JP6125161B2 - Three-dimensional deformation prediction method used for computerized construction of excavated retaining walls - Google Patents
Three-dimensional deformation prediction method used for computerized construction of excavated retaining walls Download PDFInfo
- Publication number
- JP6125161B2 JP6125161B2 JP2012139010A JP2012139010A JP6125161B2 JP 6125161 B2 JP6125161 B2 JP 6125161B2 JP 2012139010 A JP2012139010 A JP 2012139010A JP 2012139010 A JP2012139010 A JP 2012139010A JP 6125161 B2 JP6125161 B2 JP 6125161B2
- Authority
- JP
- Japan
- Prior art keywords
- retaining wall
- displacement
- dimensional
- deformation
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Bulkheads Adapted To Foundation Construction (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
本発明は、地下トンネルやビルの建設工事のように、掘削過程を伴う工事の土留め壁の変位予測を行う、掘削土留め壁の情報化施工に用いる3次元的変形予測方法に関するものである。 The present invention relates to a three-dimensional deformation prediction method used for computerized construction of excavated retaining walls, which predicts displacement of retaining walls of construction involving excavation processes, such as construction work for underground tunnels and buildings. .
地下トンネルやビルの地下フロアなどを構築する際には、図6に示すように、掘削工事が行われる。 When constructing an underground tunnel or an underground floor of a building, excavation work is performed as shown in FIG.
その掘削工事を行うためには、まず、土留め壁の設計を行い、発生する変形や応力を照査するが、設計を行う際には工学的な割り切り等があるため、不確実な点が多い。また、都市部などでの施工においては、既設の建物や構造物に非常に近接した箇所での施工となる場面も多く、鉄道においては、土留め壁の変位に対する厳しい管理値が設けられている。 In order to carry out the excavation work, the earth retaining wall is first designed and the deformations and stresses generated are checked, but there are many uncertainties because there are engineering cleaves when designing. . In construction in urban areas, etc., there are many scenes where construction is done very close to existing buildings and structures, and railways have strict control values for displacement of retaining walls. .
一方、近年、掘削工事では地盤のバラつきに起因する設計時の不確実性を補うことや、施工時の安全の確保あるいは工期・工費の短縮を目的として、情報化施工の実施場面が増えてきている。このような背景を受け、土留め壁の変形に関する計測データを3次元的に評価・可視化し、土留め壁の3次元挙動を適切かつリアルタイムに評価可能な3次元計測システムが開発されている。 On the other hand, in recent years, in the excavation work, there has been an increase in the number of implementations of computerized construction for the purpose of compensating for design uncertainties due to ground variations, ensuring safety during construction, and shortening construction periods and costs. Yes. In response to such a background, a three-dimensional measurement system has been developed that can three-dimensionally evaluate and visualize measurement data related to deformation of the retaining wall and appropriately evaluate the three-dimensional behavior of the retaining wall in real time.
本願発明者らは、既に土留壁の面全体にその変位を計測する高感度センサーとそれを補完する低感度センサーを組み合わせた3次元計測システムを提案している。 The present inventors have already proposed a three-dimensional measurement system in which a high-sensitivity sensor that measures the displacement of the entire retaining wall and a low-sensitivity sensor that complements the high-sensitivity sensor are combined .
また、土留め壁の変形挙動を評価する方法として、具体的には以下の2種類の方法が考えられる(下記特許文献1参照)。 Further, as a method for evaluating the deformation behavior of the retaining wall, the following two types of methods can be specifically considered (see Patent Document 1 below).
図6は従来の土留め壁の施工例を示す図面代用写真、図7は従来のトータルステーションによる土留め壁の計測方法を示す模式図、図8は従来の傾斜計を変位へ換算する方法を示す説明図である。 FIG. 6 is a drawing-substituting photograph showing an example of construction of a conventional retaining wall, FIG. 7 is a schematic diagram showing a conventional method for measuring the retaining wall by a total station , and FIG. 8 shows a method for converting a conventional inclinometer into displacement. It is explanatory drawing .
これは直接的に変位を計測する方法であり、土留め壁101のあらかじめ定めたターゲット102を遠隔計測器103によって測量する方法である。 This is a method of directly measuring the displacement, and is a method of measuring the predetermined target 102 of the retaining wall 101 by the remote measuring device 103.
しかしながら、この方法においては、離れた点からターゲット102を捉えることとなるため、現場の条件によってはデータの欠損が生じたり、地中深い部分においては施工前から計測を行うことが難しい。 However, in this method, since the target 102 is captured from a distant point, data loss may occur depending on on-site conditions, or it is difficult to perform measurement before construction in a deep underground part.
これは変位ではなく、傾斜を計測する間接的方法であり、現状では最も広く用いられている。 This is an indirect method of measuring the inclination, not the displacement, and is most widely used at present.
この方法では、土留め壁の施工時に、土留め壁201内の鉛直方向に傾斜計202を多数設置し、この傾斜計202で得られた傾斜角θと傾斜計202の間隔を活用して、変位を求める方法である。なお、図8において、203は別の機器で計測した既知の変位を示している。 In this method, at the time of construction of the retaining wall, a large number of inclinometers 202 are installed in the vertical direction in the retaining wall 201, and the inclination angle θ obtained by the inclinometer 202 and the interval between the inclinometers 202 are utilized, This is a method for obtaining the displacement. In FIG. 8, reference numeral 203 denotes a known displacement measured by another device.
〔区間変位(mm)〕 Δu=θ・L
〔累計変位(mm)〕 u=ΣΔu
ここで、u:変位(mm),θ:傾斜角,Δu:区間変位(mm),L:区間距離である。
[Section displacement (mm)] Δu = θ · L
[Total displacement (mm)] u = ΣΔu
Here, u: displacement (mm), θ: inclination angle, Δu: section displacement (mm), and L: section distance.
しかしながら、この方法では、傾斜計を同一ライン上に配置しなければならず、また、傾斜計202の設置の間隔が密でないと得られる得られる変位の誤差が大きくなる。 However, in this method, the inclinometers must be arranged on the same line, and the obtained displacement error increases if the interval between the inclinometers 202 is not close.
さらに、ひずみ計測などの方法も考えられるが、この計測値をそのまま土留め壁の変位として解釈するのは難しい。 Furthermore, methods such as strain measurement are conceivable, but it is difficult to interpret this measurement value as it is as the displacement of the retaining wall.
上記したような問題、さらに掘削土留め壁の変位は地盤のバラつきや設計時の不確実性があるので、従来の計測法による計測では、結果が測線によって異なる傾向がある。そのため、より正確な情報化施工を行うためには土留め壁の3次元的な逆解析・予測解析を行う必要がある。しかしながら、現在、掘削土留め壁の設計では、1測線の逆解析・予測解析しか行えないといった課題がある。 Problems as described above, since the further displacement of the excavated soil retaining walls have variations and uncertainties in the designing of the ground, in the measurement by the conventional measuring methods, the results tend to differ by measuring line. Therefore, in order to carry out more accurate computerized construction, it is necessary to perform a three-dimensional inverse analysis / prediction analysis of the retaining wall. However, currently, in the design of the excavated soil retaining wall, there is a problem can not be performed only reverse analysis and forecasting analysis of the 1 measurement line.
本発明は、上記状況に鑑みて、逆解析・予測解析を連携させ、掘削土留め壁の3次元的な変位予測を行い、施工に応じて予測される土留め壁の変形挙動を3次元的に予測・可視化することができる、掘削土留め壁の情報化施工に用いる3次元的変形予測方法を提供することを目的とする。 In view of the above situation, the present invention performs a three-dimensional displacement prediction of the excavated retaining wall by linking reverse analysis / predictive analysis, and three-dimensionally predicts the deformation behavior of the retaining wall according to the construction. An object of the present invention is to provide a three-dimensional deformation prediction method used for computerized construction of excavated earth retaining walls, which can be predicted and visualized.
本発明は、上記目的を達成するために、
〔1〕掘削土留め壁の情報化施工に用いる3次元的変形予測方法において、
(a)3次元計測システムを用いて現掘削時点における土留め壁の変形挙動を評価し、(b)土留め壁の延長方向に設定した複数の測線毎に、弾塑性法による逆解析を行い、各測線で現状の土留め壁の変位分布に最も適合するような変形を与える地盤ばねの逆解析を行い、(c)各測線において上記(b)で求められた地盤ばねを使い、以降の各次掘削段階での予測計算を実施し、(d)全測線での予測計算結果を3次元計測システムへ戻し、各次掘削段階での土留め壁の変形挙動の3次元可視化を行うことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the three-dimensional deformation prediction method used for computerized construction of excavated earth retaining walls,
(A) Evaluate the deformation behavior of the retaining wall at the time of the current excavation using a three-dimensional measurement system, and (b) perform inverse analysis by the elasto-plastic method for each of the multiple survey lines set in the extending direction of the retaining wall. , Reverse analysis of the ground spring that gives the deformation that best fits the current distribution distribution of the retaining wall in each survey line, (c) using the ground spring obtained in (b) above in each survey line, Perform prediction calculation at each next excavation stage, (d) return the prediction calculation results at all survey lines to the 3D measurement system, and perform 3D visualization of the deformation behavior of the retaining wall at each next excavation stage Features.
本発明によれば、次のような効果を奏することができる。 According to the present invention, the following effects can be achieved.
(1) 逆解析・予測解析方法と3次元計測システムを連携させることで、施工に応じた土留め壁の変形を3次元的に予測・可視化することができる。 (1) By linking the inverse analysis / prediction analysis method and the three-dimensional measurement system, the deformation of the retaining wall according to the construction can be predicted and visualized three-dimensionally.
(2) 掘削土留め壁の変形の予測値を3次元的に把握できることで、従来は一律にしか実施できなかった支保工等の部材変更を3次元的にコントロールすることができる。近年、情報化施工が注目されているが、このように、本システムを用いることで、施工時の安全の確保や場合によっては、支保工の削減による工期・工費の短縮を行うことができ、情報化施工のためのツールになる。 (2) Since it is possible to grasp the predicted value of the deformation of the excavated earth retaining wall three-dimensionally, it is possible to three-dimensionally control member changes such as support work that could only be performed uniformly in the past. In recent years, computerized construction has attracted attention, but by using this system in this way, it is possible to ensure the safety during construction and, in some cases, shorten the work period and cost by reducing support work, It becomes a tool for computerized construction.
(3) 本システムの構築により、多数の側線の予測解析を自動で計算できるため、解析時間の短縮につながり、簡易的に施工中の掘削土留め壁の評価を行うことができる。 (3) By constructing this system, it is possible to automatically calculate the prediction analysis of a large number of side lines, which leads to a reduction in analysis time and makes it possible to easily evaluate the excavated earth retaining wall during construction.
本発明の掘削土留め壁の情報化施工に用いる3次元的変形予測方法は、(a)3次元計測システムを用いて現掘削時点における土留め壁の変形挙動を評価し、(b)土留め壁の延長方向に設定した複数の測線毎に、弾塑性法による逆解析を行い、各測線で現状の土留め壁の変位分布に最も適合するような変形を与える地盤ばねの逆解析を行い、(c)各測線において上記(b)で求められた地盤ばねを使い、以降の各次掘削段階での予測計算を実施し、(d)全測線での予測計算結果を3次元計測システムへ戻し、各次掘削段階での土留め壁の変形挙動の3次元可視化を行う。 The three-dimensional deformation prediction method used for the computerized construction of the excavation retaining wall according to the present invention is as follows: (a) the deformation behavior of the retaining wall at the time of the current excavation is evaluated using a three-dimensional measurement system; For each of the multiple survey lines set in the wall extension direction, perform an inverse analysis by the elasto-plastic method, and perform an inverse analysis of the ground spring that gives the deformation that best fits the current distribution of the retaining wall in each survey line, (C) The ground spring obtained in (b) above is used for each survey line, and the prediction calculation at each subsequent excavation stage is performed. (D) The prediction calculation results for all the survey lines are returned to the three-dimensional measurement system. The three-dimensional visualization of the deformation behavior of the retaining wall in each subsequent excavation stage is performed.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明の実施例を示す掘削土留め壁の3次元変位計測システムの模式図、図2はその逆解析・予測解析方法の連携の模式図である。 FIG. 1 is a schematic diagram of a three-dimensional displacement measuring system for excavated earth retaining walls according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of cooperation of the inverse analysis / prediction analysis method.
図1において、Aは掘削土留め壁の3次元変位計測面、この3次元変位計測面には、幅方向(Mx +1)点、深さ方向(My +1)点の測線1〜3,…測線Mx-1 ,測線Mx ,測線Mx+1 を設定する。各測線には解析用の等間隔の節点(ターゲット)を設ける。これらの測線について、以下のように、多測線で逆解析・予測解析を実施して再度曲面を生成して、3次元的に可視化できるようにしている。 In FIG. 1, A is a three-dimensional displacement measurement surface of the excavation retaining wall, and the three-dimensional displacement measurement surface includes measurement lines 1 to 3 in a width direction (M x +1) point and a depth direction (M y +1) point. ... survey line M x-1, survey line M x, to set the survey line M x + 1. Each survey line has equidistant nodes (targets) for analysis. For these survey lines, as shown below, inverse analysis / prediction analysis is performed on multiple survey lines to generate a curved surface again so that it can be visualized three-dimensionally.
図2(a)において、●は実測値、実線は逆解析値、点線は予測値を示している。まず、3次元計測により土留め壁の実測を行い、得られた現状の実測値と整合するように地盤バネを逆解析する〔図2(b)〕。次に、逆解析で得た地盤バネを使って、将来の変位の予測解析を行い〔図2(c)〕、このようにして得られた変位の予測値を用いて、再度曲線を生成する。 In FIG. 2A, ● represents an actual measurement value, a solid line represents a reverse analysis value, and a dotted line represents a predicted value. First, the earth retaining wall is actually measured by three-dimensional measurement, and the ground spring is back-analyzed so as to be consistent with the actual measured value obtained [FIG. 2 (b)]. Next, prediction analysis of future displacement is performed using the ground spring obtained by inverse analysis [FIG. 2 (c)], and a curve is generated again using the predicted value of displacement thus obtained. .
このように、本発明では、掘削土留め壁の変位を3次元的に可視化できる3次元計測システムから抽出し、逆解析・予測解析を行う設計プログラムへ変位データを読み込めるシステムの構築を行った。また、逆解析・予測解析を行う設計プログラムにおいて、多数の側線の解析を行えるようにした。3次元計測システムと逆解析・予測解析手法の連携の手順は以下の通りである。
(1)3次元計測システムを用いて現掘削時点における土留め壁の変形挙動を評価する。
(2)土留め壁の延長方向に設定した測線〔計 (Mx +1) 測線〕ごとに、弾塑性法による逆解析を行い、各測線で現状の土留め壁の変位分布に最も適合するような変形を与える地盤ばねの逆解析を行う。
(3)各測線において(2)で求められた地盤ばねを使い、以降の各次掘削段階での変位予測計算を実施する。
(4)全測線での予測計算結果を3次元計測システムへ戻し、各次掘削段階での土留め壁の予測変形挙動の3次元可視化を行う。
As described above, in the present invention, the displacement of the excavated earth retaining wall is extracted from a three-dimensional measurement system that can be visualized three-dimensionally, and a system that can read the displacement data into a design program that performs reverse analysis / prediction analysis has been constructed. In addition, many sidelines can be analyzed in a design program that performs inverse analysis and prediction analysis. The procedure for cooperation between the three-dimensional measurement system and the inverse analysis / prediction analysis method is as follows.
(1) The deformation behavior of the retaining wall at the time of the current excavation is evaluated using a three-dimensional measurement system.
(2) For each survey line [total (M x +1) survey line] set in the direction of extension of the retaining wall, an inverse analysis using the elasto-plastic method is performed, and each line is best adapted to the current distribution distribution of the retaining wall. Inverse analysis of ground springs that give large deformations.
(3) In each survey line, the ground spring obtained in (2) is used to perform displacement prediction calculation in each subsequent excavation stage.
(4) The prediction calculation results for all survey lines are returned to the three-dimensional measurement system, and the three-dimensional visualization of the predicted deformation behavior of the retaining wall at each next excavation stage is performed.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
図3は本発明の実施例を示す土留め壁への計測機器の配置を示す概要図であり、図3(a)は土留め壁への計測機器の配置図(東−西方向)、図3(b)は土留め壁の深さ方向を示す図、図4はその予測解析結果と設計値、計測値を示す図、図5は本発明の3次元計測システムを用いた予測解析結果(3次掘削終了時)を示す図である。 FIG. 3 is a schematic diagram showing the arrangement of the measuring device on the retaining wall according to the embodiment of the present invention, and FIG. 3A is an arrangement view of the measuring device on the retaining wall (east-west direction). 3 (b) is a diagram showing the depth direction of the retaining wall, FIG. 4 is a diagram showing the prediction analysis results, design values, and measurement values, and FIG. 5 is a prediction analysis result using the three-dimensional measurement system of the present invention ( It is a figure which shows (at the time of the completion | finish of tertiary excavation).
図3において、□は傾斜計、●はTSターゲット等であり、各測線に等間隔で傾斜計を設ける。また、図4において、◆は計測値、▲は設計値、○は予測値〔ケース(1)〕、■は予測値〔ケース(2)〕であり、縦軸は深度(m)、横軸は変位量(mm)を示している。図5において、図5(a)は計測(実測)で得られた土留め壁の挙動、図5(b)は設計時の変位予測、図5(c)は予測解析結果を用いた土留め壁の予測変形挙動を示している。 In FIG. 3, □ is an inclinometer, and ● is a TS target or the like, and inclinometers are provided at equal intervals on each survey line. In FIG. 4, ◆ is a measured value, ▲ is a design value, ○ is a predicted value [Case (1)], ■ is a predicted value [Case (2)], the vertical axis is depth (m), and the horizontal axis Indicates a displacement (mm). 5A, FIG. 5A is a behavior of the retaining wall obtained by measurement (actual measurement), FIG. 5B is a displacement prediction at the time of design, and FIG. 5C is a retaining wall using a prediction analysis result. The predicted deformation behavior of the wall is shown.
このように、本発明の掘削土留め壁の情報化施工に用いる3次元的変形予測方法を用いて土留め壁の変形挙動の予測を行った。すなわち、図4の◆および図5(a)に示されるように、3次元計測システムで土留め壁の変形挙動の計測を行い、逆解析・予測解析により、図4の○および■、ならびに図5(c)に示されるように、土留め壁の変形挙動の予測を3次元的に行い、これを可視化することができた。図4の▲および図5(b)と比較すると明らかなように、不確実な点が多い設計時の変位予測と大きく異なる変位予測を行うことができた。 In this way, the deformation behavior of the retaining wall was predicted using the three-dimensional deformation prediction method used in the computerized construction of the excavated retaining wall of the present invention. That is, as shown by ◆ in FIG. 4 and FIG. 5A, the deformation behavior of the retaining wall is measured by a three-dimensional measurement system, and ○ and ■ in FIG. As shown in 5 (c), the deformation behavior of the retaining wall was predicted three-dimensionally and visualized. As is clear from comparison with ▲ in FIG. 4 and FIG. 5 (b), the displacement prediction greatly different from the displacement prediction at the time of designing with many uncertain points could be performed.
本発明によれば、このように予測解析を3次元的に行い、可視化を行うことができる。 According to the present invention, prediction analysis can be performed three-dimensionally and visualization can be performed.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の掘削土留め壁の情報化施工に用いる3次元的変形予測方法は、施工に応じて予測される変形を3次元的に予測することができる掘削土留め壁の3次元的情報化施工方法として利用可能である。 The three-dimensional deformation prediction method used for the computerized construction of the excavation retaining wall of the present invention is a three-dimensional computerized construction of the excavation retaining wall that can predict the deformation predicted according to the construction three-dimensionally. It can be used as a method.
Claims (1)
(b)土留め壁の延長方向に設定した複数の測線毎に、弾塑性法による逆解析を行い、各測線で現状の土留め壁の変位分布に最も適合するような変形を与える地盤ばねの逆解析を行い、
(c)各測線において上記(b)で求められた地盤ばねを使い、以降の各次掘削段階での予測計算を実施し、
(d)全測線での予測計算結果を3次元計測システムへ戻し、各次掘削段階での土留め壁の変形挙動の3次元可視化を行うことを特徴とする掘削土留め壁の情報化施工に用いる3次元的変形予測方法。 (A) Evaluate the deformation behavior of the retaining wall at the time of the current excavation using a 3D measurement system,
(B) For each of the multiple survey lines set in the extension direction of the retaining wall, reverse analysis is performed by the elasto-plastic method, and the ground spring that gives the deformation that best fits the current displacement distribution of the retaining wall in each survey line Reverse analysis,
(C) In each survey line, using the ground spring obtained in (b) above, carry out prediction calculation at each subsequent excavation stage,
(D) Returning the prediction calculation results for all survey lines to the 3D measurement system, and performing 3D visualization of the deformation behavior of the retaining wall at each next excavation stage. Three-dimensional deformation prediction method to be used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012139010A JP6125161B2 (en) | 2012-06-20 | 2012-06-20 | Three-dimensional deformation prediction method used for computerized construction of excavated retaining walls |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012139010A JP6125161B2 (en) | 2012-06-20 | 2012-06-20 | Three-dimensional deformation prediction method used for computerized construction of excavated retaining walls |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014001590A JP2014001590A (en) | 2014-01-09 |
JP6125161B2 true JP6125161B2 (en) | 2017-05-10 |
Family
ID=50035004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012139010A Active JP6125161B2 (en) | 2012-06-20 | 2012-06-20 | Three-dimensional deformation prediction method used for computerized construction of excavated retaining walls |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6125161B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6665023B2 (en) * | 2016-05-11 | 2020-03-13 | 大成建設株式会社 | Monitoring system for estimating the displacement of the building. |
CN109631786B (en) * | 2018-12-14 | 2019-12-10 | 青岛理工大学 | three-dimensional laser scanning underground engineering similar material simulation test surface layer deformation method |
CN110411364B (en) * | 2019-07-23 | 2021-11-09 | 中国建筑第八工程局有限公司 | Method for monitoring deformation of construction external scaffold |
CN111486814B (en) * | 2020-04-18 | 2021-11-02 | 福州大学 | BIM three-dimensional visualization deep foundation pit deformation prediction system based on genetic algorithm |
CN112177007A (en) * | 2020-08-28 | 2021-01-05 | 中铁九局集团第七工程有限公司 | Deep foundation pit construction method under geological condition of quicksand layer in large disturbance environment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08151633A (en) * | 1994-11-30 | 1996-06-11 | Fujita Corp | Execution management system for earth retaining work |
JP3653196B2 (en) * | 1998-06-30 | 2005-05-25 | 飛島建設株式会社 | Construction support information system using virtual reality. |
JP3690467B2 (en) * | 1998-07-10 | 2005-08-31 | 清水建設株式会社 | Estimation method of ground constant |
JP4389316B2 (en) * | 2000-01-17 | 2009-12-24 | 株式会社大林組 | Measurement management method during earth retaining excavation, measurement management system during earth retaining excavation, and recording medium recording a computer program for realizing the measurement management system during earth retaining excavation |
JP2008297870A (en) * | 2007-06-04 | 2008-12-11 | Shimizu Corp | Underground construction management system and underground construction management method |
JP5122545B2 (en) * | 2009-11-02 | 2013-01-16 | 公益財団法人鉄道総合技術研究所 | Three-dimensional measurement system for excavation earth retaining work |
JP2011185017A (en) * | 2010-03-11 | 2011-09-22 | Railway Technical Research Institute | Noncontact-type earth-retaining wall displacement measuring method |
-
2012
- 2012-06-20 JP JP2012139010A patent/JP6125161B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014001590A (en) | 2014-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Providakis et al. | Predictions of settlement risk induced by tunnelling using BIM and 3D visualization tools | |
Argüelles-Fraga et al. | Measurement planning for circular cross-section tunnels using terrestrial laser scanning | |
JP6125161B2 (en) | Three-dimensional deformation prediction method used for computerized construction of excavated retaining walls | |
JP6769259B2 (en) | Tunnel management system, tunnel management method and tunnel management program | |
JP6845434B2 (en) | Condition inspection method, equipment and program for columnar structures | |
JP2009294039A (en) | Structure deformation monitoring method using distribution type optical-fiber sensing system, and device thereof | |
JP6506215B2 (en) | Geological boundary or fault plane prediction method | |
JP5819252B2 (en) | Optimal placement method of measuring equipment for measuring retaining wall in excavation work | |
CN104328776A (en) | Method for predicting influence of dynamic compaction on soil body and surrounding environment | |
KR20230083388A (en) | Building information modeling(bim)-grid maintenance system for underground area of urban railway, and method for the same | |
Acikgoz et al. | Innovative monitoring of the response of a heritage masonry building to nearby tunnelling in London Clay | |
DeJong et al. | Impact of the Crossrail tunnelling project on masonry buildings with shallow foundations | |
JP4206980B2 (en) | Sinking amount prediction method and settlement amount prediction program | |
Misa et al. | Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining | |
CN106777556A (en) | A kind of spacial analytical method for assessing slope excavating phase stable state | |
Pan et al. | Assessment method of slope excavation quality based on point cloud data | |
Stöckel et al. | Mining-induced ground deformations in Kiruna and Malmberget | |
Sundell et al. | A framework for risk assessment of groundwater drawdown induced subsidence | |
Qiu et al. | Terrestrial laser scanning for deformation monitoring of the thermal pipeline traversed subway tunnel engineering | |
JP6326335B2 (en) | Ground condition prediction method | |
KR101612995B1 (en) | Management method of building movement through three dimensional building information model | |
Eslami et al. | Performance of CAPS Method Considering its Interaction with Adjacent Structures–The Q7 Station of Tehran Metro Line 7 | |
Tang | Probability-based serviceability evaluation of buildings adjacent to an excavation using random finite element method | |
Fong et al. | Building response to adjacent deep basement construction | |
JP5755509B2 (en) | Deformation measurement method of earth retaining wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6125161 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |