JP6120134B2 - Conductive film - Google Patents

Conductive film Download PDF

Info

Publication number
JP6120134B2
JP6120134B2 JP2012289475A JP2012289475A JP6120134B2 JP 6120134 B2 JP6120134 B2 JP 6120134B2 JP 2012289475 A JP2012289475 A JP 2012289475A JP 2012289475 A JP2012289475 A JP 2012289475A JP 6120134 B2 JP6120134 B2 JP 6120134B2
Authority
JP
Japan
Prior art keywords
film
weight
parts
resin
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012289475A
Other languages
Japanese (ja)
Other versions
JP2014125634A (en
Inventor
伊藤 彰彦
彰彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012289475A priority Critical patent/JP6120134B2/en
Publication of JP2014125634A publication Critical patent/JP2014125634A/en
Application granted granted Critical
Publication of JP6120134B2 publication Critical patent/JP6120134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は導電性及び強度に優れ、かつ薄いカーボンナノチューブ含有フィルムに関するもので、導電性が要求される各種材料、電磁波シールド材、電磁波吸収材、電気二重層キャパシター等の集電体及び放熱シート等に用いることができる。The present invention relates to a carbon nanotube-containing film excellent in conductivity and strength, and relates to various materials that require conductivity, electromagnetic wave shielding materials, electromagnetic wave absorbing materials, current collectors such as electric double layer capacitors, and heat dissipation sheets. Can be used.

高導電性フィルムを電磁波シールド材、及び電気二重層キャパシター等の集電体等に用いるための方法が提案されている。A method for using a highly conductive film for a current collector such as an electromagnetic shielding material and an electric double layer capacitor has been proposed.

導電材として金属を用いると高導電性フィルムが得られるが、酸化により導電性が低下するという問題がある。このため、変質しにくい炭素系導電材を用いて開発が進められている。When a metal is used as the conductive material, a highly conductive film can be obtained, but there is a problem that the conductivity decreases due to oxidation. For this reason, development is progressing using the carbon-type electrically conductive material which does not change easily.

電磁波シールド材用の例としては、導電材と樹脂を樹脂の溶融温度以上で混練して成形し気相成長炭素繊維、カーボンブラック及び合成樹脂を溶融混練し成形した導電性フィルムが提案されている(特許文献1)。しかしながら、具体的な体積抵抗率は0.1Ω・cmオーダーであり、かつフィルムの厚さは1mmと厚い。また強度についてはなんら記載されていない。As an example for an electromagnetic shielding material, a conductive film is proposed in which a conductive material and a resin are kneaded and molded at a temperature equal to or higher than the melting temperature of the resin, and vapor-grown carbon fiber, carbon black, and a synthetic resin are melt-kneaded and molded. (Patent Document 1). However, the specific volume resistivity is on the order of 0.1 Ω · cm, and the thickness of the film is as thick as 1 mm. Moreover, there is no description about strength.

また、黒鉛化した気相成長炭素繊維、カーボンブラック及び合成樹脂を溶融混練し成形した導電性フィルムが提案されている(特許文献2)。体積抵抗率の具体例の最低は0.05Ω・cmとやや低いが、具体的なフィルム厚さは1mmと厚い。また強度についてはなんら記載されていない。In addition, a conductive film obtained by melt-kneading graphitized vapor-grown carbon fiber, carbon black, and synthetic resin has been proposed (Patent Document 2). The specific example of the volume resistivity is as low as 0.05 Ω · cm, but the specific film thickness is as thick as 1 mm. Moreover, there is no description about strength.

更に、導電材と樹脂またはモノマーを有機溶媒に混合して離型フィルム等に塗工する例として重合前は液状または有機溶媒に溶解して液状となる重合性組成物と導電性ナノサイズ繊維状炭素材料を溶液状態で混合し、重合して固化して得られる電磁波遮蔽材料が提案されている(特許文献3)。しかしながら、具体的な体積抵抗率は0.1Ω・cmオーダーであり、また具体的なフィルム厚さは0.35mmと厚い。また、強度についてはなんら記載されていない。そして液状モノマー又は有機溶剤を用いるため設備コスト、生産コスト並びに環境面で不利となる。Furthermore, as an example of mixing a conductive material and a resin or monomer in an organic solvent and coating it on a release film or the like, a polymerizable composition and a conductive nano-sized fibrous material that are liquid or dissolved in an organic solvent before polymerization An electromagnetic shielding material obtained by mixing a carbon material in a solution state and polymerizing and solidifying has been proposed (Patent Document 3). However, the specific volume resistivity is on the order of 0.1 Ω · cm, and the specific film thickness is as thick as 0.35 mm. In addition, there is no description about strength. And since a liquid monomer or an organic solvent is used, it is disadvantageous in terms of equipment cost, production cost and environment.

電気二重層キャパシター等の集電体用の例としては、有機溶剤に熱可塑性樹脂を溶解し、微細な炭素繊維を分散させた塗工液を塗工し、熱可塑性樹脂/(微細な炭素繊維)の混合体積比が50/50の時の体積抵抗値が0.01〜0.03Ω・cmであると共に混合体積比が90/10の時の体積抵抗値が0.1〜0.5Ω・cmである導電性フィルムが提案されている(特許文献4)。具体的には厚み100μで最も低い体積抵抗率0.02Ω・cmが記載されている。しかしながら、強度についてはなんら記載されていない。そして、有機溶剤を用いるため設備コスト、生産コスト並びに環境面で不利となる。As an example for a current collector such as an electric double layer capacitor, a thermoplastic resin is dissolved in an organic solvent, and a coating liquid in which fine carbon fibers are dispersed is applied, and thermoplastic resin / (fine carbon fibers ) When the mixing volume ratio is 50/50, the volume resistance value is 0.01 to 0.03 Ω · cm, and when the mixing volume ratio is 90/10, the volume resistance value is 0.1 to 0.5 Ω · cm. A conductive film having a thickness of cm has been proposed (Patent Document 4). Specifically, the lowest volume resistivity of 0.02 Ω · cm at a thickness of 100 μm is described. However, there is no description about strength. And since an organic solvent is used, it becomes disadvantageous in terms of equipment cost, production cost and environment.

また、芳香族ビニル−共役ジエンブロック共重合体の水素添加物を含有する重合体及び炭素繊維及び炭素繊維以外の導電性フィラーに重合体成分を溶解するか分散する有機溶剤を加えて混合し離型フィルムに塗工し、乾操して剥離して得られる導電性フィルムが提案されている(特許文献5)。具体的には厚さ30μと薄く強度もあるが、体積抵抗率は0.1Ω・cmオーダーである。そして有機溶剤を用いるため設備コスト、生産コスト並びに環境面で不利となる。In addition, an organic solvent that dissolves or disperses the polymer component is added to the polymer containing the hydrogenated aromatic vinyl-conjugated diene block copolymer, carbon fiber, and a conductive filler other than carbon fiber, and mixed and separated. An electroconductive film obtained by coating on a mold film and drying and peeling is proposed (Patent Document 5). Specifically, although it is as thin as 30 μm and strong, the volume resistivity is on the order of 0.1 Ω · cm. And since an organic solvent is used, it becomes disadvantageous in terms of equipment cost, production cost and environment.

更に、熱可塑性樹脂に導電剤を含み、体積抵抗率が0.01〜5Ω・cmでかつ引張強度が10〜20MPaである電気二重層キャパシター用集電体が提案されている(特許文献6)。しかしながら具体的に示された最も低い体積抵抗率は0.52Ω・cmと高く、厚さは0.3mmと厚い。Furthermore, a current collector for an electric double layer capacitor that includes a conductive agent in a thermoplastic resin, has a volume resistivity of 0.01 to 5 Ω · cm, and a tensile strength of 10 to 20 MPa has been proposed (Patent Document 6). . However, the lowest volume resistivity specifically shown is as high as 0.52 Ω · cm, and the thickness is as thick as 0.3 mm.

特開2010−260985号公報JP 2010-260985 A 特開2010−18685号公報JP 2010-18865 A 特開2005−191384号公報JP 2005-191384 A 特開2004−123814号公報JP 2004-123814 A 特開2011−68747号公報JP 2011-68747 A 特開2004−31468号公報JP 2004-31468 A

本発明の課題は塗工液に有機溶剤を用いることなく、厚さが薄くても強度が高くかつ体積抵抗率が十分に低い導電性フィルムを提供することである。An object of the present invention is to provide a conductive film having a high strength and a sufficiently low volume resistivity even when the thickness is small, without using an organic solvent in the coating solution.

本発明はカーボンナノチューブ水分散液と樹脂水分散液の混合液を離型フィルムに塗工乾燥した後、離型フィルムを剥離して得られることを特徴とする導電性フィルムにおいて、下記(1)〜(3)の条件を満たす前記導電性フィルムである。
(1)前記カーボンナノチューブと前記樹脂の重量比率が前記カーボンナノチューブ100重量部に対して前記樹脂が固形分で20〜300重量部である。
(2)体積抵抗率が0.059Ω・cm以下である。
(3)引張強度が5N/15mm以上である。
The present invention was coated dry mixture of carbon nanotubes aqueous dispersion and resin water dispersion release film, in a conductive film characterized in that it is obtained by peeling off the release film, the following (1) It is the said electroconductive film which satisfy | fills the conditions of (3).
(1) The weight ratio of the carbon nanotube to the resin is 20 to 300 parts by weight in solid content of the resin with respect to 100 parts by weight of the carbon nanotube.
(2) The volume resistivity is 0.059 Ω · cm or less.
(3) The tensile strength is 5 N / 15 mm or more.

また、フィルムの厚さが10〜100μであることを特徴とする前記導電性フィルムである。 Moreover, the thickness of a film is 10-100 micrometers, It is the said electroconductive film characterized by the above-mentioned.

また、カーボンナノチューブ水分散液と樹脂水分散液の混合液を離型フィルムに塗工乾燥した後、離型フィルムを剥離して得られることを特徴とする導電性フィルムにおいて、前記カーボンナノチューブと前記樹脂の重量比率が前記カーボンナノチューブ100重量部に対して前記樹脂が固形分で20重量部以上100重量部未満である前記導電性フィルムである。Further, after the coating drying a mixture of carbon nanotubes aqueous dispersion and resin water dispersion release film, in a conductive film characterized in that it is obtained by peeling off the release film, the said carbon nanotube In the conductive film, the resin has a solid content of 20 parts by weight or more and less than 100 parts by weight based on 100 parts by weight of the carbon nanotubes.

本発明によれば、水系の塗工液を用いて薄くても強度があり体積抵抗率が十分に低いフィルムが得られる。According to the present invention, it is possible to obtain a film having strength even when thin using an aqueous coating solution and having a sufficiently low volume resistivity.

本発明における導電材はカーボンナノチューブである。カーボンナノチューブの製造法にはCVD法、レーザー蒸発法、アーク放電法等があるが、いずれの製造法で製造されたカーボンナノチューブであってもよい。また、カーボンナノチューブには単層と多層があるが、いずれでもよい。通常、カーボンナノチューブの径は1〜100nmで長さは数μm〜数100μmである。これらのカーボンナノチューブは多数のナノチューブが凝集したバンドル状で製造され販売されている。The conductive material in the present invention is a carbon nanotube. The carbon nanotube production method includes a CVD method, a laser evaporation method, an arc discharge method, and the like, and may be a carbon nanotube produced by any production method. Carbon nanotubes can be either single-walled or multi-walled, and any of them may be used. Usually, the carbon nanotube has a diameter of 1 to 100 nm and a length of several μm to several hundred μm. These carbon nanotubes are manufactured and sold in the form of bundles in which many nanotubes are aggregated.

塗工液を調製するためにはこれらの凝集体を、まず1本1本に分散する必要がある。これには通常、分散剤と分散器具が用いられる。分散剤としてはナフタレンスルホン酸系ホルマリン縮合物のナトリウム塩、ポリスチレンスルホン酸ナトリウム、ドデシルジフェニルエーテルスルホン酸ジナトリウム等の合成系の化合物や天然物としては水溶性キシランがある。これらの分散剤を単独または混合して用いる。In order to prepare a coating solution, it is necessary to first disperse these aggregates one by one. For this, a dispersing agent and a dispersing device are usually used. As the dispersant, there are synthetic compounds such as sodium salt of naphthalene sulfonic acid-based formalin condensate, sodium polystyrene sulfonate, and disodium dodecyl diphenyl ether sulfonate, and water-soluble xylan as natural products. These dispersants are used alone or in combination.

分散剤の添加率はカーボンナノチューブ100重量部に対して10〜200重量部である。10重量部未満では分散が困難になる。200重量部を越えても分散可能であるが、フィルム中の水可溶性成分が多くなるので好ましくない。The addition rate of a dispersing agent is 10-200 weight part with respect to 100 weight part of carbon nanotubes. If it is less than 10 parts by weight, dispersion becomes difficult. Even if it exceeds 200 parts by weight, it can be dispersed, but it is not preferable because the water-soluble component in the film increases.

分散器具としては超音波ホモジナイザー、湿式微粒化装置、あるいは高速攪拌装置等がある。Examples of the dispersing device include an ultrasonic homogenizer, a wet atomizer, and a high-speed stirring device.

上記分散剤を添加して上記分散器具を用いれば比較的簡単にカーボンナノチューブを分散することができる。If the dispersing agent is added and the dispersing device is used, the carbon nanotubes can be dispersed relatively easily.

カーボンナノチューブ分散液に添加してフィルムを形成させる樹脂水分散液としてはポリエステル水分散液、アクリル系樹脂エマルジョン、スチレン−ブタジエン系共重合樹脂エマルジョン、アクリロニトリル−ブタジエン系共重合樹脂エマルジョン、ポリウレタンエマルジョン、天然ゴムラテックス等がある。Polyester aqueous dispersions, acrylic resin emulsions, styrene-butadiene copolymer resin emulsions, acrylonitrile-butadiene copolymer resin emulsions, polyurethane emulsions, natural emulsions can be added to carbon nanotube dispersions to form films. There are rubber latex.

本発明の導電性フィルムはカーボンナノチューブ水分散液と樹脂水分散液の混合液を離型フィルムに塗工乾燥した後、離型フィルムを剥がすことにより得られる。The conductive film of the present invention can be obtained by coating and drying a mixture of a carbon nanotube aqueous dispersion and a resin aqueous dispersion on a release film and then peeling the release film.

カーボンナノチューブ100重量部に対する樹脂の固形分は好ましくは20〜300重量部である。樹脂の固形分の割合が20重量部未満ではフィルムの強度が弱くなる。また300重量部を越えると導電性低下が大きくなる。The solid content of the resin with respect to 100 parts by weight of the carbon nanotubes is preferably 20 to 300 parts by weight. When the ratio of the solid content of the resin is less than 20 parts by weight, the strength of the film becomes weak. On the other hand, if the amount exceeds 300 parts by weight, the decrease in conductivity becomes large.

導電性フィルムの厚さは好ましくは10〜100μmである。10μm未満では強度が弱くなる。また100μmを越えるとかさばるため用途が限定される。The thickness of the conductive film is preferably 10 to 100 μm. If it is less than 10 μm, the strength becomes weak. Moreover, since it will be bulky when it exceeds 100 micrometers, a use is limited.

上記対応により薄くても強度があり体積抵抗率が10−2Ω・cmオーダーの導電性フィルムを得ることができる。Due to the above correspondence, a conductive film having strength and volume resistivity of the order of 10 −2 Ω · cm can be obtained even if it is thin.

塗工液の主成分はカーボンナノチューブ分散液と樹脂水分散液である。しかしながら、塗工性の改善、塗工フィルムの物性改善あるいは難燃化のために副成分を加えることができる。The main components of the coating liquid are a carbon nanotube dispersion and a resin aqueous dispersion. However, subcomponents can be added to improve the coating properties, improve the physical properties of the coating film, or make it flame retardant.

カーボンナノチューブ分散液と樹脂水分散液の混合液を離型フィルムへ塗工する時のレベリング性を改善するためにレベリング剤を加えることができる。レベリング剤としてフッ素系及びシリコーン系の界面活性剤、及びアクリル系高分子を単独あるいは混合して用いることができる。添加量は塗工液主成分の固形分に対し1%以下で十分である。A leveling agent can be added in order to improve the leveling property when the mixed solution of the carbon nanotube dispersion and the resin aqueous dispersion is applied to the release film. Fluorine and silicone surfactants and acrylic polymers can be used alone or in combination as leveling agents. An addition amount of 1% or less is sufficient with respect to the solid content of the coating liquid main component.

フィルムの強度改善あるいは耐溶剤性改善のために架橋剤を用いることができる。具体的にはイソシアネートがある。A crosslinking agent can be used to improve the strength of the film or the solvent resistance. Specifically, there is an isocyanate.

フィルムを難燃化するために難燃剤を用いることができる。難燃剤としては粒径が細かく、水不溶性あるいは難溶性でかつ不溶融性あるいは高融点でかつ塗工液に均一分散できるタイプが好ましい。具体的にはメラミンシアヌレート、ポリリン酸メラミン、表面処理ポリリン酸アンモニウム等がある。A flame retardant can be used to make the film flame retardant. As the flame retardant, a type having a fine particle size, water-insoluble or hardly soluble, infusible or having a high melting point and capable of being uniformly dispersed in the coating liquid is preferable. Specific examples include melamine cyanurate, melamine polyphosphate, and surface-treated ammonium polyphosphate.

この液を離型フィルムに塗工し乾操することにより塗工層が得られる。塗工にはワイヤーバーコーター、ナイフコーター、エアーナイフコーター、ブレードコーター、リバースロールコーター、ダイコーター等を用いることができる。A coating layer is obtained by coating this liquid on a release film and drying. For the coating, a wire bar coater, knife coater, air knife coater, blade coater, reverse roll coater, die coater or the like can be used.

1回の塗工で目的とする厚さあるいは性能が得られない場合は複数回塗工すればよい。If the desired thickness or performance cannot be obtained by a single coating, it may be applied multiple times.

分散剤として比較的水に溶解し易い分散剤(低分子分散剤)を用いた場合は塗工乾操後に水浸漬処理して分散剤を溶出できる。これによりフィルム中のカーボンナノチューブの比率が向上する。When a dispersant (low molecular dispersant) that is relatively easily dissolved in water is used as the dispersant, the dispersant can be eluted by dipping in water after coating and drying. This improves the ratio of carbon nanotubes in the film.

塗工乾操後、あるいは水溶出処理後に塗工層を離型フィルムから剥がすことにより導電性フィルムが得られる。A conductive film can be obtained by peeling the coating layer from the release film after the coating drying operation or after the water elution treatment.

以下に実施例を挙げて本発明を具体的に説明する。なお、本発明の実施例における物性は以下の方法で測定した。The present invention will be specifically described below with reference to examples. In addition, the physical property in the Example of this invention was measured with the following method.

[フィルム厚さ]
デジタルマイクロメーターを用いて測定した。
[Film thickness]
Measurement was performed using a digital micrometer.

[体積抵抗率]
JIS K 7194(四探針法)により、抵抗を測定し下式(1)により体積抵抗率を算出した。
体積抵抗率=抵抗×補正係数×フィルム厚さ・・・(1)
[Volume resistivity]
The resistance was measured by JIS K 7194 (four-probe method), and the volume resistivity was calculated by the following equation (1).
Volume resistivity = resistance × correction coefficient × film thickness (1)

[引張強度]
JIS K 7127により測定した。
[Tensile strength]
It was measured according to JIS K 7127.

[難燃性]
UL94の50W垂直燃焼試験法により測定した。
[Flame retardance]
It was measured by the UL94 50W vertical combustion test method.

[電磁波シールド性]
KEC法により電界シールド性を測定した。
[Electromagnetic shielding]
The electric field shielding property was measured by the KEC method.

[熱伝導率]
周期加熱法により測定した。
[Thermal conductivity]
It was measured by a periodic heating method.

実施例1
昭和電工製多層カーボンナノチューブVGCF−Xを、分散剤としてIPE製水溶性キシランを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.5%、水溶性キシラン1.0%の分散液を調製した。この分散液に東洋紡製水分散ポリエステル樹脂バイロナールMD−1930をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、更にレベリング剤としてネオス社製FT−100を少量加えて攪拌し塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で3回塗工乾燥して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 1
Showa Denko multi-walled carbon nanotube VGCF-X was dispersed with an ultrasonic homogenizer using IPE water-soluble xylan as a dispersant to prepare a dispersion of carbon nanotubes 3.5% and water-soluble xylan 1.0%. To this dispersion, Toyobo's water-dispersed polyester resin Vylonal MD-1930 was added to 100 parts by weight of carbon nanotubes so that the solid content was 100 parts by weight, and a small amount of Neos FT-100 was added as a leveling agent. The mixture was stirred to prepare a coating solution. This was applied to a release PET film three times with a wire bar # 90 and dried, the release PET film was peeled off, and the physical properties were measured. This is shown in Table 1.

実施例2
ナノシル製多層カーボンナノチューブNC−7000を、分散剤として花王製デモールNを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.8%、デモールMS1.9%の分散液を調製した。この分散液に三井化学製アクリル系樹脂エマルジョンボンロンS−1294をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、FT−100を少量加えて攪拌し塗工液を調製した。これを離型PETフィルムにワイヤーバー#70で4回塗工し、塗工乾操毎に水浸漬して分散剤を溶出し乾操して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 2
Nanosil multi-wall carbon nanotubes NC-7000 were dispersed with an ultrasonic homogenizer using Kao-made Demol N as a dispersant to prepare a dispersion of 3.8% carbon nanotubes and 1.9% Demol MS. To this dispersion, Mitsui Chemicals acrylic resin emulsion Bonlon S-1294 is added to 100 parts by weight of carbon nanotubes so that the solid content is 100 parts by weight, and a small amount of FT-100 is added and stirred to form a coating solution. Was prepared. This was coated four times on a release PET film with a wire bar # 70, immersed in water each time the coating was dried, the dispersant was eluted and dried, the release PET film was peeled off, and the physical properties were measured. This is shown in Table 1.

実施例3
カーボンナノチューブNC−7000を、分散剤として水溶性キシランを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.0%、水溶性キシラン1.0%の分散液を調製した。この分散液にレヂテックス製天然ゴムLA−NR39をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で3回塗工乾操して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 3
Carbon nanotube NC-7000 was dispersed with an ultrasonic homogenizer using water-soluble xylan as a dispersant to prepare a dispersion of 3.0% carbon nanotubes and 1.0% water-soluble xylan. To this dispersion liquid, natural rubber LA-NR39 made by Resitex was added so that the solid content was 100 parts by weight with respect to 100 parts by weight of carbon nanotubes, and a small amount of FT-100 was further added and stirred to prepare a coating liquid. . This was applied to the release PET film three times with a wire bar # 90, and the release PET film was peeled off to measure the physical properties. This is shown in Table 1.

実施例4
カーボンナノチューブNC−7000を、分散剤として水溶性キシランを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.0%、水溶性キシラン1.0%の分散液を調製した。この分散液にバイロナールMD−1930をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加した。また、堺化学工業製メラミンシアヌレートSTABIACE MC−5Fの水分散液をバイロナールMD−1930の100重量部に対して固形分で80重量部となるように添加し、更にFT−100を少量加えて攪拌し塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で3回塗工乾燥して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 4
Carbon nanotube NC-7000 was dispersed with an ultrasonic homogenizer using water-soluble xylan as a dispersant to prepare a dispersion of 3.0% carbon nanotubes and 1.0% water-soluble xylan. Byronal MD-1930 was added to this dispersion so that the solid content was 100 parts by weight with respect to 100 parts by weight of the carbon nanotubes. Further, an aqueous dispersion of melamine cyanurate STABACE MC-5F manufactured by Sakai Chemical Industry Co., Ltd. was added so that the solid content was 80 parts by weight with respect to 100 parts by weight of Bayronal MD-1930, and a small amount of FT-100 was further added. The mixture was stirred to prepare a coating solution. This was applied to a release PET film three times with a wire bar # 90 and dried, the release PET film was peeled off, and the physical properties were measured. This is shown in Table 1.

実施例5
カーボンナノチューブVGCF−Xを、分散剤として花王製デモールMSを用いて超音波ホモジナイザーで分散してカーボンナノチューブ4.0%、デモールMS2.0%の分散液を調製した。この分散液に三井化学製アクリル系樹脂エマルジョンボンロンS−415をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で1回塗工乾燥し、水浸漬して分散剤を溶出し乾燥して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 5
Carbon nanotube VGCF-X was dispersed with an ultrasonic homogenizer using Kao-made Demol MS as a dispersant to prepare a dispersion of 4.0% carbon nanotube and 2.0% Demol MS. To this dispersion, Mitsui Chemicals acrylic resin emulsion Bonron S-415 was added to 100 parts by weight of carbon nanotubes to a solid content of 100 parts by weight, and a small amount of FT-100 was added and stirred to coat. A working solution was prepared. This was applied once to a release PET film with a wire bar # 90 and dried, immersed in water, the dispersant was eluted and dried, the release PET film was peeled off, and the physical properties were measured. This is shown in Table 1.

実施例6
カーボンナノチューブNC−7000を、分散剤としてデモールMSを用いて超音波ホモジナイザーで分散してカーボンナノチューブ4.0%、デモールMS2.0%の分散液を調製した。この分散液にボンロンS−415をカーボンナノチューブ100重量部に対して固形分で300重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で3回塗工乾操し、塗工乾操毎に水浸漬して分散剤を溶出し乾操して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 6
Carbon nanotube NC-7000 was dispersed with an ultrasonic homogenizer using Demol MS as a dispersing agent to prepare a dispersion of 4.0% carbon nanotube and 2.0% Demol MS. To this dispersion, Bonlon S-415 was added so that the solid content was 300 parts by weight with respect to 100 parts by weight of the carbon nanotubes, and a small amount of FT-100 was further added and stirred to prepare a coating solution. This is applied to the release PET film three times with wire bar # 90, and each time the coating is dried, it is immersed in water to elute the dispersant and dry, and then the release PET film is peeled to measure the physical properties. did. This is shown in Table 1.

実施例7
カーボンナノチューブNC−7000を、分散剤として水溶性キシランを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.2%、キシラン1.0%の分散液を調製した。この分散液にボンロンS−415をカーボンナノチューブ100重量部に対して固形分で20重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で4回塗工乾燥し、塗工乾操毎に水浸漬して分散剤を溶出し乾燥して、離型PETフィルムを剥がして物性を測定した。これを表1に示す。
Example 7
Carbon nanotube NC-7000 was dispersed with an ultrasonic homogenizer using water-soluble xylan as a dispersant to prepare a dispersion of 3.2% carbon nanotubes and 1.0% xylan. To this dispersion, Bonlon S-415 was added so that the solid content was 20 parts by weight with respect to 100 parts by weight of the carbon nanotubes, and a small amount of FT-100 was further added and stirred to prepare a coating solution. This was coated and dried four times on a release PET film with a wire bar # 90, immersed in water for each coating drying operation, the dispersant was eluted and dried, the release PET film was peeled off, and the physical properties were measured. This is shown in Table 1.

Figure 0006120134
Figure 0006120134

実施例8
カーボンナノチューブNC−7000を、分散剤としてデモールMSを用いて超音波ホモジナイザーで分散してカーボンナノチューブ4.6%、デモールMS2.3%の分散液を調製した。この分散液にボンロンS−415をカーボンナノチューブ100重量部に対して固形分で200重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で1回塗工乾燥し、水浸漬して分散剤を溶出し乾操して、離型PETフィルムを剥がして物性を測定した。これを表2に示す。
Example 8
Carbon nanotube NC-7000 was dispersed with an ultrasonic homogenizer using Demol MS as a dispersant to prepare a dispersion of 4.6% carbon nanotube and 2.3% Demol MS. To this dispersion, Bonlon S-415 was added so that the solid content was 200 parts by weight with respect to 100 parts by weight of the carbon nanotubes, and a small amount of FT-100 was further added and stirred to prepare a coating solution. This was coated and dried once on a release PET film with a wire bar # 90, dipped in water, the dispersant was eluted and dried, the release PET film was peeled off, and the physical properties were measured. This is shown in Table 2.

実施例9
カーボンナノチューブNC−7000を、分散剤としてデモールMSを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.5%、デモールMS1.7%の分散液を調製した。この分散液にボンロンS−415をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で4回塗工乾操し、塗工乾操毎に水浸漬して分散剤を溶出乾操して、離型PETフィルムを剥がして物性を測定した。これを表2に示す。
Example 9
Carbon nanotube NC-7000 was dispersed with an ultrasonic homogenizer using Demol MS as a dispersant to prepare a dispersion of 3.5% carbon nanotubes and 1.7% Demol MS. To this dispersion, Bonlon S-415 was added so that the solid content was 100 parts by weight with respect to 100 parts by weight of the carbon nanotubes, and a small amount of FT-100 was further added and stirred to prepare a coating solution. This was applied to a release PET film four times with a wire bar # 90, and each time the coating was dried, it was immersed in water and the dispersant was eluted and dried, and then the release PET film was peeled to measure the physical properties. . This is shown in Table 2.

実施例10
カーボンナノチューブVGCF−Xを、分散液としてデモールNを用いて超音波ホモジナイザーで分散してカーボンナノチューブ3.5%、デモールN1.7%の分散液を調製した。この分散液にボンロンS−415をカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で8回塗工乾操し、塗工乾操毎に水浸漬して分散剤を溶出し乾操して、離型PETフィルムを剥がして物性を測定した。これを表2に示す。熱伝導率そのものはそれほど高くないが薄いので熱抵抗は十分に低い。
Example 10
Carbon nanotube VGCF-X was dispersed with an ultrasonic homogenizer using demole N as a dispersion to prepare a dispersion of carbon nanotubes 3.5% and demole N 1.7%. To this dispersion, Bonlon S-415 was added so that the solid content was 100 parts by weight with respect to 100 parts by weight of the carbon nanotubes, and a small amount of FT-100 was further added and stirred to prepare a coating solution. This is applied to the release PET film 8 times with wire bar # 90, and after each drying operation, the dispersion is eluted and dried, and the release PET film is peeled off to measure the physical properties. did. This is shown in Table 2. Although the thermal conductivity itself is not so high, the thermal resistance is sufficiently low because it is thin.

実施例11
産業技術総合研究所製単層カーボンナノチューブスーパーグロースを分散剤として水溶性キシラン及びデモールMSで分散してカーボンナノチューブ0.5%、水溶性キシラン0.3%、デモールMS0.7%の分散液を調製した。この分散液にボンロンS−119Hをカーボンナノチューブ100重量部に対して固形分で100重量部となるように添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で5回塗工乾燥し、塗工乾操毎に水浸漬して分散剤を溶出し乾操して、離型PETフィルムを剥がして物性を測定した。これを表2に示す。熱導電率そのものはあまり高くないがフィルムが薄いので熱抵抗は十分に低い。
Example 11
Disperse with water-soluble xylan and demole MS using single-walled carbon nanotube super-growth manufactured by AIST as a dispersant to obtain a dispersion of carbon nanotubes 0.5%, water-soluble xylan 0.3%, demole MS 0.7% Prepared. To this dispersion, Bonlon S-119H was added to 100 parts by weight of carbon nanotubes so that the solid content was 100 parts by weight, and a small amount of FT-100 was further added and stirred to prepare a coating solution. This was coated and dried 5 times with a wire bar # 90 on a release PET film, immersed in water for every coating drying operation, the dispersant was eluted and dried, the release PET film was peeled off, and the physical properties were measured. . This is shown in Table 2. The thermal conductivity itself is not so high, but the thermal resistance is sufficiently low because the film is thin.

比較例1
未分散の粉末状のカーボンナノチューブNC−7000に水に加え4%とし、これにボンロンS−415をカーボンナノチューブ100重量部に対し固形分で200重量部添加し、更にFT−100を少量加えて攪拌して塗工液を調製した。これを離型PETフィルムにワイヤーバー#90で塗工し乾操した。塗工層のカーボンナノチューブは粒状でムラの有る状態であり、均一な塗工層は得られず、離型フィルムから剥がすことができなかった。これを表2に示す。
Comparative Example 1
Add non-dispersed powdered carbon nanotubes NC-7000 to water to 4%, add Bonron S-415 to 100 parts by weight of carbon nanotubes in solids, and add FT-100 in a small amount. The coating liquid was prepared by stirring. This was coated on a release PET film with a wire bar # 90 and dried. The carbon nanotubes in the coating layer were granular and uneven, and a uniform coating layer could not be obtained and could not be peeled off from the release film. This is shown in Table 2.

比較例2
ボンロンS−1294樹脂単独にFT−100を少量加えて塗工液を調製し、離型フィルムにワイヤーバー#90で1回塗工乾燥して、離型フィルムから剥がして物性を測定した。これを表2に示す。
Comparative Example 2
A small amount of FT-100 was added to Bonlon S-1294 resin alone to prepare a coating solution, and the release film was coated and dried once with wire bar # 90, peeled off from the release film, and measured for physical properties. This is shown in Table 2.

比較例3
ボンロンS−415樹脂単独にFT−100を少量加えて塗工液を調製し、離型フィルムにワイヤーバー#70で2回塗工乾燥して、離型フィルムから剥がして物性を測定した。これを表2に示す。
Comparative Example 3
A small amount of FT-100 was added to Bonlon S-415 resin alone to prepare a coating solution, and the release film was coated and dried twice with wire bar # 70, peeled off from the release film, and measured for physical properties. This is shown in Table 2.

Figure 0006120134
Figure 0006120134

本発明の導電性フィルムは薄いにもかかわらず体積抵抗率が低く、強度が高いので高導電性が要求される各種材料、電磁波シールド材、電磁波吸収材、電気二重層キャパシター等の集電体、放熱材等に用いることができる。Although the conductive film of the present invention is thin, the volume resistivity is low and the strength is high, so various materials that require high conductivity, electromagnetic wave shielding materials, electromagnetic wave absorbing materials, current collectors such as electric double layer capacitors, It can be used as a heat dissipation material.

Claims (3)

カーボンナノチューブ水分散液と樹脂水分散液の混合液を離型フィルムに塗工乾燥した後、離型フィルムを剥離して得られることを特徴とする導電性フィルムにおいて、下記(1)〜(3)の条件を満たす前記導電性フィルム。
(1)前記カーボンナノチューブと前記樹脂の重量比率が前記カーボンナノチューブ100重量部に対して前記樹脂が固形分で20〜300重量部である。
(2)体積抵抗率が0.059Ω・cm以下である。
(3)引張強度が5.0N/15mm以上である。
After coating drying a mixture of carbon nanotubes aqueous dispersion and resin water dispersion release film, in a conductive film characterized in that it is obtained by peeling off the release film, the following (1) - (3 The said conductive film which satisfy | fills the conditions of).
(1) The weight ratio of the carbon nanotube to the resin is 20 to 300 parts by weight in solid content of the resin with respect to 100 parts by weight of the carbon nanotube.
(2) The volume resistivity is 0.059 Ω · cm or less.
(3) The tensile strength is 5.0 N / 15 mm or more.
フィルムの厚さが10〜100μであることを特徴とする請求項1記載の導電性フィルム。The conductive film according to claim 1, wherein the film has a thickness of 10 to 100 μm. カーボンナノチューブ水分散液と樹脂水分散液の混合液を離型フィルムに塗工乾燥した後、離型フィルムを剥離して得られることを特徴とする導電性フィルムにおいて、前記カーボンナノチューブと前記樹脂の重量比率が前記カーボンナノチューブ100重量部に対して前記樹脂が固形分で20重量部以上100重量部未満である前記導電性フィルム。A conductive film obtained by coating a mixed film of a carbon nanotube aqueous dispersion and a resin aqueous dispersion on a release film and then drying the release film, wherein the release film is peeled off. The conductive film, wherein the resin has a solid content of 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the carbon nanotubes.
JP2012289475A 2012-12-26 2012-12-26 Conductive film Expired - Fee Related JP6120134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289475A JP6120134B2 (en) 2012-12-26 2012-12-26 Conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289475A JP6120134B2 (en) 2012-12-26 2012-12-26 Conductive film

Publications (2)

Publication Number Publication Date
JP2014125634A JP2014125634A (en) 2014-07-07
JP6120134B2 true JP6120134B2 (en) 2017-04-26

Family

ID=51405393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289475A Expired - Fee Related JP6120134B2 (en) 2012-12-26 2012-12-26 Conductive film

Country Status (1)

Country Link
JP (1) JP6120134B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188540A1 (en) * 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
JP7476612B2 (en) 2020-03-27 2024-05-01 日本ゼオン株式会社 Thermally conductive sheet and method for producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807817B2 (en) * 2004-08-05 2011-11-02 三菱レイヨン株式会社 Method for producing conductive molded body and conductive molded body
JP4947962B2 (en) * 2005-12-02 2012-06-06 大同塗料株式会社 Aqueous composition for conductive clear and process for producing the same
JP2007250843A (en) * 2006-03-16 2007-09-27 Teijin Dupont Films Japan Ltd Film for electromagnetic shielding
JP4325726B2 (en) * 2007-02-20 2009-09-02 東レ株式会社 Carbon nanotube aggregate and conductive film
DE102009012674A1 (en) * 2009-03-13 2010-09-16 Bayer Materialscience Ag Polyurethane compounds with carbon nanotubes
JP2012174833A (en) * 2011-02-21 2012-09-10 Kj Specialty Paper Co Ltd Electromagnetic wave absorption sheet
KR102047236B1 (en) * 2012-08-08 2019-11-21 주식회사 다이셀 Conductive cellulose-based resin composition

Also Published As

Publication number Publication date
JP2014125634A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
Cui et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect
Mates et al. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics
Imai et al. Highly strong and conductive carbon nanotube/cellulose composite paper
Schutzius et al. Water-based, nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings
George et al. Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: A novel technique for multifunctional properties
US8900486B2 (en) Conductivity of resin materials and composite materials
Xu et al. Bottom-up synthesis of PS–CNF nanocomposites
CN104672502B (en) Cyanoethyl cellulose based high-dielectric flexible nano-composite film and preparation method thereof
JP2017501904A5 (en)
Nasouri et al. Single‐wall carbon nanotubes dispersion behavior and its effects on the morphological and mechanical properties of the electrospun nanofibers
Faiella et al. Tailoring the electrical properties of MWCNT/epoxy composites controlling processing conditions
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
Wu et al. Hybrid graphene/carbon nanofiber wax emulsion for paper‐based electronics and thermal management
Nasouri et al. Synthesis and characterization of highly dispersed multi‐walled carbon nanotubes/polyvinylpyrrolidone composite nanofibers for EMI shielding application
Seyedi Ghezghapan et al. Effect of processing methods on electrical percolation and electromagnetic shielding of PC/MWCNTs nanocomposites
JP6120134B2 (en) Conductive film
JP2014114420A (en) Conductive resin composition, conductive cured product, wiring, electronic component
WO2016159072A1 (en) Method for producing carbon fiber composite material
Al Habis et al. Intelligent design of conducting network in polymers using numerical and experimental approaches
CN104603191A (en) Thermoplastic polymer to which carbon nanomaterial is bound and method for preparing same
KR101534298B1 (en) a composition for electro-magnetic interference shielding film, a method of fabricating a electro-magnetic interference shielding film therewith and an electro-magnetic interference shielding film fabricated thereby
CN109679260A (en) A kind of composite water soluble conductive emulsion, preparation method and water-soluble conducting ink
JP5172171B2 (en) Method for producing conductive fluororesin thin film and conductive fluororesin thin film
Slobodian et al. Poly (methyl methacrylate)/multi-wall carbon nanotubes composites prepared by solvent cast technique: Composites electrical percolation threshold
Santos et al. Novel electrical conductive hybrid nanostructures based on PA 6/MWCNTCOOH electrospun nanofibers and anchored MWCNTCOOH

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6120134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees