JP6122890B2 - Test gas generator - Google Patents

Test gas generator Download PDF

Info

Publication number
JP6122890B2
JP6122890B2 JP2015034414A JP2015034414A JP6122890B2 JP 6122890 B2 JP6122890 B2 JP 6122890B2 JP 2015034414 A JP2015034414 A JP 2015034414A JP 2015034414 A JP2015034414 A JP 2015034414A JP 6122890 B2 JP6122890 B2 JP 6122890B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
hydrogen gas
dilution
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015034414A
Other languages
Japanese (ja)
Other versions
JP2016155077A (en
Inventor
健二 秋本
健二 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komyo Rikagaku Kogyo KK
Original Assignee
Komyo Rikagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komyo Rikagaku Kogyo KK filed Critical Komyo Rikagaku Kogyo KK
Priority to JP2015034414A priority Critical patent/JP6122890B2/en
Publication of JP2016155077A publication Critical patent/JP2016155077A/en
Application granted granted Critical
Publication of JP6122890B2 publication Critical patent/JP6122890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Accessories For Mixers (AREA)
  • Fuel Cell (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、水素ガスを所定の水素ガス濃度で含有する試験ガスを生成する試験ガス生成装置に関し、特に、簡単な構造で含有率が正確な試験ガス生成装置に関する。   The present invention relates to a test gas generation device that generates a test gas containing hydrogen gas at a predetermined hydrogen gas concentration, and more particularly to a test gas generation device that has a simple structure and an accurate content rate.

現在では、水素ガスを貯蔵して燃料として用いる水素ガス自動車や、燃料電池の発電に用いてモータで走行する燃料電池自動車が実用化されつつあり、特に、燃料電池自動車には、車載水素センサがガス漏れ検知器として搭載されており、水素配管等から漏えいする水素を検知して、警報を発したり、水素容器の元弁を遮断するようになっている。   Currently, hydrogen gas vehicles that store hydrogen gas and use it as fuel, and fuel cell vehicles that run on motors for power generation of fuel cells are being put into practical use. In particular, fuel cell vehicles include in-vehicle hydrogen sensors. It is installed as a gas leak detector, and detects hydrogen leaking from hydrogen pipes, etc., and issues an alarm or shuts off the main valve of the hydrogen container.

そのような車載水素センサを検査するために、水素・空気混合ガスを現場で生成し、燃料電池自動車に搭載された車載水素センサに吹きかけて、車載水素センサの動作確認を行いたいとの要求があり、現場で容易に動作確認を実施することができる試験ガス生成装置が必要とされている。
しかしながら、既存技術を使用して得られる高精度の試験ガス生成装置は、定置型の大型装置であったり、複雑な構造のため高価であったりして、現場で使用するのには不便である。
In order to inspect such an in-vehicle hydrogen sensor, there is a demand to check the operation of the in-vehicle hydrogen sensor by generating a hydrogen / air mixed gas on site and spraying it on the in-vehicle hydrogen sensor installed in the fuel cell vehicle. There is a need for a test gas generator that can be easily verified on site.
However, a high-precision test gas generation apparatus obtained by using existing technology is a stationary large-sized apparatus or expensive due to its complicated structure, and is inconvenient to use in the field. .

ところで、「圧縮水素ガスを燃料とする自動車の燃料装置の技術基準」(国土交通省の道路運送車両の保安基準の細目を定める告示(2006.03.31)別添100)の3.9.5 に記載された「別紙3」には、水素ガス漏れ検知器の試験に用いる試験用ガスには、「空気に水素を混合した水素濃度3.9%±0.1%のガスを用いる。」、と記載されている。   By the way, it is described in 3.9.5 of "Technical Standards for Fuel System of Automobiles Fueled with Compressed Hydrogen Gas" (Attachment 100) In addition, “Attachment 3” states that “a gas having a hydrogen concentration of 3.9% ± 0.1% in which hydrogen is mixed with air is used” as the test gas used for the test of the hydrogen gas leak detector. Has been.

水素を含む可燃性ガスの空気中への漏えいを検知する水素センサは、自動車以外の用途、特に、化学プラントや製鉄所などにおいて従来から広く使われている。その多くは接触燃焼式あるいは半導体式によるもので、いずれも、空気雰囲気で作動するように作られている。   BACKGROUND ART Hydrogen sensors that detect leakage of flammable gas containing hydrogen into the air have been widely used in applications other than automobiles, particularly in chemical plants and ironworks. Most of them are of the catalytic combustion type or the semiconductor type, both of which are made to operate in an air atmosphere.

可燃性ガス検知器は、通常、検知対象ガスの爆発下限濃度の1/3程度に警報設定されるので、水素に関しては、爆発下限濃度4%の1/3に当たる1.3%付近が警報設定値とされてきた。この1.3%(爆発下限濃度4%の1/3)の濃度は、空気ベースなど酸素を含む容器入り標準ガスとして、安全上の制約から製造が許される上限濃度とも一致している。
したがって、自動車以外の用途における従来型の水素センサを試験あるいは校正するときには、空気ベースの水素標準ガス1.3%が広く使われてきた。
Normally, flammable gas detectors are set to alarms at about 1/3 of the lower explosion limit concentration of the gas to be detected, so for hydrogen, the alarm setting is around 1.3%, which is 1/3 of the lower explosion limit concentration of 4%. Has been value. The concentration of 1.3% (1/3 of the explosion lower limit concentration of 4%) is consistent with the upper limit concentration that is permitted to be manufactured as a standard gas containing oxygen such as an air base due to safety restrictions.
Thus, when testing or calibrating conventional hydrogen sensors in applications other than automobiles, 1.3% air-based hydrogen standard gas has been widely used.

ところが、前記の技術基準によれば、燃料電池自動車に搭載された車載水素センサの試験に用いるガスは、「空気に水素を混合した水素」つまり酸素を含む水素であって、その濃度は3.9%±0.1%と規定されているので、容器入り標準ガスは製造できず、別の手段で試験ガスを用意しなければならない。   However, according to the above technical standards, the gas used for the test of the on-vehicle hydrogen sensor mounted on the fuel cell vehicle is “hydrogen in which hydrogen is mixed with air”, that is, hydrogen containing oxygen, and its concentration is 3. Since it is defined as 9% ± 0.1%, the standard gas contained in the container cannot be manufactured, and the test gas must be prepared by another means.

従来技術では、試験用ガスを得るために、水素ガスと希釈ガスとを混合して試験ガスを生成する際に、マスフローコントローラを使用して、所望の濃度で水素ガスを含有する試験ガスを得る技術が開発されている。   In the prior art, when a test gas is generated by mixing hydrogen gas and a dilution gas in order to obtain a test gas, a test gas containing hydrogen gas at a desired concentration is obtained using a mass flow controller. Technology has been developed.

しかしながら、水素ガスの流量と希釈ガスの流量とを制御して、所望の水素ガス濃度の試験ガスを得ようとしても、正確な水素ガス濃度に調整することが困難であり、また、マスフローコントローラのコストが高いという問題がある。   However, even if an attempt is made to obtain a test gas having a desired hydrogen gas concentration by controlling the flow rate of the hydrogen gas and the flow rate of the dilution gas, it is difficult to adjust the hydrogen gas concentration to an accurate value. There is a problem that the cost is high.

試験用の標準ガスを作成する技術は、例えば下記特許文献1に記載されている。
また、マスフローコントローラを使用しない技術としては、例えば下記特許文献2に記載されている装置があるが、この装置は、供給切替器と貯留装置等を含む複雑な通気回路となるため、供給ガスの濃度が安定するまでの待ち時間が長く、安価で携帯可能な小型装置にすることは困難であった。
A technique for creating a test standard gas is described in, for example, Patent Document 1 below.
In addition, as a technique that does not use a mass flow controller, for example, there is a device described in Patent Document 2 below. However, since this device becomes a complicated ventilation circuit including a supply switching device, a storage device, and the like, The waiting time until the concentration becomes stable is long, and it has been difficult to make an inexpensive and portable small device.

特開2012−141292号公報JP 2012-141292 A 特許第5670530号公報Japanese Patent No. 5670530

本発明は上記従来技術の不都合を解決するために創作されたものであり、本発明は、小型軽量で正確な水素ガス濃度で試験ガスを生成することができる試験ガス生成装置を提供することを課題とする。   The present invention was created to solve the above-described disadvantages of the prior art, and the present invention provides a test gas generation apparatus that can generate a test gas with a small, light and accurate hydrogen gas concentration. Let it be an issue.

上記課題を解決するために本発明は、水素ガス源が供給する水素ガスが通る水素ガス流路と、希釈ガス源が供給する希釈ガスが通る希釈ガス流路と、前記水素ガス流路と前記希釈ガス流路とが合流する合流部と、前記水素ガス流路から流入する前記水素ガスと前記希釈ガス流路から流入する前記希釈ガスとを含有し、前記合流部で生成された混合ガスを、吸引力で吸引し、出力部に供給する吸引ポンプと、前記水素ガス流路に設けられ、前記水素ガス流路を通る前記水素ガスの流れを制限する水素ガス用抵抗体と、前記希釈ガス流路に設けられ、前記希釈ガス流路を通る前記希釈ガスの流れを制限する希釈ガス用抵抗体と、前記混合ガスの水素ガス濃度を検出する水素センサと、前記吸引ポンプの前記吸引力を変化させる制御装置と、を有し、前記希釈ガスには空気が用いられ、前記希釈ガス用抵抗体の両端に生じた差圧によって、前記希釈ガス用抵抗体に前記希釈ガスが流れ、前記水素ガス用抵抗体の両端に生じた差圧によって、前記水素ガス用抵抗体に前記水素ガスが流れるように構成され、前記希釈ガス用抵抗体の両端の差圧及び前記希釈ガス用抵抗体を流れる前記希釈ガス流量の関係を示す希釈ガス流量曲線の傾きと、前記水素ガス用抵抗体の両端の差圧及び前記水素ガス用抵抗体を流れる前記水素ガス流量の関係を示す水素ガス流量曲線の傾きとが異なる数値であり、かつ、前記希釈ガス流量曲線上の接線が前記差圧と前記希釈ガス流量曲線の座標系における原点を通らず、前記座標系の流量軸との切片が正の値となるような前記希釈ガス用抵抗体であり、前記制御装置には、前記水素センサが検出した検出結果が入力され、前記制御装置は、前記水素ガス濃度が基準値になるように、前記吸引ポンプの前記吸引力を変化させる試験ガス生成装置である。
また、本発明は試験ガス生成装置であって、前記水素センサは、前記吸引ポンプが前記出力部に供給する前記混合ガスの水素ガス濃度を検出する試験ガス生成装置である。
また、本発明は試験ガス生成装置であって、前記希釈ガス源が供給する前記希釈ガス及び前記水素ガス源が供給する前記水素ガスの圧力を大気圧にする試験ガス生成装置である。
また、本発明は試験ガス生成装置であって、前記吸引ポンプは、前記水素ガス用抵抗体の両端の前記差圧と、前記希釈ガス用抵抗体の両端の前記差圧を400Pa以上の圧力にする前記吸引力で前記混合ガスを吸引するように構成された試験ガス生成装置である。
In order to solve the above problems, the present invention provides a hydrogen gas passage through which hydrogen gas supplied from a hydrogen gas source passes, a dilution gas passage through which dilution gas supplied from a dilution gas source passes, the hydrogen gas passage, A merged portion where the dilution gas flow path merges, the hydrogen gas flowing in from the hydrogen gas flow path and the dilution gas flowing in from the dilution gas flow path, and a mixed gas generated in the merged section A suction pump that sucks with suction force and supplies it to the output unit, a hydrogen gas resistor provided in the hydrogen gas flow path and restricting the flow of the hydrogen gas through the hydrogen gas flow path, and the dilution gas A dilution gas resistor that restricts the flow of the dilution gas through the dilution gas channel; a hydrogen sensor that detects a hydrogen gas concentration of the mixed gas; and the suction force of the suction pump. A control device to change, Air is used as the dilution gas, and due to the differential pressure generated at both ends of the dilution gas resistor, the dilution gas flows through the dilution gas resistor and the difference generated at both ends of the hydrogen gas resistor. A dilution gas configured to cause the hydrogen gas to flow through the hydrogen gas resistor by pressure, and showing a relationship between a differential pressure across the dilution gas resistor and a flow rate of the dilution gas flowing through the dilution gas resistor the slope of the flow curve, the slope of the hydrogen gas flow rate curve showing the relationship of the hydrogen gas flow through the differential pressure and the hydrogen gas generating resistor at both ends of the hydrogen gas generating resistor is different numerical values, and the In the dilution gas resistor, the tangent line on the dilution gas flow curve does not pass through the origin in the coordinate system of the differential pressure and the dilution gas flow curve, and the intercept with the flow axis of the coordinate system is a positive value. Yes, the control device , The hydrogenated sensor detection result detected input, wherein the control device, so that the hydrogen gas concentration becomes the reference value, which is the test gas generator for changing the suction force of the suction pump.
Moreover, this invention is a test gas production | generation apparatus, Comprising: The said hydrogen sensor is a test gas production | generation apparatus which detects the hydrogen gas concentration of the said mixed gas which the said suction pump supplies to the said output part.
The invention also relates to a test gas generator, a test gas generator to atmospheric pressure of the dilution gas source is the dilution gas and the hydrogen gas source for supplying the hydrogen gas supplied.
Further, the present invention is a test gas generation device, wherein the suction pump sets the differential pressure at both ends of the hydrogen gas resistor and the differential pressure at both ends of the dilution gas resistor to a pressure of 400 Pa or more. A test gas generation device configured to suck the mixed gas with the suction force.

燃料電池自動車に搭載された車載水素センサを、技術基準に従って試験するときに必要とされる水素ガス濃度の試験ガスを、試験場所において容易に生成し、被試験対象である車載水素センサに供給することができる。
また、生成した試験ガスの水素濃度は測定されており、混合率を制御することができるので、混合率つまり水素ガス濃度を正確に調整することができる。
A test gas with a hydrogen gas concentration required when testing an on-vehicle hydrogen sensor mounted on a fuel cell vehicle according to technical standards is easily generated at the test site and supplied to the on-vehicle hydrogen sensor to be tested. be able to.
Further, since the hydrogen concentration of the generated test gas is measured and the mixing rate can be controlled, the mixing rate, that is, the hydrogen gas concentration can be accurately adjusted.

さらに、本発明によれば、一定濃度に調整された供給ガスを安定供給できる利点があり、マスフローコントローラによる流量制御で混合率を制御する場合よりも低コストで、精度も高くなる。
空気に水素を混合した試験ガスを、容器入り標準ガスでは供給されない1.3%を超える3.9%の濃度で生成し、供給することができる。
Furthermore, according to the present invention, there is an advantage that the supply gas adjusted to a constant concentration can be stably supplied, and the cost is lower and the accuracy is higher than when the mixing rate is controlled by the flow rate control by the mass flow controller.
A test gas in which hydrogen is mixed with air can be generated and supplied at a concentration of 3.9% exceeding 1.3% which is not supplied with a standard gas contained in a container.

本発明の試験ガス生成装置の一例Example of test gas generator of the present invention 水素ガス用抵抗体の差圧と水素ガス流量の関係を示すグラフGraph showing the relationship between the differential pressure of the hydrogen gas resistor and the hydrogen gas flow rate 希釈ガス用抵抗体の差圧と希釈ガス流量の関係を示すグラフGraph showing the relationship between the differential pressure of the dilution gas resistor and the dilution gas flow rate 混合ガスの差圧と水素ガス濃度の計算値との関係を示すグラフA graph showing the relationship between the differential pressure of the mixed gas and the calculated value of the hydrogen gas concentration 水素ガス濃度の計算値と実測値のグラフGraph of calculated and measured hydrogen gas concentration 試験ガスの水素ガス濃度を示すグラフGraph showing hydrogen gas concentration of test gas 差圧と水素ガス流量の関係を測定する測定装置Measuring device for measuring the relationship between differential pressure and hydrogen gas flow rate 差圧と希釈ガス流量の関係を測定する測定装置Measuring device for measuring the relationship between differential pressure and dilution gas flow rate (a):水素ガス源の第一の他の例 (b):水素ガス源の第二の他の例(a): First other example of hydrogen gas source (b): Second other example of hydrogen gas source

本発明は、特に、車載水素センサの動作確認に必要な3.9%の水素・空気混合ガスを、より簡単な方法で車載水素センサに供給する試験ガス生成装置である。
ガスを流れにくくする性質を流量制限特性と呼ぶと、流量制限特性を有する二個の通気抵抗素子(通気抵抗体)と、ガス吸引手段と、水素センサと、水素センサの信号に基づきガス吸引手段の吸引能力を調整するための制御手段とを有している。
In particular, the present invention is a test gas generation device that supplies a 3.9% hydrogen / air mixed gas necessary for confirming the operation of the on-vehicle hydrogen sensor to the on-vehicle hydrogen sensor by a simpler method.
If the property of making gas difficult to flow is called a flow restriction characteristic, two ventilation resistance elements (ventilation resistors) having a flow restriction characteristic, a gas suction means, a hydrogen sensor, and a gas suction means based on a signal from the hydrogen sensor And a control means for adjusting the suction capacity.

ガスが流れる流路(配管)の中で、流量制限特性を有する2点間をガスが流れるときには、流路中の2点間のガス流量は、2点間の差圧の関数になる。
差圧が微少変化するときの、ガス流量の微少変化量に対する差圧の微少変化量の比(差圧の微少変化量/ガス流量の微少変化量)の値は、流量制限特性を示しており、その値は差圧の関数であり、2点間の構造やガスの性質に基づいている。
When a gas flows between two points having a flow restriction characteristic in a flow path (pipe) through which the gas flows, the gas flow rate between the two points in the flow path is a function of the differential pressure between the two points.
When the differential pressure changes slightly, the ratio of the slight change in the differential pressure to the slight change in the gas flow rate (the slight change in the differential pressure / the slight change in the gas flow rate) indicates the flow restriction characteristic. The value is a function of the differential pressure and is based on the structure between two points and the nature of the gas.

各構成要素の内容と流路(配管)の接続については、水素ガスが流れる通気抵抗素子を水素ガス用抵抗体とし、その一端を、内部が大気圧とほぼ同じ圧力に保たれた水素ガス貯蔵装置に貯蔵された水素ガス(例えば100%水素)に接続し、希釈ガスが流れる通気抵抗素子を、希釈ガス用抵抗体として、その一端を大気圧の希釈ガス雰囲気に接続する。ここでは、希釈ガスとして空気を用い、一端を空気雰囲気に開放する。   Regarding the contents of each component and the connection of the flow path (pipe), hydrogen gas storage is made by using a resistance element for hydrogen gas as a flow resistance element through which hydrogen gas flows, with one end kept at the same pressure as atmospheric pressure. The ventilation resistance element through which dilution gas flows is connected to hydrogen gas (for example, 100% hydrogen) stored in the apparatus, and one end thereof is connected to a dilution gas atmosphere at atmospheric pressure. Here, air is used as a dilution gas, and one end is opened to an air atmosphere.

配管の内部空間等、水素ガスが水素ガス用抵抗体を流れる流路を水素ガス流路とし、希釈ガスが希釈ガス用抵抗体を流れる流路を希釈ガス流路とすると、水素ガス流路の水素ガス用抵抗体よりも下流側の端と、希釈ガス流路の希釈ガス用抵抗体よりも下流側の端とを、合流場所で接続して、水素ガスと希釈ガスとを合流させ、合流場所で合流した水素ガスと希釈ガスとが混合された混合ガスを吸引ポンプで吸引する。   If the flow path through which the hydrogen gas flows through the hydrogen gas resistor, such as the internal space of the piping, is the hydrogen gas flow path, and the flow path through which the dilution gas flows through the dilution gas resistor is the dilution gas flow path, The end downstream of the hydrogen gas resistor and the end downstream of the dilution gas resistor in the dilution gas flow path are connected at the joining location, and the hydrogen gas and the dilution gas are merged to join. The mixed gas in which the hydrogen gas and the diluting gas combined at the place are mixed is sucked with a suction pump.

吸引手段は、混合ガスを入口側から吸引し、出口側から放出して車載水素センサに供給する。混合ガスの水素ガスの含有率である水素ガス濃度を検出する水素センサは、吸引手段の入口側に接続しても出口側に接続しても良い。なお、水素ガス濃度は、(混合ガス中の水素ガスの体積)/(混合ガスの体積) の値である。   The suction means sucks the mixed gas from the inlet side, discharges it from the outlet side, and supplies it to the in-vehicle hydrogen sensor. The hydrogen sensor that detects the hydrogen gas concentration, which is the content of hydrogen gas in the mixed gas, may be connected to the inlet side or the outlet side of the suction means. The hydrogen gas concentration is a value of (volume of hydrogen gas in mixed gas) / (volume of mixed gas).

合流場所における圧力は、大気圧に対して負圧であり、吸引手段の吸引力が制御手段の動作によって増加又は減少されることによって混合ガス中の水素ガス濃度を一定の値にすることができる。   The pressure at the joining location is negative with respect to atmospheric pressure, and the concentration of hydrogen gas in the mixed gas can be made constant by increasing or decreasing the suction force of the suction means by the operation of the control means. .

混合ガス中の水素ガス濃度を3.9%に設定する場合を例にとると、水素ガスの流量に対する希釈ガス(空気)の流量の比率が1:24.6になればよく、使用する吸引手段の吸引力によって設定可能な合流場所の大気圧との差圧において、流量の比率1:24.6が得られるように、水素ガス用抵抗体と希釈ガス用抵抗体の流量制限特性を選定すればよい。   Taking the case where the hydrogen gas concentration in the mixed gas is set to 3.9% as an example, the ratio of the flow rate of the dilution gas (air) to the flow rate of the hydrogen gas only needs to be 1: 24.6. Select the flow restriction characteristics of the hydrogen gas resistor and the dilution gas resistor so that a flow ratio of 1: 24.6 is obtained in the differential pressure from the atmospheric pressure at the confluence location that can be set by the suction force of the means. do it.

ここで、水素ガスは希釈ガス(空気)と比べて格段に粘性抵抗が小さい上、流量比も小さいため、水素ガス用抵抗体を通る水素ガスの流量は、差圧に対し原点を通る直線関係が成り立つ。一方、希釈ガス用抵抗体を通る希釈ガスの流量は、差圧に対し、非直線関係を示し、例えば、差圧400Pa以上においては、この希釈ガス流量曲線に接する直線(接線)を延長したときの流量軸(差圧=0Pa)との切片は原点を通らず、正の値となる。   Here, hydrogen gas has a much lower viscosity resistance than the dilution gas (air) and has a smaller flow rate ratio, so the flow rate of hydrogen gas through the resistor for hydrogen gas is linearly related to the differential pressure through the origin. Holds. On the other hand, the flow rate of the dilution gas passing through the dilution gas resistor shows a non-linear relationship with respect to the differential pressure. For example, when the differential pressure is 400 Pa or more, the straight line (tangent line) in contact with the dilution gas flow curve is extended. The intercept with the flow rate axis (differential pressure = 0 Pa) does not pass through the origin and becomes a positive value.

つまり、水素ガス用抵抗体両端の差圧と水素ガス用抵抗体を流れる水素ガス流量との関係は、差圧がゼロの時に水素ガス流量がゼロとなる一次式として近似することができるのに対し、希釈ガス用抵抗体両端の差圧と希釈ガス用抵抗体を流れる希釈ガス流量との関係は、差圧が変化すると流量制限特性の値が変化する関係になっている。   In other words, the relationship between the differential pressure across the hydrogen gas resistor and the flow rate of hydrogen gas flowing through the hydrogen gas resistor can be approximated as a linear expression in which the hydrogen gas flow rate becomes zero when the differential pressure is zero. On the other hand, the relationship between the differential pressure across the dilution gas resistor and the flow rate of the dilution gas flowing through the dilution gas resistor is such that the value of the flow rate limiting characteristic changes as the differential pressure changes.

以上の関係に基づくならば、混合ガス中の水素ガス濃度を求める場合、水素ガス流量Yhと希釈ガス流量Yaとは、変数Xと正の係数Kh,Kaと正の数値bとを用いて、次の(1)式、(2)式のように表すことができる。   Based on the above relationship, when obtaining the hydrogen gas concentration in the mixed gas, the hydrogen gas flow rate Yh and the dilution gas flow rate Ya are determined using the variable X, the positive coefficients Kh, Ka, and the positive numerical value b. It can be expressed as the following equations (1) and (2).

Yh = Kh・X ……(1)
Ya = Ka・X+b ……(2)
Yh = Kh · X (1)
Ya = Ka ・ X + b …… (2)

Khは定数、Kaは差圧Xにおける希釈ガス流量曲線の接線の傾きであり、係数Khと係数Kaとは、差圧の変化に対する流量変化の割合を示しており、その値は、水素ガス用抵抗体と希釈ガス用抵抗体との流れやすさを示している。また、係数Khと係数Kaの逆数1/Khと1/Kaとは流量制限特性であり、流れにくさを示している。   Kh is a constant, Ka is the slope of the tangent of the dilution gas flow curve at the differential pressure X, and the coefficient Kh and the coefficient Ka indicate the ratio of the flow rate change to the change in the differential pressure, which is the value for hydrogen gas The ease of flow between the resistor and the dilution gas resistor is shown. Further, the reciprocals 1 / Kh and 1 / Ka of the coefficient Kh and the coefficient Ka are flow restriction characteristics and indicate difficulty in flowing.

差圧Xの値が大きくなるにつれて係数Kaの値は小さくなり、切片bの値は大きくなる。
上記(1)、(2)式は、設定された差圧X(Pa)の近傍における近似式(直線式)として用いてもよい。
(1)式と(2)式とから、混合ガス中の水素ガス濃度Rは、下記の(3)式で表すことができる。
As the value of the differential pressure X increases, the value of the coefficient Ka decreases and the value of the intercept b increases.
The above expressions (1) and (2) may be used as approximate expressions (linear expressions) in the vicinity of the set differential pressure X (Pa).
From the equations (1) and (2), the hydrogen gas concentration R in the mixed gas can be expressed by the following equation (3).

R = Yh/(Yh+Ya) = Kh・X/(Kh・X+Ka・X+b)
=Kh・X/[(Kh+Ka)・X+b] = Kh/[Kh+Ka+b/X]
……(3)
R = Yh / (Yh + Ya) = Kh ・ X / (Kh ・ X + Ka ・ X + b)
= Kh ・ X / [(Kh + Ka) ・ X + b] = Kh / [Kh + Ka + b / X]
...... (3)

上記の(3)式から、差圧Xが大きくなるにつれて、分母が小さくなるので水素ガス濃度Rが大きくなることがわかる。逆に、差圧Xが小さくなれば、分母が大きくなり水素ガス濃度Rは小さくなる。   From the above equation (3), it can be seen that as the differential pressure X increases, the denominator decreases and the hydrogen gas concentration R increases. Conversely, when the differential pressure X is reduced, the denominator is increased and the hydrogen gas concentration R is decreased.

このように、希釈ガス流量曲線の接線の切片b値が正であるような流量制限特性をもつ希釈ガス用抵抗体を選定し使用すれば、混合ガス中の水素ガス濃度は差圧Xに依存し、吸引力の調整による水素ガス濃度の基準値への制御が可能となる。   In this way, if a dilution gas resistor with flow rate limiting characteristics such that the intercept b value of the dilution gas flow curve is positive is selected and used, the hydrogen gas concentration in the mixed gas depends on the differential pressure X In addition, it becomes possible to control the hydrogen gas concentration to the reference value by adjusting the suction force.

測定した水素ガス濃度の値が、設定された基準値よりも小さい場合は、吸引力を増加させ、水素ガス濃度の値を増加させれば良く、また、測定した水素ガス濃度の値が、設定された基準値よりも大きい場合は、吸引力を減少させ、水素ガス濃度の値を減少させれば、水素ガス濃度を設定された基準値に維持することができる。   If the measured hydrogen gas concentration value is smaller than the set reference value, the suction force should be increased to increase the hydrogen gas concentration value, and the measured hydrogen gas concentration value should be set. If it is larger than the set reference value, the hydrogen gas concentration can be maintained at the set reference value by decreasing the suction force and decreasing the hydrogen gas concentration value.

希釈ガス用抵抗体の両端に生じた差圧によって、希釈ガス用抵抗体に希釈ガスが流れ、水素ガス用抵抗体の両端に生じた差圧によって、水素ガス用抵抗体に水素ガスが流れる。希釈ガス用抵抗体に希釈ガスが流れるときに、希釈ガスは、差圧変化に対する希釈ガスの流量変化の割合が、差圧が大きくなると小さくなる性質を有していることが観察されており、そのため、差圧−希釈ガス流量の関係を示すグラフは、差圧を横軸にとったときに、上に凸になっている。
また、希釈ガス用抵抗体に流す希釈ガスの流量は、水素ガス用抵抗体に流す水素ガスの流量よりも多くなるようにされている。
Dilution gas flows through the dilution gas resistor due to the differential pressure generated at both ends of the dilution gas resistor, and hydrogen gas flows through the hydrogen gas resistor due to the differential pressure generated at both ends of the hydrogen gas resistor. It has been observed that when the dilution gas flows through the dilution gas resistor, the dilution gas has a property that the ratio of the change in the flow rate of the dilution gas to the change in the differential pressure decreases as the differential pressure increases. Therefore, the graph showing the relationship between the differential pressure and the dilution gas flow rate is convex upward when the differential pressure is taken on the horizontal axis.
The flow rate of the dilution gas flowing through the dilution gas resistor is set to be larger than the flow rate of the hydrogen gas flowing through the hydrogen gas resistor.

図1を参照し、符号2は、本発明の試験ガス生成装置を示している。
この試験ガス生成装置2は、水素ガス源20と、希釈ガス源21とを有していて、水素ガス源20は、柔軟性を有する樹脂から成る袋状の容器28を有しており、容器28は、水素ガス配管22の一端である水素ガス流入部25に接続されている。
With reference to FIG. 1, the code | symbol 2 has shown the test gas production | generation apparatus of this invention.
The test gas generation apparatus 2 includes a hydrogen gas source 20 and a dilution gas source 21, and the hydrogen gas source 20 includes a bag-like container 28 made of a flexible resin. 28 is connected to a hydrogen gas inlet 25 which is one end of the hydrogen gas pipe 22.

希釈ガス源21として、ここでは容器は用いられておらず、大気雰囲気が希釈ガス源21にされ、希釈ガス配管23の一端である希釈ガス流入部26は、希釈ガス源21である大気雰囲気中に開放されている。   Here, no container is used as the dilution gas source 21, the atmospheric atmosphere is the dilution gas source 21, and the dilution gas inflow portion 26, which is one end of the dilution gas pipe 23, is in the atmospheric atmosphere as the dilution gas source 21. It is open to.

水素ガス配管22の他端と、希釈ガス配管23の他端とは、互いに接続されており、その接続された部分を合流部10とすると、水素ガス配管22の水素ガス流入部25と合流部10との間には、水素ガス用抵抗体32が設けられており、水素ガス源20から供給された水素ガスは、水素ガス配管22の内部空間と水素ガス用抵抗体32の内部空間とで構成される水素ガス流路12を流れ、合流部10に流入する。   The other end of the hydrogen gas pipe 22 and the other end of the dilution gas pipe 23 are connected to each other. If the connected portion is the joining portion 10, the hydrogen gas inflow portion 25 and the joining portion of the hydrogen gas piping 22 are joined. 10 is provided with a hydrogen gas resistor 32, and the hydrogen gas supplied from the hydrogen gas source 20 flows between the internal space of the hydrogen gas pipe 22 and the internal space of the hydrogen gas resistor 32. It flows through the constituted hydrogen gas flow path 12 and flows into the junction 10.

また、希釈ガス配管23の希釈ガス流入部26と合流部10との間には、希釈ガス用抵抗体33が設けられており、希釈ガス源21から供給された希釈ガスは、希釈ガス配管23の内部と希釈ガス用抵抗体33の内部とで構成される希釈ガス流路13を流れ、合流部10に流入する。   Further, a dilution gas resistor 33 is provided between the dilution gas inflow portion 26 and the merge portion 10 of the dilution gas pipe 23, and the dilution gas supplied from the dilution gas source 21 is supplied to the dilution gas pipe 23. And the dilution gas flow path 13 constituted by the dilution gas resistor 33 and flows into the junction 10.

合流部10には、混合ガス配管24の一端が接続されており、混合ガス配管24の他端には、大気に開放された放出口から成る放出部27が設けられている。
合流部10では、流入した水素ガスと希釈ガスとが混合され、混合ガスが生成されている。
One end of a mixed gas pipe 24 is connected to the merging section 10, and the other end of the mixed gas pipe 24 is provided with a discharge portion 27 including a discharge port opened to the atmosphere.
In the junction 10, the flowing hydrogen gas and the dilution gas are mixed to generate a mixed gas.

混合ガス配管24の、合流部10に接続された部分と放出部27との間には、吸引ポンプ15が設けられており、吸引ポンプ15で合流部10が吸引されると、合流部10内に位置する混合ガスは、混合ガス配管24の内部空間と、吸引ポンプ15の内部空間とで構成された混合ガス流路14を流れて放出部27から放出される。   A suction pump 15 is provided between a portion of the mixed gas pipe 24 connected to the merging portion 10 and the discharge portion 27, and when the merging portion 10 is sucked by the suction pump 15, The mixed gas located at the position flows through the mixed gas flow path 14 constituted by the internal space of the mixed gas pipe 24 and the internal space of the suction pump 15 and is discharged from the discharge portion 27.

放出部27の近傍には、検査対象の車載水素センサ37が配置されており、放出部27から放出された混合ガスは、車載水素センサ37に吹き付けられ、車載水素センサ37の混合ガスに対する検出性能を試験することができる。   An in-vehicle hydrogen sensor 37 to be inspected is disposed in the vicinity of the discharge unit 27, and the mixed gas discharged from the discharge unit 27 is blown to the in-vehicle hydrogen sensor 37, and the detection performance of the on-vehicle hydrogen sensor 37 for the mixed gas is detected. Can be tested.

ここで、水素ガス用抵抗体32は、水素ガス流路12を流れる水素ガスに対して、予め設定された流量制限特性を有しており、希釈ガス用抵抗体33は、希釈ガス流路13を流れる希釈ガスに対して、予め設定された流量制限特性を有している。   Here, the hydrogen gas resistor 32 has a flow restriction characteristic set in advance with respect to the hydrogen gas flowing through the hydrogen gas flow channel 12, and the dilution gas resistor 33 is connected to the dilution gas flow channel 13. Has a preset flow restriction characteristic for the dilution gas flowing through

水素ガス流路12と希釈ガス流路13と吸引ポンプ15よりも合流部10側の混合ガス流路14のうち、水素ガス用抵抗体32と希釈ガス用抵抗体33以外の部分の流量制限効果は、無視できるほど小さいものとすると、水素ガス流路12を流れる水素ガスの流量は水素ガス用抵抗体32の両端の圧力の差と、水素ガス用抵抗体32の流量制限特性とで決まり、また、希釈ガス流路13を流れる希釈ガスの流量は希釈ガス用抵抗体33の両端の圧力の差と、希釈ガス用抵抗体33の流量制限特性とで決まる。   Of the mixed gas flow path 14 closer to the junction 10 than the hydrogen gas flow path 12, the dilution gas flow path 13, and the suction pump 15, the flow rate limiting effect of the portion other than the hydrogen gas resistor 32 and the dilution gas resistance 33. Is assumed to be negligibly small, the flow rate of the hydrogen gas flowing through the hydrogen gas flow path 12 is determined by the difference in pressure between both ends of the hydrogen gas resistor 32 and the flow rate limiting characteristic of the hydrogen gas resistor 32, Further, the flow rate of the dilution gas flowing through the dilution gas flow path 13 is determined by the pressure difference between both ends of the dilution gas resistor 33 and the flow rate limiting characteristic of the dilution gas resistor 33.

水素ガス源20には、高濃度(ここでは100%)の水素ガスが充填されており、水素ガス源20の水素ガス量が減少し、柔軟性を有する容器内の圧力が低下しようとすると、大気圧が容器を押圧して容器の容積を減少させ、容器の内部は大気圧に維持される。   The hydrogen gas source 20 is filled with high-concentration (here, 100%) hydrogen gas, the amount of hydrogen gas in the hydrogen gas source 20 is reduced, and the pressure in the flexible container is reduced. Atmospheric pressure presses the container, reducing the volume of the container, and the interior of the container is maintained at atmospheric pressure.

また、水素ガスボンベ等から水素ガス源20に水素ガスが注入され、柔軟性を有する容器内の圧力が上昇しようとすると、容器は大気圧に抗して膨張し、容積が増大して容器の内部は大気圧に維持される。   In addition, when hydrogen gas is injected into the hydrogen gas source 20 from a hydrogen gas cylinder or the like and the pressure in the flexible container increases, the container expands against atmospheric pressure and the volume increases to increase the inside of the container. Is maintained at atmospheric pressure.

本発明では、吸引ポンプ15の吸引力が変化した場合でも、水素ガス用抵抗体32の両端の圧力の差と希釈ガス用抵抗体33の両端の圧力の差とが等しくなるようにされている。
この例では、水素ガス用抵抗体32と希釈ガス用抵抗体33の両端のうち、一端は合流部10に接続されており、水素ガス用抵抗体32の一端と希釈ガス用抵抗体33の一端とは、両方が、吸引ポンプ15が動作して合流部10を吸引したときの圧力にされている。
In the present invention, even when the suction force of the suction pump 15 is changed, the difference in pressure between both ends of the hydrogen gas resistor 32 and the difference in pressure between both ends of the dilution gas resistor 33 are made equal. .
In this example, one end of both ends of the hydrogen gas resistor 32 and the dilution gas resistor 33 is connected to the junction 10, and one end of the hydrogen gas resistor 32 and one end of the dilution gas resistor 33 are connected. Both are set to the pressure when the suction pump 15 operates and sucks the merging portion 10.

水素ガス用抵抗体32と希釈ガス用抵抗体33との他端は大気圧にされており、従って、水素ガス用抵抗体32の両端の圧力の差と希釈ガス用抵抗体33の両端の圧力の差とは等しくなる。   The other ends of the hydrogen gas resistor 32 and the dilution gas resistor 33 are at atmospheric pressure. Therefore, the difference in pressure between both ends of the hydrogen gas resistor 32 and the pressure at both ends of the dilution gas resistor 33 are set. The difference is equal.

吸引ポンプ15が動作を開始して、合流部10を大気圧よりも低い圧力にすると、水素ガス源20と希釈ガス源21とから、水素ガスと希釈ガス(ここでは大気中の空気)とがそれぞれ合流部10に供給され、合流部10で供給された水素ガスと希釈ガスとから成る混合ガスが生成され、混合ガス流路14を流れて、放出部27から大気に放出される。   When the suction pump 15 starts operating and the junction 10 is set to a pressure lower than the atmospheric pressure, hydrogen gas and dilution gas (air in the atmosphere here) are generated from the hydrogen gas source 20 and the dilution gas source 21. Each gas is supplied to the merge unit 10, and a mixed gas composed of the hydrogen gas and the dilution gas supplied from the merge unit 10 is generated, flows through the mixed gas channel 14, and is discharged from the discharge unit 27 to the atmosphere.

混合ガスが流れる混合ガス流路14には、水素センサ16が設けられ、水素センサ16によって、混合ガス流路14を流れる混合ガスの水素ガス濃度を検出するようになっている。
ここでは、混合ガス流路14を流れる混合ガスは、水素センサ16の内部を通過するようにされているが、混合ガスが水素センサ16を通過しないように配置してもよい。
A hydrogen sensor 16 is provided in the mixed gas flow path 14 through which the mixed gas flows, and the hydrogen sensor 16 detects the hydrogen gas concentration of the mixed gas flowing through the mixed gas flow path 14.
Here, the mixed gas flowing through the mixed gas flow path 14 passes through the inside of the hydrogen sensor 16, but may be arranged so that the mixed gas does not pass through the hydrogen sensor 16.

水素センサ16は、混合ガス流路14のうち、吸引ポンプ15と放出部27との間の位置で、混合ガス流路14を流れる混合ガスの水素ガス濃度を検出しているが、吸引ポンプ15と合流部10との間を流れる混合ガスの水素ガス濃度を検出してもよい。   The hydrogen sensor 16 detects the hydrogen gas concentration of the mixed gas flowing through the mixed gas flow path 14 at a position between the suction pump 15 and the discharge portion 27 in the mixed gas flow path 14. Alternatively, the hydrogen gas concentration of the mixed gas flowing between the merging portion 10 and the merging portion 10 may be detected.

水素センサ16は、制御装置17に接続されており、検出した水素ガス濃度を示す検出結果は、水素センサ16から制御装置17に出力される。
制御装置17には、予め、水素ガス濃度の基準値が記憶されている。
The hydrogen sensor 16 is connected to the control device 17, and a detection result indicating the detected hydrogen gas concentration is output from the hydrogen sensor 16 to the control device 17.
The control device 17 stores a reference value for the hydrogen gas concentration in advance.

混合ガスの水素ガス濃度は、差圧によって変化するようになっており、制御装置17は入力された検出結果を基準値と比較し、水素センサ16が検出する水素ガス濃度が基準値と等しくなるように、吸引ポンプ15の吸引力を制御し、混合ガスの水素ガス濃度を基準値に近づけると、放出部27から放出される混合ガスの水素ガス濃度は基準値で安定し、混合ガスを試験ガスとして車載水素センサ37に吹き付けながら、車載水素センサ37を動作させると、車載水素センサ37が基準値の水素ガス濃度の試験ガスに対して、正常に動作しているかどうかの確認を行うことができる。   The hydrogen gas concentration of the mixed gas is changed by the differential pressure, and the control device 17 compares the input detection result with the reference value, and the hydrogen gas concentration detected by the hydrogen sensor 16 becomes equal to the reference value. As described above, when the suction force of the suction pump 15 is controlled and the hydrogen gas concentration of the mixed gas approaches the reference value, the hydrogen gas concentration of the mixed gas released from the discharge unit 27 becomes stable at the reference value, and the mixed gas is tested. When the in-vehicle hydrogen sensor 37 is operated while being blown to the in-vehicle hydrogen sensor 37 as a gas, it is possible to confirm whether the in-vehicle hydrogen sensor 37 is operating normally with respect to the test gas having the reference hydrogen gas concentration. it can.

水素ガス源20に充填された水素ガスは減少するが、柔軟性を有する容器28の容積が減少し、容器28内の圧力は大気圧に維持される。
水素ガス濃度が3.9%の試験ガスの生成を求められることから、水素ガス用抵抗体32の水素ガス流に対する流量制限特性と、希釈ガス用抵抗体33の希釈ガス流に対する流量制限特性は、水素ガスの流量に対する希釈ガス(空気)の流量の比率が1:24.6くらいになるように選定されている。
Although the hydrogen gas charged in the hydrogen gas source 20 decreases, the volume of the flexible container 28 decreases, and the pressure in the container 28 is maintained at atmospheric pressure.
Since the generation of the test gas having a hydrogen gas concentration of 3.9% is required, the flow rate restriction characteristic for the hydrogen gas flow of the hydrogen gas resistor 32 and the flow restriction characteristic for the dilution gas flow of the dilution gas resistor 33 are The ratio of the flow rate of the dilution gas (air) to the flow rate of hydrogen gas is selected to be about 1: 24.6.

<差圧と流量の測定>
水素ガス用抵抗体32と希釈ガス用抵抗体33の差圧に対する流量測定は図7と図8に示す装置により行った。
<Differential pressure and flow measurement>
The flow rate measurement with respect to the differential pressure between the hydrogen gas resistor 32 and the dilution gas resistor 33 was performed by the apparatus shown in FIGS.

水素ガス用抵抗体32の両端の圧力の差は、差圧計31により測定し、水素ガス用抵抗体32を流れる水素ガスの流量は、流量計41(石けん膜式)を用いて測定した。希釈ガス用抵抗体33の両端の圧力の差と、希釈ガス用抵抗体33を流れる希釈ガスの流量の測定についても同様に行った。   The difference in pressure between both ends of the hydrogen gas resistor 32 was measured by a differential pressure gauge 31, and the flow rate of the hydrogen gas flowing through the hydrogen gas resistor 32 was measured by using a flow meter 41 (a soap film type). The measurement of the difference in pressure at both ends of the dilution gas resistor 33 and the flow rate of the dilution gas flowing through the dilution gas resistor 33 were performed in the same manner.

水素ガス用抵抗体32の両端の圧力の差と希釈ガス用抵抗体33の両端の圧力の差とを、差圧、とすると、測定結果と、測定結果から算出した差圧と混合ガス中の水素ガス濃度との関係を下記表1に示す。   Assuming that the pressure difference between both ends of the hydrogen gas resistor 32 and the pressure difference between both ends of the dilution gas resistor 33 is a differential pressure, the measurement result, the differential pressure calculated from the measurement result, and the mixed gas The relationship with the hydrogen gas concentration is shown in Table 1 below.

Figure 0006122890
Figure 0006122890

図2は、表1の水素ガス用抵抗体32の差圧に対する水素ガスの流量の測定値を結んだグラフであり、図3は、希釈ガス用抵抗体33の差圧に対する希釈ガスの流量の測定値を結んだグラフである。図4は、表1の、差圧に対する混合ガスの水素ガス濃度の計算値を結んだグラフである。   FIG. 2 is a graph connecting the measured values of the flow rate of hydrogen gas with respect to the differential pressure of the resistor 32 for hydrogen gas in Table 1, and FIG. 3 shows the flow rate of dilution gas with respect to the differential pressure of the resistor 33 for diluent gas. It is the graph which connected the measured value. FIG. 4 is a graph connecting the calculated values of the hydrogen gas concentration of the mixed gas with respect to the differential pressure in Table 1.

次に、上記試験ガス生成装置2の合流部10に、差圧計31を接続し、表1に記載した差圧と同じ差圧になるように、制御装置17によって吸引ポンプ15を制御して混合ガスを作成し、水素センサ16によって、水素ガス濃度を検出した。
検出した水素ガス濃度を、計算した水素ガス濃度と共に、下記表2に示す。
Next, a differential pressure gauge 31 is connected to the merging portion 10 of the test gas generating device 2 and mixing is performed by controlling the suction pump 15 by the control device 17 so that the differential pressure is the same as the differential pressure described in Table 1. Gas was prepared and the hydrogen gas concentration was detected by the hydrogen sensor 16.
The detected hydrogen gas concentration is shown in Table 2 below together with the calculated hydrogen gas concentration.

Figure 0006122890
Figure 0006122890

表2の、差圧計31の圧力測定結果に対する水素ガス濃度との関係と、差圧に対する計算で求めた水素ガス濃度との関係を、同じ図5にそれぞれグラフとして記載した。
計算値と実測値の差異は、計算値が水素ガス用抵抗体32と希釈ガス用抵抗体33の両端の圧力の差に対する個別の流量測定値に基づくのに対し、実測値では、流量計41(石けん膜式)を挿入せずに、水素ガス濃度を水素センサ16により実測した結果であることに基づくと考えられる。石けん膜式流量計は、小さな圧力損失で微小流量を測定するのに適しているが、微小流量では、石けん膜の表面張力と重力の影響があり、流量比から求めた水素ガス濃度と流量計の挿入無しで水素ガス濃度を実測した値との差異となって現れる。
計算値と実測値のいずれの特性も、差圧を制御すること、または合流点の圧力を制御することによって、水素ガス濃度を調節することが可能であることを示している。
The relationship between the hydrogen gas concentration with respect to the pressure measurement result of the differential pressure gauge 31 in Table 2 and the relationship with the hydrogen gas concentration obtained by calculation with respect to the differential pressure are shown as graphs in FIG.
The difference between the calculated value and the actually measured value is based on the individual flow rate measured value with respect to the pressure difference between the both ends of the hydrogen gas resistor 32 and the dilution gas resistor 33, whereas the actually measured value shows the flow meter 41. This is considered to be based on the result of actual measurement of the hydrogen gas concentration by the hydrogen sensor 16 without inserting (soap type). The soap film type flow meter is suitable for measuring a micro flow rate with a small pressure loss, but the micro flow rate is affected by the surface tension and gravity of the soap film, and the hydrogen gas concentration and flow meter obtained from the flow rate ratio It appears as a difference from the measured value of the hydrogen gas concentration without insertion of.
Both characteristics of the calculated value and the actually measured value indicate that the hydrogen gas concentration can be adjusted by controlling the differential pressure or controlling the pressure at the junction.

<測定装置>
表1,2の数値を求めた測定装置を説明する。
水素ガス用抵抗体32についての、差圧と水素ガス流量の関係を得るために、図7に示すように、柔軟性を有する容器28を水素ガス流入部25に接続し、水素ガス流入部25を、流量計41を介して水素ガス用抵抗体32の一端に接続し、他端を吸引ポンプ15に接続する。
<Measurement device>
The measuring apparatus which calculated | required the numerical value of Table 1, 2 is demonstrated.
In order to obtain the relationship between the differential pressure and the hydrogen gas flow rate for the hydrogen gas resistor 32, a flexible container 28 is connected to the hydrogen gas inlet 25 as shown in FIG. Is connected to one end of the hydrogen gas resistor 32 via the flow meter 41, and the other end is connected to the suction pump 15.

吸引ポンプ15を動作させ、容器28内に貯留された100%の水素ガスを吸引し、流量計41で流量を測定しながら水素ガス用抵抗体32を通過させ、放出部27から大気に放出させる。   The suction pump 15 is operated to suck 100% hydrogen gas stored in the container 28, pass through the hydrogen gas resistor 32 while measuring the flow rate with the flow meter 41, and release it from the discharge unit 27 to the atmosphere. .

水素ガス用抵抗体32と並列に、差圧計31を接続させておき、水素ガス用抵抗体32に水素ガスが流れるときに、水素ガス用抵抗体32の両端に生じる差圧を計測する。吸引ポンプ15の吸引力を変えて、水素ガス用抵抗体32の差圧と水素ガス流量とを測定することで、水素ガス用抵抗体32についての、差圧と水素ガス流量の関係を得ることができる。   A differential pressure gauge 31 is connected in parallel with the hydrogen gas resistor 32, and when the hydrogen gas flows through the hydrogen gas resistor 32, the differential pressure generated at both ends of the hydrogen gas resistor 32 is measured. The relationship between the differential pressure and the hydrogen gas flow rate for the hydrogen gas resistor 32 is obtained by changing the suction force of the suction pump 15 and measuring the differential pressure and the hydrogen gas flow rate of the hydrogen gas resistor 32. Can do.

また、希釈ガスと希釈ガス用抵抗体33についての、差圧と希釈ガス流量の関係を得るために、図8に示すように、大気に開放された希釈ガス流入部26を、流量計41を介して、希釈ガス用抵抗体33の一端に接続し、他端を吸引ポンプ15に接続する。
吸引ポンプ15を動作させ、空気を希釈ガスとして、希釈ガス流入部26から吸引し、流量計41で流量を測定しながら希釈ガス用抵抗体33を通過させ、放出部27から大気に放出させる。
Further, in order to obtain the relationship between the differential pressure and the dilution gas flow rate for the dilution gas and the dilution gas resistor 33, as shown in FIG. 8, the dilution gas inlet 26 opened to the atmosphere is connected to the flow meter 41. The other end of the dilution gas resistor 33 is connected to the suction pump 15.
The suction pump 15 is operated to suck air from the dilution gas inflow portion 26 as dilution gas, pass through the dilution gas resistor 33 while measuring the flow rate with the flow meter 41, and release the air from the discharge portion 27 to the atmosphere.

上記水素ガス用抵抗体32の測定と同様に、希釈ガス用抵抗体33と並列に、差圧計31を接続させておき、希釈ガス用抵抗体33に希釈ガスが流れるときに、希釈ガス用抵抗体33の両端に生じる差圧を計測する。吸引ポンプ15の吸引力を変えて、希釈ガス用抵抗体33の差圧と希釈ガス流量とを測定することで、希釈ガス用抵抗体33についての、差圧と希釈ガス流量の関係を得ることができる。   Similar to the measurement of the hydrogen gas resistor 32, the differential pressure gauge 31 is connected in parallel with the dilution gas resistor 33, and when the dilution gas flows through the dilution gas resistor 33, the dilution gas resistance The differential pressure generated at both ends of the body 33 is measured. The relationship between the differential pressure and the dilution gas flow rate for the dilution gas resistor 33 is obtained by changing the suction force of the suction pump 15 and measuring the differential pressure and the dilution gas flow rate of the dilution gas resistor 33. Can do.

<水素ガス濃度の検出結果>
次に、上記試験ガス生成装置2の制御装置17に、3.9%の水素ガス濃度を基準値として設定し、混合ガスを生成し、試験ガスとして放出部27から放出させた。生成した混合ガスの水素ガス濃度を水素センサ16で検出した。検出結果としての水素濃度の推移を、図6のグラフに示す。
<Detection result of hydrogen gas concentration>
Next, a hydrogen gas concentration of 3.9% was set as a reference value in the control device 17 of the test gas generation device 2 to generate a mixed gas, which was discharged from the discharge portion 27 as a test gas. The hydrogen gas concentration of the generated mixed gas was detected by the hydrogen sensor 16. The transition of the hydrogen concentration as a detection result is shown in the graph of FIG.

吸引ポンプ15が動作を開始してから約8秒経過後に検出結果は基準値と同じ水素ガス濃度になった。約15秒経過後に水素濃度がゼロに戻ったのは、検出結果の立ち下がりを確認するために容器28を水素ガス流入部25から切り離し、水素ガスの供給を停止させたときの応答を示している。   About 8 seconds after the suction pump 15 started operating, the detection result became the same hydrogen gas concentration as the reference value. The hydrogen concentration returned to zero after about 15 seconds, indicating a response when the supply of hydrogen gas was stopped by disconnecting the container 28 from the hydrogen gas inflow portion 25 in order to confirm the fall of the detection result. Yes.

<抵抗体、ガス源>
上記水素ガス用抵抗体32には、内径0.35mm、長さ37mmの注射針様のステンレス管を用いた。希釈ガス用抵抗体33には内径1.0mm、長さ30mmの樹脂管を用いた。
このようなキャピラリチューブの他、水素ガス用抵抗体32や希釈ガス用抵抗体33には、ピンホールや、多孔質体を用いることができる。
<Resistor, gas source>
As the hydrogen gas resistor 32, an injection needle-like stainless steel tube having an inner diameter of 0.35 mm and a length of 37 mm was used. As the dilution gas resistor 33, a resin tube having an inner diameter of 1.0 mm and a length of 30 mm was used.
In addition to the capillary tube, a pinhole or a porous body can be used for the hydrogen gas resistor 32 and the dilution gas resistor 33.

以上は、水素ガス用抵抗体32の一端と希釈ガス用抵抗体33の一端が大気圧にされ、他端が合流部10で同じ圧力にされていたが、合流部10と反対側の一端は、同じ圧力にされる場合に限定されるものではなく、一定圧力が維持されれば、水素ガス用抵抗体32の一端と希釈ガス用抵抗体33の一端とは、異なる圧力にされていてもよい。   As described above, one end of the hydrogen gas resistor 32 and one end of the dilution gas resistor 33 are set to the atmospheric pressure, and the other end is set to the same pressure at the merging portion 10, but one end opposite to the merging portion 10 is However, the pressure is not limited to the case where the same pressure is maintained. If a constant pressure is maintained, one end of the hydrogen gas resistor 32 and one end of the dilution gas resistor 33 may be at different pressures. Good.

水素ガス源については、例えば、図9(a)に示す水素ガス源20aのように、水素吸蔵合金が内部に配置された金属容器42を用い、水素吸蔵合金に水素ガスを吸蔵させておき、金属容器42の水素ガス出口を水素ガス流入部25に接続し、金属容器42と水素ガス流入部25との間の水素ガス流路に柔軟性を有する容器43を接続する。このとき、金属容器42内部の水素吸蔵合金から放出される水素ガスの流量は、水素ガス用抵抗体32に流れるべき水素ガス流量よりも少しだけ大きくなるように、水素吸蔵合金の量(仕様)が適正に選定されている必要がある。このときの過剰な水素が柔軟性を有する容器43に移行することで、水素ガス流入部25における圧力を大気圧に保持できる。   As for the hydrogen gas source, for example, as in the hydrogen gas source 20a shown in FIG. 9A, a metal container 42 in which a hydrogen storage alloy is arranged is used, and the hydrogen storage alloy is made to store hydrogen gas, A hydrogen gas outlet of the metal container 42 is connected to the hydrogen gas inflow portion 25, and a flexible container 43 is connected to a hydrogen gas flow path between the metal container 42 and the hydrogen gas inflow portion 25. At this time, the amount (specification) of the hydrogen storage alloy so that the flow rate of the hydrogen gas released from the hydrogen storage alloy inside the metal container 42 is slightly larger than the flow rate of the hydrogen gas that should flow to the hydrogen gas resistor 32. Must be properly selected. The excess hydrogen at this time moves to the flexible container 43, whereby the pressure in the hydrogen gas inflow portion 25 can be maintained at atmospheric pressure.

また、図9(b)に示す水素ガス源20bのように、水素吸蔵合金入りの金属容器42の水素ガス出口と水素ガス流入部25との間の水素ガス流路の圧力を、大気に開放させるための開放部45を設け、過剰な水素ガスを大気に開放して、水素ガス用抵抗体32の一端が大気圧に維持されるようにして水素ガスを供給するようにしてもよい。   Further, as in the hydrogen gas source 20b shown in FIG. 9B, the pressure of the hydrogen gas flow path between the hydrogen gas outlet of the metal container 42 containing the hydrogen storage alloy and the hydrogen gas inflow portion 25 is released to the atmosphere. An open portion 45 may be provided to release excess hydrogen gas to the atmosphere, and hydrogen gas may be supplied so that one end of the hydrogen gas resistor 32 is maintained at atmospheric pressure.

なお、水素ガス源20には、100%の水素ガスを用いる他、希釈ガスで希釈された水素ガスも用いることができるが、水素ガス源20の水素濃度が変わると、差圧と流量の関係も変わることになるので、水素ガス用抵抗体32と希釈ガス用抵抗体33の流量制限特性を選定し直す必要がある。   In addition to 100% hydrogen gas, hydrogen gas diluted with dilution gas can be used for the hydrogen gas source 20, but when the hydrogen concentration of the hydrogen gas source 20 changes, the relationship between the differential pressure and the flow rate. Therefore, it is necessary to reselect the flow restricting characteristics of the hydrogen gas resistor 32 and the dilution gas resistor 33.

2……試験ガス生成装置
12……水素ガス流路
13……希釈ガス流路
14……混合ガス流路
15……吸引ポンプ
16……水素センサ
17……制御装置
20、20a、20b……水素ガス源
21……希釈ガス源
28……容器
32……水素ガス用抵抗体
33……希釈ガス用抵抗体
2 ... Test gas generator 12 ... Hydrogen gas flow path 13 ... Dilution gas flow path 14 ... Mixed gas flow path 15 ... Suction pump 16 ... Hydrogen sensor 17 ... Control devices 20, 20a, 20b ... Hydrogen gas source 21 ... Dilution gas source 28 ... Container 32 ... Hydrogen gas resistor 33 ... Dilution gas resistor

Claims (4)

水素ガス源が供給する水素ガスが通る水素ガス流路と、
希釈ガス源が供給する希釈ガスが通る希釈ガス流路と、
前記水素ガス流路と前記希釈ガス流路とが合流する合流部と、
前記水素ガス流路から流入する前記水素ガスと前記希釈ガス流路から流入する前記希釈ガスとを含有し、前記合流部で生成された混合ガスを、吸引力で吸引し、出力部に供給する吸引ポンプと、
前記水素ガス流路に設けられ、前記水素ガス流路を通る前記水素ガスの流れを制限する水素ガス用抵抗体と、
前記希釈ガス流路に設けられ、前記希釈ガス流路を通る前記希釈ガスの流れを制限する希釈ガス用抵抗体と、
前記混合ガスの水素ガス濃度を検出する水素センサと、
前記吸引ポンプの前記吸引力を変化させる制御装置と、
を有し、
前記希釈ガスには空気が用いられ、
前記希釈ガス用抵抗体の両端に生じた差圧によって、前記希釈ガス用抵抗体に前記希釈ガスが流れ、前記水素ガス用抵抗体の両端に生じた差圧によって、前記水素ガス用抵抗体に前記水素ガスが流れるように構成され、
前記希釈ガス用抵抗体の両端の差圧及び前記希釈ガス用抵抗体を流れる前記希釈ガス流量の関係を示す希釈ガス流量曲線の傾きと、前記水素ガス用抵抗体の両端の差圧及び前記水素ガス用抵抗体を流れる前記水素ガス流量の関係を示す水素ガス流量曲線の傾きとが異なる数値であり、かつ、前記希釈ガス流量曲線上の接線が前記差圧と前記希釈ガス流量曲線の座標系における原点を通らず、前記座標系の流量軸との切片が正の値となるような前記希釈ガス用抵抗体であり、
前記制御装置には、前記水素センサが検出した検出結果が入力され、
前記制御装置は、前記水素ガス濃度が基準値になるように、前記吸引ポンプの前記吸引力を変化させる試験ガス生成装置。
A hydrogen gas flow path through which hydrogen gas supplied by a hydrogen gas source passes,
A dilution gas flow path through which the dilution gas supplied by the dilution gas source passes,
A merge portion where the hydrogen gas flow path and the dilution gas flow path merge;
The hydrogen gas flowing in from the hydrogen gas flow path and the dilution gas flowing in from the dilution gas flow path are contained, and the mixed gas generated in the merging portion is sucked with suction force and supplied to the output portion A suction pump;
A hydrogen gas resistor that is provided in the hydrogen gas flow path and restricts the flow of the hydrogen gas through the hydrogen gas flow path;
A dilution gas resistor that is provided in the dilution gas flow path and restricts the flow of the dilution gas through the dilution gas flow path;
A hydrogen sensor for detecting the hydrogen gas concentration of the mixed gas;
A control device for changing the suction force of the suction pump;
Have
Air is used as the dilution gas,
Due to the differential pressure generated at both ends of the dilution gas resistor, the dilution gas flows into the dilution gas resistor, and due to the differential pressure generated at both ends of the hydrogen gas resistor, The hydrogen gas is configured to flow,
The inclination of the dilution gas flow curve showing the relationship between the dilution gas flow rate through the differential pressure and the diluent gas generating resistor at both ends of said diluent gas generating resistor, both ends of the differential pressure and the hydrogen of the hydrogen gas generating resistor The slope of the hydrogen gas flow curve indicating the relationship between the hydrogen gas flow rates flowing through the gas resistor is a different numerical value, and the tangent line on the dilution gas flow curve is a coordinate system of the differential pressure and the dilution gas flow curve The dilution gas resistor such that the intercept with the flow axis of the coordinate system is a positive value without passing through the origin at
A detection result detected by the hydrogen sensor is input to the control device,
The control device is a test gas generation device that changes the suction force of the suction pump so that the hydrogen gas concentration becomes a reference value.
前記水素センサは、前記吸引ポンプが前記出力部に供給する前記混合ガスの水素ガス濃度を検出する請求項1記載の試験ガス生成装置。   The test gas generation device according to claim 1, wherein the hydrogen sensor detects a hydrogen gas concentration of the mixed gas supplied to the output unit by the suction pump. 前記希釈ガス源が供給する前記希釈ガス及び前記水素ガス源が供給する前記水素ガスの圧力を大気圧にする請求項1又は請求項2のいずれか1項記載の試験ガス生成装置。 3. The test gas generation device according to claim 1, wherein pressures of the dilution gas supplied from the dilution gas source and the hydrogen gas supplied from the hydrogen gas source are set to atmospheric pressure. 4. 前記吸引ポンプは、前記水素ガス用抵抗体の両端の前記差圧と、前記希釈ガス用抵抗体の両端の前記差圧を400Pa以上の圧力にする前記吸引力で前記混合ガスを吸引するように構成された請求項1乃至請求項3のいずれか1項記載の試験ガス生成装置。   The suction pump sucks the mixed gas with the suction force that makes the differential pressure at both ends of the hydrogen gas resistor and the differential pressure at both ends of the dilution gas resistor at 400 Pa or more. The test gas generation device according to any one of claims 1 to 3, wherein the test gas generation device is configured.
JP2015034414A 2015-02-24 2015-02-24 Test gas generator Active JP6122890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034414A JP6122890B2 (en) 2015-02-24 2015-02-24 Test gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034414A JP6122890B2 (en) 2015-02-24 2015-02-24 Test gas generator

Publications (2)

Publication Number Publication Date
JP2016155077A JP2016155077A (en) 2016-09-01
JP6122890B2 true JP6122890B2 (en) 2017-04-26

Family

ID=56824436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034414A Active JP6122890B2 (en) 2015-02-24 2015-02-24 Test gas generator

Country Status (1)

Country Link
JP (1) JP6122890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473921B (en) * 2020-04-16 2022-09-09 国网湖南省电力有限公司 Detection system of sulfur hexafluoride leakage alarm device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574438A (en) * 1978-12-01 1980-06-05 Toyota Motor Corp Method and device for adjusting of gas analysis meter
JPH0618624B2 (en) * 1985-03-28 1994-03-16 コスモエンジニアリング株式会社 Gas mixture transfer method
DE3716289A1 (en) * 1987-05-15 1988-11-24 Leybold Ag DEVICE FOR THE PRODUCTION OF CERTAIN CONCENTRATIONS OF GAS SHAPED MATERIALS AND FOR MIXING DIFFERENT GAS SHAPED MATERIALS IN A PRESENT RATIO
JPH0716594B2 (en) * 1989-09-21 1995-03-01 株式会社日立製作所 Gas mixing equipment
JPH09206572A (en) * 1996-02-02 1997-08-12 Kyodo Sanso Kk Production of mixed gas
JP2007038179A (en) * 2005-08-05 2007-02-15 Yutaka:Kk Gas mixer
JP4685846B2 (en) * 2007-09-10 2011-05-18 本田技研工業株式会社 Fuel cell vehicle
JP5670530B1 (en) * 2013-09-18 2015-02-18 光明理化学工業株式会社 Test gas generator

Also Published As

Publication number Publication date
JP2016155077A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP2018010696A (en) Mass flow rate controller
CN102539082B (en) Leakage detection apparatus and the method for search gas is made with hydrogen
US20100145633A1 (en) Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
US8074492B2 (en) Method and apparatus for the detection of leaks
US20100294026A1 (en) Sniffing leak detector
KR20090003195A (en) Leakage inspecting method and leakage inspecting device for pipe lines
JP6878425B2 (en) Leak detection using oxygen
JP5620184B2 (en) Leak inspection apparatus and leak inspection method
CN104865354A (en) Formaldehyde gas detector verification device, system and method
US10634535B2 (en) Airflow sensor with gas composition correction
JP6122890B2 (en) Test gas generator
JP2007024730A (en) Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus
JP5670530B1 (en) Test gas generator
US10648935B2 (en) Flow measurement system and method for determining at least one property of a medium
JP4329921B2 (en) Inspection gas mixing apparatus and mixing method
CN106289372A (en) Welded insulated gas cylinder Daily boil-off-rate measuring instrument method of testing
CN204789519U (en) Formaldehyde gas detector calibrating installation and system
CN212158949U (en) Pulse type pressure smoke leakage detecting device
CN210198650U (en) Bag detection device and leak detection system
CN104215404A (en) Gas leakage measuring instrument
CN207832385U (en) A kind of channel-type the Calibration Apparatus of A Standard Leak
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
EP2933612A1 (en) Method of determining an internal volume of a filter or a bag device, computer program product and a testing apparatus for performing the method
JP5963204B2 (en) Pre-calibrated micro leak filter for gas leak
US9958426B2 (en) Device and method for determining mixing ratios of flowing media

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6122890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250