, the tension can be restored and the function of the sway damping mechanism can be demonstrated again. . As a result, it is possible to provide a floating offshore wind power generation system that is suitable for the characteristics of Japan's marine areas, where typhoons and earthquakes are very common.

また、浮体式洋上風力発電には揺れに強い風力発電機の開発が必要とされているが、本発明によれば、塩害対策を施す程度の措置で既存の陸上設置型の風力発電機を流用できる可能性があり、他形態の浮体式洋上風力発電システムに対してコスト競争力において優位になると考えられる。   In addition, the floating offshore wind power generation requires the development of a wind power generator that is resistant to shaking, but according to the present invention, the existing on-shore wind power generator can be diverted with measures to prevent salt damage. There is a possibility that it will be possible, and it will be advantageous in cost competitiveness over other forms of floating offshore wind power generation systems.

以上説明したように、本発明によれば、洋上風力発電における風力発電機の基礎として用いられる浮体構造物であって、前記浮体構造物の浮力中心とアンカーとを連結し前記浮体構造物を緊張して係留する緊張係留索と、前記浮体構造物と前記緊張係留索との間に介装され前記浮体構造物の上下揺れを減衰させる動揺減衰機構とを備えるので、耐航性に優れるセミサブ式やTLP式などの浮体構造物によっても対応することが困難な風力発電機からの起振力を抑えることが可能であるとともに、波浪による浮体構造物の上下揺れを軽減することができる。この共振対策と波浪動揺対策によって、風力発電機の機器保全が確保された浮体式洋上風力発電システムを提供することができる。また、本発明によれば、塩害対策を施す程度の措置で既存の陸上設置型の風力発電機を流用できる可能性があり、他形態の浮体式洋上風力発電システムに対してコスト競争力において優位になると考えられる。   As described above, according to the present invention, a floating structure used as a foundation of a wind power generator in offshore wind power generation, which connects a buoyancy center of the floating structure and an anchor to tension the floating structure. A tension mooring line to be moored, and a swing damping mechanism that is interposed between the floating structure and the tension mooring line to attenuate the vertical swing of the floating structure. It is possible to suppress the vibration force from a wind power generator that is difficult to cope with even with a floating structure such as a TLP type or the like, and to reduce the vertical swing of the floating structure due to waves. A floating offshore wind power generation system in which equipment maintenance of the wind power generator is ensured can be provided by the countermeasures against resonance and wave vibration. In addition, according to the present invention, there is a possibility that an existing on-shore wind power generator can be diverted with measures to take measures against salt damage, and it is superior in cost competitiveness to other types of floating offshore wind power generation systems. It is thought that it becomes.

また、本発明の他の構成によれば、浮体および係留系の固有振動数を調整するための固有振動数調整機構をさらに備えるので、浮体および係留系の固有振動数を風力発電機のローターの固有振動数と一致しないように調整することで共振現象をより確実に防止することができる。   In addition, according to another configuration of the present invention, since the natural frequency adjusting mechanism for adjusting the natural frequency of the floating body and the mooring system is further provided, the natural frequency of the floating body and the mooring system is set to By adjusting so as not to coincide with the natural frequency, the resonance phenomenon can be prevented more reliably.

また、本発明の他の構成によれば、前記動揺減衰機構と前記緊張係留索との間に介装され、前記動揺減衰機構と前記緊張係留索とを係合して一体化する作動状態と、前記動揺減衰機構と前記緊張係留索とを切り離して前記一体化を解除する非作動状態とに切り替え可能なストッパー機構をさらに備え、通常時には前記ストッパー機構を作動状態にして前記動揺減衰機構と前記緊張係留索とを一体化する一方、暴風波浪時や地震時などの非常時には前記ストッパー機構を非作動状態にして前記動揺減衰機構と前記緊張係留索とを切り離し、作用する荷重に応じて前記緊張係留索の緊張力を調整可能にしている。   Further, according to another configuration of the present invention, an operation state that is interposed between the oscillation damping mechanism and the tension mooring line, and engages and integrates the oscillation damping mechanism and the tension mooring line; , Further comprising a stopper mechanism that can be switched to a non-operating state in which the sway damping mechanism and the tension mooring line are separated to release the integration, and the sway damping mechanism and the In the event of an emergency such as a storm wave or an earthquake, the tension mooring line is integrated, and the stopper mechanism is deactivated to separate the sway damping mechanism and the tension mooring line, and the tension mooring line depends on the applied load. The tension of the mooring line is adjustable.

常時大きな張力が作用している緊張係留索に対して、暴風波浪時や地震時に過大な変動荷重が作用すると破損等の支障が生じる危険があるが、上記の構成によれば、暴風波浪時や地震時に容易に緊張係留索の緊張力を緩めて損傷の危険を回避するとともに、危険の可能性がなくなったら緊張力を回復させて動揺減衰機構の機能を再び発揮させることができる。これにより、台風や地震が非常に多い日本の海域特性に適合した浮体式洋上風力発電システムを提供することができる。   If a tension mooring line that is constantly subjected to a large tension is subject to excessive fluctuating loads during storm waves or earthquakes, there is a risk of damage and other problems.However, according to the above configuration, In the event of an earthquake, the tension of the tension mooring line can be easily relaxed to avoid the risk of damage, and when the possibility of danger disappears, the tension can be restored and the function of the sway damping mechanism can be exhibited again. As a result, it is possible to provide a floating offshore wind power generation system that is suitable for the characteristics of Japan's marine areas, where typhoons and earthquakes are very common.

また、本発明の他の構成によれば、前記浮体構造物をカテナリー式で係留するカテナリー係留索をさらに備えるので、浮体構造物が漂流するのを防ぐことができる。   Moreover, according to the other structure of this invention, since the catenary mooring line which moored the said floating structure by catenary type is further provided, it can prevent that a floating structure drifts.

以上のように、本発明に係る洋上風力発電用浮体構造物は、浮体式洋上風力発電システムにおける風力発電機の基礎として洋上に浮かべて用いる浮体構造物に有用であり、特に、耐航性に優れるセミサブ式やTLP式などの浮体構造物によっても対応することが困難な風力発電機からの起振力を抑えるとともに、波浪による上下揺れを軽減するのに適している。   As described above, the floating structure for offshore wind power generation according to the present invention is useful for a floating structure used by floating on the ocean as a foundation of a wind power generator in a floating offshore wind power generation system, It is suitable for suppressing vibrations from wind power generators, which are difficult to handle even with excellent floating structures such as the semi-sub type and TLP type, and to reduce ups and downs caused by waves.

10 洋上風力発電用浮体構造物(浮体構造物)
12 風力発電機
14 緊張係留索
16 ダンパー(動揺減衰機構)
16a シリンダー
16b ピストンロッド
18 海水面
20 中央浮体
22 外側浮体
24 連結部材
26 カテナリー係留索
28 貫通孔
30 巻回ドラム
32 海底
34 アンカー
36 タワー
38 風車
40 ダンパー室
42 バネ(固有振動数調整機構)
44 ストッパー機構
44a ベース
44b パッド
46 開口
C 浮力中心
10 Floating structure for offshore wind power generation (floating structure)
12 Wind power generator 14 Tension mooring line 16 Damper (sway damping mechanism)
16a cylinder 16b piston rod 18 sea surface 20 central floating body 22 outer floating body 24 connecting member 26 catenary mooring cable 28 through hole 30 winding drum 32 seabed 34 anchor 36 tower 38 windmill 40 damper chamber 42 spring (natural frequency adjustment mechanism)
44 Stopper mechanism 44a Base 44b Pad 46 Opening C Buoyancy center

Claims (3)

洋上風力発電における風力発電機の基礎として用いられる浮体構造物であって、
前記浮体構造物の浮力中心とアンカーとを連結し前記浮体構造物を緊張して係留する緊張係留索と、
前記浮体構造物と前記緊張係留索との間に介装され前記浮体構造物の上下揺れを減衰させる動揺減衰機構と
前記動揺減衰機構と前記緊張係留索との間に介装され、前記動揺減衰機構と前記緊張係留索とを係合して一体化する作動状態と、前記動揺減衰機構と前記緊張係留索とを切り離して前記一体化を解除する非作動状態とに切り替え可能なストッパー機構とを備え、
通常時には前記ストッパー機構を作動状態にして前記動揺減衰機構と前記緊張係留索とを一体化する一方、
暴風波浪時や地震時などの非常時には前記ストッパー機構を非作動状態にして前記動揺減衰機構と前記緊張係留索とを切り離し、作用する荷重に応じて前記緊張係留索の緊張力を調整可能にしたことを特徴とする洋上風力発電用浮体構造物。
A floating structure used as the foundation of a wind power generator in offshore wind power generation,
A tension mooring line connecting the anchor of the buoyancy of the floating structure and an anchor, and tensioning and mooring the floating structure;
A vibration damping mechanism that is interposed between the floating structure and the tension mooring line and attenuates the vertical swing of the floating structure ;
An operation state that is interposed between the oscillation damping mechanism and the tension mooring line and engages and integrates the oscillation damping mechanism and the tension mooring line; and the oscillation damping mechanism and the tension mooring line. A stopper mechanism that can be switched to a non-operating state of separating and releasing the integration,
In the normal time, the stopper mechanism is in an activated state to integrate the sway damping mechanism and the tension mooring line,
In an emergency such as a storm wave or an earthquake, the stopper mechanism is deactivated to separate the sway damping mechanism and the tension mooring line so that the tension force of the tension mooring line can be adjusted according to the applied load. A floating structure for offshore wind power generation.
浮体および係留系の固有振動数を調整するための固有振動数調整機構をさらに備えることを特徴とする請求項1に記載の洋上風力発電用浮体構造物。   The floating structure for offshore wind power generation according to claim 1, further comprising a natural frequency adjusting mechanism for adjusting the natural frequency of the floating body and the mooring system. 前記浮体構造物をカテナリー式で係留するカテナリー係留索をさらに備えることを特徴とする請求項1または2に記載の洋上風力発電用浮体構造物。 The floating structure of offshore wind power generation floating structure according to claim 1 or 2, further comprising a catenary mooring lines to anchor in catenary type.
JP2013099441A 2013-05-09 2013-05-09 Floating structure for offshore wind power generation Active JP6130207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099441A JP6130207B2 (en) 2013-05-09 2013-05-09 Floating structure for offshore wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099441A JP6130207B2 (en) 2013-05-09 2013-05-09 Floating structure for offshore wind power generation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017018927A Division JP2017074947A (en) 2017-02-03 2017-02-03 Floating body structure for offshore wind power generation

Publications (2)

Publication Number Publication Date
JP2014218186A JP2014218186A (en) 2014-11-20
JP6130207B2 true JP6130207B2 (en) 2017-05-17

Family

ID=51937076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099441A Active JP6130207B2 (en) 2013-05-09 2013-05-09 Floating structure for offshore wind power generation

Country Status (1)

Country Link
JP (1) JP6130207B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2271547T3 (en) 2008-04-23 2014-04-07 Principle Power Inc Column stabilized offshore platform with water trapping plates and asymmetric mooring system to support offshore wind turbines
PT2992208T (en) 2013-05-20 2018-07-03 Principle Power Inc System and method for controlling offshore floating wind turbine platforms
PT3212496T (en) 2014-10-27 2019-11-06 Principle Power Inc Connection system for array cables of disconnectable offshore energy devices
KR102523801B1 (en) * 2015-04-20 2023-04-19 유니버시티 오브 메인 시스템 보드 오브 트러스티스 Hull for floating wind turbine platform
PT3310647T (en) 2015-06-19 2021-04-20 Principle Power Inc Floating wind turbine platform structure with optimized transfer of wave and wind loads
KR101809658B1 (en) * 2016-11-25 2017-12-18 세호엔지니어링 주식회사 Mooring apparatus for floating offshore wind power equipment
GB201719303D0 (en) * 2017-11-21 2018-01-03 Aep Group Ltd Tension leg buoy
CN108286503B (en) * 2018-04-08 2024-02-06 山东中能华源海上风电集团有限公司 Floating body type wind driven generator platform
CN109441733B (en) * 2018-12-14 2024-01-16 青岛理工大学 Energy-drawing-vibration-damping deep sea wind power generation floating type semi-submersible platform
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
CN111005844B (en) * 2019-12-12 2021-02-26 华中科技大学 Marine floating fan
JP7459024B2 (en) * 2021-08-03 2024-04-01 誠一 田中 Offshore wind power generation equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932580A (en) * 1982-08-18 1984-02-22 Mitsubishi Heavy Ind Ltd Draw leg type marine structure
US4793738A (en) * 1987-04-16 1988-12-27 Conoco Inc. Single leg tension leg platform
JP2010234965A (en) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd Taut mooring floating body system, support system, and towing method and installing method of floating body using support system

Also Published As

Publication number Publication date
JP2014218186A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6130207B2 (en) Floating structure for offshore wind power generation
JP2017074947A (en) Floating body structure for offshore wind power generation
JP5190329B2 (en) Support floating body for tension mooring floating body, and towing method and installation method of tension mooring floating body using the same
Muliawan et al. STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging
JP5798227B2 (en) Floating body installation method
JP6505840B2 (en) Floating platform for utilizing wind energy
JP6189555B2 (en) Marine floating structure consisting of many floating bodies
JP6607867B2 (en) Floatable support structure for offshore wind turbines or other devices
CA2900477C (en) Apparatus for mooring floater using submerged pontoon
JP2010234965A (en) Taut mooring floating body system, support system, and towing method and installing method of floating body using support system
US8813670B2 (en) Floating structure
KR20140120154A (en) Truss Type Lower Structure of Floating Offshore Wind Turbine
EP4115081B1 (en) Method of installing rotor blades on an offshore wind turbine
CN103241348A (en) Floating platform stabilizer
Mangiavacchi et al. Design Criteria Of Apile Founded Guyed Tower.
KR20090124351A (en) Sinkable vertical membrane breakwater
US20220126957A1 (en) Minimizing movements of offshore wind turbines
CN112727698A (en) Floating type wind turbine mooring system
KR101662486B1 (en) Semi-submersible offshore structure
KR102522679B1 (en) Offshore floating platform with reduced stress concentration
US20040105725A1 (en) Ultra-deepwater tendon systems
KR20140081246A (en) Mooring system of maring floating structures
CN207843229U (en) A kind of single point mooring system for auxiliary ship station dynamic positioning
KR20140120152A (en) Floating Platform of Floating Offshore Wind Turbine
CN207843230U (en) A kind of single point mooring system for auxiliary ship station dynamic positioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6130207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250