JP6125442B2 - Rotating shaft bearing device - Google Patents

Rotating shaft bearing device Download PDF

Info

Publication number
JP6125442B2
JP6125442B2 JP2014006439A JP2014006439A JP6125442B2 JP 6125442 B2 JP6125442 B2 JP 6125442B2 JP 2014006439 A JP2014006439 A JP 2014006439A JP 2014006439 A JP2014006439 A JP 2014006439A JP 6125442 B2 JP6125442 B2 JP 6125442B2
Authority
JP
Japan
Prior art keywords
casing
bearing
movable body
magnet
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014006439A
Other languages
Japanese (ja)
Other versions
JP2015136232A (en
Inventor
操 倉田
操 倉田
将志 北村
将志 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takano Co Ltd
Original Assignee
Takano Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Co Ltd filed Critical Takano Co Ltd
Priority to JP2014006439A priority Critical patent/JP6125442B2/en
Priority to KR1020140038694A priority patent/KR101557915B1/en
Priority to CN201410188267.8A priority patent/CN104795959B/en
Publication of JP2015136232A publication Critical patent/JP2015136232A/en
Application granted granted Critical
Publication of JP6125442B2 publication Critical patent/JP6125442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Motor Or Generator Frames (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、ロータリソレノイド等のケーシングに設けることにより回転シャフトを回転自在に支持する回転シャフトの軸受装置に関する。   The present invention relates to a bearing device for a rotating shaft that rotatably supports the rotating shaft by being provided in a casing such as a rotary solenoid.

従来、ケーシングに設けることにより回転シャフトを回転自在に支持する軸受部を有する軸受装置としては、特許文献1で開示されるロータリソレノイドに備える軸受装置が知られている。   2. Description of the Related Art Conventionally, a bearing device provided in a rotary solenoid disclosed in Patent Document 1 is known as a bearing device having a bearing portion that rotatably supports a rotating shaft by being provided in a casing.

同文献1で開示されるロータリソレノイドは、ケーシングに回動自在に支持されるシャフト部(回転シャフト)と、このシャフト部に一端を固定し、かつ他端を自由端にするとともに、マグネットを有する可動部と、ケーシングに固定し、かつ可動部の可動方向両側に所定間隔を置いて配するとともに、通電制御されることにより可動部を選択的に吸引する鉄芯を有する一対の電磁コイル部を設けて構成したものであり、特に、シャフト部を支持するに際しては、ケーシングに、別途製作した前後一対の軸受部を取付け、この軸受部により回転シャフトの前後位置を回転自在に支持する軸受構造(軸受装置)を採用している。   The rotary solenoid disclosed in Patent Document 1 includes a shaft portion (rotating shaft) that is rotatably supported by a casing, one end fixed to the shaft portion, the other end being a free end, and a magnet. A movable part and a pair of electromagnetic coil parts having an iron core that is fixed to the casing and arranged at predetermined intervals on both sides in the movable direction of the movable part and that selectively attracts the movable part by being energized. In particular, when supporting the shaft portion, a pair of separately manufactured front and rear bearing portions are attached to the casing, and a bearing structure that rotatably supports the front and rear positions of the rotating shaft by this bearing portion ( The bearing device is adopted.

特開平11−178306号公報JP-A-11-178306

しかし、上述した従来における回転シャフトの軸受装置は、次のような解決すべき課題が存在した。   However, the conventional rotating shaft bearing device described above has the following problems to be solved.

第一に、ケーシングは機械的強度を考慮し、また、磁気回路の一部を構成することも多いことから、金属素材を用いて形成するとともに、ケーシングには別途の軸受部を取付け、この軸受部により回転シャフトを回転自在に支持している。したがって、金属素材を用いることに伴う各種ディメリット、具体的には、全体の軽量化を図るには限界がある点、製造する際の加工性に劣る点,素材に伴う材料コストが割高になる点等の各種ディメリットがあった。   First, the casing is mechanically strong and is often part of the magnetic circuit. Therefore, the casing is made of a metal material, and a separate bearing is attached to the casing. The rotating shaft is rotatably supported by the portion. Therefore, various disadvantages associated with the use of metal materials, specifically, there are limits to reducing the overall weight, inferior workability in manufacturing, and material costs associated with the materials are expensive. There were various disadvantages such as points.

第二に、ケーシングの前後に別途の軸受部をそれぞれ取付け、この軸受部により回転シャフトを回転自在に支持する構造のため、ケーシングに加えて別部品となる二つの軸受部が必要になるとともに、軸受部を組付けるための工数の増加を招く。結局、部品点数の増加による部品コストの上昇及び組付けの工数増加による製造コストの上昇を招き、無視できないコストアップ要因となっていた。   Secondly, a separate bearing part is attached to the front and rear of the casing, and the rotating shaft is rotatably supported by this bearing part, so that in addition to the casing, two bearing parts as separate parts are required, The man-hour for assembling the bearing portion is increased. Eventually, the increase in the parts cost due to the increase in the number of parts and the increase in the manufacturing cost due to the increase in the man-hours for assembly caused a cost increase that cannot be ignored.

本発明は、このような背景技術に存在する課題を解決した回転シャフトの軸受装置の提供を目的とするものである。   An object of the present invention is to provide a bearing device for a rotary shaft that solves the problems existing in the background art.

本発明に係る回転シャフトの軸受装置1は、上述した課題を解決するため、回転シャフト2を回転自在に支持するロータリソレノイドMのケーシング3に設けた前側に位置する軸受部4と後側に位置する軸受部を4を備える軸受装置を構成するに際して、三角形における一つの角部P1に対応する位置を回転シャフト2に固定し、かつ自由端となる残りの二つの角部P2,P3に対応する位置にS極とN極がそれぞれ生じて旋回可能なマグネット部7mを有する可動体部7と、ケーシング3に固定して一方のコイル端面8sをマグネット部7mに対面させた単一コイル8cを有し、給電制御により可動体部7を吸引又は反発可能にする界磁部8と、可動体部7が旋回する範囲を所定の範囲Zrに規制するケーシング3の内壁を用いた可動体規制部9とを備えてロータリソレノイドMを構成する。   In order to solve the above-described problem, a bearing device 1 for a rotary shaft according to the present invention is provided with a bearing portion 4 located on the front side and a rear side provided on a casing 3 of a rotary solenoid M that rotatably supports the rotary shaft 2. In constructing a bearing device having four bearing portions, a position corresponding to one corner portion P1 in the triangle is fixed to the rotary shaft 2 and corresponds to the remaining two corner portions P2 and P3 which are free ends. There is a movable body portion 7 having a magnet portion 7m that can be turned by generating an S pole and an N pole at each position, and a single coil 8c that is fixed to the casing 3 and has one coil end face 8s facing the magnet portion 7m. Then, a field control unit 8 that can attract or repel the movable body part 7 by power supply control, and a movable body regulation using an inner wall of the casing 3 that restricts the range in which the movable body part 7 turns to a predetermined range Zr. Constituting the rotary solenoid M and a part 9.

加えて、軸受部4を、軸方向Fsに対して所定の厚さDtとなるようにケーシング3の面3fから軸方向Fsに突出形成し、かつ径方向Fdに対して所定のリング厚Drを有するリング状となるように、合成樹脂素材Rによりケーシング3と一体成形し、軸受部4の端面に、周方向Fcに沿って所定の間隔La置きに配し、かつ底部5dを所定の厚さLbに選定することにより、熱膨張及び収縮を吸収する複数の公差吸収凹部5…を形成し、この公差吸収凹部5と軸受部4の内周面4s間を、少なくとも、合成樹脂素材Rに基づく内周面4sの径寸法の公差を吸収する厚さLcに選定してなることを特徴とする。   In addition, the bearing portion 4 is formed to protrude in the axial direction Fs from the surface 3f of the casing 3 so as to have a predetermined thickness Dt with respect to the axial direction Fs, and a predetermined ring thickness Dr with respect to the radial direction Fd. The synthetic resin material R is integrally formed with the casing 3 so as to have a ring shape, and is arranged on the end surface of the bearing portion 4 at predetermined intervals La along the circumferential direction Fc, and the bottom portion 5d has a predetermined thickness. By selecting Lb, a plurality of tolerance absorbing recesses 5 that absorb thermal expansion and contraction are formed, and the gap between the tolerance absorbing recess 5 and the inner peripheral surface 4s of the bearing portion 4 is based at least on the synthetic resin material R. The thickness Lc is selected to absorb the tolerance of the diameter of the inner peripheral surface 4s.

この場合、発明の好適な態様により、軸受部4の外周部4cの近傍に位置するケーシング3の面には、当該軸受部4の外周部4cの周方向Fcに沿って所定の間隔置きに配した複数の第二凹部5s…を形成することができる。   In this case, according to a preferred aspect of the invention, the surface of the casing 3 located in the vicinity of the outer peripheral portion 4 c of the bearing portion 4 is arranged at predetermined intervals along the circumferential direction Fc of the outer peripheral portion 4 c of the bearing portion 4. A plurality of the second recesses 5s can be formed.

このような構成を有する本発明に係る回転シャフトの軸受装置1によれば、次のような顕著な効果を奏する。   According to the bearing device 1 of the rotating shaft according to the present invention having such a configuration, the following remarkable effects can be obtained.

(1) 軸受部4を、軸方向Fsに対して所定の厚さDtを有し、かつ径方向Fdに対して所定のリング厚Drを有するリング状となるように、合成樹脂素材Rによりケーシング3と一体成形するとともに、軸受部4の端面に、周方向Fcに沿って所定の間隔La置きに配し、かつ底部5dを所定の厚さLbに選定した複数の公差吸収凹部5…を形成することにより、この公差吸収凹部5と軸受部4の内周面4s間を所定の厚さLcに選定してなるため、合成樹脂素材Rを使用し、ケーシング3と軸受部4を一体成形する場合であっても、製造時(成形時)や使用時における形状変形を最小限に抑制可能となり、軸受としての十分な安定性及び信頼性を確保できる。しかも、所定の間隔La置きに配し、かつ底部5dを所定の厚さLbに選定した複数の公差吸収凹部5…を有することから、使用時における温度環境の変化により熱膨張や収縮が生じた場合であっても、これらの熱膨張や収縮を吸収することが可能となる。   (1) The casing 4 is made of a synthetic resin material R so that the bearing 4 has a ring shape having a predetermined thickness Dt with respect to the axial direction Fs and a predetermined ring thickness Dr with respect to the radial direction Fd. 3 and a plurality of tolerance absorbing recesses 5 are formed on the end surface of the bearing portion 4 at predetermined intervals La along the circumferential direction Fc and the bottom portion 5d is selected to have a predetermined thickness Lb. By doing so, since the gap between the tolerance absorbing recess 5 and the inner peripheral surface 4s of the bearing portion 4 is selected to have a predetermined thickness Lc, the synthetic resin material R is used and the casing 3 and the bearing portion 4 are integrally formed. Even in this case, it becomes possible to suppress the deformation of the shape at the time of manufacture (molding) or use to a minimum, and sufficient stability and reliability as a bearing can be secured. In addition, since it has a plurality of tolerance absorbing recesses 5 arranged at predetermined intervals La and the bottom 5d is selected to have a predetermined thickness Lb, thermal expansion and contraction occur due to changes in the temperature environment during use. Even in this case, it becomes possible to absorb these thermal expansion and contraction.

(2) 別途製作する二つの軸受部品が不要になるため、実質的な部品点数はケーシング3のみで足りる。したがって、部品コストの削減を図れるとともに、ケーシング3に軸受部品を取付ける工程が不要になり、組立工数の低減による製造コストの削減を図ることができる。加えて、機械的強度を確保しつつ、合成樹脂素材Rを用いたことに伴う各種メリット、具体的には、全体の軽量化,製造容易性の向上及び素材コスト削減効果等の各種メリットを得ることができるとともに、複数の公差吸収凹部5…を設けることから、ケーシング3及び軸受部4…を形成する合成樹脂素材Rの全体使用量の削減が可能となり、更なる軽量化及び素材コスト削減に寄与できる。   (2) Since two separately produced bearing parts are not required, only the casing 3 is sufficient for the number of parts. Accordingly, the cost of parts can be reduced, and the process of attaching the bearing parts to the casing 3 becomes unnecessary, and the manufacturing cost can be reduced by reducing the number of assembly steps. In addition, while securing the mechanical strength, various merits associated with using the synthetic resin material R, specifically, various merits such as overall weight reduction, improvement in manufacturability, and material cost reduction effect are obtained. In addition, since a plurality of tolerance absorbing recesses 5 are provided, the total amount of the synthetic resin material R forming the casing 3 and the bearing portion 4 can be reduced, and further weight reduction and material cost reduction can be achieved. Can contribute.

(3) 軸受部4は、軸方向Fsに対して所定の厚さDtとなるようにケーシング3の面3fから軸方向Fsに突出形成したため、ケーシング3に対して軸受部4の一部4pを独立可能となり、本発明に係る軸受装置1としての望ましい効果を得ることができる最適な形態として実施できる。   (3) Since the bearing portion 4 is formed so as to protrude from the surface 3f of the casing 3 in the axial direction Fs so as to have a predetermined thickness Dt with respect to the axial direction Fs, a part 4p of the bearing portion 4 is formed with respect to the casing 3. It can become independent and can be implemented as an optimum form that can obtain a desirable effect as the bearing device 1 according to the present invention.

(4) 公差吸収凹部5と軸受部4の内周面4s間の厚さLcは、少なくとも、合成樹脂素材Rに基づく内周面4sの径寸法の公差を吸収可能な大きさに選定したため、例えば、熱膨張係数の大きな合成樹脂素材Rを使用し、比較的大きな公差が生じやすい場合であっても、機械的強度を確保しつつ、無用な公差を有効に吸収できる。   (4) Since the thickness Lc between the tolerance absorbing recess 5 and the inner peripheral surface 4s of the bearing portion 4 is selected so as to absorb at least the tolerance of the diameter of the inner peripheral surface 4s based on the synthetic resin material R, For example, even when a synthetic resin material R having a large thermal expansion coefficient is used and a relatively large tolerance is likely to occur, unnecessary tolerances can be effectively absorbed while ensuring mechanical strength.

(5) ロータリソレノイドMのケーシングに適用したため、ロータリソレノイドMの動作に係わる安定性及び信頼性をより高めることができるとともに、ロータリソレノイドM全体における部品コスト及び製造コストの削減に寄与できる。   (5) Since the present invention is applied to the casing of the rotary solenoid M, the stability and reliability related to the operation of the rotary solenoid M can be further improved, and it is possible to contribute to the reduction of the parts cost and the manufacturing cost in the entire rotary solenoid M.

(6) ロータリソレノイドMとして、三角形における一つの角部P1に対応する位置を回転シャフト2に固定し、かつ自由端となる残りの二つの角部P2,P3に対応する位置にS極とN極がそれぞれ生じて旋回可能なマグネット部7mを有する可動体部7と、ケーシング3に固定して一方のコイル端面8sをマグネット部7mに対面させた単一コイル8cを有し、給電制御により可動体部7を吸引又は反発可能にする界磁部8と、可動体部7が旋回する範囲を所定の範囲Zrに規制するケーシング3の内壁を用いた可動体規制部9とを備えて構成したため、独立した界磁部の数量を半減させることができ、部品点数の削減による、更なる部品コストに対するコストダウンを図れるとともに、組立工数の低減による製造コストに対するコストダウンを図ることができる。また、回転シャフト2の軸直角方向における可動体部7の長さを短くできるとともに、可動体部7の変位空間の両側には界磁部6を配置しないため、ケーシング2を直方体状に形成する場合であっても、合理的な部品配置を容易に行うことができる。この結果、無用なデッドスペースの発生を大きく低減でき、ロータリソレノイド全体の小型コンパクト化を実現できる。   (6) As the rotary solenoid M, a position corresponding to one corner P1 in the triangle is fixed to the rotary shaft 2, and the S pole and N are positioned corresponding to the remaining two corners P2 and P3 which are free ends. It has a movable body portion 7 having a magnet portion 7m that can be turned by generating poles, and a single coil 8c that is fixed to the casing 3 and has one coil end face 8s facing the magnet portion 7m. Because the magnetic field portion 8 that makes the body portion 7 attractable or repulsive and the movable body regulating portion 9 that uses the inner wall of the casing 3 that regulates the range in which the movable body portion 7 turns to a predetermined range Zr are provided. The number of independent field parts can be halved, the number of parts can be reduced, the cost of parts can be further reduced, and the cost of manufacturing can be reduced by reducing the number of assembly steps. It can be achieved down. Further, the length of the movable body portion 7 in the direction perpendicular to the axis of the rotary shaft 2 can be shortened, and the field portion 6 is not disposed on both sides of the displacement space of the movable body portion 7, so that the casing 2 is formed in a rectangular parallelepiped shape. Even in this case, rational component placement can be easily performed. As a result, generation of unnecessary dead space can be greatly reduced, and the entire rotary solenoid can be reduced in size and size.

(7) 好適な態様により、軸受部4の外周部4cの近傍に位置するケーシング3の面に、当該軸受部4の外周部4cの周方向Fcに沿って所定の間隔置きに配した複数の第二凹部5s…を形成すれば、軸受部4自身に設けた公差吸収凹部5…に基づく公差吸収機能に加えて、軸受部4の全体に対する相乗的又は補助的な公差吸収機能を付加できるため、全体の公差吸収機能をより高めることができる。   (7) According to a preferred embodiment, a plurality of a plurality of portions arranged on the surface of the casing 3 located in the vicinity of the outer peripheral portion 4c of the bearing portion 4 at predetermined intervals along the circumferential direction Fc of the outer peripheral portion 4c of the bearing portion 4 If the second recesses 5s are formed, in addition to the tolerance absorbing function based on the tolerance absorbing recesses 5 provided in the bearing portion 4 itself, a synergistic or auxiliary tolerance absorbing function for the entire bearing portion 4 can be added. The overall tolerance absorbing function can be further enhanced.

本発明の好適実施形態に係る軸受装置を用いて構成したロータリソレノイドの正面図、A front view of a rotary solenoid configured using a bearing device according to a preferred embodiment of the present invention, 同ロータリソレノイドにおける軸受装置の要部を明示する断面側面図、Sectional side view clearly showing the main part of the bearing device in the rotary solenoid, 同ロータリソレノイドの斜視図、A perspective view of the rotary solenoid, 同ロータリソレノイドの背面図、Rear view of the rotary solenoid, 同ロータリソレノイドの断面側面図、Sectional side view of the rotary solenoid, 同ロータリソレノイドの断面正面図、Sectional front view of the rotary solenoid, 同ロータリソレノイドにおける可動体部の分解正面図、An exploded front view of the movable body in the rotary solenoid, 同ロータリソレノイドを駆動させる際の電気系統の結線図、Connection diagram of the electrical system when driving the rotary solenoid, 同ロータリソレノイドの駆動説明図、Drive explanatory diagram of the rotary solenoid, 同ロータリソレノイドの他の駆動説明図、Another drive explanatory diagram of the rotary solenoid, 本発明の変更実施形態に係る軸受装置を用いて構成したロータリソレノイドの正面図、A front view of a rotary solenoid configured using a bearing device according to a modified embodiment of the present invention, 本発明の変更実施形態に係る軸受装置の要部を明示する断面側面図、Sectional side view clearly showing the principal part of the bearing device according to a modified embodiment of the present invention,

次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。   Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る軸受装置1を備えるロータリソレノイドMの構成について、図1〜図7を参照して説明する。   First, the structure of the rotary solenoid M provided with the bearing device 1 according to the present embodiment will be described with reference to FIGS.

ロータリソレノイドMは外郭を構成するケーシング3を備え、このケーシング3は、図5に示すように、ケーシング本体部3mとこのケーシング本体部3mの開口部を閉塞するケーシング蓋部3cからなる。このケーシング本体部3mとケーシング蓋部3cは、それぞれ成形性及び軽量性に優れた合成樹脂素材Rにより一体成形する。この場合、合成樹脂素材Rの種類としては、特定の種類に限定するものではないが、寸法安定性及び熱安定性(耐熱性)に優れた素材、例えば、PBT(ポリブチレンテレフタレート)樹脂素材等が望ましい。なお、図1中、符号31,32は、ケーシング本体部3mの底面に設けた取付用の脚部を示す。   The rotary solenoid M includes a casing 3 constituting an outer shell, and the casing 3 includes a casing body 3m and a casing lid 3c that closes an opening of the casing body 3m as shown in FIG. The casing body 3m and the casing lid 3c are integrally formed of a synthetic resin material R excellent in moldability and light weight. In this case, the type of the synthetic resin material R is not limited to a specific type, but a material excellent in dimensional stability and thermal stability (heat resistance), for example, a PBT (polybutylene terephthalate) resin material, etc. Is desirable. In addition, the code | symbols 31 and 32 in FIG. 1 show the leg part for attachment provided in the bottom face of the casing main-body part 3m.

また、ケーシング本体部3mには前側に位置する軸受部4を一体成形するとともに、ケーシング蓋部3cには後側に位置する軸受部4を一体成形する。即ち、二つの軸受部4,4は、ケーシング3(ケーシング本体部3m及びケーシング蓋部3c)に対して同一の合成樹脂素材Rにより一体成形する。これにより、ケーシング本体部3mの一部と前側に位置する軸受部4,及びケーシング蓋部3cの一部と後側に位置する軸受部4が、それぞれ本実施形態に係る軸受装置1を構成する。   The casing body 3m is integrally molded with the bearing 4 positioned on the front side, and the casing lid 3c is integrally molded with the bearing 4 positioned on the rear side. That is, the two bearing portions 4 and 4 are integrally formed with the casing 3 (the casing main body portion 3m and the casing lid portion 3c) by the same synthetic resin material R. As a result, a part of the casing body 3m and the bearing part 4 located on the front side, and a part of the casing lid part 3c and the bearing part 4 located on the rear side constitute the bearing device 1 according to this embodiment. .

この軸受装置1において、前側に位置する一方の軸受部4は、図2に示すように、軸方向Fsに対して所定の厚さDtを有し、かつ径方向Fdに対して所定のリング厚Drを有するリング状となるように形成し、軸受部4における軸方向Fsの一部4pは、ケーシング3の面3fから軸方向Fsに突出形成する。即ち、ケーシング本体部3mの面(前面)3fから前方へ突出した部分とケーシング本体部3mの厚さ部分を加えた寸法が軸受部4の実質的な厚さDtとなる。このように、軸受部4における軸方向Fsの一部4pを、ケーシング3の面3fから軸方向Fsに突出形成すれば、ケーシング3に対して軸受部4の一部4pを独立可能となるため、本発明に係る軸受装置1としての望ましい効果を得ることができる最適な形態として実施できる。これにより、軸受部4の中心円孔における内周面4sが後述する回転シャフト2を回転自在に支持する軸受面となる。   In the bearing device 1, one bearing portion 4 located on the front side has a predetermined thickness Dt with respect to the axial direction Fs and a predetermined ring thickness with respect to the radial direction Fd, as shown in FIG. 2. A part 4p in the axial direction Fs of the bearing portion 4 is formed so as to protrude from the surface 3f of the casing 3 in the axial direction Fs. That is, the dimension obtained by adding the portion protruding forward from the surface (front surface) 3f of the casing body 3m and the thickness portion of the casing body 3m is the substantial thickness Dt of the bearing portion 4. Thus, if the part 4p of the axial direction Fs in the bearing part 4 is formed so as to protrude from the surface 3f of the casing 3 in the axial direction Fs, the part 4p of the bearing part 4 can be made independent of the casing 3. Thus, the present invention can be implemented as an optimum mode that can obtain the desired effect as the bearing device 1 according to the present invention. Thereby, the inner peripheral surface 4s in the central circular hole of the bearing portion 4 becomes a bearing surface that rotatably supports the rotary shaft 2 described later.

さらに、軸受部4の前側に位置する外端面である端面4fには、図1及び図2に示すように、周方向Fcに沿って所定の間隔La置きに配し、かつ底部5dを所定の厚さLbに選定した複数の公差吸収凹部5…を形成する。例示は、同一形状に選定した八つのほぼ矩形状の公差吸収凹部5…を全周にわたって形成した例を示す。この場合、所定の間隔Laと底部5dの厚さLbは、形成素材の種類及び凹部5の形状や大きさ等を考慮して任意に選定できるが、基本的には、公差吸収凹部5…により軸受部4の内側に薄肉形成される軸受筒部4wを支持するリブとして機能させるため、特に機械的強度を考慮して選定できる。一例として、軸受部4の外径が15〔mm〕程度の場合、所定の間隔Laと底部5dの厚さLbは、0.2〜1.2〔mm〕程度に選定可能である。   Further, as shown in FIGS. 1 and 2, the end surface 4f, which is the outer end surface located on the front side of the bearing portion 4, is arranged at predetermined intervals La along the circumferential direction Fc, and the bottom portion 5d is set to a predetermined value. A plurality of tolerance absorbing recesses 5... Selected for the thickness Lb are formed. The illustration shows an example in which eight substantially rectangular tolerance absorbing recesses 5... Selected in the same shape are formed over the entire circumference. In this case, the predetermined interval La and the thickness Lb of the bottom portion 5d can be arbitrarily selected in consideration of the type of forming material and the shape and size of the recess 5, but basically, the tolerance absorbing recess 5 ... In order to function as a rib for supporting the bearing tube portion 4w formed thin on the inside of the bearing portion 4, it can be selected in consideration of mechanical strength. As an example, when the outer diameter of the bearing portion 4 is about 15 [mm], the predetermined interval La and the thickness Lb of the bottom portion 5d can be selected to be about 0.2 to 1.2 [mm].

また、軸受筒部4wの厚さ、即ち、公差吸収凹部5と軸受部4の内周面4s間の厚さLcは所定の厚さとなるように選定する。この厚さLcは、少なくとも、合成樹脂素材Rに基づく内周面4sの径寸法の公差を吸収可能な大きさに選定する。一例として、軸受部4の径が15〔mm〕程度の場合、リング厚Lcは、0.5〜1.5〔mm〕程度に選定可能である。このように、公差吸収凹部5と軸受部4の内周面4s間の厚さLcを、少なくとも、合成樹脂素材Rに基づく内周面4sの径寸法の公差を吸収可能な大きさに選定すれば、例えば、熱膨張係数の大きな合成樹脂素材Rを使用し、比較的大きな公差が生じやすい場合であっても、機械的強度を確保しつつ、無用な公差を有効に吸収できる。   Further, the thickness of the bearing tube portion 4w, that is, the thickness Lc between the tolerance absorbing recess 5 and the inner peripheral surface 4s of the bearing portion 4 is selected to be a predetermined thickness. The thickness Lc is selected so as to absorb at least the tolerance of the diameter of the inner peripheral surface 4s based on the synthetic resin material R. As an example, when the diameter of the bearing portion 4 is about 15 [mm], the ring thickness Lc can be selected to be about 0.5 to 1.5 [mm]. In this way, the thickness Lc between the tolerance absorbing recess 5 and the inner peripheral surface 4s of the bearing portion 4 is selected so as to absorb at least the tolerance of the diameter of the inner peripheral surface 4s based on the synthetic resin material R. For example, even if a synthetic resin material R having a large thermal expansion coefficient is used and a relatively large tolerance is likely to occur, unnecessary tolerances can be effectively absorbed while ensuring mechanical strength.

よって、このような構成による軸受装置1によれば、軸受部4を、軸方向Fsに対して所定の厚さDtを有し、かつ径方向Fdに対して所定のリング厚Drを有するリング状となるように、合成樹脂素材Rによりケーシング3と一体成形するとともに、軸受部4の端面に、周方向Fcに沿って所定の間隔La置きに配し、かつ底部5dを所定の厚さLbに選定した複数の公差吸収凹部5…を形成することにより、この公差吸収凹部5と軸受部4の内周面4s間を所定の厚さLcに選定してなるため、合成樹脂素材Rを使用し、ケーシング3と軸受部4を一体成形する場合であっても、製造時(成形時)や使用時における形状変形を最小限に抑制可能となり、軸受としての十分な安定性及び信頼性を確保できる。しかも、所定の間隔La置きに配し、かつ底部5dを所定の厚さLbに選定した複数の公差吸収凹部5…を有することから、使用時における温度環境の変化により熱膨張や収縮が生じた場合であっても、これらの熱膨張や収縮を吸収することが可能となる。   Therefore, according to the bearing device 1 having such a configuration, the bearing portion 4 has a ring shape having a predetermined thickness Dt with respect to the axial direction Fs and a predetermined ring thickness Dr with respect to the radial direction Fd. The synthetic resin material R is integrally molded with the casing 3 so as to be arranged at predetermined intervals La along the circumferential direction Fc on the end surface of the bearing portion 4, and the bottom portion 5d is set to a predetermined thickness Lb. Since a plurality of selected tolerance absorbing recesses 5 are formed to select a predetermined thickness Lc between the tolerance absorbing recess 5 and the inner peripheral surface 4s of the bearing portion 4, a synthetic resin material R is used. Even when the casing 3 and the bearing portion 4 are integrally molded, it is possible to minimize shape deformation at the time of manufacturing (molding) and at the time of use, and sufficient stability and reliability as a bearing can be secured. . In addition, since it has a plurality of tolerance absorbing recesses 5 arranged at predetermined intervals La and the bottom 5d is selected to have a predetermined thickness Lb, thermal expansion and contraction occur due to changes in the temperature environment during use. Even in this case, it becomes possible to absorb these thermal expansion and contraction.

また、別途製作する二つの軸受部品が不要になるため、実質的な部品点数はケーシング3のみで足りる。したがって、部品コストの削減を図れるとともに、ケーシング3に軸受部品を取付ける工程が不要になり、組立工数の低減による製造コストの削減を図ることができる。加えて、機械的強度を確保しつつ、合成樹脂素材Rを用いたことに伴う各種メリット、具体的には、全体の軽量化,製造容易性の向上及び素材コスト削減効果等の各種メリットを得ることができるとともに、複数の公差吸収凹部5…を設けることから、ケーシング3及び軸受部4…を形成する合成樹脂素材Rの全体使用量の削減が可能となり、更なる軽量化及び素材コスト削減に寄与できる。   In addition, since two separately manufactured bearing parts are not required, only the casing 3 is sufficient for the substantial number of parts. Accordingly, the cost of parts can be reduced, and the process of attaching the bearing parts to the casing 3 becomes unnecessary, and the manufacturing cost can be reduced by reducing the number of assembly steps. In addition, while securing the mechanical strength, various merits associated with using the synthetic resin material R, specifically, various merits such as overall weight reduction, improvement in manufacturability, and material cost reduction effect are obtained. In addition, since a plurality of tolerance absorbing recesses 5 are provided, the total amount of the synthetic resin material R forming the casing 3 and the bearing portion 4 can be reduced, and further weight reduction and material cost reduction can be achieved. Can contribute.

一方、軸受部4の外周部4cの近傍に位置するケーシング本体部3mの面(外側の面3f)にも、図1及び図2に示すように、軸受部4の外周部4cの周方向Fcに沿って所定の間隔置きに配した複数の第二凹部5s…を形成する。例示の場合、同一形状に選定した八つのほぼ矩形状の第二凹部5s…を、全周における上端部分の1/3程度を除いた範囲に形成した。この第二凹部5sの場合も、上述した公差吸収凹部5と同様に形成、即ち、公差吸収凹部5に準じたディメンションにより形成できる。なお、第二凹部5s…の間隔,第二凹部5sにおける底部5sdの厚さは、形成素材の種類及び凹部5の形状や大きさ等により任意に選定できる。このような第二凹部5s…を形成すれば、軸受部4自身に設けた公差吸収凹部5…に基づく公差吸収機能に加えて、軸受部4の全体に対する相乗的又は補助的な公差吸収機能を付加できるため、全体の公差吸収機能をより高めることが可能となる。   On the other hand, as shown in FIGS. 1 and 2, the circumferential direction Fc of the outer peripheral portion 4 c of the bearing portion 4 is also applied to the surface (outer surface 3 f) of the casing main body portion 3 m located in the vicinity of the outer peripheral portion 4 c of the bearing portion 4. A plurality of second recesses 5s arranged at predetermined intervals are formed. In the case of illustration, the eight substantially rectangular second recesses 5s... Selected in the same shape are formed in a range excluding about 1/3 of the upper end portion in the entire circumference. The second recess 5s can also be formed in the same manner as the tolerance absorbing recess 5 described above, that is, with a dimension according to the tolerance absorbing recess 5. The interval between the second recesses 5 s... And the thickness of the bottom 5 sd in the second recess 5 s can be arbitrarily selected depending on the type of forming material, the shape and size of the recess 5, and the like. If such second recesses 5 s are formed, in addition to the tolerance absorbing function based on the tolerance absorbing recesses 5 provided in the bearing portion 4 itself, a synergistic or auxiliary tolerance absorbing function for the entire bearing portion 4 is provided. Since it can be added, the overall tolerance absorbing function can be further enhanced.

以上は、ケーシング本体部3mに軸受部4を設ける場合について説明したが、ケーシング蓋部3cに軸受部4を設ける場合であっても、基本的には、ケーシング本体部3m側と同様に構成できる。図4に、ケーシング3の背面側となるケーシング蓋部3cの外面を示す。例示の場合、ケーシング蓋部3c側において、公差吸収凹部5…の周方向Fcの位置を稍異ならせた点,第二凹部5s…として円形状に形成した二つの第二凹部5s…を含ませた点,及びケーシング蓋部3c側の軸受部4は、ケーシング本体部3m側の軸受部4に対して前後対称となる点を除いて、ケーシング本体部3m側と同一に構成した。   Although the case where the bearing part 4 is provided in the casing main body part 3m has been described above, even when the bearing part 4 is provided in the casing lid part 3c, it can be basically configured in the same manner as the casing main body part 3m side. . FIG. 4 shows an outer surface of the casing lid portion 3 c that is the back side of the casing 3. In the case of the example, on the casing lid portion 3c side, two second recesses 5s formed in a circular shape as the second recesses 5s are included, in which the positions of the tolerance absorbing recesses 5 in the circumferential direction Fc are different. The bearing portion 4 on the casing lid portion 3c side is configured in the same manner as the casing body portion 3m side except that the bearing portion 4 on the casing body portion 3m side is symmetrical with respect to the bearing portion 4 on the casing body portion 3m side.

他方、軸受装置1を含むケーシング3以外の構成は次のようになる。2は磁性材により形成した丸棒状の回転シャフト(出力軸)であり、ケーシング本体部3m及びケーシング蓋部3cの一側(上側)に偏した位置に、上述した一対の軸受部4,4により回動自在に支持される。したがって、ケーシング本体部3m及びケーシング蓋部3cに一体成形する各軸受部4,4の位置は、図1及び図4に示すように、上側に偏した位置を選定する。   On the other hand, the configuration other than the casing 3 including the bearing device 1 is as follows. Reference numeral 2 denotes a round bar-shaped rotating shaft (output shaft) formed of a magnetic material. The pair of bearings 4 and 4 are arranged at a position biased to one side (upper side) of the casing body 3m and the casing lid 3c. It is supported rotatably. Therefore, as the positions of the bearing portions 4 and 4 formed integrally with the casing main body 3m and the casing lid 3c, as shown in FIGS. 1 and 4, a position biased upward is selected.

回転シャフト2におけるケーシング3の内部側の位置には可動体部7を固定する。可動体部7は、合成樹脂素材等の非磁性材により形成した保持ブロック部11を有する。保持ブロック部11(可動体部7)は、図6に示すように、正面視が略三角形状となるため、この三角形における一つの角部P1に対応する位置に回転シャフト2を固定するとともに、可動体部7の他端側7sにはマグネット部7mを配する。したがって、三角形における残りの二つの角部に対応する位置P2とP3には、マグネット部7mによるS極とN極がそれぞれ発生する。これにより、可動体部7(保持ブロック部11)は、一端側7cが回転シャフト2に固定され、他端側7sが自由端となるため、回転シャフト2を支点に旋回可能となる。   The movable body portion 7 is fixed at a position on the inner side of the casing 3 in the rotary shaft 2. The movable body portion 7 has a holding block portion 11 formed of a nonmagnetic material such as a synthetic resin material. As shown in FIG. 6, the holding block portion 11 (movable body portion 7) has a substantially triangular shape when viewed from the front. Therefore, the rotating shaft 2 is fixed at a position corresponding to one corner portion P <b> 1 in the triangle, A magnet portion 7 m is disposed on the other end side 7 s of the movable body portion 7. Therefore, an S pole and an N pole are generated by the magnet portion 7m at positions P2 and P3 corresponding to the remaining two corners in the triangle, respectively. Thereby, since the movable body part 7 (holding block part 11) has one end side 7c fixed to the rotating shaft 2 and the other end side 7s becomes a free end, it can turn around the rotating shaft 2 as a fulcrum.

この場合、保持ブロック部11は、被覆することによりマグネット部7mを保持する。即ち、図7に示すように、保持ブロック部11を、保持ブロック本体部11bとこの保持ブロック本体部11bに付設する保持ブロックカバー部11cにより構成し、保持ブロック本体部11bに形成した凹部にマグネット部7mを収容するとともに、保持ブロック本体部11bに付設する保持ブロックカバー部11cにより保持する。この際、マグネット部7mは、全体が保持ブロック部11により被覆されてもよいが、例示のように、保持ブロック部11(可動体部7)の他端側7sにおける、後述する界磁部8に対面する対向面の少なくとも一部に開口部11s…を形成し、マグネット部7mの少なくとも一部を露出させることが望ましい。具体的には、保持ブロックカバー部11cの全体を矩形枠状に形成するとともに、この枠内に一対の保持バンド部11cb,11cbを一体に形成する。これにより、図8に示すように、マグネット部7mと界磁部8間のエアギャップGaを最小限に設定可能になるため、マグネット部7mの磁気的特性を最大限に活かせる利点がある。   In this case, the holding block portion 11 holds the magnet portion 7m by covering. That is, as shown in FIG. 7, the holding block portion 11 is constituted by a holding block main body portion 11b and a holding block cover portion 11c attached to the holding block main body portion 11b, and a magnet is formed in a recess formed in the holding block main body portion 11b. The portion 7m is accommodated and held by a holding block cover portion 11c attached to the holding block main body portion 11b. At this time, the magnet portion 7m may be entirely covered with the holding block portion 11, but as illustrated, a field portion 8 described later on the other end side 7s of the holding block portion 11 (movable body portion 7). It is desirable to form an opening 11s in at least a part of the facing surface that faces the at least a part of the magnet part 7m. Specifically, the entire holding block cover portion 11c is formed in a rectangular frame shape, and a pair of holding band portions 11cb and 11cb are integrally formed in the frame. As a result, as shown in FIG. 8, the air gap Ga between the magnet portion 7m and the field portion 8 can be set to a minimum, and therefore there is an advantage that the magnetic characteristics of the magnet portion 7m can be utilized to the maximum.

また、マグネット部7mは、細長の偏平直方体状に形成することにより、長手方向両側にS極とN極をそれぞれ着磁したマグネット7maとこのマグネット7maの裏面側に配したバックヨーク7myとの組合わせにより構成する。なお、マグネット部7mは、このように、マグネット7maとバックヨーク7myの組合わせにより構成してもよいし、マグネット部7mのみを単独使用してもよい。マグネット部7mを単独使用する場合、保持ブロック部11は磁性材により形成可能である。このように、マグネット部7mは、マグネット7maを単独使用してもよいし、又はこのマグネット7maとバックヨーク7myの組合わせにより構成してもよいなど、ロータリソレノイドMのサイズ設計及び性能設計に対する設計自由度を高めることができる。   Further, the magnet portion 7m is formed in an elongated flat rectangular parallelepiped shape, and thus a set of a magnet 7ma having a south pole and a north pole respectively magnetized on both sides in the longitudinal direction and a back yoke 7my disposed on the back side of the magnet 7ma. Configured by combination. The magnet portion 7m may be configured by combining the magnet 7ma and the back yoke 7my as described above, or only the magnet portion 7m may be used alone. When the magnet portion 7m is used alone, the holding block portion 11 can be formed of a magnetic material. As described above, the magnet portion 7m may be a single magnet 7ma, or may be configured by a combination of the magnet 7ma and the back yoke 7my. The degree of freedom can be increased.

一方、ケーシング3の内部には、図5及び図6に示すように、単一コイル8cを有する界磁部8を配設する。この場合、単一コイル8cは、一方の端面8sをマグネット部7m(マグネット7ma)に対面させて配する。また、例示の場合、界磁部8には、単一コイル8cを装填するE形ヨーク12を設ける。これにより、E形ヨーク12による磁気回路が構成されるため、ロータリソレノイドMの高効率化及び高性能化に寄与できる。なお、21は、プラスチック等の絶縁材により形成し、単一コイル8cを巻回したコイルボビンを示す。   On the other hand, as shown in FIGS. 5 and 6, a field portion 8 having a single coil 8 c is disposed inside the casing 3. In this case, the single coil 8c is arranged with one end face 8s facing the magnet portion 7m (magnet 7ma). In the illustrated example, the field magnet 8 is provided with an E-shaped yoke 12 into which the single coil 8c is loaded. Thereby, since the magnetic circuit by the E-shaped yoke 12 is comprised, it can contribute to the high efficiency and high performance of the rotary solenoid M. Reference numeral 21 denotes a coil bobbin formed of an insulating material such as plastic and wound with a single coil 8c.

さらに、ケーシング3の内部には、マグネット部7mの旋回範囲を所定の範囲Zrに規制するための可動体規制部9を設ける。例示の可動体規制部9は、ケーシング3の内壁に形成した一対の規制壁面部3p,3qと、保持ブロック部11に形成することにより規制壁面部3p,3qに当接して位置規制される被規制面部11p,11qにより構成する。このような可動体規制部9を設ければ、ケーシング3の内壁及び保持ブロック部11の一部を、可動体規制部9に兼用可能になるため、全体構造の更なる簡略化,コストダウン及びサイズダウンに寄与できる利点がある。   Furthermore, a movable body restricting portion 9 for restricting the turning range of the magnet portion 7m to a predetermined range Zr is provided inside the casing 3. The illustrated movable body restricting portion 9 includes a pair of restricting wall surface portions 3p and 3q formed on the inner wall of the casing 3 and a holding block portion 11 so that the movable member restricting portion 9 is in contact with the restricting wall surface portions 3p and 3q to be position restricted. It is comprised by the regulation surface parts 11p and 11q. If such a movable body restricting portion 9 is provided, the inner wall of the casing 3 and a part of the holding block portion 11 can be used as the movable body restricting portion 9, further simplifying the overall structure, reducing costs, There is an advantage that can contribute to size reduction.

よって、このように構成するロータリソレノイドMは、本実施形態に係る軸受装置1を備えるため、ロータリソレノイドMの動作に係わる安定性及び信頼性をより高めることができるとともに、ロータリソレノイドM全体における部品コスト及び製造コストの削減に寄与できる。特に、例示のロータリソレノイドMは、三角形における一つの角部P1に対応する位置を回転シャフト2に固定し、かつ自由端となる残りの二つの角部P2,P3に対応する位置にS極とN極がそれぞれ生じて旋回可能なマグネット部7mを有する可動体部7と、ケーシング3に固定して一方のコイル端面8sをマグネット部7mに対面させた単一コイル8cを有し、給電制御により可動体部7を吸引又は反発可能にする界磁部8と、可動体部7が旋回する範囲を所定の範囲Zrに規制する可動体規制部9とを備えて構成するため、独立した界磁部の数量を半減させることができ、部品点数の削減による、更なる部品コストに対するコストダウンを図れるとともに、組立工数の低減による製造コストに対するコストダウンを図ることができる。また、回転シャフト2の軸直角方向における可動体部7の長さを短くできるとともに、可動体部7の変位空間の両側には界磁部6を配置しないため、ケーシング2を直方体状に形成する場合であっても、合理的な部品配置を容易に行うことができる。この結果、無用なデッドスペースの発生を大きく低減でき、ロータリソレノイド全体の小型コンパクト化を実現できる。   Therefore, since the rotary solenoid M configured as described above includes the bearing device 1 according to the present embodiment, the stability and reliability related to the operation of the rotary solenoid M can be further improved, and components in the entire rotary solenoid M can be obtained. This can contribute to cost and manufacturing cost reduction. In particular, the illustrated rotary solenoid M has a position corresponding to one corner P1 in the triangle fixed to the rotary shaft 2 and an S pole at a position corresponding to the remaining two corners P2 and P3 which are free ends. It has a movable body portion 7 having a magnet portion 7m that can turn by generating N poles, and a single coil 8c that is fixed to the casing 3 and has one coil end face 8s facing the magnet portion 7m. Since the movable body portion 7 is configured to include the field portion 8 that can attract or repel the movable body portion 7 and the movable body restriction portion 9 that restricts the range in which the movable body portion 7 turns to a predetermined range Zr, The number of parts can be halved, and the cost for further parts costs can be reduced by reducing the number of parts, and the cost for manufacturing costs can be reduced by reducing the number of assembly steps.Further, the length of the movable body portion 7 in the direction perpendicular to the axis of the rotary shaft 2 can be shortened, and the field portion 6 is not disposed on both sides of the displacement space of the movable body portion 7, so that the casing 2 is formed in a rectangular parallelepiped shape. Even in this case, rational component placement can be easily performed. As a result, generation of unnecessary dead space can be greatly reduced, and the entire rotary solenoid can be reduced in size and size.

次に、ロータリソレノイドMの使用方法及び動作について、図1〜図10を参照して説明する。   Next, the usage method and operation | movement of the rotary solenoid M are demonstrated with reference to FIGS.

図8は、ロータリソレノイドMの駆動回路Eを示す。駆動回路Eは、単一コイル8cから導出する一対の接続リード13a,13bに対して給電するための直流源41と、この直流源41から接続リード13a,13bに供給する直流電圧の給電又は給電停止を行うとともに、直流電圧の極性を反転させる極性切換を行う操作スイッチ42を備える。   FIG. 8 shows a drive circuit E of the rotary solenoid M. The drive circuit E supplies power to or feeds a pair of connection leads 13a and 13b derived from the single coil 8c, and a DC voltage supplied from the DC source 41 to the connection leads 13a and 13b. There is provided an operation switch 42 for stopping and switching the polarity for inverting the polarity of the DC voltage.

ロータリソレノイドMを使用する際には、図8に示すように、単一コイル8cの接続リード13a,13bに駆動回路Eを接続する。図8は、操作スイッチ42を給電ポジションに切換えた状態を示す。したがって、単一コイル8cには給電が行われ、E形ヨーク12には、図8に示すS極とN極が発生する。なお、マグネット7maの極性(S極,N極)は、図8に示すとおりである。これにより、マグネット7maのS極側はE形ヨーク12のN極側に吸引されるとともに、マグネット7maのN極側はE形ヨーク12のN極側に対して反発する。この結果、回転シャフト2は図10に示す矢印Fc方向における時計方向に回動変位するとともに、可動体部7は、当該可動体部7の被規制面部11qがケーシング3の規制壁面部3qに当接(係止)する図8に示す位置で停止する。   When the rotary solenoid M is used, as shown in FIG. 8, the drive circuit E is connected to the connection leads 13a and 13b of the single coil 8c. FIG. 8 shows a state in which the operation switch 42 is switched to the power supply position. Therefore, power is supplied to the single coil 8c, and the S pole and the N pole shown in FIG. The polarities (S pole and N pole) of the magnet 7ma are as shown in FIG. As a result, the S pole side of the magnet 7ma is attracted to the N pole side of the E-shaped yoke 12, and the N pole side of the magnet 7ma is repelled with respect to the N pole side of the E-shaped yoke 12. As a result, the rotary shaft 2 is rotated and displaced in the clockwise direction in the direction of the arrow Fc shown in FIG. 10, and the movable body portion 7 has the regulated surface portion 11q of the movable body portion 7 abutted against the regulation wall surface portion 3q of the casing 3. It stops at the position shown in FIG.

一方、この状態から操作スイッチ42を給電停止ポジションに切換えた場合を想定する。この場合、図9に示すように、界磁部8には給電に基づく自らの磁極は発生しない。しかし、マグネット7maによる磁界は維持されるため、マグネット7ma及びE形ヨーク12により形成される磁気回路により可動体部7の位置が保持される。図9に示す点線Jmは、給電停止時における当該磁気回路を通る磁力線を示している。   On the other hand, it is assumed that the operation switch 42 is switched to the power supply stop position from this state. In this case, as shown in FIG. 9, the magnetic field portion 8 does not generate its own magnetic pole based on power feeding. However, since the magnetic field by the magnet 7ma is maintained, the position of the movable body portion 7 is held by the magnetic circuit formed by the magnet 7ma and the E-shaped yoke 12. A dotted line Jm shown in FIG. 9 indicates magnetic lines of force passing through the magnetic circuit when power feeding is stopped.

他方、この状態から操作スイッチ42を極性反転させた反転給電ポジションに切換えた場合を想定する。この場合、E形ヨーク12には、図10に示すように、図8に示した極性に対して反転したS極とN極が発生する。これにより、マグネット7maのN極側はE形ヨーク12のS極側に吸引され、マグネット7maのS極側はE形ヨーク12のS極側に対して反発する。この結果、回転シャフト2は図10に示す矢印Fc方向における反時計方向に回動変位するとともに、可動体部7は、当該可動体部7の被規制面部11pがケーシング3の規制壁面部3pに当接(係止)する図10に示す位置で停止する。図10に示す点線Jp,Jqは、給電時における磁気回路を通る磁力線を示している。この際、回転シャフト2が回動変位する角度範囲は、図9に示す所定の範囲Zrとなる。   On the other hand, it is assumed that the operation switch 42 is switched from this state to an inversion feed position in which the polarity is inverted. In this case, as shown in FIG. 10, the S-pole and the N-pole reversed with respect to the polarity shown in FIG. As a result, the N pole side of the magnet 7ma is attracted to the S pole side of the E-shaped yoke 12, and the S pole side of the magnet 7ma repels against the S pole side of the E-shaped yoke 12. As a result, the rotary shaft 2 is rotationally displaced counterclockwise in the direction of the arrow Fc shown in FIG. 10, and the movable body portion 7 has the regulated surface portion 11p of the movable body portion 7 at the regulation wall surface portion 3p of the casing 3. It stops at the position shown in FIG. Dotted lines Jp and Jq shown in FIG. 10 indicate magnetic lines of force that pass through the magnetic circuit during power feeding. At this time, an angular range in which the rotary shaft 2 is rotationally displaced is a predetermined range Zr shown in FIG.

次に、本発明の変更実施形態に係る軸受装置1について、図11及び図12を参照して説明する。   Next, the bearing apparatus 1 which concerns on the modified embodiment of this invention is demonstrated with reference to FIG.11 and FIG.12.

図11に示す変更実施形態は、ケーシング3における前述した公差吸収凹部5…及び第二凹部5s…に加えて、公差吸収凹部5…及び第二凹部5s…以外の部位に、追加的な補助凹部5e…を設けたものである。この補助凹部5e…も、基本的には、公差吸収凹部5…及び第二凹部5s…と同様に形成することができる。なお、補助凹部5e…は、軸受部4からは離れた位置に設けることになる。したがって、補助凹部5e…と同様の公差吸収機能を有するとしても、その機能(作用)は相対的に小さくなり、全体の軽量化及び素材コスト削減等の効果が相対的に大きくなる。なお、補助凹部5e…は、任意の位置,数量,形状等を選定して形成可能である。図11は、ケーシング本体部3m側を示すが、ケーシング蓋部3c側も同様に構成可能である。   In the modified embodiment shown in FIG. 11, in addition to the above-described tolerance absorbing recesses 5... And second recesses 5 s in the casing 3, additional auxiliary recesses are provided in parts other than the tolerance absorbing recesses 5. 5e ... are provided. The auxiliary recesses 5e can be basically formed in the same manner as the tolerance absorbing recesses 5 ... and the second recesses 5s. The auxiliary recesses 5e are provided at a position away from the bearing portion 4. Therefore, even if it has a tolerance absorbing function similar to that of the auxiliary recesses 5e, the function (action) is relatively small, and the effects such as overall weight reduction and material cost reduction are relatively large. The auxiliary recesses 5e can be formed by selecting an arbitrary position, quantity, shape and the like. FIG. 11 shows the casing body 3m side, but the casing lid 3c side can be similarly configured.

図12は、公差吸収凹部5…及び第二凹部5s…を形成する形成面(形成部位)を変更したものである。図2に示した実施形態では、公差吸収凹部5…を設けるに際し、軸受部4の外面部となる端面4fに形成した場合を示したが、図12は、軸受部4の内面部となる端面4iに形成した場合を示す。また、図2に示した実施形態では、第二凹部5s…を設けるに際し、ケーシング3の外側の面3fに形成した場合を示したが、図12は、ケーシング3の外側の面3fと内側の面3iの双方に形成した場合を示す。これにより、底部5sd…は前後二つの第二凹部5sと5s間に挟まれる中間位置に設けられる。このように、公差吸収凹部5…,第二凹部5s…,補助凹部5e…を形成するに際しては、外観デザインとして利用したり、或いは、これとは逆に露出を回避するなど、様々な態様を選択して実施可能である。   FIG. 12 shows a change in the formation surface (formation site) for forming the tolerance absorbing recesses 5... And the second recesses 5 s. In the embodiment shown in FIG. 2, when the tolerance absorbing recesses 5 are provided, the case is formed on the end surface 4 f that is the outer surface portion of the bearing portion 4, but FIG. 12 is an end surface that is the inner surface portion of the bearing portion 4. The case where it forms in 4i is shown. In the embodiment shown in FIG. 2, when the second recesses 5 s are provided, the case is formed on the outer surface 3 f of the casing 3, but FIG. 12 shows the outer surface 3 f and the inner surface of the casing 3. The case where it forms in both of the surfaces 3i is shown. Accordingly, the bottom 5sd is provided at an intermediate position between the two front and rear second recesses 5s and 5s. Thus, when forming the tolerance absorbing recesses 5..., The second recesses 5 s... And the auxiliary recesses 5 e..., Various forms such as use as an external design or conversely avoiding exposure are provided. It can be selected and implemented.

以上、好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。   The preferred embodiment has been described in detail above, but the present invention is not limited to such an embodiment, and the detailed configuration, shape, material, quantity, and the like are within the scope not departing from the gist of the present invention. , Can be changed, added and deleted arbitrarily.

例えば、実施形態は、第二凹部5s…と補助凹部5e…を設けた場合を示したが、第二凹部5s…と補助凹部5e…は必ずしも設けることを要せず、必要により設けることができる。また、ロータリソレノイドMは、例示の構成に限定されるものではなく、各種原理を採用した様々なロータリソレノイドに適用できる。   For example, although the embodiment has shown the case where the second recesses 5s and the auxiliary recesses 5e are provided, the second recesses 5s and the auxiliary recesses 5e are not necessarily provided and can be provided if necessary. . The rotary solenoid M is not limited to the illustrated configuration, and can be applied to various rotary solenoids adopting various principles.

本発明に係る回転シャフトの軸受装置は、例示したロータリソレノイドをはじめ、回転シャフトを備えるロータリモータ等の各種機器に利用することができる。   The rotating shaft bearing device according to the present invention can be used for various devices such as the illustrated rotary solenoid and the rotary motor including the rotating shaft.

1:軸受装置,2:回転シャフト,3:ケーシング,3f:ケーシングの面,4:軸受部,4s:軸受部の内周面,4p:軸受部の軸方向の一部,5…:公差吸収凹部,5d:底部,5s…:第二凹部,7:可動体部,7m:マグネット部,8:界磁部,8s:コイル端面,8c:単一コイル,9:可動体規制部,Fs:軸方向,Fd:径方向,Fc:周方向,Dt:所定の厚さ,Dr:リング厚,R:合成樹脂素材,La:第一寸法,Lb:第二寸法,Lc:第三寸法,M:ロータリソレノイド,P1:角部,P2:角部,P3:角部,Zr:所定の範囲   DESCRIPTION OF SYMBOLS 1: Bearing apparatus, 2: Rotating shaft, 3: Casing, 3f: Casing surface, 4: Bearing part, 4s: Inner peripheral surface of a bearing part, 4p: A part of axial direction of a bearing part, 5 ...: Tolerance absorption Concave part, 5d: bottom part, 5s ...: second concave part, 7: movable part, 7m: magnet part, 8: field part, 8s: coil end face, 8c: single coil, 9: movable part regulating part, Fs: Axial direction, Fd: radial direction, Fc: circumferential direction, Dt: predetermined thickness, Dr: ring thickness, R: synthetic resin material, La: first dimension, Lb: second dimension, Lc: third dimension, M : Rotary solenoid, P1: Corner, P2: Corner, P3: Corner, Zr: Predetermined range

Claims (2)

回転シャフトを回転自在に支持するロータリソレノイドのケーシングに設けた前側に位置する軸受部と後側に位置する軸受部を備える回転シャフトの軸受装置において、三角形における一つの角部に対応する位置を前記回転シャフトに固定し、かつ自由端となる残りの二つの角部に対応する位置にS極とN極がそれぞれ生じて旋回可能なマグネット部を有する可動体部と、前記ケーシングに固定して一方のコイル端面を前記マグネット部に対面させた単一コイルを有し、給電制御により前記可動体部を吸引又は反発可能にする界磁部と、前記可動体部が旋回する範囲を所定の範囲に規制する前記ケーシングの内壁を用いた可動体規制部とを備えてロータリソレノイドを構成するとともに、前記軸受部を、軸方向に対して所定の厚さとなるように前記ケーシングの面から軸方向に突出形成し、かつ径方向に対して所定のリング厚を有するリング状となるように、合成樹脂素材により前記ケーシングと一体成形し、前記軸受部の端面に、周方向に沿って所定の間隔置きに配し、かつ底部を所定の厚さに選定することにより、熱膨張及び収縮を吸収する複数の公差吸収凹部を形成し、この公差吸収凹部と前記軸受部の内周面間を、少なくとも、前記合成樹脂素材に基づく前記内周面の径寸法の公差を吸収する所定の厚さに選定してなることを特徴とする回転シャフトの軸受装置。   In a rotary shaft bearing device including a bearing portion located on the front side and a bearing portion located on the rear side provided in a casing of a rotary solenoid that rotatably supports the rotary shaft, the position corresponding to one corner in the triangle is A movable body portion having a magnet portion that can be rotated by generating a south pole and a north pole at positions corresponding to the remaining two corner portions that are free ends, and fixed to the rotating shaft, and fixed to the casing. A field coil section that has a single coil with its coil end face facing the magnet section, and that allows the movable body section to be attracted or repelled by power supply control, and a range in which the movable body section turns within a predetermined range And a movable body restricting portion using an inner wall of the casing to be regulated to constitute a rotary solenoid, and the bearing portion has a predetermined thickness with respect to the axial direction. It is integrally formed with the casing by a synthetic resin material so as to project in the axial direction from the surface of the casing and have a predetermined ring thickness with respect to the radial direction. A plurality of tolerance absorbing recesses that absorb thermal expansion and contraction are formed by arranging them at predetermined intervals along the direction and selecting the bottom portion to a predetermined thickness. A bearing device for a rotary shaft, wherein a gap between the inner peripheral surfaces is selected to a predetermined thickness that absorbs at least a tolerance of a diameter dimension of the inner peripheral surface based on the synthetic resin material. 前記軸受部の外周部の近傍に位置する前記ケーシングの面に、当該軸受部の外周部の周方向に沿って所定の間隔置きに配した複数の第二凹部を形成することを特徴とする請求項1記載の回転シャフトの軸受装置。   A plurality of second concave portions arranged at predetermined intervals along the circumferential direction of the outer peripheral portion of the bearing portion are formed on the surface of the casing located in the vicinity of the outer peripheral portion of the bearing portion. Item 6. A bearing device for a rotating shaft according to Item 1.
JP2014006439A 2014-01-17 2014-01-17 Rotating shaft bearing device Active JP6125442B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014006439A JP6125442B2 (en) 2014-01-17 2014-01-17 Rotating shaft bearing device
KR1020140038694A KR101557915B1 (en) 2014-01-17 2014-04-01 Bearing device for rotating shaft
CN201410188267.8A CN104795959B (en) 2014-01-17 2014-05-06 The bearing arrangement of rotary shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014006439A JP6125442B2 (en) 2014-01-17 2014-01-17 Rotating shaft bearing device

Publications (2)

Publication Number Publication Date
JP2015136232A JP2015136232A (en) 2015-07-27
JP6125442B2 true JP6125442B2 (en) 2017-05-10

Family

ID=53560554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014006439A Active JP6125442B2 (en) 2014-01-17 2014-01-17 Rotating shaft bearing device

Country Status (3)

Country Link
JP (1) JP6125442B2 (en)
KR (1) KR101557915B1 (en)
CN (1) CN104795959B (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954705U (en) * 1972-08-22 1974-05-15
JPS51119436U (en) * 1975-03-26 1976-09-28
JPS54139211U (en) * 1978-03-22 1979-09-27
JP2665356B2 (en) * 1988-10-28 1997-10-22 中興化成工業株式会社 Fluororesin composite bearing
JP2522633B2 (en) * 1993-08-25 1996-08-07 株式会社ニュー・ニテック Sliding bearing and underwater worm reducer using this sliding bearing
JP4114293B2 (en) * 1999-12-06 2008-07-09 株式会社ジェイテクト Hydrodynamic bearing
JP2001250716A (en) * 2000-03-06 2001-09-14 Shindengen Electric Mfg Co Ltd Self-holding rotary solenoid
JP2002218700A (en) * 2001-01-15 2002-08-02 Sankyo Seiki Mfg Co Ltd Mounting mechanism and mounting method for motor
JP2004015940A (en) * 2002-06-10 2004-01-15 Sanwa Techno Kk Electric motor
KR100865968B1 (en) * 2007-06-26 2008-10-30 현담산업 주식회사 Impeller case with fuel pump of automobile
JP2009038874A (en) * 2007-07-31 2009-02-19 Oki Micro Giken Kk Rotary actuator
JP2009261368A (en) * 2008-04-28 2009-11-12 Daiwa Seiko Inc Fishing spinning reel and sleeve-like bearing
JP2013153098A (en) * 2012-01-26 2013-08-08 Nidec Servo Corp Rotary solenoid
JP5550022B2 (en) * 2011-02-17 2014-07-16 日本電産サーボ株式会社 Rotary solenoid
CN103370860B (en) * 2011-02-17 2016-08-10 日本电产伺服有限公司 Rotary solenoid

Also Published As

Publication number Publication date
CN104795959B (en) 2017-07-14
KR20150086153A (en) 2015-07-27
CN104795959A (en) 2015-07-22
JP2015136232A (en) 2015-07-27
KR101557915B1 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
JP5613731B2 (en) Rotary solenoid
KR101790364B1 (en) rotary single-phase electromagnetic actuator
JP2005304286A (en) Rotor unit for motor and permanent magnet type motor
JP5456136B1 (en) Swing type actuator
JP6546183B2 (en) Linear electromagnetic actuator having two independent movable members
US8981612B2 (en) Rotor and motor
JP2008300404A (en) Solenoid device
JP6125442B2 (en) Rotating shaft bearing device
JP2008301626A (en) Rotary actuator device
KR20170062889A (en) Surface permanent magnet synchronous motor
JP5785016B2 (en) Linear actuator
JP2010233325A (en) Brushless motor
JP5550022B2 (en) Rotary solenoid
JP2019133843A (en) Electromagnetic relay
CN109155580B (en) Drive control method for rotary solenoid
JP2012105432A (en) Spherical motor
CN109155579B (en) Rotary solenoid
JP7097289B2 (en) Solenoid device
US20180226847A1 (en) Housing and motor including same
US20170352462A1 (en) Solenoid
JP5815372B2 (en) Rotary actuator
JP5584079B2 (en) Rotary solenoid rotation range restriction mechanism
JP6457921B2 (en) DC motor
JP5792411B1 (en) Magnetic rotating device
JP2009189116A (en) Coreless linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R150 Certificate of patent or registration of utility model

Ref document number: 6125442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150