JP6125137B1 - 水位計測装置及び水位計測方法 - Google Patents

水位計測装置及び水位計測方法 Download PDF

Info

Publication number
JP6125137B1
JP6125137B1 JP2017505265A JP2017505265A JP6125137B1 JP 6125137 B1 JP6125137 B1 JP 6125137B1 JP 2017505265 A JP2017505265 A JP 2017505265A JP 2017505265 A JP2017505265 A JP 2017505265A JP 6125137 B1 JP6125137 B1 JP 6125137B1
Authority
JP
Japan
Prior art keywords
image
water
identification
water level
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017505265A
Other languages
English (en)
Other versions
JPWO2018092238A1 (ja
Inventor
秀明 前原
秀明 前原
夢雄 王
夢雄 王
百代 日野
百代 日野
三嶋 英俊
英俊 三嶋
英滋 上田
英滋 上田
哲朗 和田
哲朗 和田
謙二 平
謙二 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6125137B1 publication Critical patent/JP6125137B1/ja
Publication of JPWO2018092238A1 publication Critical patent/JPWO2018092238A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

水位計測装置(100)は、操作入力装置(2)に入力された操作に応じて、監視カメラ(1)による撮影画像(I,I’)における標定点(A1〜A4)の座標値と、標定点(A1〜A4)に対応する水位値とを設定する標定点設定部(11)と、撮影画像(I,I’)を取得して、撮影画像(I,I’)のうちの標定点(A1〜A4)の座標値を含む領域を識別用画像(E1〜E4,E1’〜E4’)として切り出す識別用画像切り出し部(12)と、水領域と非水領域との識別に係る機械学習の結果に基づき、識別用画像(E1〜E4,E1’〜E4’)に対応する領域が水領域であるか非水領域であるかを識別する画像学習識別部(18)と、画像学習識別部(18)による識別結果と、標定点(A1〜A4)に対応する水位値とを用いて、監視カメラ(1)による撮影範囲における水位を算定する水位算定部(14)とを備える。

Description

本発明は、水位計測装置及び水位計測方法に関する。
従来、監視カメラにより撮影された画像を用いて、河川などの水位を計測する技術が開発されている。例えば、特許文献1の水位計測方法は、量水板が設置された河川において、監視カメラが量水板を含む画像を撮影し、水位計測装置が当該画像を用いて当該河川の水位を計測するものである。
特開2001−281046号公報
特許文献1の水位計測方法は、撮影された画像における輝度分布に基づいて量水板の位置を特定し、特定した位置に基づき水位を計測するものである。しかしながら、輝度分布のみに基づいて量水板の位置を特定する処理は、特定の精度が不安定である。このため、特許文献1の水位計測方法は、計測結果に誤りが生ずる可能性があり、計測が不安定であるという問題があった。
本発明は、上記のような課題を解決するためになされたものであり、安定した水位計測が可能な水位計測装置及び水位計測方法を提供することを目的とする。
本発明の水位計測装置は、操作入力装置に入力された操作に応じて、監視カメラによる撮影画像における標定点の座標値と、標定点に対応する水位値とを設定する評定点設定部と、撮影画像を取得して、撮影画像のうちの標定点の座標値を含む領域を識別用画像として切り出す識別用画像切り出し部と、水領域と非水領域との識別に係る機械学習の結果に基づき、識別用画像に対応する領域が水領域であるか非水領域であるかを識別する画像学習識別部と、画像学習識別部による識別結果と、識別用画像に対応する標定点の水位値とを用いて、監視カメラによる撮影範囲における水位を算定する水位算定部と、操作入力装置に入力された操作に応じて、撮影画像における常時水領域と、撮影画像における常時非水領域とを設定する常時領域設定部と、撮影画像を取得して、撮影画像のうちの常時水領域に対応する部分と撮影画像のうちの常時非水領域に対応する部分とを学習用画像として切り出す学習用画像切り出し部とを備え、画像学習識別部は、学習用画像を用いて、水領域と非水領域との識別に係る機械学習を実行するものである。
本発明によれば、上記のように構成したので、安定した水位計測が可能な水位計測装置及び水位計測方法を得ることができる。
本発明の実施の形態1に係る水位計測装置の要部を示す機能ブロック図である。 本発明の実施の形態1に係る水位計測装置の要部を示すハードウェア構成図である。 本発明の実施の形態1に係る標定点設定部及び常時領域設定部の動作を示すフローチャートである。 本発明の実施の形態1に係る撮影画像の一例を示す説明図である。 本発明の実施の形態1に係る標定点の一例を示す説明図である。 本発明の実施の形態1に係る常時水領域及び常時非水領域の一例を示す説明図である。 本発明の実施の形態1に係る識別用画像切り出し部、画像識別部及び水位算定部の動作を示すフローチャートである。 本発明の実施の形態1に係る切り出し対象領域の一例を示す説明図である。 本発明の実施の形態1に係る識別用画像の一例を示す説明図である。 本発明の実施の形態1に係る切り出し対象領域の他の例を示す説明図である。 本発明の実施の形態1に係る識別用画像の他の例を示す説明図である。 本発明の実施の形態1に係る学習用画像切り出し部及び画像学習部の動作を示すフローチャートである。 図13Aは、本発明の実施の形態1に係る学習用画像の具体例を示す説明図である。図13Bは、本発明の実施の形態1に係る他の学習用画像の具体例を示す説明図である。 本発明の実施の形態1に係る画像学習識別部における人工ニューラルネットワークの階層構造、及び各層間の入出力関係などを示す説明図である。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る水位計測装置の要部を示す機能ブロック図である。図1を参照して、実施の形態1の水位計測装置100について、河川の水位計測に用いる例を中心に説明する。
監視カメラ1は、水位計測装置100による水位計測の対象となる河川を撮影するものである。監視カメラ1による撮影の対象となる範囲(以下「撮影範囲」という。)には、河川の水と、河川の水以外のもの(例えば橋梁などの構造物)とが含まれている。以下、監視カメラ1により撮影された画像を「撮影画像」という。監視カメラ1は、撮影画像を示す画像データを水位計測装置100に出力するものである。
操作入力装置2は、水位計測装置100を使用する作業者(以下、単に「作業者」という。)による操作の入力を受け付けるものである。操作入力装置2は、例えば、キーボード3及びマウス4により構成されている。また、表示装置5は、例えば、液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイなどのディスプレイ6により構成されている。
以下、水位計測装置100の要部について説明する。
標定点設定部11は、操作入力装置2に入力された操作に応じて、撮影画像における水位計測の基準となる点(以下「標定点」という。)の座標値と、この標定点に対応する水位を示す値(以下「水位値」という。)とを設定するものである。より具体的には、標定点設定部11は、撮影画像における複数個の標定点の座標値と、複数個の標定点の各々に対応する水位値とを設定するものである。標定点設定部11は、各標定点の座標値を識別用画像切り出し部12に出力するとともに、各標定点に対応する水位値を水位算定部14に出力するものである。
識別用画像切り出し部12は、監視カメラ1が出力した画像データを取得するものである。識別用画像切り出し部12は、取得した画像データが示す撮影画像のうち、標定点設定部11により設定された各標定点の座標値を含む領域を切り出すものである。以下、識別用画像切り出し部12による切り出しの対象となる領域を「切り出し対象領域」といい、識別用画像切り出し部12により切り出された領域に対応する画像を「識別用画像」という。識別用画像切り出し部12は、切り出した識別用画像を画像識別部13に出力するものである。
画像識別部13は、識別用画像切り出し部12が出力した識別用画像の各々に対応する領域が、河川の水が写された領域(以下「水領域」という。)であるのか、河川の水以外のものが写された領域(以下「非水領域」という。)であるのかを識別するものである。このとき、画像識別部13は、画像学習部17による機械学習の結果に基づき、水領域であるか非水領域であるかの識別処理を実行するようになっている。画像識別部13は、識別結果を水位算定部14に出力するものである。
水位算定部14は、画像識別部13による識別結果と、標定点設定部11が出力した各標定点に対応する水位値とを用いて、監視カメラ1の撮影範囲における水位を算定するものである。
常時領域設定部15は、操作入力装置2に入力された操作に応じて、撮影画像における常に河川の水が写されると想定される1個以上の領域(以下「常時水領域」という。)と、撮影画像における常に河川の水以外のものが写されると想定される1個以上の領域(以下「常時非水領域」という。)とを設定するものである。すなわち、常時水領域は、渇水又は増水などの河川の状態変化にかかわらず、常に河川の水が写される蓋然性が他の領域よりも高い領域である。また、常時非水領域は、渇水又は増水などの河川の状態変化にかかわらず、常に河川の水以外のもの(例えば橋梁などの構造物)が写される蓋然性が他の領域よりも高い領域である。
学習用画像切り出し部16は、監視カメラ1が出力した画像データを取得するものである。学習用画像切り出し部16は、取得した画像データが示す撮影画像のうち、常時領域設定部15により設定された常時水領域に対応する部分と、常時領域設定部15により設定された常時非水領域に対応する部分とを切り出すものである。以下、学習用画像切り出し部16による切り出しの対象となる部分を「切り出し対象部分」といい、学習用画像切り出し部16により切り出された部分に対応する画像を「学習用画像」という。学習用画像切り出し部16は、切り出した学習用画像を画像学習部17に出力するものである。
画像学習部17は、学習用画像切り出し部16が出力した学習用画像を用いて、水領域と非水領域との識別に係る機械学習を実行するものである。すなわち、画像学習部17及び画像識別部13により、画像学習識別部18が構成されている。画像学習識別部18は、例えば、いわゆる「人工ニューラルネットワーク」を用いたものである。人工ニューラルネットワークの構造、及び人工ニューラルネットワークによる機械学習の具体例については、図14を参照して後述する。
標定点設定部11、識別用画像切り出し部12、水位算定部14、常時領域設定部15、学習用画像切り出し部16及び画像学習識別部18により、水位計測装置100の要部が構成されている。
次に、図2を参照して、水位計測装置100のハードウェア構成について説明する。図2に示す如く、水位計測装置100はコンピュータにより構成されており、プロセッサ21及びメモリ22を有している。メモリ22には、当該コンピュータを図1に示す標定点設定部11、識別用画像切り出し部12、水位算定部14、常時領域設定部15、学習用画像切り出し部16及び画像学習識別部18として機能させるためのプログラムが記憶されている。メモリ22に記憶されたプログラムをプロセッサ21が読み出して実行することにより、図1に示す標定点設定部11、識別用画像切り出し部12、水位算定部14、常時領域設定部15、学習用画像切り出し部16及び画像学習識別部18の機能が実現される。
プロセッサ21は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)などにより構成されている。メモリ22は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)若しくはEEPROM(Electrically Erasable Programmable Read−Only Memory)などの半導体メモリ、磁気ディスク、光ディスク又は光磁気ディスクなどにより構成されている。
次に、図3のフローチャートを参照して、標定点設定部11及び常時領域設定部15の動作について説明する。
まず、ステップST1にて、標定点設定部11は、操作入力装置2に入力された操作に応じて、撮影画像における複数個の標定点の座標値と、各標定点に対応する水位値とを設定する。具体的には、例えば、標定点設定部11は、監視カメラ1が出力した画像データを取得して、この画像データが示す撮影画像をディスプレイ6に表示させる。作業者は、ディスプレイ6に表示された撮影画像に対して、マウス4を用いて複数個の標定点を指定する。標定点設定部11は、指定された各標定点の座標値を算出する。作業者は、キーボード3を用いて、指定した各標定点に対応する水位値を入力する。
また、ステップST2にて、常時領域設定部15は、操作入力装置2に入力された操作に応じて、撮影画像における常時水領域と、撮影画像における常時非水領域とを設定する。具体的には、例えば、常時領域設定部15は、監視カメラ1が出力した画像データを取得して、この画像データが示す撮影画像をディスプレイ6に表示させる。作業者は、ディスプレイ6に表示された撮影画像に対して、マウス4を用いて常時水領域と常時非水領域とを指定する。
図4は、撮影画像Iの一例を示している。図5に示す例において、撮影画像Iの中央部に写された構造物Sは橋梁である。また、図中x軸及びy軸は、撮影画像Iにおける座標値に対応する軸である。
図5は、ステップST1で指定された標定点A1〜A4の一例を示している。図5に示す如く、撮影画像Iの中央部において、4個の標定点A1〜A4が縦一列に配置されている。図中、(x1,y1)は撮影画像Iにおける標定点A1の座標値、(x2,y2)は撮影画像Iにおける標定点A2の座標値、(x3,y3)は撮影画像Iにおける標定点A3の座標値、(x4,y4)は撮影画像Iにおける標定点A4の座標値をそれぞれ示している。また、標定点A1に対応する水位値は4メートル、標定点A2に対応する水位値は3メートル、標定点A3に対応する水位値は2メートル、標定点A4に対応する水位値は1メートルにそれぞれ設定されている。
なお、標定点A1〜A4の各々に対応する水位値を入力するためには、事前に構造物Sのサイズ及び凹凸形状などを測量しておくことが求められる。この測量については、公知の種々の方法を用いることができるため、説明を省略する。
図6は、ステップST2で指定された常時水領域B及び常時非水領域Cの一例を示している。図6に示す如く、撮影画像Iの左端部に1個の矩形状の常時水領域Bが設定されている。また、撮影画像Iの上端部に1個の矩形状の常時非水領域Cが設定されている。
以下、ステップST1,ST2の処理を総称して「準備処理」という。準備処理は、例えば、監視カメラ1が設置されて作業者が水位計測装置100の使用を開始するときに1回だけ実行される。準備処理が完了した後、監視カメラ1は、撮影範囲を撮影して、撮影画像を示す画像データを出力する処理を継続して実行する。水位計測装置100は、監視カメラ1が順次出力する画像データの各々に対して、図7のフローチャートに示す処理と図12のフローチャートに示す処理とを自動で実行する。
次に、図7のフローチャートを参照して、識別用画像切り出し部12、画像識別部13及び水位算定部14の動作について説明する。
まず、ステップST11にて、識別用画像切り出し部12は、監視カメラ1が出力した画像データを取得する。この画像データは、例えば、ステップST11に対する直近のタイミングにて監視カメラ1が撮影した1個の撮影画像を示すものである。
次いで、ステップST12にて、識別用画像切り出し部12は、ステップST11で取得した画像データが示す撮影画像から識別用画像を切り出す。このとき、図3のステップST1で設定された各標定点の座標値を含む領域が切り出し対象領域となる。識別用画像切り出し部12は、切り出した識別用画像を画像識別部13に出力する。
次いで、ステップST13にて、画像識別部13は、識別用画像切り出し部12がステップST12で出力した識別用画像の各々に対応する領域が、水領域であるか非水領域であるかを識別する。このとき、画像識別部13は、画像学習部17による機械学習(図12に示すステップST23)の結果に基づき、水領域であるか非水領域であるかの識別処理を実行する。画像識別部13は、識別結果を水位算定部14に出力する。
次いで、ステップST14にて、水位算定部14は、画像識別部13がステップST13で出力した識別結果と、標定点設定部11がステップST1で出力した各標定点に対応する水位値とを用いて、監視カメラ1の撮影範囲における水位を算定する。
以下、ステップST11〜ST14の処理を総称して「水位計測処理」という。水位計測装置100は、図3に示す準備処理が完了した後、所定の条件を満たすとき(例えば、水位計測処理の終了を指示する操作が操作入力装置2に入力されたとき、水位計測装置100の電源が切られたとき、又は監視カメラ1と水位計測装置100間の通信接続が解除されたとき)まで、水位計測処理を繰り返し実行する。
図8は、図5に示す例と同様の撮影画像Iと、この撮影画像Iにおける切り出し対象領域D1〜D4の一例とを示している。切り出し対象領域D1〜D4は、ステップST1で設定された標定点A1〜A4と一対一に対応している。図8に示す例において、切り出し対象領域D1〜D4の各々は、対応する標定点A1〜A4を中心とする正方形状の領域である。個々の切り出し対象領域D1〜D4のサイズは、互いに隣接する2個の切り出し対象領域の縁部同士が当接するサイズに設定されている。すなわち、標定点A1〜A4が略等間隔に配列されているため、切り出し対象領域D1〜D4のサイズは互いに略同等のサイズとなっている。
図9は、撮影画像Iから切り出された識別用画像E1〜E4の一例を示している。識別用画像E1〜E4は、図8に示す切り出し対象領域D1〜D4と一対一に対応している。
図9に示す例において、識別用画像E1〜E4の各々は、いずれも、その全体に構造物Sが写されており、かつ、河川の水が写されていない画像である。画像識別部13は、画像学習部17による機械学習の結果に基づき、識別用画像E1〜E4の各々に対応する領域がいずれも非水領域であると識別する。水位算定部14は、識別用画像E4に対応する領域が非水領域であるため、河川の水位が標定点A4に対応する水位値(1メートル)未満であると算定する。
図10は、図5に示す例と異なる撮影画像I’と、この撮影画像I’における切り出し対象領域D1〜D4とを示している。図10に示す切り出し対象領域D1〜D4の形状及びサイズは、図8に示す切り出し対象領域D1〜D4の形状及びサイズと同様であるため、説明を省略する。
図11は、撮影画像I’から切り出された識別用画像E1’〜E4’を示している。識別用画像E1’〜E4’は、図10に示す切り出し対象領域D1〜D4と一対一に対応している。
図11に示す例において、識別用画像E1’は、下端部にのみ河川の水が写されており、かつ、残余の大半部に構造物Sが写された画像である。他方、識別用画像E2’〜E4’は、いずれも、その全体に河川の水が写されており、かつ、構造物Sが写されていない画像である。画像識別部13は、画像学習部17による機械学習の結果に基づき、識別用画像E1’に対応する領域が非水領域であり、かつ、識別用画像E2’〜E4’の各々に対応する領域が水領域であると識別する。水位算定部14は、識別用画像E1’に対応する領域が非水領域であり、かつ、識別用画像E2’に対応する領域が水領域であるため、河川の水位が標定点A2に対応する水位値(3メートル)以上かつ標定点A1に対応する水位値(4メートル)未満であると算定する。
次に、図12フローチャートを参照して、学習用画像切り出し部16及び画像学習部17の動作について説明する。
まず、ステップST21にて、学習用画像切り出し部16は、監視カメラ1が出力した画像データを取得する。この画像データは、例えば、ステップST21に対する直近のタイミングにて監視カメラ1が撮影した1個の撮影画像を示すものである。
次いで、ステップST22にて、学習用画像切り出し部16は、ステップST21で取得した画像データが示す撮影画像から学習用画像を切り出す。このとき、図3のステップST2で設定された常時水領域に対応する部分と、図3のステップST2で設定された常時非水領域に対応する部分とが切り出し対象部分となる。学習用画像切り出し部16は、切り出した学習用画像を画像学習部17に出力する。
次いで、ステップST23にて、画像学習部17は、学習用画像切り出し部16がステップST22で出力した学習用画像を用いて、水領域と非水領域との識別に係る機械学習を実行する。すなわち、常時水領域に対応する学習用画像は、通常、河川の水が写された画像である。常時非水領域に対応する学習用画像は、通常、河川の水以外のものが写された画像である。画像学習部17による機械学習は、常時水領域に対応する学習用画像と同様の特徴を有する識別用画像が入力された場合は当該識別用画像に対応する領域が水領域であると識別し、かつ、常時非水領域に対応する学習用画像と同様の特徴を有する識別用画像が入力された場合は当該識別用画像に対応する領域が非水領域であると識別することを可能ならしめることを目的とした学習である。
以下、ステップST21〜ST23の処理を総称して「機械学習処理」という。水位計測装置100は、図3に示す準備処理が完了した後、所定の条件を満たすとき(例えば、機械学習処理の終了を指示する操作が操作入力装置2に入力されたとき、水位計測装置100の電源が切られたとき、又は監視カメラ1と水位計測装置100間の通信接続が解除されたとき)まで、機械学習処理を自動で繰り返し実行する。
すなわち、水位計測装置100が水位計測を開始してから時間が経過するにつれて、実行した機械学習処理の回数が増加して、画像学習部17が学習に用いた学習用画像の個数が増えていく。一般に、機械学習は、入力される学習用データが多いほど出力の精度が向上する性質を有している。このため、機械学習処理の繰り返しにより、画像識別部13による識別の精度を次第に向上することができる。この結果、水位算定部14による水位算定の精度を向上することができ、水位計測装置100による計測を安定させることができる。
図13に、学習用画像の具体例を示す。図13Aに示す16個の画像の各々は、常時水領域に対応する学習用画像、すなわち河川の水が写された画像である。他方、図13Bに示す16個の画像の各々は、常時非水領域に対応する学習用画像、すなわち河川の水以外のものが写された画像である。
次に、図14を参照して、画像学習識別部18における人工ニューラルネットワークの構造、及び人工ニューラルネットワークによる機械学習の具体例などについて説明する。
人工ニューラルネットワークとは、計算機に予め複数の画像データを正解とともに入力して学習させておくことにより、新たに入力された画像データに写されているものが、特定の対象であるかどうかを判定して結果を出力するように動作させる仕組みの一つである。
例えば、以下の非特許文献1には、いわゆる「畳み込みニューラルネットワーク(Convolutional Neural Network,CNN)」を用いて、画像認識により物体を識別する方式が開示されている。CNNとは、画像に対応する2次元の入力に対してフィルタを適用(いわゆる「畳み込み」)して次の層に渡すことを特徴とする人工ニューラルネットワークである。
(非特許文献1)
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, pages 1097-1105, 2012.
人工ニューラルネットワークは、入力信号の重み付き和を取り、活性化関数と呼ばれる非線形関数を適用して出力とするパーセプトロンを階層的に配置した計算モデルである。パーセプトロンの出力outは、入力をX=(x1,x2,…xn)、重みをW=(w1,w2,…wn)、活性化関数をf(・)とし、かつ、*をベクトルの要素積として以下の式(1)により表すことができる。
out=f(X*W) (1)
畳み込みニューラルネットワークにおいて、パーセプトロンは画像に対応する二次元信号を入力にとり、入力の重み付き和を計算して次の層に渡す。活性化関数には、シグモイド関数又はReLU(Rectified Linear Unit)関数が用いられる。
図14は人工ニューラルネットワークの構造の一例を示している。図14に示す如く、前述のパーセプトロンが階層的に配置されており、各層が入力信号を処理していくことで、識別結果を計算する。最終層は識別するタスクの出力に対応しており、回帰タスクであれば活性化関数の出力をそのまま予測値とし、分類タスクであれば最終層についてソフトマックス関数を適用し、出力とする。
畳み込みニューラルネットワークの場合、図14に示す如く二次元信号のマップとして人工ネットワークが構成される。二次元信号のそれぞれがパーセプトロンに対応するとみなすことができ、前層の特徴マップに対し重み付き和を計算して活性化関数を適用した結果を出力する。図14には、層と層の間の入出力の対応関係を記載している。
畳み込みネットワークにおいて、上述の処理は畳み込み演算と呼ばれ、このほかにプーリング処理を行う層が各層に挿入される場合がある。この層は、特徴マップに対して平均値演算又は最大値演算を行うことによりダウンサンプリングを行う。図14に示す例においては、第1層〜第3層に3層の畳み込み層を配置して、第4層及び第5層に通常のパーセプトロンの層を配置している。
このような人工ニューラルネットワークの学習は、誤差逆伝播により行われるものであり、確率的勾配降下法が用いられる。誤差逆伝播とは、人工ニューラルネットワークの出力誤差を最終層から順に前の層に向かって伝播させ、重みを更新させていく枠組みのことである。誤差逆伝播の具体的な方法については、例えば、以下の非特許文献2に記載されたものと同様の方法を用いることができる。
(非特許文献2)
C.M.ビショップ、元田浩(監訳)、『パターン認識と機械学習 上』、丸善出版、2012年。
なお、標定点設定部11は、1個の標定点の座標値と、当該1個の標定点に対応する水位値とを設定するものであっても良い。ただし、水位算定部14にてより細かい水位の算定を可能とする観点から、標定点設定部11は、複数個の標定点の座標値と、当該複数個の標定点の各々の水位値とを設定するのが好適である。
また、識別用画像切り出し部12による個々の切り出し対象領域の形状は、正方形に限定されるものではなく、如何なる形状であっても良い。また、個々の切り出し対象領域は対応する標定点の座標値を含むものであれば良く、個々の切り出し対象領域における標定点の配置位置はその中心部に限定されるものではない。例えば、個々の切り出し対象領域は、対応する標定点がその隅部に配置されたものであっても良い。
また、学習用画像切り出し部16による個々の切り出し対象部分の形状は、矩形に限定されるものではない。個々の切り出し対象部分の形状は、操作入力装置2の操作に応じた如何なる形状であっても良い。
また、画像学習識別部18は、学習用画像の入力に対して水領域と非水領域との識別に係る機械学習を実行可能なモデルを用いたものであれば良く、当該モデルは畳み込みニューラルネットワークに限定されるものではない。画像学習識別部18は、例えば、サポートベクトルマシン(Support Vector Machine,SVM)を用いたものであっても良い。
また、図12に示す機械学習処理は、図3に示す準備処理の完了後に繰り返し実行されるのに代えて、所定のタイミングのみにて実行されるものであっても良い。例えば、機械学習処理は、監視カメラ1のメンテナンス中など、水位計測処理が停止したタイミングにて実行されるものであっても良い。これにより、水位計測処理の実行中における水位計測装置100の処理負荷を低減することができる。また、この場合、学習用画像切り出し部16は、ステップST21にて、前回の機械学習処理が実行された後に撮影された複数個の撮影画像を示す画像データをまとめて取得するものであっても良い。学習用画像切り出し部16は、当該複数個の撮影画像の各々から学習用画像を切り出すものであっても良い。
また、水位計測装置100による水位計測の対象は河川に限定されるものではない。水位計測装置100は、例えば、湖沼、海洋、ダム、用水路又は溜池などの水位計測にも用いることができる。
以上のように、実施の形態1の水位計測装置100は、操作入力装置2に入力された操作に応じて、監視カメラ1による撮影画像I,I’における標定点A1〜A4の座標値と、標定点A1〜A4に対応する水位値とを設定する標定点設定部11と、撮影画像I,I’を取得して、撮影画像I,I’のうちの標定点A1〜A4の座標値を含む領域を識別用画像E1〜E4,E1’〜E4’として切り出す識別用画像切り出し部12と、水領域と非水領域との識別に係る機械学習の結果に基づき、識別用画像E1〜E4,E1’〜E4’に対応する領域が水領域であるか非水領域であるかを識別する画像学習識別部18と、画像学習識別部18による識別結果と、標定点A1〜A4に対応する水位値とを用いて、監視カメラ1による撮影範囲における水位を算定する水位算定部14とを備える。水領域と非水領域との識別に機械学習の結果を用いることにより、両領域を高精度に識別することができる。この結果、水位算定部14による水位算定の精度を向上することができ、水位計測装置100による計測を安定させることができる。また、操作入力装置2に入力された操作に応じて標定点の座標値を設定するため、量水板が設置されていない河川などの水位計測にも用いることができる。
また、水位計測装置100は、操作入力装置2に入力された操作に応じて、撮影画像I,I’における常時水領域Bと、撮影画像I,I’における常時非水領域Cとを設定する常時領域設定部15と、撮影画像I,I’を取得して、撮影画像I,I’のうちの常時水領域Bに対応する部分と撮影画像I,I’のうちの常時非水領域Cに対応する部分とを学習用画像として切り出す学習用画像切り出し部16とを備え、画像学習識別部18は、学習用画像を用いて、水領域と非水領域との識別に係る機械学習を実行する。これにより、機械学習処理を自動で繰り返し実行することが可能となり、画像識別部13による識別の精度を次第に向上することができる。
また、標定点設定部11は、撮影画像I,I’における複数個の標定点A1〜A4の座標値と、複数個の標定点A1〜A4の各々に対応する水位値とを設定し、識別用画像切り出し部12は、複数個の標定点A1〜A4に対応する複数個の識別用画像E1〜E4,E1’〜E4’を切り出し、画像学習識別部18は、複数個の識別用画像E1〜E4,E1’〜E4’の各々が水領域であるか非水領域であるかを識別し、水位算定部14は、複数個の識別用画像E1〜E4,E1’〜E4’の各々についての識別結果と、複数個の標定点A1〜A4の各々に対応する水位値とを用いて、撮影範囲における水位を算定する。標定点の個数を増やすことにより、水位算定部14にてより細かい水位の算定が可能となる。
また、実施の形態1に係る水位計測方法は、標定点設定部11が、操作入力装置2に入力された操作に応じて、監視カメラ1による撮影画像I,I’における標定点A1〜A4の座標値と、標定点A1〜A4に対応する水位値とを設定するステップ(ステップST1)と、識別用画像切り出し部12が、撮影画像I,I’を取得して、撮影画像I,I’のうちの標定点A1〜A4の座標値を含む領域を識別用画像E1〜E4,E1’〜E4’として切り出すステップ(ステップST11,ST12)と、画像学習識別部18が、水領域と非水領域との識別に係る機械学習の結果に基づき、識別用画像E1〜E4,E1’〜E4’に対応する領域が水領域であるか非水領域であるかを識別するステップ(ステップST13)と、水位算定部14が、画像学習識別部18による識別結果と、標定点A1〜A4に対応する水位値とを用いて、監視カメラ1による撮影範囲における水位を算定するステップ(ステップST14)とを備える。これにより、上記水位計測装置100と同様の上記効果を得ることができる。
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
本発明の水位計測装置は、河川などの水位計測に用いることができる。
1 監視カメラ、2 操作入力装置、3 キーボード、4 マウス、5 表示装置、6 ディスプレイ、11 標定点設定部、12 識別用画像切り出し部、13 画像識別部、14 水位算定部、15 常時領域設定部、16 学習用画像切り出し部、17 画像学習部、18 画像学習識別部、21 プロセッサ、22 メモリ、100 水位計測装置。

Claims (3)

  1. 操作入力装置に入力された操作に応じて、監視カメラによる撮影画像における標定点の座標値と、前記標定点に対応する水位値とを設定する標定点設定部と、
    前記撮影画像を取得して、前記撮影画像のうちの前記標定点の座標値を含む領域を識別用画像として切り出す識別用画像切り出し部と、
    水領域と非水領域との識別に係る機械学習の結果に基づき、前記識別用画像に対応する領域が前記水領域であるか前記非水領域であるかを識別する画像学習識別部と、
    前記画像学習識別部による識別結果と、前記標定点に対応する水位値とを用いて、前記監視カメラによる撮影範囲における水位を算定する水位算定部と、
    前記操作入力装置に入力された操作に応じて、前記撮影画像における常時水領域と、前記撮影画像における常時非水領域とを設定する常時領域設定部と、
    前記撮影画像を取得して、前記撮影画像のうちの前記常時水領域に対応する部分と前記撮影画像のうちの前記常時非水領域に対応する部分とを学習用画像として切り出す学習用画像切り出し部と、を備え、
    前記画像学習識別部は、前記学習用画像を用いて、前記水領域と前記非水領域との識別に係る前記機械学習を実行する
    ことを特徴とする水位計測装置。
  2. 前記標定点設定部は、前記撮影画像における複数個の前記標定点の座標値と、複数個の前記標定点の各々に対応する水位値とを設定し、
    前記識別用画像切り出し部は、複数個の前記標定点に対応する複数個の前記識別用画像を切り出し、
    前記画像学習識別部は、複数個の前記識別用画像の各々が前記水領域であるか前記非水領域であるかを識別し、
    前記水位算定部は、複数個の前記識別用画像の各々についての前記識別結果と、複数個の前記標定点の各々に対応する水位値とを用いて、前記撮影範囲における水位を算定する
    ことを特徴とする請求項1記載の水位計測装置。
  3. 標定点設定部が、操作入力装置に入力された操作に応じて、監視カメラによる撮影画像における標定点の座標値と、前記標定点に対応する水位値とを設定するステップと、
    識別用画像切り出し部が、前記撮影画像を取得して、前記撮影画像のうちの前記標定点の座標値を含む領域を識別用画像として切り出すステップと、
    画像学習識別部が、水領域と非水領域との識別に係る機械学習の結果に基づき、前記識別用画像に対応する領域が前記水領域であるか前記非水領域であるかを識別するステップと、
    水位算定部が、前記画像学習識別部による識別結果と、前記標定点に対応する水位値とを用いて、前記監視カメラによる撮影範囲における水位を算定するステップと、
    常時領域設定部が、前記操作入力装置に入力された操作に応じて、前記撮影画像における常時水領域と、前記撮影画像における常時非水領域とを設定するステップと、
    学習用画像切り出し部が、前記撮影画像を取得して、前記撮影画像のうちの前記常時水領域に対応する部分と前記撮影画像のうちの前記常時非水領域に対応する部分とを学習用画像として切り出すステップと、
    前記画像学習識別部が、前記学習用画像を用いて、前記水領域と前記非水領域との識別に係る前記機械学習を実行するステップと、
    を備える水位計測方法。
JP2017505265A 2016-11-17 2016-11-17 水位計測装置及び水位計測方法 Active JP6125137B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084078 WO2018092238A1 (ja) 2016-11-17 2016-11-17 水位計測装置及び水位計測方法

Publications (2)

Publication Number Publication Date
JP6125137B1 true JP6125137B1 (ja) 2017-05-10
JPWO2018092238A1 JPWO2018092238A1 (ja) 2018-11-22

Family

ID=58704724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017505265A Active JP6125137B1 (ja) 2016-11-17 2016-11-17 水位計測装置及び水位計測方法

Country Status (2)

Country Link
JP (1) JP6125137B1 (ja)
WO (1) WO2018092238A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107506798A (zh) * 2017-08-31 2017-12-22 福建四创软件有限公司 一种基于图像识别的水位监测方法
WO2019044040A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 水位計測装置および水際線抽出方法
WO2019167651A1 (ja) * 2018-03-01 2019-09-06 国立大学法人北海道大学 汚水越流検知装置、汚水越流検知方法、プログラム、及び汚水処理装置
CN110207676A (zh) * 2019-06-12 2019-09-06 中国科学院测量与地球物理研究所 一种田沟塘参数的获取方法及装置
WO2019176826A1 (ja) * 2018-03-14 2019-09-19 日本電気株式会社 領域判定装置、監視システム、領域判定方法、及び、記録媒体
CN115880683A (zh) * 2023-03-02 2023-03-31 江西省水利科学院(江西省大坝安全管理中心、江西省水资源管理中心) 一种基于深度学习的城市内涝积水智能水位检测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543596B (zh) * 2018-11-20 2022-06-07 浙江大华技术股份有限公司 一种水位监测方法、装置、电子设备及存储介质
JP7299041B2 (ja) * 2019-03-13 2023-06-27 株式会社明電舎 架線金具検出装置および架線金具検出方法
WO2020188692A1 (ja) * 2019-03-18 2020-09-24 三菱電機株式会社 水位計測装置、水位計測方法および水位計測プログラム
JP2021005158A (ja) * 2019-06-25 2021-01-14 三菱電機株式会社 境線検出装置及び水位計測装置
CN113052178A (zh) * 2019-12-27 2021-06-29 沈阳新松机器人自动化股份有限公司 一种基于机器视觉的玻璃液位计识别方法及其系统
CN111307123B (zh) * 2020-04-02 2021-03-02 中国水利水电科学研究院 一种水情监测数据的实时异常诊断与插补方法
CN112523804B (zh) * 2020-12-10 2022-06-14 广东电网有限责任公司佛山供电局 一种电缆隧道排水监控系统及方法
JP7417656B2 (ja) * 2022-05-06 2024-01-18 株式会社サイバーリンクス 河川水位レベル観測システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220339B2 (ja) * 1994-11-16 2001-10-22 株式会社日立製作所 画像処理による水位計測方法および装置
JP2015523113A (ja) * 2012-05-14 2015-08-13 ガウス サージカルGauss Surgical 流体キャニスタ中の血液成分量を測定するシステム及び方法
JP5794597B2 (ja) * 2011-07-09 2015-10-14 ガウス サージカルGauss Surgical 体外血液量の推定及び外科的摘出サンプルの計数システム及び方法
JP6021237B2 (ja) * 2012-05-14 2016-11-09 ガウス サージカルGauss Surgical 患者の失血を管理するシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722954B2 (ja) * 2013-06-23 2015-05-27 日本写真印刷株式会社 押圧検出機能付タッチパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220339B2 (ja) * 1994-11-16 2001-10-22 株式会社日立製作所 画像処理による水位計測方法および装置
JP5794597B2 (ja) * 2011-07-09 2015-10-14 ガウス サージカルGauss Surgical 体外血液量の推定及び外科的摘出サンプルの計数システム及び方法
JP2015523113A (ja) * 2012-05-14 2015-08-13 ガウス サージカルGauss Surgical 流体キャニスタ中の血液成分量を測定するシステム及び方法
JP6021237B2 (ja) * 2012-05-14 2016-11-09 ガウス サージカルGauss Surgical 患者の失血を管理するシステム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044040A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 水位計測装置および水際線抽出方法
JP2019045191A (ja) * 2017-08-30 2019-03-22 三菱電機株式会社 水位計測装置および水際線抽出方法
US11282226B2 (en) 2017-08-30 2022-03-22 Mitsubishi Electric Corporation Water level measurement device and shoreline extraction method
EP3677881A4 (en) * 2017-08-30 2020-08-19 Mitsubishi Electric Corporation WATER LEVEL MEASURING DEVICE AND COASTAL EXTRACTION PROCESS
CN107506798A (zh) * 2017-08-31 2017-12-22 福建四创软件有限公司 一种基于图像识别的水位监测方法
CN107506798B (zh) * 2017-08-31 2020-07-10 四创科技有限公司 一种基于图像识别的水位监测方法
JP7029981B2 (ja) 2018-03-01 2022-03-04 国立大学法人北海道大学 汚水越流検知装置、汚水越流検知方法、プログラム、及び汚水処理装置
WO2019167651A1 (ja) * 2018-03-01 2019-09-06 国立大学法人北海道大学 汚水越流検知装置、汚水越流検知方法、プログラム、及び汚水処理装置
JP2019152968A (ja) * 2018-03-01 2019-09-12 国立大学法人北海道大学 汚水越流検知装置、汚水越流検知方法、プログラム、及び汚水処理装置
WO2019176826A1 (ja) * 2018-03-14 2019-09-19 日本電気株式会社 領域判定装置、監視システム、領域判定方法、及び、記録媒体
JPWO2019176826A1 (ja) * 2018-03-14 2021-02-12 日本電気株式会社 領域判定装置、監視システム、領域判定方法、及び、コンピュータプログラム
JP7074182B2 (ja) 2018-03-14 2022-05-24 日本電気株式会社 領域判定装置、監視システム、領域判定方法、及び、コンピュータプログラム
US12014614B2 (en) 2018-03-14 2024-06-18 Nec Corporation Region determining device, monitoring system, region determining method, and recording medium
CN110207676A (zh) * 2019-06-12 2019-09-06 中国科学院测量与地球物理研究所 一种田沟塘参数的获取方法及装置
CN115880683A (zh) * 2023-03-02 2023-03-31 江西省水利科学院(江西省大坝安全管理中心、江西省水资源管理中心) 一种基于深度学习的城市内涝积水智能水位检测方法

Also Published As

Publication number Publication date
WO2018092238A1 (ja) 2018-05-24
JPWO2018092238A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6125137B1 (ja) 水位計測装置及び水位計測方法
US9466107B2 (en) Bundle adjustment based on image capture intervals
CN110426112A (zh) 一种生猪体重测量方法及装置
CN109901139A (zh) 激光雷达标定方法、装置、设备和存储介质
CN110232706B (zh) 多人跟拍方法、装置、设备及存储介质
CN112085739A (zh) 基于弱监督的语义分割模型的训练方法、装置及设备
US11282226B2 (en) Water level measurement device and shoreline extraction method
EP3490245A1 (en) Camera configuration method and device
CN112927279A (zh) 一种图像深度信息生成方法、设备及存储介质
JP2020020744A (ja) 錆検出プログラム、錆検出システム及び錆検出方法
US20180063488A1 (en) Information processing apparatus, information processing method, and computer program product
WO2020188692A1 (ja) 水位計測装置、水位計測方法および水位計測プログラム
KR20210048450A (ko) 차량 주행 경로 지도 생성 방법, 장치 및 컴퓨터프로그램
Zhang et al. Identification of concrete surface damage based on probabilistic deep learning of images
CN108520532B (zh) 识别视频中物体运动方向的方法及装置
JP2012123631A (ja) 注目領域検出方法、注目領域検出装置、及びプログラム
CN113609947A (zh) 运动轨迹预测方法、装置、计算机设备和存储介质
EP4052188B1 (en) Neural network instruction streaming
JP7348575B2 (ja) 劣化検出装置、劣化検出システム、劣化検出方法、およびプログラム
CN103136513B (zh) 一种改进的asm人脸特征点定位方法
KR102590525B1 (ko) 교차로의 현시와 관련된 제어신호를 생성하는 방법 및 장치
WO2020261634A1 (ja) 境線検出装置及び水位計測装置
CN114882115B (zh) 车辆位姿的预测方法和装置、电子设备和存储介质
JP6883699B1 (ja) 流量推定システム、情報処理装置およびプログラム
CN115984321A (zh) 测速方法、装置、设备及存储介质

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6125137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250