JP6121710B2 - Battery exterior material and lithium secondary battery - Google Patents

Battery exterior material and lithium secondary battery Download PDF

Info

Publication number
JP6121710B2
JP6121710B2 JP2012281141A JP2012281141A JP6121710B2 JP 6121710 B2 JP6121710 B2 JP 6121710B2 JP 2012281141 A JP2012281141 A JP 2012281141A JP 2012281141 A JP2012281141 A JP 2012281141A JP 6121710 B2 JP6121710 B2 JP 6121710B2
Authority
JP
Japan
Prior art keywords
layer
battery
adhesive
metal foil
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012281141A
Other languages
Japanese (ja)
Other versions
JP2014127258A (en
Inventor
田中 克美
克美 田中
大森 将弘
将弘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2012281141A priority Critical patent/JP6121710B2/en
Publication of JP2014127258A publication Critical patent/JP2014127258A/en
Application granted granted Critical
Publication of JP6121710B2 publication Critical patent/JP6121710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電池用外装材及びリチウム二次電池に関する。   The present invention relates to a battery case and a lithium secondary battery.

ビデオカメラ、ノート型パソコン、携帯電話等の電子機器のポータブル化、小型化に応じて、その駆動源である電池にも小型軽量化の要求が高まり、高性能なリチウム二次電池が普及されるに至っている。最近では、リチウム二次電池を電気自動車またはハイブリッド車の車載電源に適用すべく、リチウム二次電池の大型化が検討されている。   As electronic devices such as video cameras, notebook computers, and mobile phones become more portable and smaller, there is an increasing demand for smaller and lighter batteries as driving sources, and high-performance lithium secondary batteries are widely used. Has reached. Recently, in order to apply a lithium secondary battery to an in-vehicle power source of an electric vehicle or a hybrid vehicle, an increase in the size of the lithium secondary battery has been studied.

ところで、車両における車載電源の搭載スペースに限りがあり、また搭載スペースの形状も一定ではないことから、電子機器等の場合と同様に、車載用のリチウム二次電池には軽量化および形状の自由度が求められている。また、車載用のリチウム二次電池では、電池容量及び使用電流が大きくなるため、より高い安全性を確保する為に、より良好な絶縁性(高い絶縁抵抗値)が求められている。   By the way, since the mounting space of the in-vehicle power source in the vehicle is limited and the shape of the mounting space is not constant, as in the case of electronic devices, the lithium secondary battery for in-vehicle use is lighter and free in shape. Degree is required. In addition, in-vehicle lithium secondary batteries have a large battery capacity and use current, so that better insulation (high insulation resistance value) is required to ensure higher safety.

従来のリチウム二次電池の外装材として、例えば下記特許文献1にあるような外装体が知られている。特許文献1の外装体は、金属層と合成樹脂層からなるラミネート外装材からなる外装体に、酸の吸収能をもった無機粒子を含む吸収シートが備えられた外装体が開示されている。また、特許文献2には、接着剤層、アルミニウム箔層、アルミニウム保護層、接着樹脂層、シーラント層をこの順番で積層したリチウムイオン電池用外装材において、シーラント層に、平均粒径200nm以下の微粒子からなるエラストマーが添加されたリチウムイオン電池用外装材が開示されている。   As an exterior material of a conventional lithium secondary battery, for example, an exterior body as disclosed in Patent Document 1 below is known. Patent Document 1 discloses an exterior body in which an exterior body made of a laminate exterior material composed of a metal layer and a synthetic resin layer is provided with an absorbent sheet containing inorganic particles having an acid-absorbing ability. Patent Document 2 discloses a lithium ion battery exterior material in which an adhesive layer, an aluminum foil layer, an aluminum protective layer, an adhesive resin layer, and a sealant layer are laminated in this order. The sealant layer has an average particle size of 200 nm or less. A packaging material for a lithium ion battery to which an elastomer composed of fine particles is added is disclosed.

特開2008−235256号公報JP 2008-235256 A 特開2011−216390号公報JP 2011-216390 A

しかし、特許文献1に記載の外装体は、電池内部で発生し得るフッ化水素による外装体の劣化を防ぐ為に、発電素子とともにフッ化水素を吸収する樹脂シートが封入されたものであり、絶縁性については何ら考慮されていない。また、特許文献2に記載のリチウムイオン電池用外装材は、リチウムイオン電池の外装材として用いるラミネート包材において、成形時のシーラント層の白化(シーラント樹脂の微小クラック)を防ぐ為に、シーラント層へエラストマー微粒子を添加し、エンボス成形時のクラックによる破断や白化が発生しないように、シーラント層に耐衝撃性を持たせた技術であって、絶縁性については何ら考慮されていない。このように、従来の電池用の外装材の絶縁性能はまだまだ不十分であり、更なる改良が求められている。   However, the exterior body described in Patent Document 1 is one in which a resin sheet that absorbs hydrogen fluoride is enclosed together with the power generation element in order to prevent deterioration of the exterior body due to hydrogen fluoride that may be generated inside the battery. No consideration is given to insulation. Moreover, the exterior material for lithium ion batteries described in Patent Document 2 is a sealant layer in order to prevent whitening of the sealant layer during molding (micro cracks in the sealant resin) in a laminate packaging material used as an exterior material of a lithium ion battery. This is a technology that gives impact resistance to the sealant layer so as to prevent breakage and whitening due to cracks during emboss molding by adding elastomer fine particles to the insulation, and no consideration is given to insulation. As described above, the insulation performance of the conventional battery exterior material is still insufficient, and further improvement is required.

本発明は上記事情に鑑みてなされたもので、絶縁性に優れた電池用外装材及びこのような電池用外装材を備えたリチウム二次電池を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the lithium secondary battery provided with the battery exterior material excellent in insulation, and such a battery exterior material.

[1] 耐熱性樹脂フィルムを含む外層と、金属箔層と、接着層と、熱可塑性樹脂フィルムを含む内層とが積層されてなる電池用外装材において、
前記接着層に絶縁性粒子が含有され、
前記絶縁性粒子が、平均粒径0.1μm〜4μmの無機系粒子、平均粒径0.1μm〜4μmの有機系粒子の何れか一方またはこれらの混合物であり、かつ、前記接着層中の前記絶縁性粒子の添加量が1〜30質量%であることを特徴とする電池用外装材。
[2] 前記接着層が、ドライラミネート用接着剤よりなる[1]に記載の電池用外装材。
[3] 前記接着層が、ウレタン系接着剤、酸変性ポリオレフィン、スチレンエラストマー、アクリル系接着剤、シリコーン系接着剤、エーテル系接着剤、エチレン−酢酸ビニル系接着剤のいずれかよりなる[2]に記載の電池用外装材。
[4] 前記内層がポリオレフィンからなり、前記外層がポリアミドまたはポリエステルからなる[1]乃至[3]の何れか一項に記載の電池用外装材。
[5] 前記金属箔層が、アルミニウム箔、鉄箔、ステンレス箔、銅箔のいずれかからなる[1]乃至[4]の何れか一項に記載の電池用外装材。
[6] 前記外層と前記金属箔層とが、前記接着層とは材質の異なる接着層を介して貼り合わされている[1]乃至[5]の何れか一項に記載の電池用外装材。
[7] 深絞り成形または張出成形によって凹部が形成されてなる[1]乃至[6]の何れか一項に記載の電池用外装材。
[8] [1]乃至[7]の何れか一項に記載の電池用外装材が備えられていることを特徴とするリチウム二次電池。
[1] In a battery exterior material in which an outer layer containing a heat-resistant resin film, a metal foil layer, an adhesive layer, and an inner layer containing a thermoplastic resin film are laminated,
Insulating particles are contained in the adhesive layer,
The insulating particles are any one of inorganic particles having an average particle diameter of 0.1 μm to 4 μm, organic particles having an average particle diameter of 0.1 μm to 4 μm, or a mixture thereof, and the above-mentioned in the adhesive layer The battery exterior material characterized by the addition amount of insulating particles being 1 to 30% by mass.
[2] The battery packaging material according to [1], wherein the adhesive layer is made of an adhesive for dry lamination.
[3] The adhesive layer is made of any of urethane adhesive, acid-modified polyolefin, styrene elastomer, acrylic adhesive, silicone adhesive, ether adhesive, and ethylene-vinyl acetate adhesive [2]. The battery outer packaging material according to 1.
[4] The battery outer packaging material according to any one of [1] to [3], wherein the inner layer is made of polyolefin and the outer layer is made of polyamide or polyester.
[5] The battery packaging material according to any one of [1] to [4], wherein the metal foil layer is made of any one of an aluminum foil, an iron foil, a stainless steel foil, and a copper foil.
[6] The battery outer packaging material according to any one of [1] to [5], wherein the outer layer and the metal foil layer are bonded together through an adhesive layer made of a material different from that of the adhesive layer.
[7] The battery outer packaging material according to any one of [1] to [6], wherein a concave portion is formed by deep drawing or bulging.
[8] A lithium secondary battery comprising the battery packaging material according to any one of [1] to [7].

本発明によれば、絶縁性に優れた電池用外装材及びこのような電池用外装材を備えたリチウム二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery provided with the battery exterior material excellent in insulation and such a battery exterior material can be provided.

図1は、本発明の実施形態である電池用外装材を備えたリチウム二次電池の断面模式図である。FIG. 1 is a schematic cross-sectional view of a lithium secondary battery including a battery exterior material according to an embodiment of the present invention. 図2は、本発明の実施形態である電池用外装材の拡大断面模式図である。FIG. 2 is an enlarged schematic cross-sectional view of a battery exterior material according to an embodiment of the present invention. 図3は、実施例における電池外装材の深絞り加工工程を示す模式図である。FIG. 3 is a schematic diagram showing a deep drawing process of the battery exterior material in the example. 図4は、実施例における電池外装体のリチウム二次電池の製造工程を示す模式図である。FIG. 4 is a schematic diagram illustrating a manufacturing process of a lithium secondary battery of the battery outer package in the example. 図5は、実施例における絶縁評価用テストセルの製造工程を示す模式図である。FIG. 5 is a schematic diagram showing a manufacturing process of the test cell for insulation evaluation in the example. 図6は、実施例における絶縁評価用テストセルの製造工程を示す模式図である。FIG. 6 is a schematic diagram illustrating a manufacturing process of an insulation evaluation test cell in the example. 図7は、実施例1〜7及び比較例2〜5の絶縁性評価方法を示す模式図である。FIG. 7 is a schematic diagram illustrating insulation evaluation methods of Examples 1 to 7 and Comparative Examples 2 to 5. 図8は、比較例1の絶縁性評価方法を示す模式図である。FIG. 8 is a schematic diagram showing an insulation evaluation method of Comparative Example 1. 図9は、実施例1〜7及び比較例1〜5の絶縁性評価方法を示す模式図である。FIG. 9 is a schematic diagram illustrating insulation evaluation methods of Examples 1 to 7 and Comparative Examples 1 to 5.

以下、本発明の実施形態である電池用外装材及び電池用外装材を備えたリチウム二次電池について説明する。   Hereinafter, the lithium secondary battery provided with the battery exterior material and battery exterior material which are embodiments of the present invention will be described.

図1に示すように、本実施形態のリチウム二次電池1は、例えば、正極2と、負極3と、電解質と、正極2、負極3及び電解質を包装する電池用外装体5を少なくとも備えて構成されている。電池用外装体5は、例えば、シート状の電池用外装材5a、5bが重ね合わされて袋状に形成されることにより構成される。そして、正極2、負極3及び電解質は、電池外装体5の内部に挿入されている。また、図1に示す例では、正極2と負極3の間にセパレータ6が配置される。このセパレータ6に代えて、固体電解質膜を正極2と負極3の間に配置してもよい。   As shown in FIG. 1, the lithium secondary battery 1 of the present embodiment includes, for example, at least a positive electrode 2, a negative electrode 3, an electrolyte, and a battery outer package 5 that packages the positive electrode 2, the negative electrode 3, and the electrolyte. It is configured. The battery exterior body 5 is configured by, for example, superposing sheet-shaped battery exterior materials 5a and 5b to form a bag shape. The positive electrode 2, the negative electrode 3, and the electrolyte are inserted into the battery outer package 5. In the example shown in FIG. 1, the separator 6 is disposed between the positive electrode 2 and the negative electrode 3. Instead of the separator 6, a solid electrolyte membrane may be disposed between the positive electrode 2 and the negative electrode 3.

電池外装体5は、例えば、2枚のシート状の電池外装材5a、5bを内層が相互に向き合うように重ね合わせ、電池外装材5a、5bの外周部5cをヒートシールさせて袋状に成形されてなるものである。電池用外装材5a、5bは、耐熱性樹脂フィルムを含む外層と、金属箔層と、絶縁性粒子が含有された接着層と、熱可塑性樹脂フィルムを含む内層とが積層されて構成されている。また、一方の電池外装材5aには、正極2、負極3及び電解質を収容するための凹部5dが、深絞り成形または張出成形によって形成されている。図1に示す例では、他方の電池外装材5bには凹部が設けられていないが、他方の電池外装材5bにも凹部を設けておいてもよい。   For example, the battery outer package 5 is formed into a bag shape by stacking two sheet-shaped battery outer packages 5a and 5b so that the inner layers face each other, and heat-sealing the outer peripheral portion 5c of the battery outer package 5a and 5b. It has been made. The battery exterior materials 5a and 5b are configured by laminating an outer layer including a heat-resistant resin film, a metal foil layer, an adhesive layer containing insulating particles, and an inner layer including a thermoplastic resin film. . Further, a concave portion 5d for accommodating the positive electrode 2, the negative electrode 3, and the electrolyte is formed in one battery outer packaging material 5a by deep drawing molding or bulging molding. In the example shown in FIG. 1, the other battery exterior material 5b is not provided with a recess, but the other battery exterior material 5b may also be provided with a recess.

正極2及び負極3はそれぞれ、金属箔または金属網からなる集電体2a、3aと、集電体2a、3aにそれぞれ積層された電極合材2b、3bとから構成されるものを用いることができる。正極2の電極合材2bには正極活物質が含有され、負極3の電極合材3bには負極活物質が含有されている。   The positive electrode 2 and the negative electrode 3 are each composed of a current collector 2a, 3a made of a metal foil or a metal net, and an electrode mixture 2b, 3b laminated on the current collector 2a, 3a, respectively. it can. The electrode mixture 2b of the positive electrode 2 contains a positive electrode active material, and the electrode mixture 3b of the negative electrode 3 contains a negative electrode active material.

更に正極2及び負極3の各集電体2a、3aには、取り出し端子としてのタブリード2c、3cが接合される。タブリード2c、3cは、その長手方向基端部が電池外装体内部の集電体2a、3aに接合され、長手方向先端部が電池外装体5のヒートシール部である外周部5cを貫通してリチウム二次電池1の外部に突出される。タブリード2c、3cの外周部5c近傍においては、タブリード2c、3cがシート状の2枚の電池外装材5a、5bに挟まれており、タブリード2c、3cの表面に電池外装材5a、5bの内層がヒートシールされた状態になっている。   Further, tab leads 2c and 3c as extraction terminals are joined to the current collectors 2a and 3a of the positive electrode 2 and the negative electrode 3, respectively. The tab leads 2c and 3c have their longitudinal base ends joined to the current collectors 2a and 3a inside the battery outer package, and the longitudinal tips penetrate through the outer peripheral portion 5c which is a heat seal portion of the battery outer package 5. It protrudes outside the lithium secondary battery 1. In the vicinity of the outer peripheral portion 5c of the tab leads 2c and 3c, the tab leads 2c and 3c are sandwiched between two sheet-shaped battery exterior materials 5a and 5b, and the inner layers of the battery exterior materials 5a and 5b are formed on the surfaces of the tab leads 2c and 3c. Is in a heat-sealed state.

図1に示すリチウム二次電池1を製造する際には、開口部を有する袋状の電池外装体5を用意し、電池外装体5に正極2、負極3及び電解質並びにセパレータ6を挿入し、更に必要に応じて電解液を注液した後、開口部から突出しているタブリード2c、3cを挟むように開口部を封止してヒートシールすることで、開口部が密閉されたリチウム二次電池1を得る。   When the lithium secondary battery 1 shown in FIG. 1 is manufactured, a bag-shaped battery outer body 5 having an opening is prepared, and the positive electrode 2, the negative electrode 3, the electrolyte, and the separator 6 are inserted into the battery outer body 5. Further, after injecting an electrolyte as necessary, the opening is sealed and heat sealed so as to sandwich the tab leads 2c and 3c protruding from the opening, so that the opening is hermetically sealed. Get one.

次に、本実施形態の電池用外装材について詳細に説明する。本実施形態の電池用外装材5a、5bは、図2に示すように、電池外装体5の外表面51aとなる外層51と、金属箔層52と、電池外装体5の内面53bとなる内層53とが積層されて構成されている。また、図2に示すように、外層51と金属箔層52との間、及び内層53と金属箔層52との間に、接着層54、55が介在されている。   Next, the battery packaging material of this embodiment will be described in detail. As shown in FIG. 2, the battery exterior materials 5 a and 5 b of the present embodiment include an outer layer 51 that becomes the outer surface 51 a of the battery outer body 5, a metal foil layer 52, and an inner layer that becomes the inner surface 53 b of the battery outer body 5. 53 is laminated. As shown in FIG. 2, adhesive layers 54 and 55 are interposed between the outer layer 51 and the metal foil layer 52 and between the inner layer 53 and the metal foil layer 52.

(外層51)
電池用外装材5a、5bを構成する外層51は、少なくとも1または2以上の耐熱性樹脂フィルムを含んで構成されている。2以上の耐熱性樹脂フィルムから構成される場合の外層51は、耐熱性樹脂フィルム同士が接着層を介して積層されていることが好ましい。
(Outer layer 51)
The outer layer 51 constituting the battery packaging materials 5a and 5b is configured to include at least one or two or more heat resistant resin films. In the case where the outer layer 51 is composed of two or more heat-resistant resin films, the heat-resistant resin films are preferably laminated via an adhesive layer.

外層51を構成する耐熱性樹脂フイルムは、電池用外装材5aに正極2及び負極3を収納する凹部5dを成形する場合に、電池用外装材5aの成形性を確保する役割を担うもので、ポリアミド(ナイロン)樹脂またはポリエステル樹脂の延伸フイルムが好ましく用いられる。また、外層51を構成する耐熱性樹脂フイルムの融点は、内層53を構成する熱可塑性樹脂フィルムの融点より高いことが好ましい。これにより、リチウム二次電池1を製造する際の開口部のヒートシールを確実に行うことが可能になる。   The heat-resistant resin film constituting the outer layer 51 plays a role of ensuring the moldability of the battery exterior material 5a when forming the recess 5d for housing the positive electrode 2 and the negative electrode 3 in the battery exterior material 5a. A stretched film of polyamide (nylon) resin or polyester resin is preferably used. The melting point of the heat-resistant resin film constituting the outer layer 51 is preferably higher than the melting point of the thermoplastic resin film constituting the inner layer 53. Thereby, it becomes possible to perform the heat seal of the opening part at the time of manufacturing the lithium secondary battery 1 reliably.

外層51の厚さは10〜50μm程度が好ましく、15〜30μm程度がより好ましい。厚みが10μm以上であれば電池用外装材5aの成形を行なうときに延伸フイルムの伸びが不足することがなく、金属箔層52にネッキングが生じることがなく、成形不良が起きない。また、厚みが50μm以下であれば、成形性の効果を十分発揮できる。   The thickness of the outer layer 51 is preferably about 10 to 50 μm, and more preferably about 15 to 30 μm. If the thickness is 10 μm or more, the stretch of the stretched film will not be insufficient when the battery outer packaging material 5a is molded, the metal foil layer 52 will not be necked, and molding defects will not occur. Moreover, if thickness is 50 micrometers or less, the effect of a moldability can fully be exhibited.

(金属箔層52)
電池用外装材5a、5bを構成する金属箔層52は、電池用外装材5a、5bのバリア性確保の役割を行なうもので、この金属箔層52としては、アルミニウム箔、鉄箔、ステンレス箔、銅箔等が使用されるが、成形性、軽量であることを考慮し、アルミニウム箔を使用することが好ましい。アルミニウム箔の材質としては、純アルミニウム系またはアルミニウム−鉄系合金のO材(軟質材)が好ましく用いられる。
(Metal foil layer 52)
The metal foil layer 52 constituting the battery outer packaging material 5a, 5b serves to ensure the barrier property of the battery outer packaging material 5a, 5b. As the metal foil layer 52, aluminum foil, iron foil, stainless steel foil is used. Copper foil or the like is used, but it is preferable to use aluminum foil in consideration of formability and light weight. As the material of the aluminum foil, a pure aluminum-based or aluminum-iron-based alloy O material (soft material) is preferably used.

金属箔層52の厚みは、加工性の確保及び酸素や水分の電池内への侵入を防止するバリア性確保のために20〜80μmが必要である。厚みが20μm以上であれば、電池用外装材5aの成形時において金属箔層52が破断せず、ピンホールの発生もなく、酸素や水分の侵入を防止できる。また、厚みが80μm以下であれば、成形時の破断の改善効果やピンホール発生防止効果が維持され、また、電池外装材5a、5bの総厚が過剰に厚くならず、重量増を防止し、電池1の体積エネルギー密度を向上できる。   The thickness of the metal foil layer 52 needs to be 20 to 80 μm in order to ensure workability and to ensure barrier properties that prevent oxygen and moisture from entering the battery. When the thickness is 20 μm or more, the metal foil layer 52 is not broken during the formation of the battery outer packaging material 5a, and no pinholes are generated, so that intrusion of oxygen and moisture can be prevented. In addition, if the thickness is 80 μm or less, the effect of improving the breakage at the time of molding and the effect of preventing the occurrence of pinholes are maintained, and the total thickness of the battery exterior materials 5a and 5b is not excessively increased, thereby preventing an increase in weight. The volume energy density of the battery 1 can be improved.

また、金属箔層52には、外層51及び内層53との接着性を向上させたり、耐食性を向上させるために、シランカップリング剤やチタンカップリング剤等によるアンダーコート処理や、クロメート処理等による化成処理が施されているとよい。   Further, the metal foil layer 52 is subjected to undercoat treatment with a silane coupling agent or a titanium coupling agent, chromate treatment, or the like in order to improve adhesion with the outer layer 51 and the inner layer 53 or improve corrosion resistance. A chemical conversion treatment should be performed.

(内層53)
次に、電池用外装材5a、5bを構成する内層53は、熱可塑性樹脂フィルムを含んで構成されている。内層53に使用される熱可塑性樹脂フィルムとしては、ヒートシール性を有し、腐食性の強いリチウム二次電池の電解質等に対する耐薬品性を向上させる役割を果たし、かつ、金属箔層52とリチウム二次電池1の正極2または負極3との絶縁性を確保できるものがよく、例えば、ポリプロピレン、マレイン酸変性ポリプロピレン等の未延伸ポリオレフィンフィルムや、エチレン−アクリレート共重合体またはアイオノマー樹脂などの未延伸フィルムが好ましく用いられる。また、内層53を構成する熱可塑性樹脂フィルムは、単一の熱可塑性樹脂層で構成されていてもよいが、複数の熱可塑性樹脂層が積層されたもので構成されていても良い。
(Inner layer 53)
Next, the inner layer 53 constituting the battery outer packaging materials 5a and 5b is configured to include a thermoplastic resin film. As the thermoplastic resin film used for the inner layer 53, it plays a role of improving chemical resistance against electrolytes and the like of a lithium secondary battery having heat sealability and strong corrosiveness, and the metal foil layer 52 and lithium Those that can ensure insulation from the positive electrode 2 or the negative electrode 3 of the secondary battery 1 are good. For example, unstretched polyolefin films such as polypropylene and maleic acid-modified polypropylene, and unstretched ethylene-acrylate copolymers or ionomer resins. A film is preferably used. Further, the thermoplastic resin film constituting the inner layer 53 may be composed of a single thermoplastic resin layer, but may be composed of a laminate of a plurality of thermoplastic resin layers.

内層53の厚みは、0.1〜200μmの範囲が好ましく、50〜100μmの範囲がより好ましい。厚みが0.1μm以上、好ましくは50μm以上であれば、ヒートシール強度が充分になり、また電解液等に対する耐食性が向上し、金属箔層と正極または負極との絶縁性が高められる。また、厚みが200μm以下、好ましくは100μm以下であれば、ヒートシール性及び耐薬品性に支障が無く、また、リチウム二次電池の体積エネルギー密度を向上できる。   The thickness of the inner layer 53 is preferably in the range of 0.1 to 200 μm, and more preferably in the range of 50 to 100 μm. When the thickness is 0.1 μm or more, preferably 50 μm or more, the heat seal strength is sufficient, the corrosion resistance against the electrolytic solution or the like is improved, and the insulation between the metal foil layer and the positive electrode or the negative electrode is enhanced. Moreover, if thickness is 200 micrometers or less, Preferably it is 100 micrometers or less, there is no trouble in heat-sealing property and chemical-resistance, and the volume energy density of a lithium secondary battery can be improved.

更に、内層53を構成する熱可塑性樹脂フィルムの融点は、130℃〜170℃の範囲が好ましく、160〜165℃の範囲がより好ましい。融点がこの範囲であれば、内層53の耐熱性が向上し、ヒートシール時における内層53の厚みが低下することがなく、内層53の絶縁性が向上する。   Furthermore, the melting point of the thermoplastic resin film constituting the inner layer 53 is preferably in the range of 130 ° C to 170 ° C, more preferably in the range of 160 to 165 ° C. If the melting point is within this range, the heat resistance of the inner layer 53 is improved, the thickness of the inner layer 53 during heat sealing is not reduced, and the insulation of the inner layer 53 is improved.

(接着層)
接着層54、55は、外層51と金属箔層52、及び内層53と金属箔層52とを接着するために、外層51と金属箔層52との間、及び内層53と金属箔層52との間に配置される。
接着層54、55は、ドライラミネート用接着剤からなるドライラミネート用接着層が好ましく、例えば、ウレタン系接着剤、酸変性ポリオレフィン、スチレンエラストマー、アクリル系接着剤、シリコーン系接着剤、エーテル系接着剤、エチレン−酢酸ビニル系接着剤から選ばれる1種を用いることができる。
(Adhesive layer)
The adhesive layers 54 and 55 are provided between the outer layer 51 and the metal foil layer 52 and between the inner layer 53 and the metal foil layer 52 in order to bond the outer layer 51 and the metal foil layer 52 and the inner layer 53 and the metal foil layer 52. It is arranged between.
The adhesive layers 54 and 55 are preferably an adhesive layer for dry laminate made of an adhesive for dry laminate. For example, urethane adhesive, acid-modified polyolefin, styrene elastomer, acrylic adhesive, silicone adhesive, ether adhesive One selected from ethylene-vinyl acetate adhesives can be used.

特に、外層側の接着層54と内層側の接着層55は、相互に異なる材質からなる接着層を用いることが好ましい。接着層54、55の材質の組み合わせとして好ましくは、外層51がPETまたはナイロンで構成される場合に外層側の接着剤としてウレタン系接着剤を用い、内層53がポリプロピレンから構成される場合に内層側の接着剤としてアクリル系接着剤または酸変性オレフィン系接着剤がよい。外層側の接着層54と内層側の接着層55として、相互に異なる材質からなる接着層を用いることで、各材質間の接着強度および耐電解液性能を付与できる。   In particular, the outer layer-side adhesive layer 54 and the inner layer-side adhesive layer 55 are preferably made of mutually different adhesive layers. As a combination of the materials of the adhesive layers 54 and 55, a urethane adhesive is preferably used as an adhesive on the outer layer side when the outer layer 51 is made of PET or nylon, and an inner layer side when the inner layer 53 is made of polypropylene. As the adhesive, an acrylic adhesive or an acid-modified olefin adhesive is preferable. By using adhesive layers made of different materials as the outer-layer-side adhesive layer 54 and the inner-layer-side adhesive layer 55, it is possible to impart adhesion strength and resistance to electrolyte solution between the respective materials.

また、内層53側の接着層55には、絶縁性粒子が含有されていることが好ましい。接着層55に含有させる絶縁性粒子としては、平均粒径0.1μm〜4μmの無機系粒子若しくは平均粒径0.1μm〜4μmの有機系粒子のいずれか一方またはこれらの混合物がよい。このような絶縁性粒子を含有することで、内層53と金属箔層52との絶縁性をより高めることができる。   The adhesive layer 55 on the inner layer 53 side preferably contains insulating particles. The insulating particles contained in the adhesive layer 55 are preferably inorganic particles having an average particle diameter of 0.1 μm to 4 μm, organic particles having an average particle diameter of 0.1 μm to 4 μm, or a mixture thereof. By containing such insulating particles, the insulation between the inner layer 53 and the metal foil layer 52 can be further enhanced.

平均粒径0.1〜4μm以下の無機系粒子としては、球状または板状の粒子が好ましい。また、無機系粒子としては、硫酸バリウム、チタン酸バリウム、カルサイト系炭酸カルシウム、微細タルク、水酸化アルミニウム、シリカ系ビーズ、球状溶融シリカ、カオリン、天然珪酸カルシウム、チッ化硼素、アルミナなどを例示できる。また、平均粒径0.1〜4μm以下の有機系粒子としては、球状または板状の粒子が好ましく、ポリウレタン、ポリスチレン、ポリアクリル酸メチル等のプラスチックビーズを例示できる。   As the inorganic particles having an average particle size of 0.1 to 4 μm or less, spherical or plate-like particles are preferable. Examples of inorganic particles include barium sulfate, barium titanate, calcite calcium carbonate, fine talc, aluminum hydroxide, silica beads, spherical fused silica, kaolin, natural calcium silicate, boron nitride, and alumina. it can. The organic particles having an average particle size of 0.1 to 4 μm or less are preferably spherical or plate-like particles, and examples thereof include plastic beads such as polyurethane, polystyrene, and polymethyl acrylate.

絶縁性粒子の平均粒径が0.1μm未満では、接着剤への均一分散が困難であり、電池用外装材5a、5bの面内の絶縁性のばらつきが発生しやすくなる。また、平均粒子径が4μm超では、接着剤を塗布して乾燥した後の接着層の厚みよりも大きな粒径の絶縁性粒子を含有させることになる為、接着層の欠陥が多くなり、接着性に悪影響を与え、絶縁性のバラツキも大きくなるおそれがある。よって、絶縁性粒子としては、平均粒径0.1〜4μmのものが好ましい。   If the average particle size of the insulating particles is less than 0.1 μm, it is difficult to uniformly disperse them in the adhesive, and insulative variations in the surfaces of the battery exterior materials 5a and 5b are likely to occur. In addition, when the average particle diameter exceeds 4 μm, insulating particles having a particle size larger than the thickness of the adhesive layer after applying and drying the adhesive are included, so that there are many defects in the adhesive layer. This may adversely affect the performance and increase the variation in insulation. Therefore, the insulating particles are preferably those having an average particle size of 0.1 to 4 μm.

また、絶縁性粒子の体積固有抵抗は、10Ω/cm(100MΩ/cm)以上であることが好ましい。これにより、内層53と金属箔層52との絶縁性をより高めることができる。例えば、アルミナは1015Ω/cm程度であり、チッ化硼素は1014Ω/cm程度である。 The volume resistivity of the insulating particles is preferably 10 8 Ω / cm (100 MΩ / cm) or more. Thereby, the insulation of the inner layer 53 and the metal foil layer 52 can be improved more. For example, alumina is about 10 15 Ω / cm, and boron nitride is about 10 14 Ω / cm.

更に、絶縁性粒子の接着層への添加量は、1〜30質量%の範囲で、好ましくは2〜20質量%の範囲にするのがよい。添加量が1質量%未満では、絶縁性粒子の添加効果が発現しにくく、30質量を超えて添加した場合は、接着性に悪影響を与える場合がある。   Furthermore, the addition amount of the insulating particles to the adhesive layer is in the range of 1 to 30% by mass, preferably in the range of 2 to 20% by mass. If the addition amount is less than 1% by mass, the addition effect of the insulating particles is hardly exhibited, and if it is added in excess of 30%, the adhesiveness may be adversely affected.

接着層54、55の厚みは、1〜10μmの範囲が好ましく、1.5〜5μmの範囲がより好ましい。接着層54、55の厚みが0.1μm以上、好ましくは1.5μmであれば、接着強度が低下することがなく、水分透過を抑制でき、また、内層側では内層53の絶縁性をより高めることができる。また、接着層54、55の厚みが10μm以下、より好ましくは5μm以下であれば、接着強度の低下を防止できる。また、内層側の接着層55に添加する絶縁性粒子は上述のように平均粒径0.1〜4μmの範囲内で選択するが、選択した粒子の最大粒子径に留意して、接着層55の厚さよりも最大粒子径が小さい絶縁性粒子を選定することが望ましい。   The thickness of the adhesive layers 54 and 55 is preferably in the range of 1 to 10 μm, and more preferably in the range of 1.5 to 5 μm. If the thickness of the adhesive layers 54 and 55 is 0.1 μm or more, preferably 1.5 μm, the adhesive strength is not lowered, moisture transmission can be suppressed, and the insulation of the inner layer 53 is further enhanced on the inner layer side. be able to. Moreover, if the thickness of the adhesive layers 54 and 55 is 10 μm or less, more preferably 5 μm or less, a decrease in the adhesive strength can be prevented. Insulating particles to be added to the inner layer-side adhesive layer 55 are selected within the range of the average particle size of 0.1 to 4 μm as described above. It is desirable to select insulating particles having a maximum particle size smaller than the thickness of the material.

電池外装材5a、5bの内層53と金属箔層52との絶縁性は、次の評価手法によって評価することができる。
まず、上記のリチウム二次電池1を製造し、リチウム二次電池1の電池用外装体5の外層51を部分的に除去して金属箔層52を露出させる。金属箔層52を露出させる位置は、できるだけ、タブリード2c、3cから離れた位置がよい。次いで、露出させた金属箔層52に導線を接続し、正極2又は負極3のいずれかのタブリード2c、3cにも導線を接続する。なお、金属箔層52を露出させる代わりに、端面に露出する金属箔層52に導電性テープを装着し、この導電性テープに導線を接続してもよい。そして、これらの導線の間に、電源と抵抗測定機を挿入する。そして、電源から導線を介して金属箔層52とタブリード2c、3cとの間に電圧を印加し、このときの金属箔層52とタブリード2c、3cとの間の抵抗値を抵抗測定機によって測定し、得られた抵抗値によって電池用外装材5a、5bの内層の絶縁性を評価する。
The insulation between the inner layer 53 of the battery outer packaging material 5a, 5b and the metal foil layer 52 can be evaluated by the following evaluation method.
First, the lithium secondary battery 1 is manufactured, and the outer layer 51 of the battery outer package 5 of the lithium secondary battery 1 is partially removed to expose the metal foil layer 52. The position where the metal foil layer 52 is exposed is preferably as far as possible from the tab leads 2c and 3c. Next, a conductive wire is connected to the exposed metal foil layer 52, and the conductive wire is also connected to the tab leads 2 c and 3 c of either the positive electrode 2 or the negative electrode 3. Instead of exposing the metal foil layer 52, a conductive tape may be attached to the metal foil layer 52 exposed on the end face, and a conductive wire may be connected to the conductive tape. And a power supply and a resistance measuring machine are inserted between these conducting wires. Then, a voltage is applied between the metal foil layer 52 and the tab leads 2c and 3c from the power source through the conductive wire, and the resistance value between the metal foil layer 52 and the tab leads 2c and 3c at this time is measured by a resistance measuring machine. Then, the insulating properties of the inner layers of the battery outer packaging materials 5a and 5b are evaluated based on the obtained resistance values.

本実施形態の電池用外装材5a、5bは、5〜50ボルト以下の直流電圧を印加させたときに、絶縁抵抗値が1×10Ω以上になるものが好ましい。 The battery packaging materials 5a and 5b of this embodiment are preferably those having an insulation resistance value of 1 × 10 8 Ω or more when a DC voltage of 5 to 50 volts or less is applied.

なお、電池外装材5a、5bの内層53と金属箔層52との絶縁性を評価するにあたり、上記のリチウム二次電池1に代えて、電池用外装体5にタブリードを取り付け、電池外装体5の内部には電解液を満たしたテストセルを用いることもできる。   In evaluating the insulation between the inner layer 53 of the battery outer package 5a, 5b and the metal foil layer 52, a tab lead is attached to the battery outer package 5 instead of the lithium secondary battery 1, and the battery outer package 5 A test cell filled with an electrolytic solution can also be used in the interior of.

本実施形態の電池用外装材5a、5bは、外層51または金属箔層52の表面に、ドライラミネート用接着剤を塗布し、ドライラミネート用接着剤に含まれる溶剤を揮発させる。
そして、外層51と金属箔層52とをドライラミネートすることで、ドライラミネートフィルムを製造する。
次に、ドライラミネートフィルムの金属箔層52または内層53の表面に、絶縁性粒子を含有させた別のドライラミネート用接着剤を塗布して、このドライラミネート用接着剤に含まれる溶剤を揮発させる。そして、ドライラミネートフィルムと内層53とをドライラミネートする。このようにして、本実施形態の電池用外装材5a、5bを製造する。
In the battery exterior materials 5a and 5b of the present embodiment, a dry laminate adhesive is applied to the surface of the outer layer 51 or the metal foil layer 52, and the solvent contained in the dry laminate adhesive is volatilized.
Then, a dry laminate film is manufactured by dry laminating the outer layer 51 and the metal foil layer 52.
Next, another dry laminating adhesive containing insulating particles is applied to the surface of the metal foil layer 52 or the inner layer 53 of the dry laminating film, and the solvent contained in the dry laminating adhesive is volatilized. . Then, the dry laminate film and the inner layer 53 are dry laminated. In this way, the battery packaging materials 5a and 5b of this embodiment are manufactured.

本実施形態の電池用外装材5a、5bによれば、内層53側の接着層55に絶縁性粒子が含有されているので、内層53と金属箔層52との絶縁性を高めることができる。具体的には、リチウム二次電池を構成した状態で金属箔層52と電池の端子(タブリード)とを導線で結線し、5〜50ボルト以下の直流電圧を印加させたときに、絶縁抵抗値を1×10Ω以上とすることができる。
また、接着層55に含まれる絶縁性粒子が、平均粒径0.1μm〜4μmの無機系粒子若しくは平均粒径0.1μm〜4μmの有機系粒子のいずれか一方またはこれらの混合物であり、かつ、接着層5中の絶縁性粒子の添加量が1〜30質量%であるので、内層53と金属箔層52との絶縁性をより高めることができる。
According to the battery exterior materials 5a and 5b of this embodiment, since the insulating particles are contained in the adhesive layer 55 on the inner layer 53 side, the insulation between the inner layer 53 and the metal foil layer 52 can be improved. Specifically, when the metal foil layer 52 and the battery terminal (tab lead) are connected with a conductive wire in a state in which a lithium secondary battery is configured, an insulation resistance value is applied when a DC voltage of 5 to 50 volts or less is applied. Can be 1 × 10 8 Ω or more.
The insulating particles contained in the adhesive layer 55 are either inorganic particles having an average particle diameter of 0.1 μm to 4 μm, organic particles having an average particle diameter of 0.1 μm to 4 μm, or a mixture thereof, and Since the addition amount of the insulating particles in the adhesive layer 5 is 1 to 30% by mass, the insulation between the inner layer 53 and the metal foil layer 52 can be further enhanced.

更に、本実施形態の電池用外装材5a、5bの接着層55は、ウレタン系接着剤、酸変性ポリオレフィン、スチレンエラストマー、アクリル系接着剤、シリコーン系接着剤、エーテル系接着剤、エチレン−酢酸ビニル系接着剤のいずれかよりなるドライラミネート接着剤からなるものである。これらドライラミネート接着剤からなる接着層55を用い、かつ絶縁性粒子を併用することで、内層53と金属箔層52との絶縁性をより高めることができる。   Furthermore, the adhesive layer 55 of the battery exterior materials 5a and 5b of the present embodiment includes a urethane adhesive, an acid-modified polyolefin, a styrene elastomer, an acrylic adhesive, a silicone adhesive, an ether adhesive, and ethylene-vinyl acetate. It consists of a dry laminate adhesive made of any one of the adhesives. By using the adhesive layer 55 made of these dry laminate adhesives and using the insulating particles in combination, the insulation between the inner layer 53 and the metal foil layer 52 can be further enhanced.

本実施形態の電池用外装材5a、5bは、電池外装体5の形状に成形する際に、コーナー部やパンチ肩R部において最も厳しい成形加工を受ける。このようなコーナー部やパンチ肩R部において、ヒートラミネート製法では接着層を介さずに金属箔層と内層とが直接、強固に接着されるため、成形加工時の金属箔層の変形に内層が十分追随できず、金属箔層と内層との界面に微小欠陥が生じやすく、この微小欠陥に電解液が浸透して絶縁性を低下させるおそれがある。一方、本実施形態では、ドライラミネート製法を採用し、接着層55を介して金属箔層52と内層53とが接着されるため、成形加工時に、接着層55が金属箔層52の変形に追随して薄く変形する(伸長する)ので、金属箔層52と接着層55と内層53の各界面に微小欠陥が発生しにくく良好な絶縁性を維持できる。さらにこの接着層55に絶縁性粒子を添加することにより、より良好な絶縁性が得られる。
更に、本実施形態のリチウム二次電池1によれば、上記の電池用外装材5a、5bが備えられているので、金属箔層を介した内部短絡の発生を抑制できる。
The battery case materials 5a and 5b of the present embodiment are subjected to the most severe forming process at the corner part and the punch shoulder R part when forming into the shape of the battery case 5. In such a corner portion and punch shoulder R portion, the metal foil layer and the inner layer are directly and firmly bonded without using an adhesive layer in the heat laminate manufacturing method, so that the inner layer is deformed by the deformation of the metal foil layer during the molding process. Insufficient follow-up, minute defects are likely to occur at the interface between the metal foil layer and the inner layer, and the electrolyte may permeate into these minute defects, possibly reducing the insulation. On the other hand, in this embodiment, since the dry laminate manufacturing method is adopted and the metal foil layer 52 and the inner layer 53 are bonded via the adhesive layer 55, the adhesive layer 55 follows the deformation of the metal foil layer 52 during the molding process. Then, it is deformed thinly (extends), so that it is difficult for minute defects to occur at each interface of the metal foil layer 52, the adhesive layer 55, and the inner layer 53, and good insulation can be maintained. Furthermore, better insulating properties can be obtained by adding insulating particles to the adhesive layer 55.
Furthermore, according to the lithium secondary battery 1 of the present embodiment, since the battery exterior materials 5a and 5b are provided, it is possible to suppress the occurrence of an internal short circuit through the metal foil layer.

(実施例1)
厚さ12μmの延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、汎用品)と、厚さ15μmの延伸ポリアミドフィルム(株式会社興人製、ボニールRX)とを、3μmの二液硬化型ウレタン系接着層を介してドライラミネートして外層フィルムを製造した。
Example 1
A 12 μm thick stretched polyethylene terephthalate film (manufactured by Toray Industries, Inc., general-purpose product) and a 15 μm thick stretched polyamide film (manufactured by Kojin Co., Ltd., Bonyl RX) are combined with a 3 μm two-component curable urethane adhesive layer. The outer layer film was manufactured by dry lamination.

次いで、得られた外層フィルムと、厚さ40μmのアルミニウム箔(JIS規格A8079H-O)とを、3μmの二液硬化型ウレタン系接着層を介して、速度:80m/min,ロール温度:80℃の条件でドライラミネートして外層・金属箔層フィルムを製造した。   Subsequently, the obtained outer layer film and an aluminum foil (JIS standard A8079H-O) having a thickness of 40 μm are passed through a 3 μm two-component curable urethane adhesive layer, speed: 80 m / min, roll temperature: 80 ° C. The outer layer / metal foil layer film was produced by dry lamination under the conditions described above.

次いで、内層として、ポリプロピレン樹脂をTダイ成形法により成形して厚み80μmの未延伸ポリプロピレンフィルムを得た。   Next, as an inner layer, a polypropylene resin was molded by a T-die molding method to obtain an unstretched polypropylene film having a thickness of 80 μm.

そして、内層と、外層・金属箔層フィルムとの間に、厚み4.5μmのオレフィン系接着層を介在させて、速度:80m/min,ロール温度:80℃の条件でドライラミネートすることにより、実施例1の電池用外装材を製造した。なお、内層と外層・金属箔層フィルムとの間のオレフィン系接着層には、平均粒径3.5μmの窒化硼素粒子を3質量%含有させた。オレフィン系接着層は、無水マレイン酸変性ポリプロピレンとヘキサメチレンジイソシアナートをイソシアナート/OH比=5.0となるオレフィン系接着剤を用いた。   And by interposing an olefin adhesive layer having a thickness of 4.5 μm between the inner layer and the outer layer / metal foil layer film, by dry laminating under the conditions of speed: 80 m / min, roll temperature: 80 ° C., The battery packaging material of Example 1 was manufactured. The olefinic adhesive layer between the inner layer and the outer layer / metal foil layer film contained 3% by mass of boron nitride particles having an average particle size of 3.5 μm. As the olefin-based adhesive layer, an olefin-based adhesive in which maleic anhydride-modified polypropylene and hexamethylene diisocyanate are in an isocyanate / OH ratio = 5.0 was used.

(実施例2)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径3.5μmの窒化硼素粒子を20質量%含有させたこと以外は実施例1と同様にして、実施例2の電池用外装材を製造した。
(Example 2)
Example 2 is the same as Example 1 except that 20% by mass of boron nitride particles having an average particle diameter of 3.5 μm are contained in the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film. A battery case was produced.

(実施例3)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径2μmのアルミナ粒子を5質量%含有させたこと以外は実施例1と同様にして、実施例3の電池用外装材を製造した。
Example 3
The battery exterior of Example 3 is the same as Example 1 except that the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film contains 5% by mass of alumina particles having an average particle diameter of 2 μm. The material was manufactured.

(実施例4)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径1.5μmのシリカ系ビーズを5質量%含有させたこと以外は実施例1と同様にして、実施例4の電池用外装材を製造した。
Example 4
In the same manner as in Example 1, except that 5% by mass of silica-based beads having an average particle diameter of 1.5 μm was contained in the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film. A battery case was produced.

(実施例5)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径1.5μmのシリカ系ビーズを5質量%と、平均粒径3.5μmのポリウレタンビーズを10質量%とを含有させたこと以外は実施例1と同様にして、実施例5の電池用外装材を製造した。
(Example 5)
The olefin adhesive layer between the inner layer and the outer layer / metal foil layer film contains 5% by mass of silica beads having an average particle diameter of 1.5 μm and 10% by mass of polyurethane beads having an average particle diameter of 3.5 μm. A battery exterior material of Example 5 was produced in the same manner as Example 1 except that the above was performed.

(実施例6)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径3.5μmのポリウレタンビーズを15質量%を含有させたこと以外は実施例1と同様にして、実施例6の電池用外装材を製造した。
(Example 6)
Example 6 is the same as Example 1 except that 15% by mass of polyurethane beads having an average particle size of 3.5 μm are contained in the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film. A battery case was produced.

(実施例7)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径0.5μmのシリカ系ビーズを10質量%含有させたこと以外は実施例1と同様にして、実施例7の電池用外装材を製造した。
(Example 7)
Example 7 is the same as Example 1 except that 10% by mass of silica beads having an average particle size of 0.5 μm is contained in the olefin adhesive layer between the inner layer and the outer layer / metal foil layer film. A battery case was produced.

(比較例1)
厚さ12μmの延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、汎用品)と、厚さ15μmの延伸ポリアミドフィルム(株式会社興人製、ボニールRX)とを、3μmの二液硬化型ウレタン系接着層を介してドライラミネートして外層フィルムを製造した。
(Comparative Example 1)
A 12 μm thick stretched polyethylene terephthalate film (manufactured by Toray Industries, Inc., general-purpose product) and a 15 μm thick stretched polyamide film (manufactured by Kojin Co., Ltd., Bonyl RX) are combined with a 3 μm two-component curable urethane adhesive layer. The outer layer film was manufactured by dry lamination.

次いで、得られた外層フィルムと、厚さ40μmのアルミニウム箔(JIS規格A8079H-O)とを、3μmの二液硬化型ウレタン系接着層を介して、速度:80m/min,ロール温度:80℃の条件でドライラミネートして外層・金属箔層フィルムを製造した。   Subsequently, the obtained outer layer film and an aluminum foil (JIS standard A8079H-O) having a thickness of 40 μm are passed through a 3 μm two-component curable urethane adhesive layer, speed: 80 m / min, roll temperature: 80 ° C. The outer layer / metal foil layer film was produced by dry lamination under the conditions described above.

次いで、内層として、ポリプロピレン樹脂をTダイ成形法により成形して、厚み80μmの未延伸ポリプロピレンフィルムを得た。   Next, as an inner layer, a polypropylene resin was molded by a T-die molding method to obtain an unstretched polypropylene film having a thickness of 80 μm.

そして、内層と、外層・金属箔層フィルムと無水マレイン酸変性ポリプロピレンとを所定の押し出し条件でヒートラミネートすることにより、比較例1の電池用外装材を製造した。   And the battery exterior material of the comparative example 1 was manufactured by heat laminating the inner layer, the outer layer / metal foil layer film, and maleic anhydride-modified polypropylene under predetermined extrusion conditions.

(比較例2)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、絶縁性粒子を含有させなかったこと以外は実施例1と同様にして、比較例2の電池用外装材を製造した。
(Comparative Example 2)
A battery outer packaging material of Comparative Example 2 was produced in the same manner as in Example 1, except that the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film did not contain insulating particles.

(比較例3)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径1.5μmのシリカ系ビーズを0.3質量%含有させたこと以外は実施例1と同様にして、比較例3の電池用外装材を製造した。
(Comparative Example 3)
Comparative Example as in Example 1, except that 0.3% by mass of silica beads having an average particle size of 1.5 μm was contained in the olefin adhesive layer between the inner layer and the outer layer / metal foil layer film. 3 battery exterior materials were produced.

(比較例4)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径0.07μmの酸化マグネシウム粒子を10質量%含有させたこと以外は実施例1と同様にして、比較例4の電池用外装材を製造した。
(Comparative Example 4)
In the same manner as in Example 1 except that 10% by mass of magnesium oxide particles having an average particle size of 0.07 μm were contained in the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film, A battery case was produced.

(比較例5)
内層と外層・金属箔層フィルムとの間のオレフィン系接着層に、平均粒径6.5μmの窒化硼素粒子を3質量%含有させたこと以外は実施例1と同様にして、比較例5の電池用外装材を製造した。
(Comparative Example 5)
Comparative Example 5 was the same as Example 1 except that the olefin-based adhesive layer between the inner layer and the outer layer / metal foil layer film contained 3% by mass of boron nitride particles having an average particle diameter of 6.5 μm. A battery case was produced.

(評価方法)
(1)絶縁評価用テストセルの調製
図3に示すように、上記の実施例1〜7および比較例1〜5の電池用外装材101に対して5cm×3.25cmの大きさの絞り加工を行った。絞り加工の深さは5.5mmとし、周囲のトリミングを行って9.5cm×6.5cmの大きさとした。
(Evaluation method)
(1) Preparation of Test Cell for Insulation Evaluation As shown in FIG. 3, a drawing process having a size of 5 cm × 3.25 cm with respect to the battery exterior material 101 of Examples 1 to 7 and Comparative Examples 1 to 5 described above. Went. The depth of the drawing process was 5.5 mm, and the surrounding trimming was performed to a size of 9.5 cm × 6.5 cm.

次に、上記の通りに加工した実施例1〜7および比較例1〜5の電池用外装材102と、未加工の実施例1〜7および比較例1〜5の電池用外装材を用いて、図4に示すように、ネッツ社製タブリード103(長さ9cm)を挟み込む形でヒートシールを行って、図5に示すような電池用外装体104を作製した。ヒートシーラーは、テスター産業株式会社製のTP-701-Aを使用した。ヒートシール条件は200℃、0.2MPa、6秒とした。図5に示すように、シール105の箇所は、成形箇所からそれぞれ1cm離れた箇所とした。   Next, using the battery exterior materials 102 of Examples 1 to 7 and Comparative Examples 1 to 5 processed as described above, and the battery exterior materials of Examples 1 to 7 and Comparative Examples 1 to 5 that were not processed As shown in FIG. 4, heat sealing was performed by sandwiching a Netz tab lead 103 (length: 9 cm) to produce a battery outer package 104 as shown in FIG. 5. TP-701-A manufactured by Tester Sangyo Co., Ltd. was used as the heat sealer. The heat sealing conditions were 200 ° C., 0.2 MPa, and 6 seconds. As shown in FIG. 5, the location of the seal 105 was a location 1 cm away from the molding location.

電池用外装材101の3辺についてシール加工を行って電池外装体104を形成した後、キシダ科学製の7.5mlの電解液を容器内に注入した。電解液の成分は濃度1MのLiPF6を溶質とし、エチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合溶液を溶質とした。電解液注入後、四辺目のヒートシールを行い、図6に示すように、電解液を電池外装体104内に封入して試験セル106を製造した。 After sealing the three sides of the battery exterior material 101 to form the battery exterior body 104, 7.5 ml of an electrolyte solution manufactured by Kishida Kagaku was injected into the container. As a component of the electrolytic solution, LiPF 6 having a concentration of 1M was used as a solute, and a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) was used as a solute. After injection of the electrolytic solution, heat sealing was performed on the fourth side, and the electrolytic solution was enclosed in the battery outer package 104 as shown in FIG.

電解液封入後、試験セル106の下部に日新EM株式会社製のSEM用カーボンテープと貼り付けた。これは安定した測定を行うために、測定装置プローブとの接触面を増加させる目的で行った。なお、実施例1〜実施例7及び比較例2〜5の場合、図7に示すように、内部の回路は、タブリード103/電解液107/内層108/接着層109/金属箔層110/カーボンテープ112から構成される。これに対して比較例1の場合、図8に示すように、内部の回路はタブリード103/電解液107/内層108/金属箔層110/カーボンテープ112となる。なお、符号113は絶縁抵抗試験器である。図7及び図8に示す絶縁評価用テストセルは、実施例1〜7及び比較例1〜5においてそれぞれ5個づつ作製した。   After the electrolytic solution was sealed, a carbon tape for SEM manufactured by Nissin EM Co., Ltd. was attached to the lower part of the test cell 106. This was performed for the purpose of increasing the contact surface with the measuring device probe in order to perform stable measurement. In the case of Examples 1 to 7 and Comparative Examples 2 to 5, as shown in FIG. 7, the internal circuit is tab lead 103 / electrolytic solution 107 / inner layer 108 / adhesive layer 109 / metal foil layer 110 / carbon. It consists of a tape 112. On the other hand, in the case of Comparative Example 1, as shown in FIG. 8, the internal circuit is tab lead 103 / electrolytic solution 107 / inner layer 108 / metal foil layer 110 / carbon tape 112. Reference numeral 113 denotes an insulation resistance tester. Insulation evaluation test cells shown in FIG. 7 and FIG. 8 were produced in units of five in Examples 1 to 7 and Comparative Examples 1 to 5, respectively.

(2)絶縁評価
絶縁試験には日置電機株式会社製絶縁抵抗試験器3154を使用した。測定レンジは200MΩ〜1000MΩ、印加電圧は25V、印加時間は10秒とした。図9に示すように、プローブをそれぞれタブリードおよびカーボンテープに接触させた状態で測定を行った。結果を表1に示す。
(2) Insulation evaluation An insulation resistance tester 3154 manufactured by Hioki Electric Co., Ltd. was used for the insulation test. The measurement range was 200 MΩ to 1000 MΩ, the applied voltage was 25 V, and the application time was 10 seconds. As shown in FIG. 9, the measurement was performed with the probe in contact with the tab lead and the carbon tape, respectively. The results are shown in Table 1.

Figure 0006121710
Figure 0006121710

(結果)
実施例1〜7は、120〜860MΩ程度の絶縁抵抗値を示していたことに対し、比較例1〜5はいずれも、0.5〜50MΩ程度の絶縁抵抗値となっていた。また、比較例5は、5つの試料の絶縁抵抗値が30〜170MΩの範囲で大きくばらついていた。
この差異は内層側の接着層に各種の絶縁性粒子を含有させたことによると推測される。また、実施例1〜7と、比較例3〜5の結果を対比したところでは、単に絶縁性粒子を含有させるだけではなく、その平均粒径と接着層中の含有量を調整すべきであることがわかる。
(result)
Examples 1 to 7 showed insulation resistance values of about 120 to 860 MΩ, while Comparative Examples 1 to 5 all had insulation resistance values of about 0.5 to 50 MΩ. In Comparative Example 5, the insulation resistance values of the five samples varied greatly in the range of 30 to 170 MΩ.
This difference is presumed to be due to the inclusion of various insulating particles in the adhesive layer on the inner layer side. Further, when the results of Examples 1 to 7 and Comparative Examples 3 to 5 are compared, not only the insulating particles are contained, but the average particle size and the content in the adhesive layer should be adjusted. I understand that.

1…リチウム二次電池、5a、5b…電池用外装材、51…外層、52…金属箔層、53…内層、55…接着層。   DESCRIPTION OF SYMBOLS 1 ... Lithium secondary battery, 5a, 5b ... Battery exterior material, 51 ... Outer layer, 52 ... Metal foil layer, 53 ... Inner layer, 55 ... Adhesive layer.

Claims (8)

耐熱性樹脂フィルムを含む外層と、金属箔層と、接着層と、熱可塑性樹脂フィルムを含む内層とが積層されてなる電池用外装材において、
前記接着層に絶縁性粒子が含有され、
前記絶縁性粒子が、平均粒径0.1μm〜4μmの無機系粒子、平均粒径0.1μm〜4μmの有機系粒子のいずれか一方またはこれらの混合物であり、かつ、前記接着層中の前記絶縁性粒子の添加量が1〜30質量%であり、
前記接着層が、その厚みよりも大きな粒径の前記絶縁性粒子を含有しておらず、
前記絶縁性粒子の体積固有抵抗が、10 Ω/cm(100MΩ/cm)以上であることを特徴とする電池用外装材。
In a battery exterior material in which an outer layer containing a heat-resistant resin film, a metal foil layer, an adhesive layer, and an inner layer containing a thermoplastic resin film are laminated,
Insulating particles are contained in the adhesive layer,
The insulating particles are any one of inorganic particles having an average particle size of 0.1 μm to 4 μm, organic particles having an average particle size of 0.1 μm to 4 μm, or a mixture thereof, and the above-mentioned in the adhesive layer the addition amount of the insulating particles Ri to 30% by mass,
The adhesive layer does not contain the insulating particles having a particle size larger than its thickness,
The insulating volume resistivity of the particles, 10 8 Ω / cm (100MΩ / cm) or more der Rukoto outer casing material for a battery according to claim.
前記接着層が、ドライラミネート用接着剤よりなる請求項1に記載の電池用外装材。   The battery exterior material according to claim 1, wherein the adhesive layer is made of an adhesive for dry lamination. 前記接着層が、ウレタン系接着剤、酸変性ポリオレフィン、スチレンエラストマー、アクリル系接着剤、シリコーン系接着剤、エーテル系接着剤、エチレン−酢酸ビニル系接着剤のいずれかよりなる請求項2に記載の電池用外装材。   The adhesive layer according to claim 2, wherein the adhesive layer is made of any one of a urethane adhesive, an acid-modified polyolefin, a styrene elastomer, an acrylic adhesive, a silicone adhesive, an ether adhesive, and an ethylene-vinyl acetate adhesive. Battery exterior material. 前記内層がポリオレフィンからなり、前記外層がポリアミドまたはポリエステルからなる請求項1乃至請求項3の何れか一項に記載の電池用外装材。   The battery outer packaging material according to any one of claims 1 to 3, wherein the inner layer is made of polyolefin, and the outer layer is made of polyamide or polyester. 前記金属箔層が、アルミニウム箔、鉄箔、ステンレス箔、銅箔のいずれかからなる請求項1乃至請求項4の何れか一項に記載の電池用外装材。   The battery outer packaging material according to any one of claims 1 to 4, wherein the metal foil layer is made of any one of an aluminum foil, an iron foil, a stainless steel foil, and a copper foil. 前記外層と前記金属箔層とが、前記接着層とは材質の異なる接着層を介して貼り合わされている請求項1乃至請求項5の何れか一項に記載の電池用外装材。   The battery outer packaging material according to any one of claims 1 to 5, wherein the outer layer and the metal foil layer are bonded together via an adhesive layer made of a material different from that of the adhesive layer. 深絞り成形または張出成形によって凹部が形成されてなる請求項1乃至請求項6の何れか一項に記載の電池用外装材。   The battery exterior material according to any one of claims 1 to 6, wherein a concave portion is formed by deep drawing or bulging. 請求項1乃至請求項7の何れか一項に記載の電池用外装材が備えられていることを特徴とするリチウム二次電池。   A lithium secondary battery comprising the battery exterior material according to any one of claims 1 to 7.
JP2012281141A 2012-12-25 2012-12-25 Battery exterior material and lithium secondary battery Active JP6121710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281141A JP6121710B2 (en) 2012-12-25 2012-12-25 Battery exterior material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281141A JP6121710B2 (en) 2012-12-25 2012-12-25 Battery exterior material and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014127258A JP2014127258A (en) 2014-07-07
JP6121710B2 true JP6121710B2 (en) 2017-04-26

Family

ID=51406617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281141A Active JP6121710B2 (en) 2012-12-25 2012-12-25 Battery exterior material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6121710B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864882B1 (en) * 2015-05-19 2018-06-08 주식회사 엘지화학 Battery Case Comprising PTFE-Based Material
JP6728600B2 (en) * 2015-09-02 2020-07-22 凸版印刷株式会社 Power storage device exterior material
JP6728579B2 (en) * 2015-06-10 2020-07-22 凸版印刷株式会社 Secondary battery exterior material
CN106252533A (en) * 2015-06-10 2016-12-21 凸版印刷株式会社 Electrical storage device exterior member
JP6874471B2 (en) * 2017-03-30 2021-05-19 Tdk株式会社 Non-aqueous electrolyte secondary battery
JP7283098B2 (en) * 2019-02-05 2023-05-30 凸版印刷株式会社 LAMINATED FILM AND METHOD FOR MANUFACTURING THE SAME, AND PACKAGING CONTAINER AND METHOD FOR MANUFACTURING THE SAME
KR102276075B1 (en) * 2019-09-23 2021-07-13 한국과학기술연구원 Multi-layer composite film for an inner sealant layer of a pouch-type lithium secondary battery
CN117673586A (en) * 2022-08-24 2024-03-08 深圳市中睿新材料技术有限公司 Multilayer composite structure for lithium ion battery packaging, preparation method of multilayer composite structure and lithium ion battery
KR20240062831A (en) * 2022-11-02 2024-05-09 에스케이온 주식회사 Adhesive composition and packaging material for battery
CN116254069A (en) * 2023-01-19 2023-06-13 浙江道明光电科技有限公司 Battery packaging film and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286969A (en) * 1996-04-24 1997-11-04 Kansai Paint Co Ltd Adhesive for film laminate and polyester film-laminated metal plate using the same adhesive
JP3829526B2 (en) * 1998-04-24 2006-10-04 凸版印刷株式会社 Barrier laminate, packaging material using the same, and packaging body using the same
JP2003217529A (en) * 2002-01-21 2003-07-31 Toyo Aluminium Kk Laminated material for secondary cell
JP4508536B2 (en) * 2003-01-30 2010-07-21 大日本印刷株式会社 Lithium battery packaging
JP5010097B2 (en) * 2004-07-23 2012-08-29 昭和電工パッケージング株式会社 Electronic component case packaging material, electronic component case and electronic component
JP5453709B2 (en) * 2005-11-25 2014-03-26 日産自動車株式会社 Exterior material for electrochemical device and electrochemical device using the same
EP2080613B1 (en) * 2006-11-16 2016-03-16 Mitsubishi Plastics, Inc. Gas barrier film laminate
JP5240223B2 (en) * 2010-03-29 2013-07-17 大日本印刷株式会社 Battery packaging materials
EP2772958B1 (en) * 2011-10-25 2017-12-13 Dai Nippon Printing Co., Ltd. Packaging material for electrochemical cell
JP5609920B2 (en) * 2012-05-29 2014-10-22 大日本印刷株式会社 Polymer battery

Also Published As

Publication number Publication date
JP2014127258A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6121710B2 (en) Battery exterior material and lithium secondary battery
JP5755975B2 (en) Battery exterior material and lithium secondary battery
JP5959205B2 (en) Battery exterior material, battery exterior material molding method and lithium secondary battery
JP5457040B2 (en) Electrochemical device and manufacturing method thereof
KR100879893B1 (en) Secondary Battery Having Safety-improved Sealing Portion
JP6292583B2 (en) Secondary battery with improved energy density
JP6006104B2 (en) Tab lead manufacturing method
JP5169112B2 (en) Flat type electrochemical cell metal terminal sealing adhesive sheet
JP6204598B2 (en) Pouch-type battery cell including a film member for protecting an electrode lead-electrode tab joint
WO1997040539A1 (en) Non-aqueous electrolyte cell
KR101229228B1 (en) Secondary Battery with Improved Moisture Barrier
JP2008251342A (en) Lithium ion battery and battery pack having the same
JP2014026980A (en) Electrochemical device
JP7282663B2 (en) tab lead and lithium ion battery
CN107204406B (en) Outer packaging material for electricity storage device and electricity storage device
JP2010086744A (en) Packing material for battery outer package
KR100874384B1 (en) Laminate Sheet for Battery Case and Lithium Secondary Battery Containing the Same
JP2014120339A (en) Sheath material for air secondary battery, manufacturing method of sheath material for air secondary battery and air secondary battery
KR20140032710A (en) Method for preparing pouch-type secondary battery
KR20190109146A (en) The Apparatus For Taping The Secondary Battery
KR20160019172A (en) Battery Cell Comprising Battery Case Having Separation film
JP2005216659A (en) Lithium secondary battery
JP2015156404A (en) Exterior material for battery and lithium secondary battery
KR101661562B1 (en) a secondary battery sealing by sealant
JP2004087472A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6121710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250