JP6126854B2 - Method and apparatus for managing concrete strength of concrete structures - Google Patents

Method and apparatus for managing concrete strength of concrete structures Download PDF

Info

Publication number
JP6126854B2
JP6126854B2 JP2013020303A JP2013020303A JP6126854B2 JP 6126854 B2 JP6126854 B2 JP 6126854B2 JP 2013020303 A JP2013020303 A JP 2013020303A JP 2013020303 A JP2013020303 A JP 2013020303A JP 6126854 B2 JP6126854 B2 JP 6126854B2
Authority
JP
Japan
Prior art keywords
temperature
concrete
mold
control device
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013020303A
Other languages
Japanese (ja)
Other versions
JP2014153071A (en
Inventor
宗宏 梅本
宗宏 梅本
繁美 菊田
繁美 菊田
康浩 井戸
康浩 井戸
直人 端
直人 端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2013020303A priority Critical patent/JP6126854B2/en
Publication of JP2014153071A publication Critical patent/JP2014153071A/en
Application granted granted Critical
Publication of JP6126854B2 publication Critical patent/JP6126854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

本発明は、コンクリート構造体で、特に設計基準強度Fc=200N/mm級のコンクリート構造体のコンクリート強度管理方法と、その管理方法に使用する管理装置に関するものである。 The present invention relates to a concrete strength management method for a concrete structure, in particular, a concrete structure having a design standard strength Fc = 200 N / mm 2 class, and a management apparatus used for the management method.

従来、高強度若しくは超高強度コンクリート構造体のコンクリート強度管理方法としては、例えば、設計基準強度Fc=150N/mm級の高強度コンクリート程度までにおいては、高温・蒸気養生せずにそのまま外気で養生を行うため、あらかじめ実験による構造体コンクリートと円柱供試体の強度補正値を求める必要がある。 Conventionally, as a concrete strength management method for a high-strength or ultra-high-strength concrete structure, for example, up to about a high-strength concrete having a design standard strength Fc = 150 N / mm 2 class, it can be used as it is in the outside air without being subjected to high temperature / steam curing. In order to perform curing, it is necessary to obtain in advance strength correction values for structural concrete and cylindrical specimens by experiments.

また、供試体を簡易熱断熱等の方法で、コンクリート構造体の温度履歴を模擬する養生が提案されている(特許文献1、2参照)が、コアと円柱供試体との強度差を実験的に求める必要がある。   Moreover, the curing which simulates the temperature history of a concrete structure by a method such as simple thermal insulation of the specimen has been proposed (see Patent Documents 1 and 2), but the difference in strength between the core and the cylindrical specimen is experimentally examined. It is necessary to ask for.

更に、超高強度コンクリートの強度発現を促すために、蒸気養生したプレキャスト部材は実用化されているが、Fc=200N/mm級の超高強度コンクリートの場合には現場打ちで実現されていない。 Furthermore, in order to promote the strength development of ultra-high-strength concrete, steam-cured precast members have been put into practical use, but in the case of ultra-high-strength concrete with Fc = 200 N / mm 2 class, it has not been realized on-site. .

特開2004−294141号公報JP 2004-294141 A 特開2006−118996号公報JP 2006-118996 A

このように、従来のコンクリート構造体のコンクリート強度管理方法においては、超高強度コンクリートにおけるコンクリート強度管理を円柱供試体で行うには、実験による補正値の算定が必要である。また、プレキャスト化して実用化するには手間が掛かり実体に則した強度管理とは言えない方法である。本発明に係るコンクリート構造体のコンクリート強度管理方法とその管理装置は、このような課題を解決するために提案されたものである。   As described above, in the conventional concrete strength management method for a concrete structure, in order to perform the concrete strength management in the ultra-high strength concrete with the cylindrical specimen, it is necessary to calculate a correction value by an experiment. In addition, it is a method that cannot be said to be strength management according to the substance because it takes time and effort to make it precast and put it to practical use. The concrete strength management method and management apparatus for a concrete structure according to the present invention have been proposed in order to solve such problems.

本発明に係るコンクリート構造体のコンクリート強度管理装置の上記課題を解決して目的を達成するための要旨は、コンクリート構造体におけるコンクリート強度を管理する装置であって、建設現場でコンクリート打設されて形成される構造体の実構成部材を囲繞する型枠と、 前記型枠および型枠から突出した前記実構成部材の一部を囲繞する断熱材と、前記型枠に設けられ温度管理用に制御装置に接続されて前記実構成部材の温度管理位置の温度が「外気温+15℃以上」になった時点から加熱養生のため使用される加熱装置と、前記型枠内の温度を検知するため前記型枠内の前記実構成部材中の温度管理位置に一部が埋設されて設置されるとともに制御装置に接続される温度センサーと、
前記加熱装置と前記温度センサーとに接続され実構成部材の温度履歴を管理する制御装置と、
模擬部材を囲繞する型枠と、前記模擬部材用の型枠を囲繞する断熱材と、前記模擬部材用の型枠に貼着されるとともに前記制御装置に接続される加熱装置と、前記模擬部材の温度を検知するために当該模擬部材の中に一部が埋設されるとともに前記制御装置に接続される温度センサーとから構成され、前記実構成部材の温度履歴に従って前記制御装置により前記模擬部材を養生することである。
The gist of the concrete strength management device for a concrete structure according to the present invention to solve the above-mentioned problems and achieve the object is a device for managing the concrete strength in the concrete structure, which is placed at the construction site. A mold that surrounds the actual component of the structure to be formed, a heat insulating material that surrounds the mold and a part of the actual component that protrudes from the mold, and a temperature control provided in the mold A heating device that is used for heating curing from the time when the temperature at the temperature management position of the actual constituent member is “outside air temperature + 15 ° C. or higher” connected to the device, and the temperature in the mold is detected A temperature sensor that is partly embedded in the temperature management position in the actual component in the mold and is connected to the control device; and
A control device connected to the heating device and the temperature sensor to manage the temperature history of the actual component;
A mold that surrounds the simulated member, a heat insulating material that surrounds the mold for the simulated member, a heating device that is attached to the mold for the simulated member and connected to the control device, and the simulated member A temperature sensor connected to the control device and partially embedded in the simulation member to detect the temperature of the simulation member. It is to cure.

本発明に係るコンクリート構造体のコンクリート強度管理方法の上記課題を解決して目的を達成するための要旨は、前記コンクリート強度管理装置を形成し、コンクリート温度83℃を境界値として80℃以上のコンクリート部材温度を72時間以上継続した後に加熱養生を停止するように制御装置で管理し、実構成部材の温度履歴の通りに制御装置によって模擬部材を養生して、前記模擬部材を実構成部材と同じ養生条件にしてコンクリート強度を発現させることである。 The gist for solving the above-mentioned problems of the concrete strength management method for a concrete structure according to the present invention is to form the concrete strength management device, and concrete having a concrete temperature of 83 ° C. and a boundary value of 80 ° C. or more. It is managed by the control device so as to stop the heating curing after continuing the member temperature for 72 hours or more , and the simulated member is cured by the control device according to the temperature history of the actual component member, and the simulated member is the same as the actual component member. It is to develop concrete strength under curing conditions.

本発明のコンクリート構造体のコンクリート強度管理方法とその管理装置によれば、実構成部材の温度履歴を直接、コンクリート強度管理用の模擬部材に与えるので、実構造部材と模擬部材とのコンクリート強度が等しくなる。これにより、強度補正値による補正などの手間が掛からなくなる。また、直接コア強度を試験するので、強度確保の信頼性が向上する。加熱装置をパネルヒーターとすることで、高温養生が可能となり現場打ち込みが可能となると言う優れた効果を奏するものである。   According to the concrete strength management method and management apparatus for a concrete structure of the present invention, the temperature history of the actual component member is directly given to the simulated member for concrete strength management, so that the concrete strength between the actual structure member and the simulated member is Will be equal. This eliminates the trouble of correction by the intensity correction value. In addition, since the core strength is directly tested, the reliability of securing the strength is improved. By using a panel heater as the heating device, an excellent effect is achieved that high temperature curing is possible and field driving is possible.

本発明に係るコンクリート構造体のコンクリート強度管理装置1における、実構成部材2を養生する様子を示す斜視図である。It is a perspective view which shows a mode that the actual structural member 2 is cured in the concrete strength management apparatus 1 of the concrete structure which concerns on this invention. 同本発明のコンクリート構造体のコンクリート強度管装置1における、図1の断面1で示す位置の断面図(A)、同じく断面2で示す位置の断面図(B)、同じく断面3で示す位置の断面図(C)である。In the concrete strength pipe device 1 of the concrete structure of the present invention, a sectional view (A) at a position indicated by a section 1 in FIG. 1, a sectional view (B) at a position indicated by a section 2, and a position indicated by a section 3. It is sectional drawing (C). 同本発明のコンクリート構造体のコンクリート強度管装置1における、模擬部材8を養生する様子を示す斜視図である。It is a perspective view which shows a mode that the simulation member 8 is cured in the concrete strength pipe apparatus 1 of the concrete structure of the same invention. 同本発明のコンクリート構造体のコンクリート強度管装置1における、図3の断面1で示す位置および断面3で示す位置の断面図(A)、同じく断面2で示す位置の断面図(B)である。FIG. 4 is a cross-sectional view (A) of the position shown by cross-section 1 in FIG. 3 and a position shown by cross-section 3 in the concrete strength pipe device 1 of the concrete structure of the present invention, and a cross-sectional view (B) of the same position shown by cross-section 2. . 同本発明のコンクリート構造体のコンクリート強度管装置1の全体構成図である。It is a whole block diagram of the concrete strength pipe apparatus 1 of the concrete structure of the same invention. 同コンクリート構造体のコンクリート強度管理方法における、加熱養生の手順を示すフロー図である。It is a flowchart which shows the procedure of the heat curing in the concrete strength management method of the concrete structure. 養生温度とコア強度との関係を示す説明図(A)、材齢と圧縮強度との関係を示す説明図(B)である。It is explanatory drawing (A) which shows the relationship between curing temperature and core intensity | strength, and explanatory drawing (B) which shows the relationship between age and compressive strength. 模擬部材8と実構成部材2である柱とのコア強度の関係を示す説明図である。It is explanatory drawing which shows the relationship of the core strength of the simulation member 8 and the pillar which is the actual structural member 2. FIG.

本発明に係るコンクリート構造体のコンクリート強度管理方法とその管理装置は、図5に示すように、実構成部材(柱)2の温度履歴を直接、模擬部材8に与えるようにするものである。   As shown in FIG. 5, the concrete strength management method and its management apparatus for a concrete structure according to the present invention directly gives the temperature history of the actual component (column) 2 to the simulation member 8.

本発明に係るコンクリート構造体のコンクリート強度管理装置1は、コンクリート構造体におけるコンクリート強度を管理する装置であって、図1と図5とに示すように、建設現場でコンクリート打設されて形成される構造体である、例えば、柱の実構成部材2を囲繞する型枠3と、前記型枠3および該型枠3から突出した前記実構成部材2の一部である柱主筋2aを囲繞する断熱材4,4aと、前記型枠3の外側表面に貼着されて設けられ温度管理用に制御装置6に接続されて使用される加熱装置5と、前記型枠3内の温度を検知するため前記型枠3内の前記実構成部材2中の温度管理位置に一部が埋設されて設置されるとともに制御装置6に接続される温度センサー7と、前記加熱装置5と前記温度センサー7とに接続され実構成部材2の温度履歴を管理する制御装置6とがある。 A concrete strength management device 1 for a concrete structure according to the present invention is a device for managing the concrete strength in a concrete structure, and is formed by placing concrete at a construction site as shown in FIGS. For example, the mold 3 surrounding the actual component 2 of the column, and the column main reinforcement 2a that is part of the actual component 2 protruding from the mold 3 and the mold 3 are surrounded. Insulating materials 4, 4 a, a heating device 5 attached to the outer surface of the mold 3 and connected to the control device 6 for temperature management, and a temperature in the mold 3 are detected. Therefore, a temperature sensor 7 that is partly embedded in the temperature management position in the actual component 2 in the mold 3 and is connected to the control device 6, the heating device 5, and the temperature sensor 7 Connected to the actual component 2 There is a control device 6 which manages the temperature history.

更に、図3と図5とに示すように、コンクリート製の模擬部材8を囲繞する型枠3と、前記模擬部材8用の型枠3を囲繞する断熱材4,4aと、前記模擬部材8用の型枠3に貼着されるとともに前記制御装置6に接続される加熱装置5と、前記模擬部材8の温度を検知するために当該模擬部材8の中に一部が埋設されるとともに前記制御装置6に接続される温度センサー7とから構成される。   Further, as shown in FIGS. 3 and 5, the mold 3 surrounding the concrete simulation member 8, the heat insulating materials 4, 4 a surrounding the mold 3 for the simulation member 8, and the simulation member 8. And a heating device 5 that is attached to the mold 3 and connected to the control device 6, and a part of the simulation member 8 is embedded in the simulation member 8 in order to detect the temperature of the simulation member 8. And a temperature sensor 7 connected to the control device 6.

上記各構成部材について説明する。まず、図1と、図5の図中左側とにおいて示す実構成部材2側の養生装置に関して説明する。前記コンクリート構造物の実構成部材とは、柱2である。コンクリート構造体として高温蒸気養生ができる対象として適切で扱いやすいからである。この実構成部材である柱2は、梁型枠およびスラブ型枠が柱梁接合部に設置されていない状態の柱部材である。   Each said structural member is demonstrated. First, the curing device on the actual component 2 side shown in FIG. 1 and the left side in FIG. 5 will be described. The actual structural member of the concrete structure is the pillar 2. This is because the concrete structure is suitable and easy to handle as a target capable of high temperature steam curing. The pillar 2, which is an actual constituent member, is a pillar member in a state where the beam form frame and the slab form frame are not installed at the column beam joint.

また、前記型枠3は鋼製型枠である。該鋼製型枠3は、コンクリート構造体の柱2の全体(上部を除く)を被覆する。この鋼製型枠3の柱脚付近の4面には、加熱養生のための加熱装置としてパネルヒーター5を設置する(図中では、外側の断熱材4を、その下部の一部を省いて示している)。   The mold 3 is a steel mold. The steel mold 3 covers the entire column 2 of the concrete structure (excluding the upper part). Panel heaters 5 are installed as heating devices for heat curing on the four surfaces in the vicinity of the column bases of the steel mold 3 (in the drawing, the outer heat insulating material 4 is omitted from a part of the lower part thereof. Shown).

前記パネルヒーター5は、例えばサーモスタットにより、電源のON/OFFが制御可能なものである。前記パネルヒーター5は、制御装置6に電気的に接続されている。前記鋼製型枠3の外側表面には、発泡ポリスチレンフォーム製の断熱材(厚さt=150mm)4を設置する。ただし、前記柱脚付近にはパネルヒーター5が貼着されているので、図2(C)に示すように、該パネルヒーター5の上から厚さを調節して、当該断熱材4を設置する。   The panel heater 5 can control ON / OFF of a power source by, for example, a thermostat. The panel heater 5 is electrically connected to the control device 6. A heat insulating material (thickness t = 150 mm) 4 made of expanded polystyrene foam is installed on the outer surface of the steel mold 3. However, since the panel heater 5 is affixed in the vicinity of the column base, as shown in FIG. 2C, the thickness is adjusted from above the panel heater 5 to install the heat insulating material 4. .

前記断熱材4は、図2(A)に示すように、柱用コンクリートの鋼製型枠3内への打ち込み完了後の柱天端にも設置される。図1に示すように、柱主筋2aは、前記柱天端の断熱材4を貫通させる。柱2の上部に突出する前記柱主筋2aの全部には、適宜な保温材を個々に巻き付けるものである。   As shown in FIG. 2 (A), the heat insulating material 4 is also installed at the top of the column after completion of driving the column concrete into the steel mold 3. As shown in FIG. 1, the column main reinforcement 2a penetrates the heat insulating material 4 at the column top end. Appropriate heat insulating materials are individually wound around all the pillar main bars 2a protruding from the upper part of the pillar 2.

また、図1と図2(A)とに示すように、前記柱主筋2aの全体を包むようにして、断熱シート4aで覆う。この断熱シート4aの、鋼製型枠3を被覆する部分の開口部は、図1に示すように、紐などで縛って密閉する。   Moreover, as shown in FIG. 1 and FIG. 2 (A), it covers with the heat insulation sheet | seat 4a so that the said column main reinforcement 2a may be wrapped. As shown in FIG. 1, the opening of the heat insulating sheet 4 a that covers the steel mold 3 is sealed with a string or the like.

このようにして、図2(A)〜(C)に示すように、実構成部材である柱2の全体を断熱材4、断熱シート4aなどで覆って、以下、図6に示すように加熱養生する。かかる養生において、例えば、コンクリート打設時の予想平均気温が27℃以下の場合は、図1に示すように、前記断熱シート4a内をヒーター5aで加熱する。   In this way, as shown in FIGS. 2A to 2C, the entire pillar 2 as an actual constituent member is covered with the heat insulating material 4, the heat insulating sheet 4 a, and the like, and then heated as shown in FIG. 6. Take care. In such curing, for example, when the expected average temperature at the time of placing concrete is 27 ° C. or lower, the inside of the heat insulating sheet 4a is heated by the heater 5a as shown in FIG.

前記柱脚付近の4面に設置したパネルヒーター5による加熱養生は、図1と図2(C)に示すように、温度センサー7によるコンクリート内温度管理位置の温度が、鋼製型枠3内に打設したコンクリートの凝結反応に伴って、「外気温+15℃以上」になった時点から開始する。前記温度センサー7によるコンクリート内温度管理位置は、図1および図2(C)に示すように、柱下端レベルから+50mm、柱表面からX,Y方向とも50mmの深さの地点である。   As shown in FIG. 1 and FIG. 2 (C), the heat curing by the panel heater 5 installed on the four surfaces in the vicinity of the column base is such that the temperature in the concrete temperature management position by the temperature sensor 7 is within the steel mold 3. It starts from the time when it becomes “outside air temperature + 15 ° C. or higher” with the setting reaction of the concrete placed in As shown in FIGS. 1 and 2C, the temperature control position in the concrete by the temperature sensor 7 is a point having a depth of +50 mm from the bottom end level of the column and 50 mm from the column surface in both the X and Y directions.

前記パネルヒーター5は、前記温度センサー7による前記コンクリート内温度管理位置の温度が、「コンクリート温度83℃」を境界値として、電源がON/OFFするようなサーモスタットにより制御装置6を介して制御し、80℃以上のコンクリート部材温度を72時間以上継続する。   The panel heater 5 is controlled via the control device 6 by a thermostat that turns on / off the power at the temperature control position in the concrete by the temperature sensor 7 with a “concrete temperature of 83 ° C.” as a boundary value. The concrete member temperature of 80 ° C. or higher is continued for 72 hours or longer.

前記80℃以上のコンクリート部材温度を72時間以上継続した後、加熱養生を停止する。その後も保温養生は継続させて、コンクリートの部材温度が緩やかに低下することを確認する。なお、万が一の停電に備えてジェネレータ(図示せず)を準備しておくのが好ましいものである。   After the concrete member temperature of 80 ° C. or higher is continued for 72 hours or longer, the heat curing is stopped. After that, heat insulation curing is continued and it is confirmed that the concrete member temperature gradually decreases. It is preferable to prepare a generator (not shown) in case of a power failure.

次に、図5の図中右側に示す、模擬部材8側の養生装置について説明する。図3および図4(A),(B)に示すように、前記柱2と同じ断面形状の大きさで、高さが1m程度の柱である模擬部材8の全体を構成型枠3で囲繞する。この模擬部材8の上下面には、断熱材4が被覆されている。加熱装置として、鋼製型枠3の外表面にパネルヒーター5が、図示するように、一側面に2枚にして貼着される。   Next, the curing device on the simulated member 8 side shown on the right side in FIG. 5 will be described. As shown in FIG. 3 and FIGS. 4A and 4B, the entire simulated member 8 which is a column having the same cross-sectional size as that of the column 2 and a height of about 1 m is surrounded by the component mold 3. To do. The upper and lower surfaces of the simulation member 8 are covered with a heat insulating material 4. As a heating device, a panel heater 5 is attached to the outer surface of the steel mold 3 in two sheets on one side as shown in the figure.

また、この模擬部材8側では、高さ500mmで柱表面からX,Y方向とも50mmの深さの地点が温度センサー7による温度管理位置であり、そこに前記温度センサー7の一端部が埋設されて、他端部から信号線が配線され制御装置6に接続されて、模擬部材8のコンクリート温度が制御装置6に伝達される。   On the simulated member 8 side, the temperature management position by the temperature sensor 7 is a point having a height of 500 mm and a depth of 50 mm in both the X and Y directions from the column surface, and one end of the temperature sensor 7 is embedded therein. Then, a signal line is wired from the other end and connected to the control device 6, and the concrete temperature of the simulated member 8 is transmitted to the control device 6.

前記鋼製型枠3の外側に、断熱シート4aが全体を包むようにして被覆される。そして、前記制御装置6により、前記実構成部材2の温度履歴に従って前記模擬部材8を加熱養生するものである。   The heat insulating sheet 4a is covered on the outside of the steel mold 3 so as to wrap the whole. Then, the simulation member 8 is heated and cured according to the temperature history of the actual component 2 by the control device 6.

このように、本発明に係るコンクリート強度管理装置1を形成し、実構成部材2の温度履歴の通りに制御装置6によって模擬部材8を養生して、前記模擬部材8を実構成部材2と同じ養生条件にしてコンクリート強度を発現させる。   In this way, the concrete strength management device 1 according to the present invention is formed, the simulated member 8 is cured by the control device 6 according to the temperature history of the actual component 2, and the simulated member 8 is the same as the actual component 2. The concrete strength is expressed under curing conditions.

従って、前記実構成部材2と模擬部材8との温度履歴が同じとなって、コンクリート強度が等しくなり、強度補正が不要となるものである。このことは、図7〜図8に示すように、コア強度の相関関係を示すもので、養生温度が確保されるとコア発現強度が確保される。コア加熱養生・断熱養生により、材齢も28日強度で示される強度が、その後の経過においても、ほぼ一定である。また、加熱1m柱と実物大の柱のコア強度とも、強度がほぼ一致しており、高い相関関係を示している。   Therefore, the temperature histories of the actual component 2 and the simulated member 8 are the same, the concrete strength is equal, and no strength correction is required. This shows the correlation between the core strengths as shown in FIGS. 7 to 8, and when the curing temperature is secured, the core expression strength is secured. The strength indicated by the 28-day strength by the core heat curing / thermal insulation curing is substantially constant in the subsequent course. In addition, the core strengths of the heated 1 m pillar and the full-size pillar are almost the same, indicating a high correlation.

よって、模擬部材8のコンクリート強度を強度試験機で検査することで、設計基準強度Fc=200N/mm級のコンクリート構造体のコンクリート強度が直ちに判るものである。 Therefore, by checking the concrete strength of the simulation member 8 with a strength tester, the concrete strength of the concrete structure having the design standard strength Fc = 200 N / mm 2 class can be immediately determined.

本発明に係るコンクリート構造体のコンクリート強度管理方法とその管理装置における技術的思想は、コンクリート強度管理方法だけに限らず、対象物として大きな物体の一部を供試体として試験する、強度・粘度・耐久性などの試験方法の全般に適用できるものである。   The technical idea in the concrete strength management method and the management apparatus for the concrete structure according to the present invention is not limited to the concrete strength management method, and tests a part of a large object as an object as a test specimen. It can be applied to test methods such as durability.

1 コンクリート構造体のコンクリート強度管理装置、
2 実構成部材、 2a 柱主筋、
3 鋼製型枠、
4 断熱材、 4a 断熱シート、
5 パネルヒーター、 5a ヒーター、
6 制御装置、
7 温度センサー、
8 模擬部材。
1 Concrete strength management device for concrete structures,
2 actual components, 2a column main reinforcement,
3 Steel formwork,
4 heat insulation material, 4a heat insulation sheet,
5 Panel heater, 5a heater,
6 Control device,
7 Temperature sensor,
8 Simulated member.

Claims (2)

コンクリート構造体におけるコンクリート強度を管理する装置であって、
建設現場でコンクリート打設されて形成される構造体の実構成部材を囲繞する型枠と、
前記型枠および型枠から突出した前記実構成部材の一部を囲繞する断熱材と、
前記型枠に設けられ温度管理用に制御装置に接続されて前記実構成部材の温度管理位置の温度が「外気温+15℃以上」になった時点から加熱養生のため使用される加熱装置と、
前記型枠内の温度を検知するため前記型枠内の前記実構成部材中の温度管理位置に一部が埋設されて設置されるとともに制御装置に接続される温度センサーと、
前記加熱装置と前記温度センサーとに接続され実構成部材の温度履歴を管理する制御装置と、
模擬部材を囲繞する型枠と、
前記模擬部材用の型枠を囲繞する断熱材と、
前記模擬部材用の型枠に貼着されるとともに前記制御装置に接続される加熱装置と、
前記模擬部材の温度を検知するために当該模擬部材の中に一部が埋設されるとともに前記制御装置に接続される温度センサーとから構成され、
前記実構成部材の温度履歴に従って前記制御装置により前記模擬部材を養生すること、
を特徴とするコンクリート構造体のコンクリート強度管理装置。
A device for managing concrete strength in a concrete structure,
A formwork that surrounds the actual structural member of the structure formed by placing the concrete at the construction site;
A heat insulating material surrounding the mold and a part of the actual constituent member protruding from the mold;
A heating device used for heating curing from the time when the temperature at the temperature management position of the actual component member is “outside air temperature + 15 ° C. or higher”, which is provided in the mold and connected to a control device for temperature management;
In order to detect the temperature in the mold, a temperature sensor that is partially embedded in the temperature management position in the actual constituent member in the mold and is connected to a control device;
A control device connected to the heating device and the temperature sensor to manage the temperature history of the actual component;
A mold that surrounds the simulated member;
A heat insulating material surrounding the mold for the simulated member;
A heating device which is attached to the mold for the simulated member and connected to the control device;
In order to detect the temperature of the simulation member, a part of the simulation member is embedded and a temperature sensor connected to the control device,
Curing the simulated member by the control device according to the temperature history of the actual component;
A concrete strength management device for a concrete structure.
請求項1に記載のコンクリート強度管理装置を形成し、コンクリート温度83℃を境界値として80℃以上のコンクリート部材温度を72時間以上継続した後に加熱養生を停止するように制御装置で管理し、
実構成部材の温度履歴の通りに制御装置によって模擬部材を養生して、前記模擬部材を実構成部材と同じ養生条件にしてコンクリート強度を発現させること、
を特徴とするコンクリート構造体のコンクリート強度管理方法。
The concrete strength management device according to claim 1 is formed, and the concrete temperature of 80 ° C or higher is continued for 72 hours or more with a concrete temperature of 83 ° C as a boundary value, and then managed by the control device so as to stop heating curing.
Curing the simulated member by the control device according to the temperature history of the actual component, and making the simulated member have the same curing conditions as the actual component to develop concrete strength,
A concrete strength management method for a concrete structure characterized by the following.
JP2013020303A 2013-02-05 2013-02-05 Method and apparatus for managing concrete strength of concrete structures Active JP6126854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020303A JP6126854B2 (en) 2013-02-05 2013-02-05 Method and apparatus for managing concrete strength of concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020303A JP6126854B2 (en) 2013-02-05 2013-02-05 Method and apparatus for managing concrete strength of concrete structures

Publications (2)

Publication Number Publication Date
JP2014153071A JP2014153071A (en) 2014-08-25
JP6126854B2 true JP6126854B2 (en) 2017-05-10

Family

ID=51575093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020303A Active JP6126854B2 (en) 2013-02-05 2013-02-05 Method and apparatus for managing concrete strength of concrete structures

Country Status (1)

Country Link
JP (1) JP6126854B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106893675A (en) * 2017-03-16 2017-06-27 河南工业大学 Acceleration reaction unit of the mould on the durability influence of concrete in a kind of simulation silo
JP7016754B2 (en) * 2018-03-30 2022-02-07 前田建設工業株式会社 Curing management method for concrete structures
CN108983841B (en) * 2018-08-15 2024-05-14 中国三峡建设管理有限公司 Temperature control apparatus and method
CN112710816B (en) * 2020-12-15 2022-12-30 江苏中鼎建材集团有限公司 Concrete test device based on regeneration technology reinforcing is toughened

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178036A (en) * 1985-02-04 1986-08-09 Mitsuo Sohgoh Kenkyusho Kk Treatment of substance
JPH02300662A (en) * 1989-05-15 1990-12-12 Shimizu Corp Method and device for controlling strength of concrete
JP2680707B2 (en) * 1990-01-17 1997-11-19 三菱化学株式会社 Reinforcement method for concrete structural materials
JP2775235B2 (en) * 1994-11-29 1998-07-16 勝村建設株式会社 Method and apparatus for producing specimen of structural concrete
JP2004060173A (en) * 2002-07-25 2004-02-26 Taisei Corp Strength increasing method for high-strength concrete structure
DE102006045091B4 (en) * 2006-09-21 2013-04-25 Universität Dortmund Process for producing an aerated concrete and aerated concrete produced according to the method
JP2008254254A (en) * 2007-04-03 2008-10-23 Fujita Corp Method for manufacturing creep distortion reduction type reinforced concrete column member
JP2010264734A (en) * 2009-05-12 2010-11-25 Tadahiko Murakami Concrete curing management device

Also Published As

Publication number Publication date
JP2014153071A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6126854B2 (en) Method and apparatus for managing concrete strength of concrete structures
Goode Iii et al. Centrifuge modeling of end-restraint effects in energy foundations
JP6645760B2 (en) Concrete strength estimation method and curing device
Rezazadeh et al. Influence of prestress level on NSM CFRP laminates for the flexural strengthening of RC beams
Wellman et al. Experimental evaluation of thin composite floor assemblies under fire loading
Van Tittelboom et al. Self‐repair of thermal cracks in concrete sandwich panels
KR101344909B1 (en) Thermophyscal properties measuring appratus of concrete and method for the same
JP2016098534A (en) Concrete curing method
JP7016754B2 (en) Curing management method for concrete structures
Zhang et al. Effects of high temperature on residual punching strength of slab-column connections after cooling and enhanced post-punching load resistance
Zhou et al. Finite-element simulation of hydration and creep of early-age concrete materials
KR20120106190A (en) Device for meansuring the strain of substance to be measured
Sawicki et al. Inverse analysis of R-UHPFRC beams to determine the flexural response under service loading and at ultimate resistance
Pinoteau et al. Prediction of failure of a cantilever–wall connection using post-installed rebars under thermal loading
Liao et al. Fire resistance of concrete slabs in punching shear
Boulay et al. Monitoring of the creep and the relaxation behaviour of concrete since setting time, part 1: compression
Zhou et al. Early-age temperature and strain in basement concrete walls: Field monitoring and numerical modeling
JP2005344437A (en) Concrete curing method
Dhima et al. Analysis of the thermo-mechanical behaviour of steel-to-timber connections in bending
JP2014013168A (en) Manufacturing method and device for test piece of structural concrete
JP2023057604A (en) Concrete testing method and concrete testing system
Burke et al. Low and high temperature performance of near surface mounted FRP strengthened concrete slabs
JP6406702B2 (en) Method for measuring self-shrinkage of concrete
JPH0772723B2 (en) Method and apparatus for predicting concrete temperature
Li et al. Early-age stress analysis of a concrete diaphragm wall through tensile creep modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6126854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250