JP6123707B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP6123707B2
JP6123707B2 JP2014041355A JP2014041355A JP6123707B2 JP 6123707 B2 JP6123707 B2 JP 6123707B2 JP 2014041355 A JP2014041355 A JP 2014041355A JP 2014041355 A JP2014041355 A JP 2014041355A JP 6123707 B2 JP6123707 B2 JP 6123707B2
Authority
JP
Japan
Prior art keywords
wgv
amount
control
fully closed
closed position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014041355A
Other languages
Japanese (ja)
Other versions
JP2015166571A (en
Inventor
真一 平岡
真一 平岡
英明 市原
英明 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014041355A priority Critical patent/JP6123707B2/en
Publication of JP2015166571A publication Critical patent/JP2015166571A/en
Application granted granted Critical
Publication of JP6123707B2 publication Critical patent/JP6123707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Description

本発明は、排気タービン駆動式過給機の排気タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブを備えた内燃機関の制御装置に関する発明である。   The present invention relates to a control device for an internal combustion engine that includes a waste gate valve that opens and closes an exhaust bypass passage that bypasses an exhaust turbine of an exhaust turbine-driven supercharger.

車両に搭載される内燃機関においては、出力向上等を目的として、排気タービン駆動式の過給機(いわゆるターボチャージャ)を搭載したものがある。この排気タービン駆動式の過給機は、内燃機関の排気通路に設けた排気タービンで吸気通路に設けたコンプレッサを駆動して吸入空気を過給するようにしている。   Some internal combustion engines mounted on vehicles are equipped with an exhaust turbine driven supercharger (so-called turbocharger) for the purpose of improving output. This exhaust turbine-driven supercharger is configured to supercharge intake air by driving a compressor provided in an intake passage with an exhaust turbine provided in an exhaust passage of an internal combustion engine.

排気タービン駆動式の過給機を搭載した内燃機関においては、例えば、特許文献1(特開2013−142379号公報)に記載されているように、排気タービンをバイパスする排気バイパス通路を開閉するWGV(ウェイストゲートバルブ)を電動アクチュエータで駆動するようにしたものがある。この特許文献1では、WGVの全閉位置を基準にして電動アクチュエータを制御してWGVの開度を制御するようにしている。   In an internal combustion engine equipped with an exhaust turbine-driven supercharger, for example, as described in Patent Document 1 (JP 2013-142379 A), a WGV that opens and closes an exhaust bypass passage that bypasses the exhaust turbine. There is a type in which (waste gate valve) is driven by an electric actuator. In Patent Document 1, the electric actuator is controlled based on the fully closed position of the WGV to control the opening degree of the WGV.

しかし、経時変化等による定常的な要因や走行中の温度変化等による過渡的な要因によりWGVの全閉位置(基準位置)が変動することがあり、WGVの全閉位置が変動した場合には、WGVの開度を適切に制御できず、WGVの開度の制御精度が低下してしまう可能性がある。   However, the WGV fully closed position (reference position) may fluctuate due to steady factors such as changes over time or transient factors such as temperature changes during traveling. , The opening degree of the WGV cannot be appropriately controlled, and the control accuracy of the opening degree of the WGV may be lowered.

そこで、上記特許文献1では、過給機本体の温度又は過給機本体の温度と相関関係を有する温度(例えば触媒の温度)を検出する温度センサを設け、この温度センサで検出した温度に基づいてWGVのアクチュエータの制御量を補正するようにしている。   Therefore, in Patent Document 1, a temperature sensor for detecting the temperature of the supercharger main body or a temperature correlated with the temperature of the supercharger main body (for example, the temperature of the catalyst) is provided, and based on the temperature detected by this temperature sensor. Thus, the control amount of the actuator of the WGV is corrected.

特開2013−142379号公報JP 2013-142379 A

しかし、上記特許文献1では、過給機本体の温度又は過給機本体の温度と相関関係を有する温度を検出するための温度センサを設ける必要があるため、近年の重要な技術的課題である低コスト化の要求を満たすことができない。また、温度センサで検出した温度に誤差が生じた場合には、WGVのアクチュエータの制御量を適切に補正できず、WGVの開度の制御精度が低下してしまう可能性がある。   However, in the above-mentioned Patent Document 1, it is necessary to provide a temperature sensor for detecting the temperature of the supercharger main body or a temperature having a correlation with the temperature of the supercharger main body, which is an important technical problem in recent years. The demand for cost reduction cannot be met. If an error occurs in the temperature detected by the temperature sensor, the control amount of the WGV actuator cannot be corrected appropriately, and the control accuracy of the opening degree of the WGV may be reduced.

そこで、本発明が解決しようとする課題は、WGVの全閉位置の変動によるWGVの開度の制御精度の低下を抑制することができると共に低コスト化の要求を満たすことができる内燃機関の制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to control an internal combustion engine that can suppress a decrease in the control accuracy of the opening degree of the WGV due to a change in the fully closed position of the WGV and can satisfy the demand for cost reduction. To provide an apparatus.

上記課題を解決するために、請求項1に係る発明は、内燃機関(11)の吸入空気を過給する排気タービン駆動式の過給機(17)と、この過給機(17)の排気タービン(18)をバイパスする排気バイパス通路(26)を開閉するウェイストゲートバルブ(以下「WGV」と表記する)(27)と、WGV(27)の開度を検出するWGV開度センサ(33)と、WGV(27)の全閉位置を基準位置としてWGV開度センサ(33)で検出した実WGV開度を目標WGV開度に一致させるようにWGV(27)のアクチュエータ(39)を制御するWGV制御を実行する制御手段(37)とを備えた内燃機関の制御装置において、WGV制御の実行中にWGV(27)が全閉位置から所定範囲内でアクチュエータ(39)の制御値がWGV(27)を閉じ方向に制御する値に張り付いた状態であるか否かを判断し、アクチュエータ(39)の制御値がWGV(27)を閉じ方向に制御する値に張り付いた状態であると判断される場合には、基準位置を学習する学習手段(37)を備えた構成としたものである。
In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an exhaust turbine-driven supercharger (17) for supercharging intake air of an internal combustion engine (11), and an exhaust gas from the supercharger (17). A waste gate valve (hereinafter referred to as “WGV”) (27) for opening and closing an exhaust bypass passage (26) for bypassing the turbine (18), and a WGV opening sensor (33) for detecting the opening of the WGV (27) Then, the actuator (39) of the WGV (27) is controlled so that the actual WGV opening detected by the WGV opening sensor (33) matches the target WGV opening with the fully closed position of the WGV (27) as a reference position. In the control device for an internal combustion engine including the control means (37) for executing the WGV control, the WGV (27) is within a predetermined range from the fully closed position during the execution of the WGV control, and the control value of the actuator (39) is W In a state where the control value is stuck to a value for controlling the closing direction WGV (27) of V is determined whether or not the state stuck to the value for controlling the closing direction (27), the actuator (39) If it is determined that there is a learning position, the learning means (37) for learning the reference position is provided.

図4に示すように、温度変化等によりWGVの全閉位置が変動していると、WGV制御の実行中にWGVを全閉位置付近に制御しているときに、実WGV開度が目標WGV開度に一致する前にWGVが全閉位置に突き当たってしまうことがある。このような場合、WGVが全閉位置に突き当たっているにも拘らず、WGVを閉じ方向(目標WGV開度と実WGV開度の偏差を小さくする方向)に制御しようとして、アクチュエータの制御値がWGVを閉じ方向に制御する値に張り付いた状態(アクチュエータの制御値がWGVを閉じ方向に制御する値でほとんど変化しない状態)になる。   As shown in FIG. 4, when the WGV fully closed position fluctuates due to a temperature change or the like, the actual WGV opening becomes the target WGV when the WGV is controlled near the fully closed position during execution of the WGV control. The WGV may hit the fully closed position before it matches the opening. In such a case, the control value of the actuator is set to control the WGV in the closing direction (the direction in which the deviation between the target WGV opening and the actual WGV opening is reduced) even though the WGV hits the fully closed position. A state in which the WGV is attached to a value that controls the WGV in the closing direction (the actuator control value hardly changes depending on the value that controls the WGV in the closing direction).

このような特性に着目して、WGV制御の実行中にWGVが全閉位置付近(全閉位置から所定範囲内)でアクチュエータの制御値がWGVを閉じ方向に制御する値に張り付いた状態になったときに、WGVが全閉位置に突き当たっていると判断して、そのときのWGVの現在位置(全閉位置)を基準位置として学習する。これにより、温度変化等によりWGVの全閉位置が変動しても、WGVの基準位置(全閉位置)を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGVの開度を適切に制御することができる。その結果、WGVの全閉位置の変動によるWGVの開度の制御精度の低下を抑制することができる。しかも、過給機本体等の温度を検出するための温度センサを設ける必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。また、WGVの基準位置を学習して更新することで、アクチュエータの制御値がWGVを閉じ方向に制御する値に張り付いた状態になることを防止することができ、アクチュエータの制御値の張り付きによる消費電力の増大及びWGVやその周辺部の摩耗を防止することもできる。   Paying attention to such characteristics, while the WGV control is being executed, the actuator control value is stuck to the value that controls the WGV in the closing direction near the fully closed position (within a predetermined range from the fully closed position). When this happens, it is determined that the WGV is in contact with the fully closed position, and the current position (fully closed position) of the WGV at that time is learned as a reference position. Thereby, even if the fully closed position of the WGV fluctuates due to a temperature change or the like, the WGV reference position (fully closed position) can be learned and updated with accuracy, and the WGV control can be performed based on the updated reference position. It is possible to appropriately control the opening degree of the WGV. As a result, it is possible to suppress a decrease in control accuracy of the opening degree of the WGV due to a change in the fully closed position of the WGV. In addition, it is not necessary to provide a temperature sensor for detecting the temperature of the supercharger main body or the like, and it is possible to meet the demand for cost reduction, which is an important technical problem in recent years. Also, by learning and updating the reference position of the WGV, it is possible to prevent the actuator control value from sticking to the value that controls the WGV in the closing direction, and the actuator control value sticks to Increase in power consumption and wear of the WGV and its peripheral part can also be prevented.

また、請求項に係る発明は、内燃機関(11)の排気系構成部品(26,40)の受熱量と放熱量に基づいて全閉位置の変動量を推定する推定手段(37)と、全閉位置の変動量が所定値以上であるか否かを判断し、全閉位置の変動量が所定値以上であると判断される場合には、WGV(27)を全閉位置に突き当てるようにアクチュエータ(39)を制御するとともに、この突き当て制御の実行中に基準位置を学習する学習手段(37)とを備えた構成としたものである。
According to a second aspect of the present invention, there is provided an estimation means (37) for estimating a variation amount of the fully closed position based on a heat reception amount and a heat radiation amount of the exhaust system components (26, 40) of the internal combustion engine (11), It is determined whether or not the variation amount of the fully closed position is equal to or greater than a predetermined value. When it is determined that the variation amount of the fully closed position is equal to or greater than the predetermined value, WGV (27) is abutted against the fully closed position. Thus, the actuator (39) is controlled , and the learning means (37) for learning the reference position during execution of the abutting control is provided.

つまり、全閉位置の変動量が所定値以上のときに、全閉位置の変動による影響が大きいと判断して、WGVを全閉位置に突き当てるようにアクチュエータを制御する突き当て制御を行って、そのときのWGVの現在位置(全閉位置)を基準位置として学習する。これにより、WGVの基準位置(全閉位置)を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGVの開度を適切に制御することができる。これにより、WGVの全閉位置の変動によるWGVの開度の制御精度の低下を抑制することができると共に低コスト化の要求を満たすことができる。また、全閉位置の変動量が所定値以上で全閉位置の変動による影響が大きいときだけWGVの突き当て制御を行って、全閉位置の変動量が所定値よりも小さくて全閉位置の変動による影響が小さいときにはWGVの突き当て制御を行わないようにすることができる。これにより、WGVの突き当て制御の頻度が必要以上に多くなることを防止して、WGVやその周辺部の摩耗を抑制することができる。   That is, when the variation amount of the fully closed position is equal to or greater than a predetermined value, it is determined that the influence of the variation of the fully closed position is large, and the abutting control is performed to control the actuator so that the WGV is abutted against the fully closed position. The current position (fully closed position) of the WGV at that time is learned as a reference position. Thereby, the reference position (fully closed position) of the WGV can be learned and updated with high accuracy, and the opening degree of the WGV can be appropriately controlled by performing the WGV control based on the updated reference position. it can. Thereby, the fall of the control precision of the opening degree of WGV by the fluctuation | variation of the fully closed position of WGV can be suppressed, and the request | requirement of cost reduction can be satisfy | filled. Further, the WGV abutting control is performed only when the fluctuation amount of the fully closed position is equal to or greater than the predetermined value and the influence of the fluctuation of the fully closed position is large, and the fluctuation amount of the fully closed position is smaller than the predetermined value and When the influence of fluctuation is small, the WGV butting control can be prevented from being performed. Thereby, it can prevent that the frequency of WGV butting control increases more than necessary, and can suppress wear of WGV and its peripheral part.

また、請求項に係る発明は、内燃機関(11)の吸入空気を過給する排気タービン駆動式の過給機(17)と、この過給機(17)の排気タービン(18)をバイパスする排気バイパス通路(26)を開閉するウェイストゲートバルブ(以下「WGV」と表記する)(27)と、WGV(27)の開度を検出するWGV開度センサ(33)と、吸入空気の過給圧を検出する吸気圧センサ(36)と、WGV(27)の全閉位置を基準位置としてWGV開度センサ(33)で検出した実WGV開度を目標WGV開度に一致させるようにWGV(27)のアクチュエータ(39)を制御するWGV制御を実行すると共に吸気圧センサ(36)で検出した実過給圧を目標過給圧に一致させるようにWGV(27)の開度補正量を算出する過給圧フィードバック制御を実行する制御手段(37)とを備えた内燃機関の制御装置において、過給圧フィードバック制御の実行中に実過給圧が所定値以上であるか否かを判断し、実過給圧が所定値以上であると判断される場合には、WGV(27)の開度補正量に基づいて基準位置を学習する又はWGV制御の制御量を補正する修正処理を行う修正手段(37)を備えた構成としたものである。 The invention according to claim 4 bypasses the exhaust turbine drive supercharger (17) for supercharging the intake air of the internal combustion engine (11) and the exhaust turbine (18) of the supercharger (17). A waste gate valve (hereinafter referred to as “WGV”) (27) for opening and closing the exhaust bypass passage (26), a WGV opening sensor (33) for detecting the opening of the WGV (27), and excess intake air The WGV is configured so that the actual WGV opening detected by the WGV opening sensor (33) matches the target WGV opening with the intake pressure sensor (36) for detecting the supply pressure and the fully closed position of the WGV (27) as the reference position. The WGV control for controlling the actuator (39) of (27) is executed, and the opening correction amount of the WGV (27) is set so that the actual boost pressure detected by the intake pressure sensor (36) matches the target boost pressure. The boost pressure to be calculated The controller of an internal combustion engine and a control means (37) for executing readback control, the actual boost pressure in the boost pressure feedback control execution is determined whether a predetermined value or more, the actual boost When it is determined that the pressure is greater than or equal to a predetermined value, the correction means (37) performs a correction process of learning the reference position based on the opening correction amount of the WGV (27) or correcting the control amount of the WGV control. It is set as the structure provided with.

図14に示すように、WGVの全閉位置が変動すると、それに伴ってWGVの開度と過給圧との関係が変化して、過給圧フィードバック制御によるWGVの開度補正量が変化するため、WGVの開度補正量は、WGVの全閉位置の変動量を反映した情報となる。しかし、過給圧が低い領域では、WGVの全閉位置の変動によるWGVの開度補正量の変化分を正確に判断することが困難である。   As shown in FIG. 14, when the fully closed position of the WGV changes, the relationship between the WGV opening and the supercharging pressure changes accordingly, and the WGV opening correction amount by the supercharging pressure feedback control changes. Therefore, the opening correction amount of the WGV is information that reflects the fluctuation amount of the fully closed position of the WGV. However, in the region where the supercharging pressure is low, it is difficult to accurately determine the amount of change in the WGV opening correction amount due to the change in the fully closed position of the WGV.

このような事情を考慮して、過給圧フィードバック制御の実行中に実過給圧が所定値以上のときに、WGVの開度補正量がWGVの全閉位置の変動量を精度良く反映した情報であると判断して、WGVの開度補正量に基づいてWGVの基準位置(全閉位置)を学習する。これにより、WGVの基準位置を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGVの開度を適切に制御することができる。或は、WGVの開度補正量に基づいてWGV制御の制御量を補正することで、WGVの開度を適切に制御することができる。これにより、WGVの全閉位置の変動によるWGVの開度の制御精度の低下を抑制することができると共に低コスト化の要求を満たすことができる。また、WGVの全閉不可領域(高回転・高負荷のような高過給圧となる条件時)でも修正処理を実施できるという利点もある。   In consideration of such circumstances, when the actual boost pressure is greater than or equal to a predetermined value during execution of the boost pressure feedback control, the WGV opening correction amount accurately reflects the fluctuation amount of the fully closed position of the WGV. It is determined that the information is information, and the WGV reference position (fully closed position) is learned based on the WGV opening correction amount. Thereby, the reference position of the WGV can be learned and updated with high accuracy, and the opening degree of the WGV can be appropriately controlled by performing the WGV control based on the updated reference position. Alternatively, the opening degree of the WGV can be appropriately controlled by correcting the control amount of the WGV control based on the opening degree correction amount of the WGV. Thereby, the fall of the control precision of the opening degree of WGV by the fluctuation | variation of the fully closed position of WGV can be suppressed, and the request | requirement of cost reduction can be satisfy | filled. Further, there is an advantage that the correction process can be performed even in the WGV non-closed region (during a high boost pressure such as high rotation and high load).

図1は本発明の実施例1におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in Embodiment 1 of the present invention. 図2はWGV及びその周辺部の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of the WGV and its peripheral part. 図3はWGV制御の機能を示すブロック図である。FIG. 3 is a block diagram showing functions of WGV control. 図4はWGVの全閉位置が変動している場合のWGV開度及び制御デューティの挙動を示すタイムチャートである。FIG. 4 is a time chart showing the behavior of the WGV opening and control duty when the fully closed position of the WGV is fluctuating. 図5はWGVの全閉位置が変動していない場合のWGV開度及び制御デューティの挙動を示すタイムチャートである。FIG. 5 is a time chart showing the behavior of the WGV opening and control duty when the fully closed position of the WGV has not changed. 図6は実施例1の学習ルーチンの処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of processing of the learning routine of the first embodiment. 図7は実施例2の修正ルーチンの処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of processing of the correction routine of the second embodiment. 図8は全閉位置変動量のマップの一例を概念的に示す図である。FIG. 8 is a diagram conceptually showing an example of a map of the fully closed position fluctuation amount. 図9は実施例3の修正ルーチンの処理の流れを示すフローチャートである。FIG. 9 is a flowchart showing the flow of processing of the correction routine of the third embodiment. 図10は排気系構成部品の温度上昇量のマップの一例を概念的に示す図である。FIG. 10 is a diagram conceptually showing an example of a map of the temperature rise amount of the exhaust system components. 図11は実施例4の基準位置の学習方法を説明するタイムチャートである。FIG. 11 is a time chart for explaining a reference position learning method according to the fourth embodiment. 図12は実施例4の学習ルーチンの処理の流れを示すフローチャートである。FIG. 12 is a flowchart illustrating the flow of the learning routine according to the fourth embodiment. 図13は実施例5の学習ルーチンの処理の流れを示すフローチャートである。FIG. 13 is a flowchart illustrating the flow of the learning routine according to the fifth embodiment. 図14はWGV開度と過給圧との関係を示す図である。FIG. 14 is a diagram showing the relationship between the WGV opening and the supercharging pressure. 図15は実施例6の修正ルーチンの処理の流れを示すフローチャートである。FIG. 15 is a flowchart showing the flow of processing of the correction routine of the sixth embodiment. 図16は実施例7の修正ルーチンの処理の流れを示すフローチャートである。FIG. 16 is a flowchart showing the flow of processing of the correction routine of the seventh embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図6に基づいて説明する。
まず、図1に基づいてエンジン制御システムの概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。一方、エンジン11の排気管15(排気通路)には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒16が設置されている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 (intake passage) of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. On the other hand, the exhaust pipe 15 (exhaust passage) of the engine 11 is provided with a catalyst 16 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas.

このエンジン11には、吸入空気を過給する排気タービン駆動式の過給機17が搭載されている。この過給機17は、排気管15のうちの触媒16の上流側に排気タービン18が配置され、吸気管12のうちのエアフローメータ14の下流側にコンプレッサ19が配置されている。この過給機17は、排気タービン18とコンプレッサ19とが一体的に回転するように連結され、排出ガスの運動エネルギで排気タービン18を回転駆動することでコンプレッサ19を回転駆動して吸入空気を過給するようになっている。   The engine 11 is equipped with an exhaust turbine driven supercharger 17 that supercharges intake air. In the supercharger 17, an exhaust turbine 18 is disposed on the upstream side of the catalyst 16 in the exhaust pipe 15, and a compressor 19 is disposed on the downstream side of the air flow meter 14 in the intake pipe 12. The supercharger 17 is connected so that the exhaust turbine 18 and the compressor 19 rotate integrally, and the exhaust turbine 18 is rotationally driven by the kinetic energy of the exhaust gas, so that the compressor 19 is rotationally driven to suck the intake air. It is supposed to supercharge.

吸気管12のうちのコンプレッサ19の下流側には、モータ20によって開度調節されるスロットルバルブ21と、このスロットルバルブ21の開度(スロットル開度)を検出するスロットル開度センサ22とが設けられている。   A throttle valve 21 whose opening is adjusted by a motor 20 and a throttle opening sensor 22 that detects the opening (throttle opening) of the throttle valve 21 are provided on the downstream side of the compressor 19 in the intake pipe 12. It has been.

更に、スロットルバルブ21の下流側には、吸入空気を冷却するインタークーラ(図示せず)がサージタンク23と一体的に設けられている。或は、サージタンク23やスロットルバルブ21の上流側にインタークーラを配置するようにしても良い。サージタンク23には、エンジン11の各気筒に空気を導入する吸気マニホールド24が設けられ、各気筒毎に筒内噴射又は吸気ポート噴射を行う燃料噴射弁(図示せず)が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ(図示せず)が取り付けられ、各点火プラグの火花放電によって各気筒内の混合気に着火される。   Further, an intercooler (not shown) for cooling the intake air is provided integrally with the surge tank 23 on the downstream side of the throttle valve 21. Alternatively, an intercooler may be disposed upstream of the surge tank 23 and the throttle valve 21. The surge tank 23 is provided with an intake manifold 24 that introduces air into each cylinder of the engine 11, and a fuel injection valve (not shown) that performs in-cylinder injection or intake port injection is attached to each cylinder. An ignition plug (not shown) is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of each ignition plug.

エンジン11の各気筒の排気口には排気マニホールド25が接続され、各気筒の排気マニホールド25の下流側の集合部が排気タービン18の上流側の排気管15に接続されている。また、排気タービン18の上流側と下流側とをバイパスさせる排気バイパス通路26が設けられ、この排気バイパス通路26に、排気バイパス通路26を開閉するウェイストゲートバルブ(以下「WGV」と表記する)27が設けられている。   An exhaust manifold 25 is connected to the exhaust port of each cylinder of the engine 11, and a downstream collecting portion of the exhaust manifold 25 of each cylinder is connected to an exhaust pipe 15 upstream of the exhaust turbine 18. Further, an exhaust bypass passage 26 for bypassing the upstream side and the downstream side of the exhaust turbine 18 is provided, and a waste gate valve (hereinafter referred to as “WGV”) 27 for opening and closing the exhaust bypass passage 26 is provided in the exhaust bypass passage 26. Is provided.

図2に示すように、WGV27は、リンク機構38を介して電動アクチュエータ39のロッド40に連結され、電動アクチュエータ39のストローク量(ロッド40のストローク量)を制御することでWGV27の開度を調節するようになっている。電動アクチュエータ39又はその近傍には、WGV27の開度を検出するWGV開度センサ33が設けられている。このWGV開度センサ33は、WGV27の開度の情報として、例えば、電動アクチュエータ39のストローク量を検出する又はWGV27の移動量を検出する。   As shown in FIG. 2, the WGV 27 is connected to the rod 40 of the electric actuator 39 via the link mechanism 38, and adjusts the opening degree of the WGV 27 by controlling the stroke amount of the electric actuator 39 (stroke amount of the rod 40). It is supposed to be. A WGV opening sensor 33 that detects the opening of the WGV 27 is provided at or near the electric actuator 39. The WGV opening sensor 33 detects, for example, the stroke amount of the electric actuator 39 or the movement amount of the WGV 27 as information on the opening degree of the WGV 27.

図1に示すように、エンジン11には、冷却水温を検出する冷却水温センサ34や、クランク軸(図示せず)が所定クランク角回転する毎にパルス信号を出力するクランク角センサ35等が設けられ、クランク角センサ35の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、吸気管12のうちのスロットルバルブ21の上流側には、吸入空気の過給圧(スロットルバルブ21の上流側の吸気圧)を検出する吸気圧センサ36が設けられている。   As shown in FIG. 1, the engine 11 is provided with a coolant temperature sensor 34 that detects the coolant temperature, a crank angle sensor 35 that outputs a pulse signal each time a crankshaft (not shown) rotates a predetermined crank angle, and the like. The crank angle and the engine speed are detected based on the output signal of the crank angle sensor 35. Further, an intake pressure sensor 36 that detects a supercharging pressure of intake air (an intake pressure upstream of the throttle valve 21) is provided on the upstream side of the throttle valve 21 in the intake pipe 12.

これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)37に入力される。このECU37は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 37. The ECU 37 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

また、ECU37(制御手段)は、WGV27の全閉位置を基準位置として、WGV開度センサ33で検出した実WGV開度を目標WGV開度に一致させるようにWGV27の電動アクチュエータ39を制御するWGV制御を実行する。その際、吸気圧センサ36で検出した実過給圧を目標過給圧に一致させるようにWGV開度補正量(WGV27の開度補正量)を算出する過給圧F/B制御を実行する。ここで、「F/B」は「フィードバック」を意味する(以下、同様)。   The ECU 37 (control means) controls the electric actuator 39 of the WGV 27 so that the actual WGV opening detected by the WGV opening sensor 33 matches the target WGV opening with the fully closed position of the WGV 27 as a reference position. Execute control. At that time, the supercharging pressure F / B control is performed to calculate the WGV opening correction amount (opening correction amount of WGV27) so that the actual supercharging pressure detected by the intake pressure sensor 36 matches the target supercharging pressure. . Here, “F / B” means “feedback” (hereinafter the same).

具体的には、図3に示すように、ECU37は、ベースWGV開度算出部41で、エンジン運転状態(例えばアクセル開度とエンジン回転速度等)に基づいてベースWGV開度をマップ又は数式等により算出する。また、目標過給圧算出部42で、エンジン運転状態(例えばアクセル開度とエンジン回転速度等)に基づいて目標過給圧をマップ又は数式等により算出する。   Specifically, as shown in FIG. 3, the ECU 37 is a base WGV opening calculation unit 41 that maps the base WGV opening based on the engine operating state (for example, the accelerator opening and the engine rotation speed, etc.) Calculated by Further, the target supercharging pressure calculation unit 42 calculates the target supercharging pressure using a map or a mathematical formula based on the engine operating state (for example, the accelerator opening and the engine speed).

この後、WGV開度補正量算出部43で、目標過給圧と吸気圧センサ36で検出した実過給圧との偏差を小さくするようにWGV開度補正量を算出し、目標WGV開度算出部44で、ベースWGV開度にWGV開度補正量を加算して目標WGV開度を求める。   Thereafter, the WGV opening correction amount calculation unit 43 calculates the WGV opening correction amount so as to reduce the deviation between the target boost pressure and the actual boost pressure detected by the intake pressure sensor 36, and the target WGV opening correction amount is calculated. The calculation unit 44 adds the WGV opening correction amount to the base WGV opening to obtain the target WGV opening.

この後、WGV開度制御部45で、目標WGV開度とWGV開度センサ33で検出した実WGV開度との偏差を小さくするように電動アクチュエータ39の制御デューティ(制御値)を算出し、この制御デューティで電動アクチュエータ39の駆動電圧(又は駆動電流)を制御してWGV27の開度を制御する。   Thereafter, the WGV opening control unit 45 calculates the control duty (control value) of the electric actuator 39 so as to reduce the deviation between the target WGV opening and the actual WGV opening detected by the WGV opening sensor 33. The opening of the WGV 27 is controlled by controlling the drive voltage (or drive current) of the electric actuator 39 with this control duty.

しかし、経時変化等による定常的な要因や走行中の温度変化等による過渡的な要因によりWGV27の全閉位置(基準位置)が変動することがあり、WGV27の全閉位置が変動した場合には、WGV27の開度を適切に制御できず、WGV27の開度の制御精度が低下してしまう可能性がある。   However, the fully closed position (reference position) of the WGV 27 may fluctuate due to a steady factor due to a change over time or a transient factor due to a temperature change during traveling, etc. When the fully closed position of the WGV 27 fluctuates. , The opening degree of the WGV 27 cannot be appropriately controlled, and the control accuracy of the opening degree of the WGV 27 may be lowered.

この対策として、本実施例1では、修正処理部46で、WGV制御の実行中にWGV27が全閉位置付近(全閉位置から所定範囲内)で電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態(図4参照)になったときにWGV27の基準位置を学習する修正処理を行うようにしている。この機能は、ECU37により後述する図6の学習ルーチンを実行することで実現される。   As a countermeasure against this, in the first embodiment, the correction processing unit 46 causes the control duty of the electric actuator 39 to close the WGV 27 in the closing direction when the WGV 27 is in the vicinity of the fully closed position (within a predetermined range from the fully closed position). A correction process for learning the reference position of the WGV 27 is performed when the control value is stuck (see FIG. 4). This function is realized by executing a learning routine of FIG.

図5に示すように、WGV27の全閉位置が変動していない場合には、WGV制御の実行中に目標WGV開度と実WGV開度との偏差を小さくするように電動アクチュエータ39の制御デューティが算出されて、実WGV開度が目標WGV開度に一致する。   As shown in FIG. 5, when the fully closed position of the WGV 27 is not changed, the control duty of the electric actuator 39 is set so as to reduce the deviation between the target WGV opening and the actual WGV opening during execution of the WGV control. Is calculated, and the actual WGV opening coincides with the target WGV opening.

これに対して、図4に示すように、温度変化等によりWGV27の全閉位置が変動していると、WGV制御の実行中にWGV27を全閉位置付近に制御しているときに、実WGV開度が目標WGV開度に一致する前にWGV27が全閉位置に突き当たってしまうことがある。このような場合、WGV27が全閉位置に突き当たっているにも拘らず、WGV27を閉じ方向(目標WGV開度と実WGV開度の偏差を小さくする方向)に制御しようとして、電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態(電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値でほとんど変化しない状態)になる。   On the other hand, as shown in FIG. 4, if the fully closed position of the WGV 27 fluctuates due to a temperature change or the like, when the WGV 27 is controlled near the fully closed position during execution of the WGV control, the actual WGV Before the opening degree matches the target WGV opening degree, the WGV 27 may hit the fully closed position. In such a case, the control of the electric actuator 39 is attempted to control the WGV 27 in the closing direction (the direction in which the deviation between the target WGV opening and the actual WGV opening is reduced) even though the WGV 27 is in contact with the fully closed position. The duty is stuck to a value that controls the WGV 27 in the closing direction (a state in which the control duty of the electric actuator 39 hardly changes depending on the value that controls the WGV 27 in the closing direction).

このような特性に着目して、本実施例1では、WGV制御の実行中にWGV27が全閉位置付近(全閉位置から所定範囲内)で電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態になったときに、WGV27が全閉位置に突き当たっていると判断して、そのときのWGV27の現在位置(全閉位置)を基準位置として学習する。これにより、WGV27の基準位置(全閉位置)を精度良く学習して更新し、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御できるようにする。   Focusing on such characteristics, in the first embodiment, while the WGV control is being executed, the WGV 27 is in the vicinity of the fully closed position (within a predetermined range from the fully closed position), and the control duty of the electric actuator 39 controls the WGV 27 in the closing direction. When the value is stuck to the value to be determined, it is determined that the WGV 27 is in contact with the fully closed position, and the current position (fully closed position) of the WGV 27 at that time is learned as a reference position. Thereby, the reference position (fully closed position) of the WGV 27 is accurately learned and updated, and the opening degree of the WGV 27 can be appropriately controlled by performing the WGV control based on the updated reference position.

以下、本実施例1でECU37が実行する図6の学習ルーチンの処理内容を説明する。
図6に示す学習ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう学習手段としての役割を果たす。
Hereinafter, the processing content of the learning routine of FIG. 6 executed by the ECU 37 in the first embodiment will be described.
The learning routine shown in FIG. 6 is repeatedly executed at a predetermined period during the power-on period of the ECU 37, and serves as learning means in the claims.

本ルーチンが起動されると、まず、ステップ101で、WGV制御の実行中であるか否かを判定する。
このステップ101で、WGV制御の実行中ではないと判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。
When this routine is started, first, at step 101, it is determined whether or not WGV control is being executed.
If it is determined in step 101 that the WGV control is not being executed, this routine is terminated without executing the processing from step 102 onward.

一方、上記ステップ101で、WGV制御の実行中であると判定された場合には、ステップ102に進み、WGV27の開度(実WGV開度又は目標WGV開度)を読み込む。   On the other hand, if it is determined in step 101 that the WGV control is being executed, the process proceeds to step 102, and the opening degree of the WGV 27 (actual WGV opening degree or target WGV opening degree) is read.

この後、ステップ103に進み、WGV27が全閉位置付近(全閉位置から所定範囲内)であるか否かを、実WGV開度が全閉位置(現在の基準位置)から所定範囲内であるか否か又は目標WGV開度が全閉位置(現在の基準位置)から所定範囲内であるか否かによって判定する。ここで、所定範囲は、例えば、温度変化等によるWGV27の全閉位置の変動範囲(ばらつき範囲)又はそれよりも少し広い範囲に設定されている。
このステップ103で、WGV27が全閉位置付近ではないと判定された場合には、ステップ104以降の処理を実行することなく、本ルーチンを終了する。
Thereafter, the process proceeds to step 103, where whether or not the WGV 27 is near the fully closed position (within a predetermined range from the fully closed position), the actual WGV opening is within the predetermined range from the fully closed position (current reference position). Whether or not the target WGV opening is within a predetermined range from the fully closed position (current reference position). Here, the predetermined range is set to, for example, a variation range (variation range) of the fully closed position of the WGV 27 due to a temperature change or the like, or a slightly wider range.
If it is determined in step 103 that the WGV 27 is not in the vicinity of the fully closed position, this routine is terminated without executing the processing from step 104 onward.

一方、上記ステップ103で、WGV27が全閉位置付近であると判定された場合には、ステップ104に進み、電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態(電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値でほとんど変化しない状態)であるか否かを判定する。   On the other hand, if it is determined in step 103 that the WGV 27 is near the fully closed position, the process proceeds to step 104, where the control duty of the electric actuator 39 is stuck to a value that controls the WGV 27 in the closing direction (electric It is determined whether or not the control duty of the actuator 39 is a state in which the control duty of the WGV 27 is hardly changed by a value for controlling the WGV 27 in the closing direction.

このステップ104で、電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態ではないと判定された場合には、ステップ105の処理(基準位置の学習)を実行することなく、本ルーチンを終了する。   If it is determined in step 104 that the control duty of the electric actuator 39 is not stuck to a value that controls the WGV 27 in the closing direction, the processing of step 105 (reference position learning) is not performed. This routine is terminated.

一方、上記ステップ104で、電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態であると判定された場合には、WGV27が全閉位置に突き当たっていると判断して、ステップ105に進み、WGV27の基準位置(全閉位置)を学習して更新する。具体的には、WGV27の現在位置(全閉位置)を基準位置として学習し、ECU37のメモリに記憶されている基準位置の学習値を今回の学習値で更新する。基準位置が更新された場合、ECU37は、例えば、更新後の基準位置に基づいて目標WGV開度又は実WGV開度を補正することで、更新後の基準位置を基準にしてWGV制御を行う。   On the other hand, if it is determined in step 104 that the control duty of the electric actuator 39 is stuck to a value that controls the WGV 27 in the closing direction, it is determined that the WGV 27 has hit the fully closed position. In step 105, the reference position (fully closed position) of the WGV 27 is learned and updated. Specifically, the current position (fully closed position) of the WGV 27 is learned as a reference position, and the learning value of the reference position stored in the memory of the ECU 37 is updated with the current learning value. When the reference position is updated, the ECU 37 performs WGV control based on the updated reference position, for example, by correcting the target WGV opening or the actual WGV opening based on the updated reference position.

以上説明した本実施例1では、WGV制御の実行中にWGV27が全閉位置付近(全閉位置から所定範囲内)で電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態になったときに、WGV27が全閉位置に突き当たっていると判断して、そのときのWGV27の現在位置(全閉位置)を基準位置として学習するようにしている。これにより、温度変化等によりWGV27の全閉位置が変動しても、WGV27の基準位置(全閉位置)を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御することができる。その結果、WGV27の全閉位置の変動によるWGV27の開度の制御精度の低下を抑制することができる。しかも、過給機本体等の温度を検出するための温度センサを設ける必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。また、WGV27の基準位置を学習して更新することで、電動アクチュエータ39の制御デューティがWGV27を閉じ方向に制御する値に張り付いた状態になることを防止することができ、電動アクチュエータ39の制御デューティの張り付きによる消費電力の増大及びWGV27やその周辺部の摩耗を防止することもできる。   In the first embodiment described above, while the WGV control is being executed, the WGV 27 is in the vicinity of the fully closed position (within a predetermined range from the fully closed position), and the control duty of the electric actuator 39 sticks to a value that controls the WGV 27 in the closing direction. When the state is reached, it is determined that the WGV 27 is in contact with the fully closed position, and the current position (fully closed position) of the WGV 27 at that time is learned as a reference position. As a result, even if the fully closed position of the WGV 27 fluctuates due to a temperature change or the like, the reference position (fully closed position) of the WGV 27 can be learned and updated with accuracy, and the WGV control is performed based on the updated reference position. By performing this, the opening degree of the WGV 27 can be appropriately controlled. As a result, it is possible to suppress a decrease in the control accuracy of the opening degree of the WGV 27 due to a change in the fully closed position of the WGV 27. In addition, it is not necessary to provide a temperature sensor for detecting the temperature of the supercharger main body or the like, and it is possible to meet the demand for cost reduction, which is an important technical problem in recent years. Further, by learning and updating the reference position of the WGV 27, it is possible to prevent the control duty of the electric actuator 39 from sticking to a value that controls the WGV 27 in the closing direction. It is also possible to prevent an increase in power consumption due to sticking of the duty and wear of the WGV 27 and its peripheral part.

次に、図7及び図8を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU37により後述する図7の修正ルーチンを実行することで、エンジン11の排気系構成部品の受熱量と放熱量に基づいてWGV27の全閉位置の変動量を推定し、推定した全閉位置の変動量に基づいてWGV27の基準位置を学習する又はWGV制御の制御量を補正する修正処理を行うようにしている。   In the second embodiment, the ECU 37 executes a correction routine shown in FIG. 7 to be described later, thereby estimating the fluctuation amount of the fully closed position of the WGV 27 based on the heat receiving amount and the heat radiation amount of the exhaust system components of the engine 11. Based on the variation amount of the fully closed position, the correction process for learning the reference position of the WGV 27 or correcting the control amount of the WGV control is performed.

排気系構成部品(例えば排気バイパス通路26や電動アクチュエータ39のロッド40等)の受熱量と放熱量に応じて排気系構成部品の温度が変化し、排気系構成部品の温度に応じて排気系構成部品が熱膨張や熱収縮してWGV27の全閉位置が変動する。   The temperature of the exhaust system components changes according to the amount of heat received and the amount of heat released from the exhaust system components (for example, the exhaust bypass passage 26 and the rod 40 of the electric actuator 39), and the exhaust system configuration according to the temperature of the exhaust system components The fully expanded position of the WGV 27 fluctuates due to thermal expansion and contraction of the parts.

従って、排気系構成部品の受熱量と放熱量に基づいて全閉位置の変動量を推定することで、全閉位置の変動量を精度良く推定することができる。この全閉位置の変動量に基づいてWGV27の基準位置(全閉位置)を学習することで、WGV27の基準位置を精度良く学習して更新し、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御できるようにする。或は、全閉位置の変動量に基づいてWGV制御の制御量(例えば目標WGV開度又は制御デューティ等)を補正することで、WGV27の開度を適切に制御できるようにする。   Therefore, the fluctuation amount of the fully closed position can be accurately estimated by estimating the fluctuation amount of the fully closed position based on the heat receiving amount and the heat radiation amount of the exhaust system components. By learning the reference position (fully closed position) of the WGV 27 based on the variation amount of the fully closed position, the reference position of the WGV 27 is accurately learned and updated, and the WGV control is performed based on the updated reference position. By doing so, the opening degree of the WGV 27 can be appropriately controlled. Alternatively, the opening degree of the WGV 27 can be appropriately controlled by correcting the control amount (for example, the target WGV opening degree or the control duty) of the WGV control based on the fluctuation amount of the fully closed position.

以下、本実施例2でECU37が実行する図7の修正ルーチンの処理内容を説明する。
図7に示す修正ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう推定手段及び修正手段としての役割を果たす。
Hereinafter, the processing content of the correction routine of FIG. 7 executed by the ECU 37 in the second embodiment will be described.
The correction routine shown in FIG. 7 is repeatedly executed at a predetermined period during the power-on period of the ECU 37, and serves as an estimation unit and a correction unit in the scope of claims.

本ルーチンが起動されると、まず、ステップ201で、エンジン11の排気系構成部品(例えば排気バイパス通路26や電動アクチュエータ39のロッド40等のWGV27の全閉位置の変動に影響する部品)の受熱量と放熱量を算出する。この場合、例えば、排出ガス量と排出ガス温度に基づいて排気熱量を算出し、この排気熱量に基づいて排気系構成部品の受熱量をマップ又は数式等により算出する。また、車速(風速や風量)と外気温等に基づいて排気系構成部品の放熱量をマップ又は数式等により算出する。   When this routine is started, first, in step 201, the exhaust system components of the engine 11 (for example, components that affect the fluctuation of the fully closed position of the WGV 27 such as the exhaust bypass passage 26 and the rod 40 of the electric actuator 39) are received. Calculate heat and heat dissipation. In this case, for example, the exhaust heat amount is calculated based on the exhaust gas amount and the exhaust gas temperature, and the heat reception amount of the exhaust system components is calculated based on the exhaust heat amount using a map or a mathematical expression. Further, the heat release amount of the exhaust system components is calculated by a map or a mathematical formula based on the vehicle speed (wind speed or air volume) and the outside air temperature.

この後、ステップ202に進み、図8に示す全閉位置変動量のマップを参照して、排気系構成部品の受熱量と放熱量に応じた全閉位置の変動量を算出することで、全閉位置の変動量を推定する。全閉位置変動量のマップは、例えば、受熱量が大きいほど全閉位置の変動量が大きくなると共に、放熱量が小さいほど全閉位置の変動量が大きくなるように設定されている。この全閉位置変動量のマップは、予め試験データや設計データ等に基づいて作成され、ECU37のROMに記憶されている。尚、排気系構成部品の受熱量と放熱量に基づいて全閉位置の変動量を数式(例えば物理モデルや物理式)等により算出するようにしても良い。   Thereafter, the process proceeds to step 202, and referring to the map of the fully closed position fluctuation amount shown in FIG. 8, the fluctuation amount of the fully closed position corresponding to the heat receiving amount and the heat radiation amount of the exhaust system components is calculated. Estimate the amount of variation in the closed position. The map of the fully closed position fluctuation amount is set, for example, such that the larger the amount of heat received, the larger the fluctuation amount of the fully closed position, and the smaller the heat release amount, the larger the fluctuation amount of the fully closed position. The map of the fully closed position fluctuation amount is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 37. Note that the fluctuation amount of the fully closed position may be calculated by a mathematical expression (for example, a physical model or a physical expression) based on the heat receiving amount and the heat radiation amount of the exhaust system components.

この後、ステップ203に進み、全閉位置の変動量が所定値以上であるか否かを判定する。この所定値は、例えば、全閉位置の変動による影響が許容範囲内となる全閉位置の変動量の上限値又はその付近の値に設定されている。   Thereafter, the process proceeds to step 203, where it is determined whether or not the variation amount of the fully closed position is equal to or greater than a predetermined value. This predetermined value is set to, for example, the upper limit value of the variation amount of the fully closed position at which the influence of the variation of the fully closed position is within the allowable range or a value in the vicinity thereof.

このステップ203で、全閉位置の変動量が所定値よりも小さいと判定された場合には、全閉位置の変動による影響が小さいと判断して、ステップ204の処理(修正処理)を実行することなく、本ルーチンを終了する。   If it is determined in step 203 that the amount of change in the fully closed position is smaller than a predetermined value, it is determined that the influence of the change in the fully closed position is small, and the processing in step 204 (correction processing) is executed. This routine is terminated without any processing.

一方、上記ステップ203で、全閉位置の変動量が所定値以上であると判定された場合には、全閉位置の変動による影響が大きいと判断して、ステップ204に進み、修正処理を行う。この修正処理では、全閉位置の変動量に基づいて基準位置を学習して更新する。具体的には、全閉位置の変動量に基づいて現在の基準位置の学習値を補正し、ECU37のメモリに記憶されている基準位置の学習値を今回の学習値で更新する。或は、全閉位置の変動量に基づいてWGV制御の制御量(例えば目標WGV開度又は制御デューティ等)を補正する。   On the other hand, if it is determined in step 203 that the amount of change in the fully closed position is greater than or equal to a predetermined value, it is determined that the influence of the change in the fully closed position is large, and the process proceeds to step 204 where correction processing is performed. . In this correction process, the reference position is learned and updated based on the fluctuation amount of the fully closed position. Specifically, the learning value of the current reference position is corrected based on the variation amount of the fully closed position, and the learning value of the reference position stored in the memory of the ECU 37 is updated with the current learning value. Alternatively, the control amount of the WGV control (for example, the target WGV opening or control duty) is corrected based on the variation amount of the fully closed position.

この際、全閉位置の変動量の全部を修正処理(基準位置の学習や制御量の補正)に反映させるようにしても良いし、或は、全閉位置の変動量の一部(例えば、1/4、1/3、1/2等)を修正処理に反映させるようにしても良い。全閉位置の変動量の全部を修正処理に反映させることで、全閉位置の変動に対して応答良く基準位置や制御量を変更することができ、WGV27の開度を速やかに修正することができる。一方、全閉位置の変動量の一部を修正処理に反映させることで、基準位置や制御量を徐々に変更することができ、WGV27の開度の急変を抑制することがでできる。   At this time, all of the fluctuation amount of the fully closed position may be reflected in the correction process (learning of the reference position or correction of the control amount), or a part of the fluctuation amount of the fully closed position (for example, (1/4, 1/3, 1/2, etc.) may be reflected in the correction process. By reflecting all of the fluctuation amount of the fully closed position in the correction process, the reference position and the control amount can be changed with good response to the fluctuation of the fully closed position, and the opening degree of the WGV 27 can be corrected quickly. it can. On the other hand, by reflecting a part of the fluctuation amount of the fully closed position in the correction process, the reference position and the control amount can be gradually changed, and a sudden change in the opening degree of the WGV 27 can be suppressed.

以上説明した本実施例2では、エンジン11の排気系構成部品の受熱量と放熱量に基づいてWGV27の全閉位置の変動量を推定し、推定した全閉位置の変動量に基づいてWGV27の基準位置を学習する又はWGV制御の制御量を補正する修正処理を行うようにしている。排気系構成部品の受熱量と放熱量に応じて排気系構成部品の温度が変化し、排気系構成部品の温度に応じて排気系構成部品が熱膨張や熱収縮してWGV27の全閉位置が変動するため、排気系構成部品の受熱量と放熱量に基づいて全閉位置の変動量を推定することで、全閉位置の変動量を精度良く推定することができる。この全閉位置の変動量に基づいてWGV27の基準位置(全閉位置)を学習することで、WGV27の基準位置を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御することができる。或は、全閉位置の変動量に基づいてWGV制御の制御量を補正することで、WGV27の開度を適切に制御することができる。これにより、WGV27の全閉位置の変動によるWGV27の開度の制御精度の低下を抑制することができると共に低コスト化の要求を満たすことができる。   In the second embodiment described above, the fluctuation amount of the fully closed position of the WGV 27 is estimated based on the heat receiving amount and the heat radiation amount of the exhaust system components of the engine 11, and the WGV 27 of the WGV 27 is calculated based on the estimated fluctuation amount of the fully closed position. Correction processing for learning the reference position or correcting the control amount of the WGV control is performed. The temperature of the exhaust system component changes according to the amount of heat received and the amount of heat released from the exhaust system component, and the exhaust system component thermally expands and contracts according to the temperature of the exhaust system component, so that the fully closed position of the WGV 27 is set. Therefore, the fluctuation amount of the fully closed position can be accurately estimated by estimating the fluctuation amount of the fully closed position based on the heat receiving amount and the heat radiation amount of the exhaust system components. By learning the reference position (fully closed position) of the WGV 27 based on the variation amount of the fully closed position, the reference position of the WGV 27 can be accurately learned and updated, and the updated reference position is used as a reference. By performing the WGV control, the opening degree of the WGV 27 can be appropriately controlled. Alternatively, the opening degree of the WGV 27 can be appropriately controlled by correcting the control amount of the WGV control based on the fluctuation amount of the fully closed position. Thereby, the fall of the control precision of the opening degree of WGV27 by the fluctuation | variation of the fully closed position of WGV27 can be suppressed, and the request | requirement of cost reduction can be satisfy | filled.

また、本実施例2では、全閉位置の変動量が所定値以上のときに修正処理を行うようにしている。このようにすれば、全閉位置の変動量が所定値以上で全閉位置の変動による影響が大きいときだけ修正処理を行って、全閉位置の変動量が所定値よりも小さくて全閉位置の変動による影響が小さいときには修正処理を行わないようにすることができる。これにより、修正処理を必要以上に行うことを防止することができる。   In the second embodiment, the correction process is performed when the variation amount of the fully closed position is equal to or greater than a predetermined value. In this way, the correction process is performed only when the fluctuation amount of the fully closed position is greater than or equal to the predetermined value and the influence of the fluctuation of the fully closed position is large, and the fluctuation amount of the fully closed position is smaller than the predetermined value and the fully closed position is It is possible to prevent the correction process from being performed when the influence of the fluctuations in the number is small. Thereby, it is possible to prevent the correction process from being performed more than necessary.

次に、図9及び図10を用いて本発明の実施例3を説明する。但し、前記実施例2と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例2と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those of the second embodiment will be omitted or simplified, and different parts from the second embodiment will be mainly described.

本実施例3では、ECU37により後述する図9の修正ルーチンを実行することで、エンジン11の排気系構成部品の受熱量と放熱量に基づいて排気系構成部品の温度を算出し、排気系構成部品の温度に基づいてWGV27の全閉位置の変動量を推定するようにしている。そして、推定した全閉位置の変動量に基づいてWGV27の基準位置を学習する又はWGV制御の制御量を補正する修正処理を行うようにしている。   In the third embodiment, the ECU 37 executes a correction routine shown in FIG. 9 to be described later, thereby calculating the temperature of the exhaust system component based on the amount of heat received and the amount of heat released from the exhaust system component of the engine 11. The variation amount of the fully closed position of the WGV 27 is estimated based on the temperature of the part. Then, a correction process for learning the reference position of the WGV 27 or correcting the control amount of the WGV control based on the estimated variation amount of the fully closed position is performed.

以下、本実施例3でECU37が実行する図9の修正ルーチンの処理内容を説明する。
図9の修正ルーチンでは、まず、ステップ301で、エンジン11の排気系構成部品(例えば排気バイパス通路26や電動アクチュエータ39のロッド40等のWGV27の全閉位置の変動に影響する部品)の受熱量と放熱量を算出する。
Hereinafter, the processing content of the correction routine of FIG. 9 executed by the ECU 37 in the third embodiment will be described.
In the correction routine of FIG. 9, first, in step 301, the amount of heat received by the exhaust system components of the engine 11 (for example, the parts that affect the fluctuation of the fully closed position of the WGV 27 such as the exhaust bypass passage 26 and the rod 40 of the electric actuator 39). Calculate the heat dissipation.

この後、ステップ302に進み、図10に示す排気系構成部品の温度上昇量のマップを参照して、排気系構成部品の受熱量と放熱量に応じた排気系構成部品の温度上昇量を算出し、この温度上昇量を排気系構成部品の温度の前回値に加算することで排気系構成部品の温度を算出する。排気系構成部品の温度上昇量のマップは、例えば、受熱量が大きいほど排気系構成部品の温度上昇量が大きくなると共に、放熱量が小さいほど排気系構成部品の温度上昇量が大きくなるように設定されている。この排気系構成部品の温度上昇量のマップは、予め試験データや設計データ等に基づいて作成され、ECU37のROMに記憶されている。尚、排気系構成部品の受熱量と放熱量に基づいて排気系構成部品の温度又は温度上昇量を数式(例えば物理モデルや物理式)等により算出するようにしても良い。   Thereafter, the process proceeds to step 302, and the temperature increase amount of the exhaust system component is calculated according to the heat receiving amount and the heat radiation amount of the exhaust system component with reference to the map of the temperature increase amount of the exhaust system component shown in FIG. Then, the temperature of the exhaust system component is calculated by adding this amount of temperature rise to the previous value of the temperature of the exhaust system component. The map of the temperature rise amount of the exhaust system component is, for example, such that the temperature rise amount of the exhaust system component increases as the amount of heat received increases, and the temperature increase amount of the exhaust system component increases as the heat dissipation amount decreases. Is set. The map of the temperature rise amount of the exhaust system components is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 37. It should be noted that the temperature or temperature rise amount of the exhaust system component may be calculated by a mathematical formula (for example, a physical model or a physical formula) based on the heat receiving amount and the heat radiation amount of the exhaust system component.

この後、ステップ303に進み、排気系構成部品の温度に基づいて全閉位置の変動量をマップ又は数式等により算出することで、全閉位置の変動量を推定する。全閉位置変動量のマップ又は数式等は、予め試験データや設計データ等に基づいて作成され、ECU37のROMに記憶されている。   Thereafter, the process proceeds to step 303, where the amount of change in the fully closed position is estimated by calculating the amount of change in the fully closed position based on the temperature of the exhaust system components using a map or a mathematical expression. The map or mathematical expression of the fully closed position variation is created in advance based on test data, design data, and the like, and stored in the ROM of the ECU 37.

この後、ステップ304に進み、全閉位置の変動量が所定値以上であるか否かを判定する。このステップ304で、全閉位置の変動量が所定値よりも小さいと判定された場合には、全閉位置の変動による影響が小さいと判断して、ステップ305の処理(修正処理)を実行することなく、本ルーチンを終了する。   Thereafter, the process proceeds to step 304, where it is determined whether or not the variation amount of the fully closed position is greater than or equal to a predetermined value. If it is determined in step 304 that the variation amount of the fully closed position is smaller than a predetermined value, it is determined that the influence of the variation of the fully closed position is small, and the processing of step 305 (correction processing) is executed. This routine is terminated without any processing.

一方、上記ステップ304で、全閉位置の変動量が所定値以上であると判定された場合には、全閉位置の変動による影響が大きいと判断して、ステップ305に進み、修正処理を行う。この修正処理では、全閉位置の変動量に基づいて基準位置を学習して更新する。或は、全閉位置の変動量に基づいてWGV制御の制御量を補正する。この際、全閉位置の変動量の全部を修正処理(基準位置の学習や制御量の補正)に反映させるようにしても良いし、或は、全閉位置の変動量の一部を修正処理に反映させるようにしても良い。   On the other hand, if it is determined in step 304 that the variation amount of the fully closed position is greater than or equal to a predetermined value, it is determined that the influence of the variation of the fully closed position is large, and the process proceeds to step 305 to perform correction processing. . In this correction process, the reference position is learned and updated based on the fluctuation amount of the fully closed position. Alternatively, the control amount of the WGV control is corrected based on the fluctuation amount of the fully closed position. At this time, all of the fluctuation amount of the fully closed position may be reflected in the correction process (learning of the reference position and correction of the control amount), or a part of the fluctuation amount of the fully closed position may be corrected. You may make it reflect in.

以上説明した本実施例3では、エンジン11の排気系構成部品の受熱量と放熱量に基づいて排気系構成部品の温度を算出し、排気系構成部品の温度に基づいてWGV27の全閉位置の変動量を推定するようにしている。このようにしても、WGV27の全閉位置の変動量を精度良く推定することができる。そして、推定した全閉位置の変動量に基づいてWGV27の基準位置(全閉位置)を学習する又はWGV制御の制御量を補正する修正処理を行うことで、前記実施例2とほぼ同じ効果を得ることができる。   In the third embodiment described above, the temperature of the exhaust system component is calculated based on the amount of heat received and the amount of heat released from the exhaust system component of the engine 11, and the WGV 27 is fully closed based on the temperature of the exhaust system component. The amount of fluctuation is estimated. Even in this case, the variation amount of the fully closed position of the WGV 27 can be accurately estimated. Then, based on the estimated variation amount of the fully closed position, the reference position (fully closed position) of the WGV 27 is learned, or the correction process for correcting the control amount of the WGV control is performed, so that substantially the same effect as the second embodiment is obtained. Can be obtained.

尚、上記各実施例2,3では、全閉位置の変動量が所定値以上のときに修正処理を行うようにしたが、これに限定されず、全閉位置の変動量の大きさに拘らず修正処理を行うようにしても良い。   In each of the embodiments 2 and 3, the correction process is performed when the fluctuation amount of the fully closed position is equal to or greater than a predetermined value. However, the present invention is not limited to this, and the correction processing is not limited to this. First, correction processing may be performed.

次に、図11及び図12を用いて本発明の実施例4を説明する。但し、前記実施例2と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例2と異なる部分について説明する。   Next, Embodiment 4 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those of the second embodiment will be omitted or simplified, and different parts from the second embodiment will be mainly described.

本実施例4では、ECU37により後述する図12の学習ルーチンを実行することで、エンジン11の排気系構成部品の受熱量と放熱量に基づいてWGV27の全閉位置の変動量を推定し、推定した全閉位置の変動量が所定値以上のときにWGV27を全閉位置に突き当てるように電動アクチュエータ39を制御してWGV27の基準位置を学習するようにしている。   In the fourth embodiment, the ECU 37 executes a learning routine shown in FIG. 12 to be described later, thereby estimating the fluctuation amount of the fully closed position of the WGV 27 based on the heat receiving amount and the heat radiation amount of the exhaust system components of the engine 11. The electric actuator 39 is controlled to learn the reference position of the WGV 27 so that the WGV 27 abuts the fully closed position when the variation amount of the fully closed position is greater than or equal to a predetermined value.

具体的には、図11に示すように、まず、エンジン11の排気系構成部品(例えば排気バイパス通路26や電動アクチュエータ39のロッド40等)の受熱量と放熱量に基づいてWGV27の全閉位置の変動量を推定する。そして、推定した全閉位置の変動量が所定値以上になった時点t1 で、全閉位置の変動による影響が大きいと判断して、WGV27を全閉位置に突き当てるように電動アクチュエータ39を制御する突き当て制御を実行する。この突き当て制御の実行中に、そのときのWGVの現在位置(全閉位置)を基準位置として学習する。これにより、WGV27の基準位置(全閉位置)を精度良く学習して更新し、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御できるようにする。   Specifically, as shown in FIG. 11, first, the fully closed position of the WGV 27 based on the amount of heat received and the amount of heat released by the exhaust system components of the engine 11 (for example, the exhaust bypass passage 26 and the rod 40 of the electric actuator 39). Estimate the amount of fluctuation. Then, at time t1 when the estimated amount of change in the fully closed position exceeds a predetermined value, it is determined that the influence of the change in the fully closed position is large, and the electric actuator 39 is controlled so that the WGV 27 is brought into contact with the fully closed position. The butt control is performed. During the execution of the abutting control, the current position (fully closed position) of the WGV at that time is learned as a reference position. Thereby, the reference position (fully closed position) of the WGV 27 is accurately learned and updated, and the opening degree of the WGV 27 can be appropriately controlled by performing the WGV control based on the updated reference position.

以下、本実施例4でECU37が実行する図12の学習ルーチンの処理内容を説明する。
図12に示す学習ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう推定手段及び学習手段としての役割を果たす。
Hereinafter, the processing content of the learning routine of FIG. 12 executed by the ECU 37 in the fourth embodiment will be described.
The learning routine shown in FIG. 12 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 37, and plays a role as estimation means and learning means in the claims.

本ルーチンが起動されると、まず、ステップ401で、エンジン11の排気系構成部品(例えば排気バイパス通路26や電動アクチュエータ39のロッド40等のWGV27の全閉位置の変動に影響する部品)の受熱量と放熱量を算出する。   When this routine is started, first, in step 401, the exhaust system components of the engine 11 (for example, components that affect the fluctuation of the fully closed position of the WGV 27 such as the exhaust bypass passage 26 and the rod 40 of the electric actuator 39) are received. Calculate heat and heat dissipation.

この後、ステップ402に進み、図8に示す全閉位置変動量のマップを参照して、排気系構成部品の受熱量と放熱量に応じた全閉位置の変動量を算出することで、全閉位置の変動量を推定する。尚、排気系構成部品の受熱量と放熱量に基づいて全閉位置の変動量を数式(例えば物理モデルや物理式)等により算出するようにしても良い。   Thereafter, the process proceeds to step 402, and referring to the fully closed position fluctuation amount map shown in FIG. 8, the fluctuation amount of the fully closed position corresponding to the heat receiving amount and the heat radiation amount of the exhaust system components is calculated. Estimate the amount of variation in the closed position. Note that the fluctuation amount of the fully closed position may be calculated by a mathematical expression (for example, a physical model or a physical expression) based on the heat receiving amount and the heat radiation amount of the exhaust system components.

この後、ステップ403に進み、全閉位置の変動量が所定値以上であるか否かを判定する。このステップ403で、全閉位置の変動量が所定値よりも小さいと判定された場合には、全閉位置の変動による影響が小さいと判断して、ステップ404以降の処理(突き当て制御及び基準位置の学習)を実行することなく、本ルーチンを終了する。   Thereafter, the process proceeds to step 403, where it is determined whether or not the variation amount of the fully closed position is equal to or greater than a predetermined value. If it is determined in step 403 that the variation amount of the fully closed position is smaller than the predetermined value, it is determined that the influence of the variation of the fully closed position is small, and the processing after step 404 (abutting control and reference) This routine is terminated without executing (position learning).

一方、上記ステップ403で、全閉位置の変動量が所定値以上であると判定された場合には、全閉位置の変動による影響が大きいと判断して、ステップ404に進み、突き当て制御を実行する。この突き当て制御では、WGV27を全閉位置に突き当てるように電動アクチュエータ39を制御する。   On the other hand, if it is determined in step 403 that the variation amount of the fully closed position is greater than or equal to a predetermined value, it is determined that the influence of the variation of the fully closed position is large, and the process proceeds to step 404 to perform the abutting control. Run. In this butting control, the electric actuator 39 is controlled so that the WGV 27 is butted against the fully closed position.

この後、ステップ405に進み、WGV27の基準位置(全閉位置)を学習して更新する。具体的には、WGV27の現在位置(全閉位置)を基準位置として学習し、ECU37のメモリに記憶されている基準位置の学習値を今回の学習値で更新する。基準位置を更新した後、突き当て制御を終了して、通常のWGV制御に戻る。   Thereafter, the process proceeds to step 405, where the reference position (fully closed position) of the WGV 27 is learned and updated. Specifically, the current position (fully closed position) of the WGV 27 is learned as a reference position, and the learning value of the reference position stored in the memory of the ECU 37 is updated with the current learning value. After updating the reference position, the abutting control is terminated and the normal WGV control is resumed.

以上説明した本実施例4では、推定した全閉位置の変動量が所定値以上のときに、全閉位置の変動による影響が大きいと判断して、WGV27を全閉位置に突き当てるように電動アクチュエータ39を制御する突き当て制御を行って、そのときのWGVの現在位置(全閉位置)を基準位置として学習するようにしている。これにより、WGV27の基準位置(全閉位置)を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御することができる。これにより、WGV27の全閉位置の変動によるWGV27の開度の制御精度の低下を抑制することができると共に低コスト化の要求を満たすことができる。また、全閉位置の変動量が所定値以上で全閉位置の変動による影響が大きいときだけWGV27の突き当て制御を行って、全閉位置の変動量が所定値よりも小さくて全閉位置の変動による影響が小さいときにはWGV27の突き当て制御を行わないようにすることができる。これにより、WGV27の突き当て制御の頻度が必要以上に多くなることを防止して、WGV27やその周辺部の摩耗を抑制することができる。   In the fourth embodiment described above, when the estimated variation amount of the fully closed position is equal to or greater than a predetermined value, it is determined that the influence of the variation of the fully closed position is large, and the WGV 27 is electrically driven so as to strike the fully closed position. Abutting control for controlling the actuator 39 is performed, and the current position (fully closed position) of the WGV at that time is learned as a reference position. Thereby, the reference position (fully closed position) of the WGV 27 can be accurately learned and updated, and the opening degree of the WGV 27 can be appropriately controlled by performing the WGV control based on the updated reference position. it can. Thereby, the fall of the control precision of the opening degree of WGV27 by the fluctuation | variation of the fully closed position of WGV27 can be suppressed, and the request | requirement of cost reduction can be satisfy | filled. In addition, the WGV 27 is controlled only when the variation amount of the fully closed position is equal to or greater than the predetermined value and the influence of the variation of the fully closed position is large, and the variation amount of the fully closed position is smaller than the predetermined value and When the influence due to the fluctuation is small, the WGV 27 butting control can be prevented from being performed. Thereby, it can prevent that the frequency of butt control of WGV27 increases more than necessary, and can suppress wear of WGV27 or its peripheral part.

次に、図13を用いて本発明の実施例5を説明する。但し、前記実施例4と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例4と異なる部分について説明する。   Next, Embodiment 5 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the fourth embodiment will be omitted or simplified, and different parts from the fourth embodiment will be mainly described.

本実施例5では、ECU37により後述する図13の学習ルーチンを実行することで、エンジン11の排気系構成部品の受熱量と放熱量に基づいて排気系構成部品の温度を算出し、排気系構成部品の温度に基づいてWGV27の全閉位置の変動量を推定するようにしている。そして、推定した全閉位置の変動量が所定値以上のときにWGV27を全閉位置に突き当てるように電動アクチュエータ39を制御してWGVの基準位置を学習するようにしている。   In the fifth embodiment, the ECU 37 calculates the temperature of the exhaust system components based on the amount of heat received and radiated from the exhaust system components of the engine 11 by executing a learning routine shown in FIG. The variation amount of the fully closed position of the WGV 27 is estimated based on the temperature of the part. Then, when the estimated variation amount of the fully closed position is equal to or greater than a predetermined value, the electric actuator 39 is controlled so as to abut the WGV 27 against the fully closed position to learn the WGV reference position.

以下、本実施例5でECU37が実行する図13の学習ルーチンの処理内容を説明する。
図13の学習ルーチンでは、まず、ステップ501で、エンジン11の排気系構成部品(例えば排気バイパス通路26や電動アクチュエータ39のロッド40等のWGV27の全閉位置の変動に影響する部品)の受熱量と放熱量を算出する。
Hereinafter, the processing content of the learning routine of FIG. 13 executed by the ECU 37 in the fifth embodiment will be described.
In the learning routine of FIG. 13, first, in step 501, the amount of heat received by the exhaust system components of the engine 11 (for example, components that affect the fluctuation of the fully closed position of the WGV 27 such as the exhaust bypass passage 26 and the rod 40 of the electric actuator 39). Calculate the heat dissipation.

この後、ステップ502に進み、図10に示す排気系構成部品の温度上昇量のマップを参照して、排気系構成部品の受熱量と放熱量に応じた排気系構成部品の温度上昇量を算出し、この温度上昇量を排気系構成部品の温度の前回値に加算することで排気系構成部品の温度を算出する。尚、排気系構成部品の受熱量と放熱量に基づいて排気系構成部品の温度又は温度上昇量を数式(例えば物理モデルや物理式)等により算出するようにしても良い。   Thereafter, the process proceeds to step 502, and the temperature rise amount of the exhaust system component is calculated according to the amount of heat received and the amount of heat released from the exhaust system component by referring to the map of the temperature rise amount of the exhaust system component shown in FIG. Then, the temperature of the exhaust system component is calculated by adding this amount of temperature rise to the previous value of the temperature of the exhaust system component. It should be noted that the temperature or temperature rise amount of the exhaust system component may be calculated by a mathematical formula (for example, a physical model or a physical formula) based on the heat receiving amount and the heat radiation amount of the exhaust system component.

この後、ステップ503に進み、排気系構成部品の温度に基づいて全閉位置の変動量をマップ又は数式等により算出することで、全閉位置の変動量を推定する。
この後、ステップ504に進み、全閉位置の変動量が所定値以上であるか否かを判定する。このステップ504で、全閉位置の変動量が所定値よりも小さいと判定された場合には、全閉位置の変動による影響が小さいと判断して、ステップ505以降の処理(突き当て制御及び基準位置の学習)を実行することなく、本ルーチンを終了する。
Thereafter, the process proceeds to step 503, where the fluctuation amount of the fully closed position is estimated by calculating the fluctuation amount of the fully closed position based on the temperature of the exhaust system components by using a map or a mathematical expression.
Thereafter, the process proceeds to step 504, where it is determined whether or not the variation amount of the fully closed position is a predetermined value or more. If it is determined in step 504 that the variation amount of the fully closed position is smaller than a predetermined value, it is determined that the influence of the variation of the fully closed position is small, and the processing after step 505 (abutting control and reference) This routine is terminated without executing (position learning).

一方、上記ステップ504で、全閉位置の変動量が所定値以上であると判定された場合には、全閉位置の変動による影響が大きいと判断して、ステップ505に進み、突き当て制御を実行した後、ステップ506に進み、WGV27の基準位置(全閉位置)を学習して更新する。基準位置を更新した後、突き当て制御を終了して、通常のWGV制御に戻る。
以上説明した本実施例5においても前記実施例4とほぼ同じ効果を得ることができる。
On the other hand, if it is determined in step 504 that the variation amount of the fully closed position is greater than or equal to a predetermined value, it is determined that the influence of the variation of the fully closed position is large, and the process proceeds to step 505 to perform the abutting control. After the execution, the process proceeds to step 506, where the reference position (fully closed position) of the WGV 27 is learned and updated. After updating the reference position, the abutting control is terminated and the normal WGV control is resumed.
In the fifth embodiment described above, substantially the same effect as in the fourth embodiment can be obtained.

次に、図14及び図15を用いて本発明の実施例6を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 6 of the present invention will be described with reference to FIGS. 14 and 15. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例6では、ECU37により後述する図15の修正ルーチンを実行することで、過給圧F/B制御の実行中に実過給圧が所定値以上のときにWGV開度補正量(WGV27の開度補正量)に基づいて基準位置を学習する又はWGV制御の制御量を補正する修正処理を行うようにしている。   In the sixth embodiment, a correction routine of FIG. 15 described later is executed by the ECU 37, so that the WGV opening correction amount (WGV27) when the actual supercharging pressure is equal to or greater than a predetermined value during execution of the supercharging pressure F / B control. The correction processing is performed to learn the reference position or to correct the control amount of the WGV control based on (the opening correction amount).

図14に示すように、WGV27の全閉位置が変動すると、それに伴ってWGV27の開度と過給圧との関係が変化して、過給圧F/B制御によるWGV開度補正量が変化するため、WGV開度補正量は、WGV27の全閉位置の変動量を反映した情報となる。しかし、過給圧が低い領域では、WGV27の全閉位置の変動によるWGV開度補正量の変化分を正確に判断することが困難である。   As shown in FIG. 14, when the fully closed position of the WGV 27 changes, the relationship between the opening degree of the WGV 27 and the supercharging pressure changes accordingly, and the WGV opening correction amount by the supercharging pressure F / B control changes. Therefore, the WGV opening correction amount is information reflecting the variation amount of the fully closed position of the WGV 27. However, in the region where the supercharging pressure is low, it is difficult to accurately determine the amount of change in the WGV opening correction amount due to the change in the fully closed position of the WGV 27.

このような事情を考慮して、本実施例6では、過給圧F/B制御の実行中に実過給圧が所定値以上のときに、WGV開度補正量がWGV27の全閉位置の変動量を精度良く反映した情報であると判断して、WGV開度補正量に基づいてWGV27の基準位置(全閉位置)を学習する。これにより、WGV27の基準位置を精度良く学習して更新し、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御できるようにする。或は、WGV開度補正量に基づいてWGV制御の制御量(例えば目標WGV開度又は制御デューティ等)を補正することで、WGV27の開度を適切に制御できるようにする。   In consideration of such circumstances, in the sixth embodiment, when the actual supercharging pressure is equal to or greater than a predetermined value during execution of the supercharging pressure F / B control, the WGV opening correction amount is the WGV27 fully closed position. It is determined that the information accurately reflects the fluctuation amount, and the reference position (fully closed position) of the WGV 27 is learned based on the WGV opening correction amount. Accordingly, the reference position of the WGV 27 is learned and updated with high accuracy, and the opening degree of the WGV 27 can be appropriately controlled by performing the WGV control based on the updated reference position. Alternatively, the opening degree of the WGV 27 can be appropriately controlled by correcting the control amount (for example, the target WGV opening degree or the control duty) of the WGV control based on the WGV opening degree correction amount.

以下、本実施例6でECU37が実行する図15の修正ルーチンの処理内容を説明する。
図15に示す修正ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう修正手段としての役割を果たす。
Hereinafter, the processing content of the correction routine of FIG. 15 executed by the ECU 37 in the sixth embodiment will be described.
The correction routine shown in FIG. 15 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 37, and serves as correction means in the claims.

本ルーチンが起動されると、まず、ステップ601で、過給圧F/B制御の実行中であるか否かを判定する。
このステップ601で、過給圧F/B制御の実行中ではないと判定された場合には、ステップ602以降の処理を実行することなく、本ルーチンを終了する。
When this routine is started, first, at step 601, it is determined whether or not the supercharging pressure F / B control is being executed.
If it is determined in step 601 that the supercharging pressure F / B control is not being executed, this routine is terminated without executing the processing from step 602 onward.

一方、上記ステップ601で、過給圧F/B制御の実行中であると判定された場合には、ステップ602に進み、実過給圧が所定値以上であるか否かを判定する。この所定値は、例えば、WGV開度補正量がWGV27の全閉位置の変動量を精度良く反映した情報となる過給圧の最小値又はその付近の値に設定されている。
このステップ602で、実過給圧が所定値よりも低いと判定された場合には、ステップ603以降の処理を実行することなく、本ルーチンを終了する。
On the other hand, if it is determined in step 601 that the supercharging pressure F / B control is being executed, the process proceeds to step 602, where it is determined whether or not the actual supercharging pressure is greater than or equal to a predetermined value. For example, the predetermined value is set to the minimum value of the supercharging pressure or a value in the vicinity thereof, which is information in which the WGV opening correction amount accurately reflects the fluctuation amount of the fully closed position of the WGV27.
If it is determined in step 602 that the actual supercharging pressure is lower than the predetermined value, this routine is terminated without executing the processing after step 603.

一方、上記ステップ602で、実過給圧が所定値以上であると判定された場合には、WGV開度補正量がWGV27の全閉位置の変動量を精度良く反映した情報であると判断して、ステップ603に進み、過給圧F/B制御によるWGV開度補正量を読み込む。   On the other hand, if it is determined in step 602 that the actual boost pressure is greater than or equal to the predetermined value, it is determined that the WGV opening correction amount is information that accurately reflects the amount of change in the fully closed position of the WGV 27. In step 603, the WGV opening correction amount by the supercharging pressure F / B control is read.

この後、ステップ604に進み、WGV開度補正量が所定値以上であるか否かを判定する。この所定値は、例えば、全閉位置の変動による影響が許容範囲内となる全閉位置の変動量の上限値に相当するWGV開度補正量又はその付近の値に設定されている。   Thereafter, the process proceeds to step 604, where it is determined whether or not the WGV opening correction amount is equal to or greater than a predetermined value. This predetermined value is set to, for example, a WGV opening correction amount corresponding to the upper limit value of the variation amount of the fully closed position where the influence of the variation of the fully closed position is within the allowable range or a value in the vicinity thereof.

このステップ604で、WGV開度補正量が所定値よりも小さいと判定された場合には、全閉位置の変動による影響が小さいと判断して、ステップ605の処理(修正処理)を実行することなく、本ルーチンを終了する。   If it is determined in step 604 that the WGV opening correction amount is smaller than the predetermined value, it is determined that the influence of the change in the fully closed position is small, and the processing (correction processing) in step 605 is executed. This routine is terminated.

一方、上記ステップ604で、WGV開度補正量が所定値以上であると判定された場合には、全閉位置の変動による影響が大きいと判断して、ステップ605に進み、修正処理を行う。この修正処理では、WGV開度補正量に基づいて基準位置を学習して更新する。具体的には、WGV開度補正量に基づいて現在の基準位置の学習値を補正し、ECU37のメモリに記憶されている基準位置の学習値を今回の学習値で更新する。或は、WGV開度補正量に基づいてWGV制御の制御量(例えば目標WGV開度又は制御デューティ等)を補正する。   On the other hand, if it is determined in step 604 that the WGV opening correction amount is greater than or equal to the predetermined value, it is determined that the influence of the change in the fully closed position is large, and the process proceeds to step 605 to perform correction processing. In this correction process, the reference position is learned and updated based on the WGV opening correction amount. Specifically, the learning value of the current reference position is corrected based on the WGV opening correction amount, and the learning value of the reference position stored in the memory of the ECU 37 is updated with the current learning value. Alternatively, the control amount of the WGV control (for example, the target WGV opening or the control duty) is corrected based on the WGV opening correction amount.

この際、WGV開度補正量の全部を修正処理(基準位置の学習や制御量の補正)に反映させるようにしても良いし、或は、WGV開度補正量の一部(例えば、1/4、1/3、1/2等)を修正処理に反映させるようにしても良い。WGV開度補正量の全部を修正処理に反映させることで、全閉位置の変動に対して応答良く基準位置や制御量を変更することができ、WGV27の開度を速やかに修正することができる。一方、WGV開度補正量の一部を修正処理に反映させることで、基準位置や制御量を徐々に変更することができ、WGV27の開度の急変を抑制することがでできる。   At this time, all of the WGV opening correction amount may be reflected in the correction process (learning of the reference position and correction of the control amount), or a part of the WGV opening correction amount (for example, 1 / (4, 1/3, 1/2, etc.) may be reflected in the correction process. By reflecting the entire WGV opening correction amount in the correction process, it is possible to change the reference position and the control amount with good response to fluctuations in the fully closed position, and to quickly correct the opening of the WGV 27. . On the other hand, by reflecting a part of the WGV opening correction amount in the correction process, the reference position and the control amount can be gradually changed, and a sudden change in the opening of the WGV 27 can be suppressed.

以上説明した本実施例6では、過給圧F/B制御の実行中に実過給圧が所定値以上のときに、WGV開度補正量がWGV27の全閉位置の変動量を精度良く反映した情報であると判断して、WGV開度補正量に基づいて基準位置を学習する又はWGV制御の制御量を補正する修正処理を行うようにしている。WGV開度補正量に基づいてWGV27の基準位置(全閉位置)を学習することで、WGV27の基準位置を精度良く学習して更新することができ、更新後の基準位置を基準にしてWGV制御を行うことでWGV27の開度を適切に制御することができる。或は、WGV開度補正量に基づいてWGV制御の制御量を補正することで、WGV27の開度を適切に制御することができる。これにより、WGV27の全閉位置の変動によるWGV27の開度の制御精度の低下を抑制することができると共に低コスト化の要求を満たすことができる。また、WGV27の全閉不可領域(高回転・高負荷のような高過給圧となる条件時)でも修正処理を実施できるという利点もある。   In the sixth embodiment described above, the WGV opening correction amount accurately reflects the fluctuation amount of the fully closed position of the WGV 27 when the actual supercharging pressure is equal to or greater than a predetermined value during execution of the supercharging pressure F / B control. Thus, the correction processing is performed to learn the reference position based on the WGV opening correction amount or to correct the control amount of the WGV control. By learning the reference position (fully closed position) of the WGV 27 based on the WGV opening correction amount, the reference position of the WGV 27 can be learned and updated with accuracy, and the WGV control is performed based on the updated reference position. By performing this, the opening degree of the WGV 27 can be appropriately controlled. Alternatively, the opening degree of the WGV 27 can be appropriately controlled by correcting the control amount of the WGV control based on the WGV opening degree correction amount. Thereby, the fall of the control precision of the opening degree of WGV27 by the fluctuation | variation of the fully closed position of WGV27 can be suppressed, and the request | requirement of cost reduction can be satisfy | filled. In addition, there is an advantage that the correction process can be performed even in the WGV 27 non-closed region (during a high boost pressure such as high rotation and high load).

また、本実施例6では、WGV開度補正量が所定値以上のときに修正処理を行うようにしている。このようにすれば、WGV開度補正量が所定値以上で全閉位置の変動による影響が大きいときだけ修正処理を行って、WGV開度補正量が所定値よりも小さくて全閉位置の変動による影響が小さいときには修正処理を行わないようにすることができる。これにより、修正処理を必要以上に行うことを防止することができる。   In the sixth embodiment, correction processing is performed when the WGV opening correction amount is equal to or greater than a predetermined value. In this way, correction processing is performed only when the WGV opening correction amount is greater than or equal to a predetermined value and the influence of fluctuations in the fully closed position is large, and the WGV opening correction amount is smaller than the predetermined value and fluctuations in the fully closed position are performed. When the influence of is small, it is possible to prevent the correction process from being performed. Thereby, it is possible to prevent the correction process from being performed more than necessary.

次に、図16を用いて本発明の実施例7を説明する。但し、前記実施例6と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例6と異なる部分について説明する。   Next, Embodiment 7 of the present invention will be described with reference to FIG. However, description of substantially the same parts as in the sixth embodiment will be omitted or simplified, and different parts from the sixth embodiment will be mainly described.

本実施例7では、ECU37により後述する図16の修正ルーチンを実行することで、過給圧F/B制御の実行中に所定条件が成立したときに目標過給圧を所定値以上に設定して実過給圧を所定値以上に制御するようにしている。そして、実過給圧が所定値以上のときにWGV開度補正量に基づいて基準位置を学習する又はWGV制御の制御量を補正する修正処理を行うようにしている。   In the seventh embodiment, the ECU 37 executes a correction routine shown in FIG. 16, which will be described later, to set the target supercharging pressure to a predetermined value or more when a predetermined condition is satisfied during execution of the supercharging pressure F / B control. Thus, the actual supercharging pressure is controlled to a predetermined value or more. Then, when the actual supercharging pressure is equal to or greater than a predetermined value, a correction process for learning the reference position based on the WGV opening correction amount or correcting the control amount of the WGV control is performed.

以下、本実施例7でECU37が実行する図16の修正ルーチンの処理内容を説明する。
図16の修正ルーチンでは、まず、ステップ701で、過給圧F/B制御の実行中であるか否かを判定し、過給圧F/B制御の実行中ではないと判定された場合には、ステップ702以降の処理を実行することなく、本ルーチンを終了する。
Hereinafter, the processing content of the correction routine of FIG. 16 executed by the ECU 37 in the seventh embodiment will be described.
In the correction routine of FIG. 16, first, in step 701, it is determined whether or not the supercharging pressure F / B control is being executed, and if it is determined that the supercharging pressure F / B control is not being executed. Terminates this routine without executing the processing from step 702 onward.

一方、上記ステップ701で、過給圧F/B制御の実行中であると判定された場合には、ステップ702に進み、所定条件が成立しているか否かを、例えば、WGV27の全閉位置の変動量が所定値以上であるか否か、前回の修正処理を行ってから所定期間以上経過したか否か等によって判定する。ここで、WGV27の全閉位置の変動量が所定値以上であるか否かは、前記実施例2〜5で説明した方法で判定する。
このステップ702で、所定条件が不成立であると判定された場合には、ステップ703以降の処理を実行することなく、本ルーチンを終了する。
On the other hand, if it is determined in step 701 that the supercharging pressure F / B control is being executed, the process proceeds to step 702 to determine whether or not a predetermined condition is satisfied, for example, the fully closed position of the WGV 27. It is determined by whether or not the fluctuation amount is greater than or equal to a predetermined value, whether or not a predetermined period has elapsed since the previous correction process was performed, and the like. Here, whether or not the variation amount of the fully closed position of the WGV 27 is greater than or equal to a predetermined value is determined by the method described in the second to fifth embodiments.
If it is determined in step 702 that the predetermined condition is not satisfied, this routine is terminated without executing the processing in step 703 and subsequent steps.

一方、上記ステップ702で、所定条件が成立していると判定された場合には、ステップ703に進み、目標過給圧を所定値以上に設定する。この所定値は、例えば、WGV開度補正量がWGV27の全閉位置の変動量を精度良く反映した情報となる過給圧の最小値又はその付近の値に設定されている。   On the other hand, if it is determined in step 702 that the predetermined condition is satisfied, the process proceeds to step 703, where the target supercharging pressure is set to a predetermined value or more. For example, the predetermined value is set to the minimum value of the supercharging pressure or a value in the vicinity thereof, which is information in which the WGV opening correction amount accurately reflects the fluctuation amount of the fully closed position of the WGV27.

この後、ステップ704に進み、実過給圧が所定値以上であるか否かを判定する。このステップ704で、実過給圧が所定値よりも低いと判定された場合には、ステップ705以降の処理を実行することなく、本ルーチンを終了する。   Thereafter, the process proceeds to step 704, where it is determined whether or not the actual supercharging pressure is greater than or equal to a predetermined value. If it is determined in step 704 that the actual supercharging pressure is lower than the predetermined value, this routine is terminated without executing the processing from step 705 onward.

一方、上記ステップ704で、実過給圧が所定値以上であると判定された場合には、WGV開度補正量がWGV27の全閉位置の変動量を精度良く反映した情報であると判断して、ステップ705に進み、過給圧F/B制御によるWGV開度補正量を読み込む。   On the other hand, if it is determined in step 704 that the actual boost pressure is greater than or equal to the predetermined value, it is determined that the WGV opening correction amount is information that accurately reflects the amount of change in the fully closed position of the WGV 27. In step 705, the WGV opening correction amount by the supercharging pressure F / B control is read.

この後、ステップ706に進み、WGV開度補正量が所定値以上であるか否かを判定する。このステップ706で、WGV開度補正量が所定値よりも小さいと判定された場合には、全閉位置の変動による影響が小さいと判断して、ステップ707の処理(修正処理)を実行することなく、本ルーチンを終了する。   Thereafter, the process proceeds to step 706, where it is determined whether or not the WGV opening correction amount is equal to or greater than a predetermined value. If it is determined in step 706 that the WGV opening correction amount is smaller than the predetermined value, it is determined that the influence of the change in the fully closed position is small, and the processing of step 707 (correction processing) is executed. This routine is terminated.

一方、上記ステップ706で、WGV開度補正量が所定値以上であると判定された場合には、全閉位置の変動による影響が大きいと判断して、ステップ707に進み、修正処理を行う。この修正処理では、WGV開度補正量に基づいて基準位置を学習して更新する。或は、WGV開度補正量に基づいてWGV制御の制御量を補正する。この際、WGV開度補正量の全部を修正処理(基準位置の学習や制御量の補正)に反映させるようにしても良いし、或は、WGV開度補正量の一部を修正処理に反映させるようにしても良い。   On the other hand, if it is determined in step 706 that the WGV opening correction amount is equal to or greater than the predetermined value, it is determined that the influence of the change in the fully closed position is large, and the process proceeds to step 707 where correction processing is performed. In this correction process, the reference position is learned and updated based on the WGV opening correction amount. Alternatively, the control amount of the WGV control is corrected based on the WGV opening correction amount. At this time, all of the WGV opening correction amount may be reflected in the correction process (learning of the reference position and control amount correction), or a part of the WGV opening correction amount may be reflected in the correction process. You may make it let it.

以上説明した本実施例7では、過給圧F/B制御の実行中に所定条件が成立したときに目標過給圧を所定値以上に設定して実過給圧を所定値以上に制御するようにしている。このようにすれば、過給圧F/B制御の実行中に所定条件が成立したときに強制的に実過給圧を所定値以上に制御して修正処理を行うことができる。   In the seventh embodiment described above, when a predetermined condition is satisfied during execution of the supercharging pressure F / B control, the target supercharging pressure is set to a predetermined value or more to control the actual supercharging pressure to a predetermined value or more. I am doing so. In this way, when the predetermined condition is satisfied during the execution of the supercharging pressure F / B control, the actual supercharging pressure is forcibly controlled to a predetermined value or more and correction processing can be performed.

尚、上記各実施例6,7では、WGV開度補正量が所定値以上のときに修正処理を行うようにしたが、これに限定されず、WGV開度補正量の大きさに拘らず修正処理を行うようにしても良い。   In each of Examples 6 and 7, the correction process is performed when the WGV opening correction amount is equal to or greater than a predetermined value. However, the correction process is not limited to this, and the correction is performed regardless of the magnitude of the WGV opening correction amount. Processing may be performed.

また、上記各実施例1〜7では、WGVの駆動源として電動アクチュエータを用いたシステムに本発明を適用したが、これに限定されず、例えば、電磁力を利用する電磁アクチュエータや流体圧(例えば油圧や空気圧)を利用する流体圧アクチュエータをWGVの駆動源として用いたシステムに本発明を適用しても良い。   In the first to seventh embodiments, the present invention is applied to a system using an electric actuator as a WGV drive source. However, the present invention is not limited to this. For example, an electromagnetic actuator using an electromagnetic force or a fluid pressure (for example, The present invention may be applied to a system in which a fluid pressure actuator using hydraulic pressure or air pressure) is used as a WGV drive source.

11…エンジン(内燃機関)、17…過給機、18…排気タービン、26…排気バイパス通路(排気系構成部品)、27…WGV、33…WGV開度センサ、36…吸気圧センサ、37…ECU(制御手段,学習手段,推定手段,修正手段)、39…電動アクチュエータ、40…ロッド(排気系構成部品)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 17 ... Supercharger, 18 ... Exhaust turbine, 26 ... Exhaust bypass passage (exhaust system component), 27 ... WGV, 33 ... WGV opening sensor, 36 ... Intake pressure sensor, 37 ... ECU (control means, learning means, estimation means, correction means), 39 ... electric actuator, 40 ... rod (exhaust system components)

Claims (7)

内燃機関(11)の吸入空気を過給する排気タービン駆動式の過給機(17)と、前記過給機(17)の排気タービン(18)をバイパスする排気バイパス通路(26)を開閉するウェイストゲートバルブ(以下「WGV」と表記する)(27)と、前記WGV(27)の開度を検出するWGV開度センサ(33)と、前記WGV(27)の全閉位置を基準位置として前記WGV開度センサ(33)で検出した実WGV開度を目標WGV開度に一致させるように前記WGV(27)のアクチュエータ(39)を制御するWGV制御を実行する制御手段(37)とを備えた内燃機関の制御装置において、
前記WGV制御の実行中に前記WGV(27)が前記全閉位置から所定範囲内で前記アクチュエータ(39)の制御値が前記WGV(27)を閉じ方向に制御する値に張り付いた状態であるか否かを判断し、前記アクチュエータ(39)の制御値が前記WGV(27)を閉じ方向に制御する値に張り付いた状態であると判断される場合には、前記基準位置を学習する学習手段(37)を備えていることを特徴とする内燃機関の制御装置。
An exhaust turbine driven supercharger (17) for supercharging intake air of the internal combustion engine (11) and an exhaust bypass passage (26) for bypassing the exhaust turbine (18) of the supercharger (17) are opened and closed. A waste gate valve (hereinafter referred to as “WGV”) (27), a WGV opening sensor (33) for detecting the opening of the WGV (27), and a fully closed position of the WGV (27) as a reference position Control means (37) for executing WGV control for controlling the actuator (39) of the WGV (27) so that the actual WGV opening detected by the WGV opening sensor (33) matches the target WGV opening. In a control device for an internal combustion engine provided,
Is a state where the control value is stuck to a value to control the direction closing said WGV (27) of the within a predetermined range from the WGV (27) is the fully closed position during execution of the WGV control actuator (39) Learning to learn the reference position when it is determined that the control value of the actuator (39) is stuck to a value that controls the WGV (27) in the closing direction. An internal combustion engine control device comprising means (37).
内燃機関(11)の吸入空気を過給する排気タービン駆動式の過給機(17)と、前記過給機(17)の排気タービン(18)をバイパスする排気バイパス通路(26)を開閉するウェイストゲートバルブ(以下「WGV」と表記する)(27)と、前記WGV(27)の開度を検出するWGV開度センサ(33)と、前記WGV(27)の全閉位置を基準位置として前記WGV開度センサ(33)で検出した実WGV開度を目標WGV開度に一致させるように前記WGV(27)のアクチュエータ(39)を制御するWGV制御を実行する制御手段(37)とを備えた内燃機関の制御装置において、
前記内燃機関(11)の排気系構成部品(26,40)の受熱量と放熱量に基づいて前記全閉位置の変動量を推定する推定手段(37)と、
前記全閉位置の変動量が所定値以上であるか否かを判断し、前記全閉位置の変動量が所定値以上であると判断される場合には、前記WGV(27)を前記全閉位置に突き当てるように前記アクチュエータ(39)を制御するとともに、この突き当て制御の実行中に前記基準位置を学習する学習手段(37)と
を備えていることを特徴とする内燃機関の制御装置。
An exhaust turbine driven supercharger (17) for supercharging intake air of the internal combustion engine (11) and an exhaust bypass passage (26) for bypassing the exhaust turbine (18) of the supercharger (17) are opened and closed. A waste gate valve (hereinafter referred to as “WGV”) (27), a WGV opening sensor (33) for detecting the opening of the WGV (27), and a fully closed position of the WGV (27) as a reference position Control means (37) for executing WGV control for controlling the actuator (39) of the WGV (27) so that the actual WGV opening detected by the WGV opening sensor (33) matches the target WGV opening. In a control device for an internal combustion engine provided,
Estimating means (37) for estimating the amount of fluctuation of the fully closed position based on the amount of heat received and the amount of heat released from the exhaust system components (26, 40) of the internal combustion engine (11);
It is determined whether or not the variation amount of the fully closed position is greater than or equal to a predetermined value. If it is determined that the variation amount of the fully closed position is greater than or equal to a predetermined value, the WGV (27) is And a learning means (37) for controlling the actuator (39) so as to abut the position and learning the reference position during the abutting control. .
前記推定手段(37)は、前記排気系構成部品(26,40)の受熱量と放熱量に基づいて前記排気系構成部品(26,40)の温度を算出し、前記排気系構成部品(26,40)の温度に基づいて前記全閉位置の変動量を推定することを特徴とする請求項2に記載の内燃機関の制御装置。 The estimation means (37) calculates the temperature of the exhaust system component (26, 40) based on the amount of heat received and the amount of heat released from the exhaust system component (26, 40), and the exhaust system component (26). The control device for an internal combustion engine according to claim 2, wherein the fluctuation amount of the fully closed position is estimated based on the temperature of (40). 内燃機関(11)の吸入空気を過給する排気タービン駆動式の過給機(17)と、前記過給機(17)の排気タービン(18)をバイパスする排気バイパス通路(26)を開閉するウェイストゲートバルブ(以下「WGV」と表記する)(27)と、前記WGV(27)の開度を検出するWGV開度センサ(33)と、前記吸入空気の過給圧を検出する吸気圧センサ(36)と、前記WGV(27)の全閉位置を基準位置として前記WGV開度センサ(33)で検出した実WGV開度を目標WGV開度に一致させるように前記WGV(27)のアクチュエータ(39)を制御するWGV制御を実行すると共に前記吸気圧センサ(36)で検出した実過給圧を目標過給圧に一致させるように前記WGV(27)の開度補正量を算出する過給圧フィードバック制御を実行する制御手段(37)とを備えた内燃機関の制御装置において、
前記過給圧フィードバック制御の実行中に前記実過給圧が所定値以上であるか否かを判断し、前記実過給圧が前記所定値以上であると判断される場合には、前記WGV(27)の開度補正量に基づいて前記基準位置を学習する又は前記WGV制御の制御量を補正する修正処理を行う修正手段(37)を備えていることを特徴とする内燃機関の制御装置。
An exhaust turbine driven supercharger (17) for supercharging intake air of the internal combustion engine (11) and an exhaust bypass passage (26) for bypassing the exhaust turbine (18) of the supercharger (17) are opened and closed. Waste gate valve (hereinafter referred to as “WGV”) (27), WGV opening sensor (33) for detecting the opening of the WGV (27), and intake pressure sensor for detecting the supercharging pressure of the intake air (36) and the actuator of the WGV (27) so that the actual WGV opening detected by the WGV opening sensor (33) matches the target WGV opening with the fully closed position of the WGV (27) as a reference position. The WGV control for controlling (39) is executed, and the opening correction amount of the WGV (27) is calculated so that the actual boost pressure detected by the intake pressure sensor (36) matches the target boost pressure. Supply pressure The controller of an internal combustion engine and a control means for executing a readback control (37),
During execution of the supercharging pressure feedback control, it is determined whether or not the actual supercharging pressure is equal to or higher than a predetermined value, and when it is determined that the actual supercharging pressure is equal to or higher than the predetermined value, the WGV An internal combustion engine control device comprising correction means (37) for performing correction processing for learning the reference position based on the opening correction amount of (27) or correcting the control amount of the WGV control. .
前記修正手段(37)は、前記過給圧フィードバック制御の実行中に所定条件が成立したときに前記目標過給圧を前記所定値以上に設定して前記実過給圧を前記所定値以上に制御することを特徴とする請求項に記載の内燃機関の制御装置。 The correcting means (37) sets the target supercharging pressure to the predetermined value or more when the predetermined condition is satisfied during execution of the supercharging pressure feedback control, and sets the actual supercharging pressure to the predetermined value or more. 5. The control device for an internal combustion engine according to claim 4 , wherein the control device is controlled. 前記修正手段(37)は、前記WGV(27)の開度補正量が所定値以上であるか否かを判断し、前記WGV(27)の開度補正量が所定値以上であると判断される場合には、前記修正処理を行うことを特徴とする請求項又はに記載の内燃機関の制御装置。 The correction means (37) determines whether or not the opening correction amount of the WGV (27) is a predetermined value or more, and is determined that the opening correction amount of the WGV (27) is a predetermined value or more. 6. The control apparatus for an internal combustion engine according to claim 4 or 5 , wherein the correction process is performed when the engine is running. 前記修正手段(37)は、前記WGV(27)の開度補正量の全部又は一部を前記修正処理に反映させることを特徴とする請求項乃至のいずれか一項に記載の内燃機関の制御装置。 The internal combustion engine according to any one of claims 4 to 6 , wherein the correction means (37) reflects all or part of the opening correction amount of the WGV (27) in the correction processing. Control device.
JP2014041355A 2014-03-04 2014-03-04 Control device for internal combustion engine Active JP6123707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041355A JP6123707B2 (en) 2014-03-04 2014-03-04 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041355A JP6123707B2 (en) 2014-03-04 2014-03-04 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015166571A JP2015166571A (en) 2015-09-24
JP6123707B2 true JP6123707B2 (en) 2017-05-10

Family

ID=54257552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041355A Active JP6123707B2 (en) 2014-03-04 2014-03-04 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6123707B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477404B2 (en) * 2015-10-13 2019-03-06 株式会社デンソー Turbocharger
US10436106B2 (en) 2015-12-24 2019-10-08 Mitsubishi Electric Corporation Control apparatus and control method for internal combustion engine
JP6038271B1 (en) * 2015-12-24 2016-12-07 三菱電機株式会社 Control device for internal combustion engine and control method for internal combustion engine
JP6232085B2 (en) * 2016-01-28 2017-11-15 本田技研工業株式会社 Vehicle control device
JP6173523B1 (en) * 2016-04-26 2017-08-02 三菱電機株式会社 Control device for internal combustion engine
JP6461069B2 (en) * 2016-11-22 2019-01-30 本田技研工業株式会社 Control device for internal combustion engine
JP6505071B2 (en) * 2016-12-09 2019-04-24 本田技研工業株式会社 Fully closed position learning device for waste gate valve
JP6416310B1 (en) 2017-04-17 2018-10-31 三菱電機株式会社 Control device and control method for internal combustion engine
CN108825359B (en) * 2018-06-30 2023-06-20 华南理工大学 Dynamic control device and method for load of two-stage turbine of internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104610A (en) * 1998-09-29 2000-04-11 Denso Corp Fuel injection control device for internal combustion engine
JP4434057B2 (en) * 2005-03-28 2010-03-17 株式会社デンソー Supercharging pressure control device for internal combustion engine
JP4765757B2 (en) * 2006-05-09 2011-09-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP6155542B2 (en) * 2012-01-12 2017-07-05 株式会社Ihi Supercharging system and control method of supercharging system
DE112012006838T5 (en) * 2012-08-23 2015-05-21 Toyota Jidosha Kabushiki Kaisha Wastegate valve control device

Also Published As

Publication number Publication date
JP2015166571A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6123707B2 (en) Control device for internal combustion engine
JP5143170B2 (en) Control method for internal combustion engine
JP4434057B2 (en) Supercharging pressure control device for internal combustion engine
JP5389238B1 (en) Waste gate valve control device for internal combustion engine
JP4583038B2 (en) Supercharging pressure estimation device for an internal combustion engine with a supercharger
JP5627733B1 (en) Wastegate valve control device for internal combustion engine and wastegate valve control method for internal combustion engine
KR101646384B1 (en) Turbocharger Control Duty Compensation Method
JP2011185159A (en) Abnormality diagnosing device of internal combustion engine with supercharger
JP5273183B2 (en) Control device for internal combustion engine
JP2015059549A (en) Control device of internal combustion engine
JP2007051619A (en) Supercharging pressure controller
JP5146619B2 (en) Control device for internal combustion engine
JP5660323B2 (en) EGR control device for internal combustion engine
JP2014240631A (en) Egr control device of internal combustion engine
JP6083375B2 (en) Control device for internal combustion engine
JP2007009877A (en) Abnormality diagnostic device for supercharging pressure control system
JP5664774B2 (en) Control device for internal combustion engine
JP6691498B2 (en) Control device for internal combustion engine
JP5660322B2 (en) EGR control device for internal combustion engine
JPWO2014080523A1 (en) Control device for internal combustion engine
JP6127906B2 (en) Control device for internal combustion engine
JP2009002249A (en) Device for estimating throttle upstream pressure of internal combustion engine
JP2009007940A (en) Cylinder-charged air quantity calculating apparatus for internal combustion engine
JP6474129B2 (en) Control device for supercharged internal combustion engine and control method therefor
JP2015108315A (en) Control device of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R151 Written notification of patent or utility model registration

Ref document number: 6123707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250