JP6119630B2 - Resin determination method and sorting apparatus - Google Patents

Resin determination method and sorting apparatus Download PDF

Info

Publication number
JP6119630B2
JP6119630B2 JP2014024187A JP2014024187A JP6119630B2 JP 6119630 B2 JP6119630 B2 JP 6119630B2 JP 2014024187 A JP2014024187 A JP 2014024187A JP 2014024187 A JP2014024187 A JP 2014024187A JP 6119630 B2 JP6119630 B2 JP 6119630B2
Authority
JP
Japan
Prior art keywords
resin
resin piece
energy side
difference value
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014024187A
Other languages
Japanese (ja)
Other versions
JP2015152343A (en
Inventor
中 慈朗
慈朗 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014024187A priority Critical patent/JP6119630B2/en
Publication of JP2015152343A publication Critical patent/JP2015152343A/en
Application granted granted Critical
Publication of JP6119630B2 publication Critical patent/JP6119630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

この発明は、樹脂の判定方法およびその方法を用いた樹脂の選別装置に関し、特に樹脂の材質をX線で判定する方法およびその方法を用いた樹脂の選別装置に関するものである。   The present invention relates to a resin determination method and a resin sorting apparatus using the method, and more particularly to a method for determining a resin material by X-ray and a resin sorting apparatus using the method.

ある物体にX線を照射して、その物体を透過したX線の透過強度は、物体の材質、密度に由来する性質、及び、厚さに基づいて定まる。このため、物体の材質を特定するために、X線の透過強度だけを参照していたのでは、物体の厚さに起因する大きな判定誤差が生じる要因となりうる。   The transmission intensity of X-rays that have been irradiated to an object and transmitted through the object is determined based on the material and density of the object, and the thickness. For this reason, if only the X-ray transmission intensity is referred to in order to specify the material of the object, it may cause a large determination error due to the thickness of the object.

従来、厚さを考慮したX線の透過強度を用いた材質の判定方法としては、X線デュアルセンサーなどによるエネルギーサブトラクション法と呼ばれる手法がある。この方法は、低エネルギー側の透過X線強度および高エネルギー側の透過X線強度をそれぞれ測定し、それらの差分値を計算することで、厚さの影響を低減するものである。このエネルギーサブトラクション法では、低エネルギー側の透過X線強度および高エネルギー側の透過X線強度を対数変換により等価厚画像を生成し、パラメータを用いて重み付けをして、差分式で両者の差分値を計算することで、厚さの影響を低減する。   Conventionally, as a method for determining a material using an X-ray transmission intensity considering the thickness, there is a method called an energy subtraction method using an X-ray dual sensor or the like. In this method, the transmission X-ray intensity on the low energy side and the transmission X-ray intensity on the high energy side are measured, and the difference between them is calculated, thereby reducing the influence of the thickness. In this energy subtraction method, the transmission X-ray intensity on the low energy side and the transmission X-ray intensity on the high energy side are logarithmically transformed to generate an equivalent thickness image, weighted using parameters, and the difference value between the two using a difference equation To reduce the effect of thickness.

しかし、この方法では、パラメータの設定しだいで差分値は大きく変化し、厚さの影響を低減しきれない場合があるため、独立成分分析等を適用した分離行列を計算し、重みパラメータを自動計算して、最適な差分式を得て、厚さの影響を低減することを可能にする手法が提案されている(例えば、特許文献1参照)。   However, with this method, the difference value changes greatly depending on the parameter setting, and the influence of thickness may not be reduced. Therefore, a separation matrix using independent component analysis is calculated, and weight parameters are automatically calculated. Thus, a technique has been proposed that makes it possible to obtain an optimum difference equation and reduce the influence of thickness (for example, see Patent Document 1).

特開2010−91483号公報JP 2010-91483 A

しかしながら、特許文献1によるX線の透過強度を利用した材質の判別方法を樹脂の材質の判別に適用する場合には、以下のような問題点がある。   However, when the material discrimination method using the X-ray transmission intensity according to Patent Document 1 is applied to the resin material discrimination, there are the following problems.

樹脂の材質を判定する場合に、エネルギーサブトラクション法で規定する差分式では、添加剤を含有しない樹脂片、および、添加剤を含有する樹脂片を厚さの影響を受けずに判定することができる。しかし、判定できる樹脂の材質としては2種類である。そのため、添加剤の種類の判定まで含めた3つ以上の判定はできないという問題があった。   When determining the material of the resin, the difference equation defined by the energy subtraction method can determine the resin piece not containing the additive and the resin piece containing the additive without being affected by the thickness. . However, there are two types of resin materials that can be determined. Therefore, there is a problem that three or more determinations including determination of the type of additive cannot be performed.

この発明は、上記問題点を解決するためになされたものであり、プラスチック樹脂の破砕片が含有する添加剤の種類毎に樹脂の材質を判定する樹脂の判定方法、および、その方法を用いた樹脂の選別装置を提供することである。   The present invention has been made to solve the above-described problems, and uses a resin determination method for determining the resin material for each type of additive contained in the plastic resin fragment, and the method. It is to provide a resin sorting device.

この発明に係る樹脂の判定方法は、所定の厚さを有する複数の樹脂片からなる樹脂片群であって、添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群において、それぞれの樹脂片群を構成する各樹脂片にX線を照射し、透過した低エネルギー側のX線強度と高エネルギー側のX線強度との差分である差分値、及び、該差分値と透過した低エネルギー側のX線強度との関係を予め記録し、任意の樹脂片にX線を照射し、透過した低エネルギー側のX線強度と高エネルギー側のX線強度との差分である差分値、及び、該差分値と透過した低エネルギー側のX線強度との関係を求め、前記予め記録した差分値、及び、該差分値と透過した低エネルギー側のX線強度との関係と比較することで、前記任意の樹脂片の添加剤の含有及び種別を判定する方法であって、添加剤を含有しない樹脂片の低エネルギー側の減弱係数をμNL、添加剤を含有しない樹脂片の高エネルギー側の減弱係数をμNH、添加剤を含有しない樹脂片の低エネルギー側の減弱係数と添加剤を含有しない樹脂片の高エネルギー側の減弱係数との比をk=μNL/μNH、透過した低エネルギー側のX線強度をIL、照射した低エネルギー側のX線強度をIL0、透過した高エネルギー側のX線強度をIH、および照射した高エネルギー側のX線強度をIH0、としたとき、差分値は、ln(IL/IL0)-k・ln(IH/IH0)である方法である。 The resin determination method according to the present invention is a resin piece group composed of a plurality of resin pieces having a predetermined thickness, the resin piece group containing no additive, and the first resin containing the first additive. In the second resin piece group containing the one group and the second additive, each resin piece constituting each resin piece group is irradiated with X-rays, and the transmitted X-ray intensity and high energy on the low energy side are transmitted. The difference value, which is the difference from the X-ray intensity on the energy side, and the relationship between the difference value and the transmitted X-ray intensity on the low energy side are recorded in advance, and an arbitrary resin piece is irradiated with X-rays and transmitted. The difference value that is the difference between the X-ray intensity on the low energy side and the X-ray intensity on the high energy side, and the relationship between the difference value and the transmitted X-ray intensity on the low energy side are obtained, and the previously recorded difference value And comparison with the relationship between the difference value and the transmitted X-ray intensity on the low energy side In Rukoto, there is provided a method for determining the content and type of additives the arbitrary resin pieces, the attenuation coefficients of the low energy side of the resin piece containing no additive MyuNL, the resin piece containing no additive high The energy-side attenuation coefficient is μNH, and the ratio of the low-energy-side attenuation coefficient of the resin piece not containing the additive to the high-energy-side attenuation coefficient of the resin piece not containing the additive is k = μNL / μNH, the transmitted low When the X-ray intensity on the energy side is IL, the X-ray intensity on the irradiated low energy side is IL0, the transmitted X-ray intensity on the high energy side is IH, and the X-ray intensity on the irradiated high energy side is IH0, The difference value is a method of ln (IL / IL0) −k · ln (IH / IH0).

この発明に係る樹脂の判定方法によれば、低エネルギー側の透過X線強度と差分値との関係を既存の情報と比較することで添加剤の種類毎の樹脂片を判定することができ、添加剤の種類毎の樹脂片に係る分布情報に基づいて添加剤を含有しない樹脂片と添加剤を含有する樹脂片の閾値を調整することにより、樹脂の材質の判定が精度よくできるという効果を奏する。   According to the determination method of the resin according to the present invention, the resin piece for each type of additive can be determined by comparing the relationship between the transmission X-ray intensity on the low energy side and the difference value with existing information, By adjusting the threshold value of the resin piece containing no additive and the resin piece containing the additive based on the distribution information related to the resin piece for each type of additive, the effect of accurately determining the resin material can be achieved. Play.

本発明の実施の形態1に係る判定方法を説明するための差分値と厚さの関係を示すグラフである。It is a graph which shows the relationship between the difference value and thickness for demonstrating the determination method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る判定方法を説明するための低エネルギー側の透過X線強度と厚さの関係を示すグラフである。It is a graph which shows the relationship between the transmission X-ray intensity on the low energy side, and thickness for demonstrating the determination method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る判定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the determination method which concerns on Embodiment 1 of this invention. 比較例の樹脂の樹脂片の判定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the determination method of the resin piece of the resin of a comparative example. 本発明の実施の形態2に係る判定方法を説明するための差分値と厚さの関係を示すグラフである。It is a graph which shows the relationship between the difference value and thickness for demonstrating the determination method which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る判定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the determination method which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る選別装置を模式的に示す図である。It is a figure which shows typically the selection apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る選別装置を模式的に示す図である。It is a figure which shows typically the selection apparatus which concerns on Embodiment 4 of this invention.

実施の形態1.
次に、図面を用いて、この発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。したがって、具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Embodiment 1 FIG.
Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

まず、この発明に係る樹脂の判定方法の概要について説明する。この発明に係る樹脂の判定方法は、概ね以下のステップを備えている。以下、樹脂片とは、新規な樹脂成形品を含むことはもちろんのことであるが、本発明は、プラスチックリサイクルの観点からなされた発明であり、主として使用済みプラスチック樹脂に係る破砕樹脂片(以下、単に樹脂片とのみ記載する場合もある)を念頭において説明する。   First, the outline | summary of the determination method of resin which concerns on this invention is demonstrated. The resin determination method according to the present invention generally includes the following steps. Hereinafter, the resin piece includes, of course, a novel resin molded product, but the present invention is an invention made from the viewpoint of plastic recycling, and is mainly a crushing resin piece (hereinafter referred to as a used plastic resin). In some cases, this may be described simply as a resin piece).

異なる既知の厚さを有する複数の樹脂片からなる樹脂片群であって、添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群において、それぞれの樹脂片群を構成する各樹脂片にX線を照射し、透過した低エネルギー側のX線強度と高エネルギー側のX線強度との差分である差分値(以下、差分値とのみ記載する場合がある)を各樹脂片について計算するステップ。   A resin piece group consisting of a plurality of resin pieces having different known thicknesses, a resin piece group not containing an additive, a first resin piece group containing a first additive, and a second addition Difference between the X-ray intensity on the low energy side and the X-ray intensity on the high energy side that are transmitted through the X-rays irradiated to each resin piece constituting each resin piece group in the second resin piece group containing the agent Calculating a difference value (hereinafter, may be described only as a difference value) for each resin piece.

添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する厚さの異なる樹脂片について、予め計算により求めた差分値を記憶するステップ。   Resin having a different thickness constituting each of a resin piece group containing no additive, a first resin piece group containing a first additive, and a second resin piece group containing a second additive A step of storing a difference value obtained by calculation in advance for a piece.

添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する厚さの異なる樹脂片について、差分値と透過した低エネルギー側のX線強度との関係を予め記憶ステップ。     Resin having a different thickness constituting each of a resin piece group containing no additive, a first resin piece group containing a first additive, and a second resin piece group containing a second additive The step of storing in advance the relationship between the difference value and the transmitted X-ray intensity on the low energy side for the piece.

添加剤を含有しない樹脂片群を構成する厚さの異なる樹脂片の差分値の分布と添加剤を含有する樹脂片群(第一の樹脂片群及び第二の樹脂片群)を構成する厚さの異なる樹脂片の差分値の分布との間に予め閾値を設定し、記憶するステップ。   Distribution of difference values of resin pieces having different thicknesses constituting a resin piece group not containing an additive and thicknesses constituting a resin piece group (first resin piece group and second resin piece group) containing an additive A step of setting and storing a threshold value in advance between the difference value distributions of resin pieces of different sizes.

判定対象である添加剤の含有及び厚さが未知なる任意の樹脂片に対し、X線を照射し、透過した低エネルギー側のX線強度と高エネルギー側のX線強度との差分である差分値を任意の樹脂片について計算するステップ。   The difference that is the difference between the X-ray intensity on the low energy side and the X-ray intensity on the high energy side, which is irradiated with X-rays to the arbitrary resin piece whose additive content and thickness are unknown Calculating the value for any piece of resin.

任意の樹脂片について計算された差分値と、予め記憶された閾値を比較し、判定対象である任意の樹脂片が添加剤を含有しない樹脂片であるか添加剤を含有する樹脂片であるかを判定するステップ。   The difference value calculated for an arbitrary resin piece is compared with a threshold value stored in advance, and whether the arbitrary resin piece to be judged is a resin piece that does not contain an additive or a resin piece that contains an additive Determining.

以上のステップにより、任意の樹脂片が添加剤を含有する樹脂片であると判定された場合には、任意の樹脂片について計算された差分値と低エネルギー側の透過X線強度との関係を、予め記憶した添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する厚さの異なる樹脂片についての差分値と低エネルギー側の透過X線強度との関係とを比較することにより、添加剤の種類毎に樹脂片を判定するステップ。   When it is determined by the above steps that the arbitrary resin piece is a resin piece containing an additive, the relationship between the difference value calculated for the arbitrary resin piece and the transmitted X-ray intensity on the low energy side is obtained. , A thickness constituting each of the resin piece group not containing the pre-stored additive, the first resin piece group containing the first additive, and the second resin piece group containing the second additive A step of determining a resin piece for each type of additive by comparing a difference value between resin pieces of different thicknesses and a relationship between transmitted X-ray intensity on the low energy side.

なお、添加剤を含有しない樹脂片群を構成する厚さの異なる複数の樹脂片の差分値の分布と添加剤を含有する樹脂片群(第一の樹脂片群及び第二の樹脂片群)を構成する厚さの異なる複数の樹脂片の差分値の分布との間に予め閾値を設定する際に、判定対象である任意の樹脂片について、すでに選別がなされた樹脂片の種別及び厚さの分布から、選別対象である樹脂片の特徴を捉え、そのデータを用いて予め設定された閾値を最適化することで更に選別精度を上げることができる。   In addition, the resin piece group (the 1st resin piece group and the 2nd resin piece group) containing the distribution of the difference value of the several resin piece from which thickness which comprises the resin piece group which does not contain an additive, and an additive The type and thickness of resin pieces that have already been selected for any resin piece to be judged when a threshold value is set in advance between the difference value distributions of a plurality of resin pieces having different thicknesses constituting From this distribution, the characteristics of the resin pieces to be sorted are captured, and the preset threshold value is optimized using the data, thereby further improving the sorting accuracy.

以下、この発明の実施の形態1に係る樹脂の判定方法について説明する。ある物体にX線を照射して、その物体を透過したX線の強度(透過X線強度)は、減衰係数といった物体の材質に起因する特性及び物体の厚さに基づいて決まる。透過X線強度をI、照射X線強度をI、減弱係数をμ、厚さをxとすると、下記数式1の関係が成り立つ。 Hereinafter, the resin determination method according to the first embodiment of the present invention will be described. The intensity of X-rays transmitted through an object after irradiating the object with X-rays (transmitted X-ray intensity) is determined based on characteristics such as an attenuation coefficient due to the material of the object and the thickness of the object. When the transmitted X-ray intensity is I, the irradiated X-ray intensity is I 0 , the attenuation coefficient is μ, and the thickness is x, the following equation 1 is established.

Figure 0006119630
Figure 0006119630

数式1で示されるように、透過X線強度だけでは物体の厚さの影響を受ける。リサイクルする使用済みプラスチック樹脂の破砕片は、厚さにばらつきがあり、材質を特定する場合に、厚さに起因する判定誤差が生じていた。   As shown in Equation 1, only the transmitted X-ray intensity is affected by the thickness of the object. The pieces of used plastic resin to be recycled had variations in thickness, and when the material was specified, a determination error due to the thickness occurred.

一方、透過X線強度の測定法には、エネルギー分布の異なる2種類のX線を物体に照射して、順次、物体を透過したX線強度を1種類の検出器で検出するか、または1種類のX線を物体に照射して、検出できるX線のエネルギー分布が異なる2種類の検出器で同時に物体を透過したX線強度を検出することにより、低エネルギー側と高エネルギー側の2種類の透過X線強度を測定するデュアルエナジー法がある。得られた低エネルギー側と高エネルギー側の2種類の透過X線強度について差分法と呼ばれる手法を用いることで、厚さの影響を極力排除し物体の材質を判定することが可能となる。   On the other hand, in the method of measuring transmitted X-ray intensity, an object is irradiated with two types of X-rays having different energy distributions, and the X-ray intensity transmitted through the object is sequentially detected by one type of detector, or 1 By irradiating the object with various types of X-rays and detecting the X-ray intensity transmitted through the object simultaneously with two types of detectors with different X-ray energy distributions that can be detected, there are two types: the low energy side and the high energy side There is a dual energy method for measuring the transmitted X-ray intensity. By using a technique called a difference method for the two types of transmitted X-ray intensities on the low energy side and the high energy side, it is possible to eliminate the influence of the thickness as much as possible and determine the material of the object.

次に差分法の計算式について説明する。物体の低エネルギー側及び高エネルギー側の透過X線強度は、それぞれ下記数式2、数式3となる。   Next, the calculation method of the difference method will be described. The transmitted X-ray intensities on the low energy side and the high energy side of the object are expressed by the following formulas 2 and 3, respectively.

Figure 0006119630
Figure 0006119630

Figure 0006119630
このとき、Iは低エネルギー側の透過X線強度、IL0は低エネルギー側の照射X線強度、μは低エネルギー側の減弱係数、Iは高エネルギー側の透過X線強度、IH0は高エネルギー側の照射X線強度、μは高エネルギー側の減弱係数、xは厚さである。
Figure 0006119630
At this time, I L is the transmission X-ray intensity on the low energy side, I L0 is the irradiation X-ray intensity on the low energy side, μ L is the attenuation coefficient on the low energy side, I H is the transmission X-ray intensity on the high energy side, I H0 is irradiated X-ray intensity of the high energy side, mu H is attenuation coefficient of the high-energy side, x is the thickness.

また、物体の低エネルギー側及び高エネルギー側の透過X線強度の差分値Sを下記数式4とする。   Further, the difference value S between the transmitted X-ray intensities on the low energy side and the high energy side of the object is represented by the following mathematical formula 4.

Figure 0006119630
Figure 0006119630

(k・μ−μ)=0となるようなkの値、つまり物体の低エネルギー側と高エネルギー側の減弱係数の比μ/μをkに設定すると、物体の差分値Sは厚さによらず0となる。 If the value of k such that (k · μ H −μ L ) = 0, that is, the ratio μ L / μ H of the attenuation coefficient between the low energy side and the high energy side of the object is set to k, the difference value S of the object Becomes 0 regardless of the thickness.

次に具体例を用いて差分法について説明する。例えば、添加剤を含有しない樹脂片と添加剤を含有する樹脂片を判定する場合を想定する。   Next, the difference method will be described using a specific example. For example, the case where the resin piece which does not contain an additive and the resin piece containing an additive are determined is assumed.

低エネルギー側の減弱係数がμNLで、高エネルギー側の減弱係数がμNLである添加剤を含有しない樹脂片の低エネルギー側及び高エネルギー側の透過X線強度は、数式2及び数式3に従うと、それぞれ下記数式5、数式6となる。 The transmission X-ray intensities on the low energy side and the high energy side of the resin pieces not containing an additive having an attenuation coefficient on the low energy side of μ NL and an attenuation coefficient on the high energy side of μ NL are in accordance with Equations 2 and 3. The following formulas 5 and 6 are obtained, respectively.

Figure 0006119630
Figure 0006119630

Figure 0006119630
Figure 0006119630

数式4のkの値を、添加剤を含有しない樹脂片の低エネルギー側と高エネルギー側の減弱係数の比μNL/μNHに設定すると、(k・μ−μ)=0となるため添加剤を含有しない樹脂片の差分値Sは厚さによらず0となる。 When the value of k in Equation 4 is set to the ratio μ NL / μ NH of the attenuation coefficient between the low energy side and the high energy side of the resin piece containing no additive, (k · μ H −μ L ) = 0. Therefore, the difference value S of the resin piece not containing the additive is 0 regardless of the thickness.

一方、低エネルギー側の減弱係数がμALで、高エネルギー側の減弱係数がμAHである添加剤を含有する樹脂片の低エネルギー側及び高エネルギー側の透過X線強度は、数式2及び数式3に従うと、それぞれ下記数式7、数式8となる。 On the other hand, in the attenuation coefficients of the low-energy side mu AL, transmitted X-ray intensity of the low energy side and the high-energy side of the resin piece attenuation coefficient of high energy side contains an additive which is mu AH is Equations 2 and According to 3, Equations 7 and 8 below are obtained.

Figure 0006119630
Figure 0006119630

Figure 0006119630
Figure 0006119630

添加剤を含有する樹脂片と添加剤を含有しない樹脂片の減弱係数は異なるため、数式4のkの値を、k=μNL/μNHと設定すると、(k・μ−μ)≠0となり、添加剤を含有する樹脂片の差分値Sは厚さxに依存する直線関係となる。 Since the attenuation coefficient of the resin piece containing the additive and the resin piece not containing the additive are different, when the value of k in Equation 4 is set as k = μ NL / μ NH , (k · μ H −μ L ) ≠ 0, and the difference value S of the resin pieces containing the additive has a linear relationship depending on the thickness x.

このようにして、差分値Sを用いて、添加剤を含有しない樹脂片と添加剤を含有する樹脂片を判定することができる。   In this way, the difference value S can be used to determine a resin piece that does not contain an additive and a resin piece that contains an additive.

さらに、例えば、選別すべき破砕混合樹脂片中に、添加剤を含有しない樹脂片と、添加剤A1を含有する樹脂片と、添加剤A1とは低エネルギー側及び高エネルギー側の減弱係数が異なる添加剤A2を含有する樹脂片が混在している場合に、これら3種類を判定するには次の方法で達成できる。   Furthermore, for example, in the crushed mixed resin piece to be sorted, the resin piece not containing the additive, the resin piece containing the additive A1, and the additive A1 have different attenuation coefficients on the low energy side and the high energy side. When resin pieces containing the additive A2 are mixed, the following method can be used to determine these three types.

添加剤A1を含有する樹脂片の差分値S1と、添加剤A2を含有する樹脂片の差分値S2を比較した場合、添加剤を含有しない樹脂片の差分値Sが0となるようにk=μNL/μNHと設定した数式4を用いると、差分値Sは、樹脂片の厚さxに依存する傾きを持つ直線上に分布するため、厚さxと含有する添加剤の種類の組み合わせによっては、添加剤A1を含有する樹脂片と添加剤A2を含有する樹脂片とは、同じ差分値S、つまりS1=S2となる場合もありうる。 When the difference value S1 of the resin piece containing the additive A1 and the difference value S2 of the resin piece containing the additive A2 are compared, k = so that the difference value S of the resin piece containing no additive is 0. When Equation 4 set as μ NL / μ NH is used, the difference value S is distributed on a straight line having a slope depending on the thickness x of the resin piece, and therefore the combination of the thickness x and the type of additive contained Depending on the case, the resin piece containing the additive A1 and the resin piece containing the additive A2 may have the same difference value S, that is, S1 = S2.

この場合は、添加剤A1を含有する樹脂片の差分値S1と、添加剤A2を含有する樹脂片の同じ差分値S2を与える樹脂片の数式1で表される低エネルギー側の透過X線強度Iが異なるため、この透過X線強度Iを比較することで添加剤A1を含有する樹脂片と、添加剤A2を含有する樹脂片のいずれであるか判定でき、結果として、添加剤を含有しない樹脂片と、添加剤A1を含有する樹脂片と、添加剤A2を含有する樹脂片の3種類を選別することができる。 In this case, the transmission X-ray intensity on the low energy side represented by Formula 1 of the resin piece that gives the difference value S1 of the resin piece containing the additive A1 and the same difference value S2 of the resin piece containing the additive A2 since I L are different, and the resin strips containing additive A1 by comparing the transmitted X-ray intensity I L, contain additives A2 can determine whether it is a resin piece, as a result, the additive Three types of resin pieces that are not contained, a resin piece that contains the additive A1, and a resin piece that contains the additive A2 can be selected.

ここでいう添加剤とは、X線を吸収する性質を有するものであり、選別対象である樹脂片を主に構成する元素(炭素(C)、水素(H)、窒素(N)、酸素(O))以外の元素を有する添加剤をいう。具体的には、無機系の添加剤、金属元素(Na〜U)を有する添加剤(金属系添加剤)、ハロゲン元素(Cl、Br)を有する添加剤(ハロゲン系添加剤)、リン(P)を含む添加剤(リン系添加剤)および硫黄(S)を含む添加剤(硫黄系添加剤)をいう。   The additive here has a property of absorbing X-rays, and is an element (carbon (C), hydrogen (H), nitrogen (N), oxygen (mainly constituting the resin piece to be selected) O)) An additive having an element other than. Specifically, an inorganic additive, an additive having a metal element (Na to U) (metal additive), an additive having a halogen element (Cl, Br) (halogen additive), phosphorus (P ) Containing additives (phosphorous additives) and sulfur (S) containing additives (sulfur additives).

次に、樹脂片の材質を判定する手法の概要として、上述した添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する樹脂片について、第一の添加剤として10wt%のガラスフィラーを含有する樹脂片、及び、第二の添加剤として臭素系難燃剤(臭素濃度1wt%)を含有する樹脂片について、これらの樹脂片が混合した破砕混合樹脂片群から添加剤を含有しない樹脂片を判定して回収する手法の概要について説明する。   Next, as an outline of the method for determining the material of the resin piece, the resin piece group that does not contain the above-described additive, the first resin piece group that contains the first additive, and the second additive The resin pieces constituting each of the second resin piece groups to be processed are resin pieces containing 10 wt% glass filler as the first additive, and bromine-based flame retardant (bromine concentration 1 wt% as the second additive). The outline of a technique for determining and recovering resin pieces that do not contain an additive from a crushed mixed resin piece group in which these resin pieces are mixed will be described.

異なる既知の厚さを有する複数の樹脂片からなる添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する樹脂片について、その厚さとそれに対応する差分値との関係を示すグラフA、B、および、Cを図1に示す。グラフAは、添加剤を含有しない樹脂片群を構成する樹脂片(ここでは、樹脂片P0とする)、グラフBは、添加剤として10wt%のガラス繊維を含有する樹脂片群を構成する樹脂片(ここでは、樹脂片P1とする)、及び、グラフCは、添加剤として1wt%の臭素(Br)を含有する樹脂片(ここでは、樹脂片P2とする)について評価した結果を示す。   A group of resin pieces not containing an additive consisting of a plurality of resin pieces having different known thicknesses, a first group of resin pieces containing a first additive, and a second group containing a second additive FIG. 1 shows graphs A, B, and C showing the relationship between the thickness and the corresponding difference value for the resin pieces constituting each of the resin piece groups. Graph A is a resin piece constituting a resin piece group not containing an additive (here, resin piece P0), and graph B is a resin constituting a resin piece group containing 10 wt% glass fiber as an additive. A piece (here, referred to as a resin piece P1) and a graph C show the evaluation results of a resin piece (here referred to as a resin piece P2) containing 1 wt% bromine (Br) as an additive.

グラフAに示されるように、樹脂P0の厚さxと差分値Sの関係は、数式4で表す差分値Sの式においてkの値を、樹脂片P0の低エネルギー側と高エネルギー側の減弱係数の比に設定すると(k・μ−μ)=0となるため添加剤を含有しない樹脂片の差分値S0は厚さに依らず0となる。一方、樹脂片P1及び樹脂片P2は、数式4で表す差分値Sの式において(k・μ−μ)≠0となり、樹脂片の厚さxが厚くなるにしたがい、差分値Sが小さくなり、厚さの依存性があることがわかる。また、樹脂片P1及び樹脂片P2では添加剤の種類によって、グラフの傾きが変わっている。 As shown in the graph A, the relationship between the thickness x of the resin P0 and the difference value S is the attenuation of the low energy side and the high energy side of the resin piece P0 in the equation of the difference value S expressed by Equation 4. When the ratio of the coefficients is set, (k · μ H −μ L ) = 0, so that the difference value S 0 of the resin piece not containing the additive becomes 0 regardless of the thickness. On the other hand, the resin piece P1 and the resin piece P2 have a difference value S of (k · μ H −μ L ) ≠ 0 in the expression of the difference value S expressed by Equation 4, and the difference value S is increased as the thickness x of the resin piece increases. It becomes small and it turns out that there is thickness dependence. In addition, the slope of the graph changes depending on the type of additive in the resin piece P1 and the resin piece P2.

樹脂片P0と、樹脂片P1及び樹脂片P2とを判定する場合には、差分値Sの閾値J1をS0=0と、例えば、樹脂片P1の厚さ1mmの差分値S1の間に設定することにより判定できる。つまり、差分値Sが、閾値J1よりも大きい場合は樹脂片P0と判定し、閾値J1よりも小さい場合は、樹脂片P1または樹脂片P2と判定する。よって、樹脂片P0と、樹脂片P1及び樹脂片P2との別を判定できる。   When determining the resin piece P0, the resin piece P1, and the resin piece P2, the threshold value J1 of the difference value S is set between S0 = 0 and, for example, the difference value S1 of the thickness 1 mm of the resin piece P1. Can be determined. That is, when the difference value S is larger than the threshold value J1, it is determined as the resin piece P0, and when it is smaller than the threshold value J1, it is determined as the resin piece P1 or the resin piece P2. Therefore, it is possible to determine whether the resin piece P0 is different from the resin piece P1 and the resin piece P2.

しかし、差分値Sに閾値J1を設けることのみでは、樹脂片P1または樹脂片P2のいずれであるかを判定できない。そこで、樹脂片P0、樹脂片P1、及び、樹脂片P2の3種類の別を判定することはできない。例えば、樹脂片P1の厚さ4mmの差分値S1(Si1)と樹脂片P2の厚さ2mmの差分値S2(Br1)とでは同じ値を示すため、差分値Sに閾値J1を設けるだけでは判定することができない。   However, it is impossible to determine whether the difference value S is the resin piece P1 or the resin piece P2 only by providing the threshold value J1. Therefore, it is not possible to determine three types of resin pieces P0, resin pieces P1, and resin pieces P2. For example, since the difference value S1 (Si1) of the resin piece P1 having a thickness of 4 mm and the difference value S2 (Br1) of the resin piece P2 having a thickness of 2 mm show the same value, it is determined only by providing the threshold value J1 in the difference value S. Can not do it.

一方、既知である所定の厚さを有する樹脂について、その厚さとそれに対応する数式2で表される低エネルギー側の透過X線強度との関係を示すグラフD〜Fを図2に示す。グラフDは添加剤を含有しない樹脂片P0、グラフEは添加剤として10wt%のガラス繊維を含有する樹脂片P1、及び、グラフFは添加剤として1wt%の臭素(Br)を含有する樹脂片P2について評価した結果を示す。   On the other hand, FIG. 2 shows graphs D to F showing the relationship between the thickness of the resin having a predetermined thickness that is known and the transmitted X-ray intensity on the low energy side expressed by the mathematical formula 2 corresponding thereto. Graph D is a resin piece P0 containing no additive, Graph E is a resin piece P1 containing 10 wt% glass fiber as an additive, and Graph F is a resin piece containing 1 wt% bromine (Br) as an additive. The result evaluated about P2 is shown.

樹脂片P1の厚さ4mmの低エネルギー側の透過X線強度I1(Si2)と樹脂P2の厚さ2mmの低エネルギー側の透過X線強度I2(Br2)は異なるため、この関係を用いることにより、測定対象の樹脂片が樹脂片P1または樹脂片P2のいずれであるかを判定することができる。 Since the transmission X-ray intensity I L 1 (Si2) on the low energy side of the resin piece P1 with a thickness of 4 mm and the transmission X-ray intensity I L 2 (Br2) on the low energy side of the resin P2 with a thickness of 2 mm are different, this relationship It is possible to determine whether the resin piece to be measured is the resin piece P1 or the resin piece P2.

つまり、差分値S及び低エネルギー側の透過X線強度Iの両方の関係を用いることにより、厚さに関わらず、測定対象の樹脂片が樹脂片P0、樹脂片P1、または、樹脂片P2のいずれであるかを判定することができる。例えば、下記表1に示すように、異なる既知の厚さを有する複数の樹脂片P0、樹脂片P1、及び、樹脂片P2の低エネルギー側の透過X線強度Iと差分値Sの組み合わせを予め求め、メモリー等の記憶装置に記憶しておく。測定対象である任意の樹脂片に対し、低エネルギー側の透過X線強度Iと差分値Sとを求め、予め記憶された下記表1に示された値と比較することで、測定対象である樹脂片が、樹脂片P0、樹脂片P1、または、樹脂片P2のいずれであるかを判定することができる。 That is, by using both of the relationship between the difference values S and the low energy side of the transmitted X-ray intensity I L, irrespective of the thickness, resin specimen resin piece P0 measured, resin pieces P1, or resin pieces P2 Can be determined. For example, as shown in Table 1, a plurality of resin pieces P0 having different known thickness, resin pieces P1, and a combination of the transmitted X-ray intensity of the low-energy side of the resin piece P2 I L and the difference value S It is obtained in advance and stored in a storage device such as a memory. For any resin piece that is the measurement target, the transmission X-ray intensity IL and the difference value S on the low energy side are obtained and compared with the values shown in the following Table 1 stored in advance. It can be determined whether a certain resin piece is the resin piece P0, the resin piece P1, or the resin piece P2.

Figure 0006119630
Figure 0006119630

図3は、樹脂片が添加剤を含有するか否かを判定して、それぞれの樹脂片ごとに回収する手法の一例について示したフロー図である。フローチャートと表1に基づいてより具体的に説明する。   FIG. 3 is a flowchart showing an example of a technique for determining whether or not a resin piece contains an additive and collecting each resin piece. A more specific description will be given based on the flowchart and Table 1.

図3において、最初のステップF1は、添加剤を含有しない樹脂片の差分値と添加剤を含有する樹脂片の差分値との間に閾値を設定するステップである。例えば、上記で示した例でいえば、添加剤を含有しない樹脂片P0、添加剤として10wt%ガラス繊維を含有する樹脂片P1、及び、添加剤として1wt%の臭素(Br)を含有する樹脂片P2からなる樹脂片群の場合、表1に示すように樹脂片P0の差分値S0=0と、樹脂片P1の差分値Sの最大値である厚さ1mmの差分値S1=−0.005との間に、閾値J1=−0.003を設定する。このとき、数式4で表される差分値Sのk値は、添加剤を含有しない樹脂片P0の低エネルギー側と高エネルギー側との減弱係数の比を用いる。   In FIG. 3, the first step F1 is a step of setting a threshold value between the difference value of the resin piece not containing the additive and the difference value of the resin piece containing the additive. For example, in the example shown above, the resin piece P0 containing no additive, the resin piece P1 containing 10 wt% glass fiber as the additive, and the resin containing 1 wt% bromine (Br) as the additive In the case of the resin piece group composed of the pieces P2, as shown in Table 1, the difference value S0 = 0 of the resin piece P0 and the difference value S1 of thickness 1 mm which is the maximum value of the difference value S of the resin piece P1 = −0. Threshold value J1 = −0.003 is set between 005 and 005. At this time, the k value of the difference value S expressed by Equation 4 uses the ratio of the attenuation coefficient between the low energy side and the high energy side of the resin piece P0 not containing the additive.

次のステップF2は、異なる既知の厚さを有する複数の樹脂片からなる樹脂片群であって、樹脂片P0、樹脂片P1、及び、樹脂片P2からなる樹脂片群のそれぞれで測定した差分値Sと低エネルギー側の透過X線強度Iの関係を記憶するステップである。例えば、ここでは、上記表1で示した内容を記憶する。 The next step F2 is a resin piece group consisting of a plurality of resin pieces having different known thicknesses, and the difference measured for each of the resin piece group consisting of the resin piece P0, the resin piece P1, and the resin piece P2. a step of storing the relationship between the transmitted X-ray intensity I L of the value S and the low energy side. For example, here, the contents shown in Table 1 are stored.

次のステップF3は、測定対象である任意の樹脂片にX線を照射し、樹脂片を透過したX線の透過強度を測定し、差分値Sを計算するステップである。   In the next step F3, an arbitrary resin piece to be measured is irradiated with X-rays, the transmission intensity of the X-rays transmitted through the resin piece is measured, and the difference value S is calculated.

次のステップF4は、測定対象である任意の樹脂片の差分値SとステップF1で設定した閾値J1とを比較するステップである。F4により、測定対象である任意の樹脂片の差分値Sが閾値J1よりも大きい樹脂片は回収対象とされる。例えば、閾値J1=−0.003よりも大きな差分値Sを与える樹脂片は回収対象と判定される。   The next step F4 is a step of comparing the difference value S of an arbitrary resin piece to be measured with the threshold value J1 set in step F1. By F4, the resin piece in which the difference value S of the arbitrary resin pieces to be measured is larger than the threshold value J1 is set as the collection target. For example, a resin piece that gives a difference value S greater than the threshold value J1 = −0.003 is determined as a collection target.

一方、閾値J1=−0.003以下の差分値Sを与える樹脂片、例えば差分値S=−0.020を与える樹脂片は回収対象と判定されず次のステップF5に移る。   On the other hand, a resin piece that gives a difference value S that is equal to or less than the threshold value J1 = −0.003, for example, a resin piece that gives a difference value S = −0.020, is not determined as a collection target and moves to the next step F5.

次のステップF5は、樹脂片の差分値Sと低エネルギー側との透過X線強度Iの関係について、記憶させていた添加剤を含有する樹脂片P1及びP2とで比較するステップである。例えば、差分値S=−0.020を与える樹脂片があるとする。その差分値Sを、予め記憶させていた表1に示す関係、即ち、厚さxと、樹脂片P1の差分値S1と樹脂片P2の差分値S2との関係とを比較する。その結果、樹脂片P1は厚さ4mmで、樹脂片P2は厚さ2mmで差分値S1=S2=−0.020であるため、差分値が−0.020となる樹脂片が樹脂片P1または樹脂片P2のいずれであるかを判定することはできない。 Step F5, the relationship between the transmitted X-ray intensity I L of the difference values S and the low energy side of the resin piece, a step of comparing with the resin piece P1 and P2 contain additives which have been stored. For example, it is assumed that there is a resin piece that gives a difference value S = −0.020. The difference value S is compared with the relationship shown in Table 1 stored in advance, that is, the relationship between the thickness x and the difference value S1 of the resin piece P1 and the difference value S2 of the resin piece P2. As a result, the resin piece P1 has a thickness of 4 mm, the resin piece P2 has a thickness of 2 mm, and the difference value S1 = S2 = −0.020. Therefore, the resin piece having the difference value of −0.020 is the resin piece P1 or It cannot be determined which of the resin pieces P2.

そこで差分値Sが−0.020を示す樹脂片の低エネルギー側の透過X線強度Iを、樹脂片P1及びP2の低エネルギー側の透過X線強度Iと比較する。差分値S=−0.020を与えた樹脂片の低エネルギー側の透過X線強度IがI=3286である場合、表1から厚さ2mmの樹脂片P2の低エネルギー側の透過X線強度I2と一致し、厚さ4mmの樹脂片P1の低エネルギー側の透過X線強度I1とは異なることがわかる。従って、差分値S=−0.020を与えたこの樹脂片は、樹脂片P2であると判定できる。 So the difference value S transmitted X-ray intensity I L of the low-energy side of the resin pieces showing a -0.020, compared with the transmitted X-ray intensity I L of the low-energy side of the resin pieces P1 and P2. When the transmission X-ray intensity I L on the low energy side of the resin piece given the difference value S = −0.020 is I L = 3286, the transmission X on the low energy side of the resin piece P2 having a thickness of 2 mm is shown in Table 1. It can be seen that it coincides with the line intensity I L 2 and is different from the transmitted X-ray intensity I L 1 on the low energy side of the resin piece P1 having a thickness of 4 mm. Therefore, it can be determined that the resin piece given the difference value S = −0.020 is the resin piece P2.

よって、樹脂片P0を選別回収し、樹脂片P1と樹脂片P2とをそれぞれ選別できるため、これら樹脂片が混在した樹脂片群を3種類に分けることができる。   Therefore, since the resin piece P0 can be sorted and collected and the resin piece P1 and the resin piece P2 can be sorted respectively, the resin piece group in which these resin pieces are mixed can be divided into three types.

次に、比較例に係る判定方法について説明する。図4は、比較例に係る判定方法を示すフローチャートである。フローチャートと表1に基づいて説明する。   Next, a determination method according to the comparative example will be described. FIG. 4 is a flowchart illustrating a determination method according to the comparative example. A description will be given based on the flowchart and Table 1.

図4において、最初のステップF11は、添加剤を含有しない樹脂片の差分値と添加剤を含有する樹脂片の差分値の間に閾値を設定するステップである。例えば、上記で示した例でいえば、樹脂片P0、樹脂片P1、または、樹脂片P2のそれぞれからなる樹脂片群の場合、表1に示すように樹脂片P0の差分値S0=0と、樹脂片P1の差分値S1の最大値である、厚さ1mmの差分値S1=−0.005の間に、例えば閾値J1=−0.003を設定する。このとき、数式4で表される差分値Sのk値は、添加剤を含有しない樹脂片P0の低エネルギー側と高エネルギー側の減弱係数の比を用いる。   In FIG. 4, the first step F11 is a step of setting a threshold value between the difference value of the resin piece not containing the additive and the difference value of the resin piece containing the additive. For example, in the example shown above, in the case of a resin piece group composed of the resin piece P0, the resin piece P1, or the resin piece P2, as shown in Table 1, the difference value S0 = 0 of the resin piece P0 is as follows. For example, a threshold value J1 = −0.003 is set between the difference value S1 = −0.005 of the thickness 1 mm, which is the maximum value of the difference value S1 of the resin piece P1. At this time, the k value of the difference value S expressed by Equation 4 uses the ratio of the attenuation coefficient between the low energy side and the high energy side of the resin piece P0 containing no additive.

次のステップF12は、測定対象の樹脂片にX線を照射し、樹脂片を透過したX線の透過強度を測定することにより透過X線強度を測定し、差分値を計算するステップである。   The next step F12 is a step of calculating the difference value by measuring the transmitted X-ray intensity by irradiating the resin piece to be measured with X-rays and measuring the transmission intensity of the X-ray transmitted through the resin piece.

次のステップF13は、測定対象の樹脂片の差分値Sと閾値J1とを比較するステップである。F13により、樹脂片の差分値Sと閾値J1が比較され、差分値Sが閾値J1よりも大きい樹脂片は回収対象とされる。例えば、閾値J1=−0.003よりも大きな差分値Sを与える樹脂片は回収対象と判定される。   The next step F13 is a step of comparing the difference value S of the resin piece to be measured with the threshold value J1. By F13, the difference value S of the resin piece is compared with the threshold value J1, and the resin piece having the difference value S larger than the threshold value J1 is set as a collection target. For example, a resin piece that gives a difference value S greater than the threshold value J1 = −0.003 is determined as a collection target.

一方、閾値J1=−0.003以下の差分値Sを与える樹脂片、例えば差分値S=−0.020を与える樹脂片は除去対象と判定される。   On the other hand, a resin piece that gives a difference value S that is equal to or less than the threshold value J1 = −0.003, for example, a resin piece that gives a difference value S = −0.020 is determined as a removal target.

比較例に係る判定方法では、含有する添加剤の種類が考慮されない。このため、添加剤を含有しない樹脂片と添加剤を含有する樹脂片との差でのみ判定されることになり、含有する添加剤の種類に応じた判定をすることはできない。したがって、差分値が閾値よりも大きい樹脂片である添加剤を含有しない樹脂片は回収されるが、差分値が閾値以下である樹脂片はひとまとめに除去対象とされ、添加剤の種類に応じて除去することはできない。   In the determination method according to the comparative example, the type of additive contained is not considered. For this reason, it will determine only by the difference of the resin piece which does not contain an additive, and the resin piece containing an additive, and cannot determine according to the kind of additive to contain. Therefore, resin pieces that do not contain an additive that is a resin piece whose difference value is larger than the threshold value are collected, but resin pieces whose difference value is equal to or less than the threshold value are collectively removed, depending on the type of additive. It cannot be removed.

比較例に対して、この発明に係る判定方法では、含有する添加剤の種類を考慮して、まず、樹脂片の差分値と閾値を比較し、その閾値よりも大きい差分値を有する樹脂片は添加剤を含有しない樹脂片と判定されて回収対象であると判定される。次に、樹脂片の差分値が閾値以下である樹脂片については、測定した低エネルギー側の透過X線強度とあらかじめ記憶した差分値と低エネルギー側の透過X線強度との関係を比較することで、添加剤の種類を判定し、その種類毎に応じて選別される。   In contrast to the comparative example, in the determination method according to the present invention, considering the type of additive contained, first, the difference value of the resin piece is compared with a threshold value, and the resin piece having a difference value larger than the threshold value is It is determined that the resin piece does not contain an additive and is determined to be a collection target. Next, for the resin piece whose resin piece difference value is equal to or less than the threshold value, the relationship between the measured low-energy side transmitted X-ray intensity and the previously stored difference value and the low-energy side transmitted X-ray intensity is compared. Thus, the type of the additive is determined and selected according to the type.

これにより、添加剤を含有しない樹脂片P0に係る樹脂片、添加剤として10wt%のガラス繊維を含有する樹脂片P1に係る樹脂片、および、添加剤として1wt%の臭素(Br)を含有する樹脂片P2に係る樹脂片からなる樹脂片群のうち、P0、P1、および、P2のそれぞれに係る3種類の樹脂片を選別することができる。なお、ここではP0、P1、および、P2のそれぞれに係る3種類の樹脂片を選別する方法について述べてきたが、ある添加剤を含有する厚さの異なる樹脂片についての差分値を基準に取り、正規化することで、その他の添加剤を含有する樹脂片との間に閾値を設けて順次識別する作業を繰り返すことにより、P0、P1、および、P2のそれぞれに係る3種類の樹脂片に限られず、4種類、5種類、または、それ以上の種類の樹脂片に対応させることができる場合がある。   Thereby, the resin piece which concerns on the resin piece P0 which does not contain an additive, the resin piece which concerns on the resin piece P1 which contains 10 wt% glass fiber as an additive, and 1 wt% bromine (Br) as an additive is contained. Of the resin piece group consisting of the resin pieces related to the resin piece P2, three types of resin pieces related to each of P0, P1, and P2 can be selected. Here, the method of selecting the three types of resin pieces relating to P0, P1, and P2 has been described, but the difference value for the resin pieces of different thickness containing a certain additive is taken as a reference. By normalizing and repeating the operation of sequentially identifying the resin pieces containing other additives with a threshold value, the three kinds of resin pieces relating to P0, P1, and P2 are obtained. It is not limited, and there are cases where it is possible to correspond to four, five, or more types of resin pieces.

実施の形態2.
上記の実施の形態1では、この発明に係る樹脂の判定方法について説明したが、実施の形態2では、上記判定方法を利用した使用済みプラスチックのリサイクル工程での樹脂の破砕片の選別方法について説明する。図において、上記実施の形態1で示した番号が付された部分については、上記実施の形態1で記載した構成と同様であるため、ここでは説明を省略する。以下、樹脂と記載する場合には、主として使用済みプラスチック樹脂に係る破砕片を念頭に入れて説明する。使用済みプラスチックを粉砕した破砕片は、破砕片毎の厚さにバラツキが有り、また、一つの破砕片の中でも部分により厚さが異なるという特徴がある。このとき、前述の特徴に起因して差分値はバラツキをもつこととなる。
Embodiment 2. FIG.
In the first embodiment, the resin determination method according to the present invention has been described. In the second embodiment, a resin crushed piece sorting method in the used plastic recycling process using the determination method is described. To do. In the figure, the portions denoted by the numbers shown in the first embodiment are the same as the configurations described in the first embodiment, and thus the description thereof is omitted here. Hereinafter, in the case of describing as resin, description will be made mainly with a fragment of the used plastic resin in mind. The crushed pieces obtained by pulverizing used plastics are characterized in that the thickness of each crushed piece varies, and the thickness of each crushed piece varies depending on the portion. At this time, the difference value varies due to the above-described features.

図5は、既知の平均厚さを有する破砕片について、その厚さとそれに対応する差分値との関係を示したグラフである。図中、グラフGは、添加剤を含有しない樹脂片P0について評価したものである。グラフHは、添加剤として10wt%のガラス繊維を含有する樹脂片P1について評価したものである。グラフIは、添加剤として1wt%の臭素(Br)を含有する樹脂片P2について評価したものである。   FIG. 5 is a graph showing the relationship between the thickness of a crushed piece having a known average thickness and the corresponding difference value. In the figure, the graph G evaluates the resin piece P0 containing no additive. Graph H is an evaluation of a resin piece P1 containing 10 wt% glass fiber as an additive. Graph I evaluates resin piece P2 containing 1 wt% bromine (Br) as an additive.

各樹脂片内の差分値Sは、厚さの分布や測定の偶然誤差を反映して分布をもつ。図中の各樹脂片のプロットは、各樹脂片内で得られた差分値Sの平均差を示している。これを平均差分値Saとする。また、エラーバーは、樹脂片の所定の厚さにおける差分値Sのばらつきを示しており、差分値Sの最大値及び最小値の取りうる範囲を示している。   The difference value S in each resin piece has a distribution reflecting the thickness distribution and the measurement error. The plot of each resin piece in the figure shows the average difference of the difference values S obtained within each resin piece. This is defined as an average difference value Sa. Further, the error bar indicates the variation of the difference value S in a predetermined thickness of the resin piece, and indicates the range that the maximum value and the minimum value of the difference value S can take.

数式4で表す差分値Sの式においてkの値を、樹脂片P0の低エネルギー側と高エネルギー側の減弱係数の比に設定すると(k・μ)=0となるため添加剤を含有しない樹脂片の差分値Sは理想的には厚さに依らず0となる。それに従い、グラフGに示されるように、樹脂片P0の厚さxと平均差分値Saの関係も厚さに依らず0となるが、測定の偶然誤差により差分値Sはばらつきをもち、図中のエラーバーで示されるような分布をもつ。 In the equation of the difference value S expressed by Equation 4, when the value of k is set to the ratio of the attenuation coefficient between the low energy side and the high energy side of the resin piece P0, (k · μ H −μ L ) = 0, so that the additive The difference value S of the resin piece not containing s is ideally 0 regardless of the thickness. Accordingly, as shown in the graph G, the relationship between the thickness x of the resin piece P0 and the average difference value Sa is 0 regardless of the thickness, but the difference value S has a variation due to a measurement accidental error. It has a distribution as shown by the error bar in the middle.

一方、樹脂片P1及び樹脂片P2は、数式4で表す差分値Sの式において(k・μ)≠0となり、樹脂片の厚さxが厚くなるにしたがい、差分値S1及びS2が小さくなり、厚さに対する依存性をもつ。また、樹脂片P1及び樹脂片P2では添加剤の種類によって、厚さに対する依存性が異なる。それに従い、グラフHとグラフIで示されるように、樹脂片P1及びP2のそれぞれに対する厚さx1及びx2と平均差分値Sa1及びSa2との関係も厚さの依存性をもち、測定の偶然誤差と樹脂片内の厚さの分布を反映して差分値S1及びS2はばらつきをもち、図中のエラーバーに示すような分布をもつ。 On the other hand, the resin piece P1 and the resin piece P2 become (k · μ H −μ L ) ≠ 0 in the difference value S expression expressed by Expression 4, and the difference value S1 and the resin piece P1 are increased as the thickness x of the resin piece increases. S2 becomes smaller and has a dependency on the thickness. Further, the resin piece P1 and the resin piece P2 have different dependencies on the thickness depending on the type of additive. Accordingly, as shown by the graph H and the graph I, the relationship between the thicknesses x1 and x2 and the average difference values Sa1 and Sa2 with respect to the resin pieces P1 and P2, respectively, is also dependent on the thickness, and it is a measurement error. Reflecting the thickness distribution in the resin piece, the difference values S1 and S2 have variations and have a distribution as indicated by error bars in the figure.

先ず、添加剤を含有しない樹脂片P0、添加剤を含有する樹脂片P1、及び、樹脂片P2であるかを判定する場合に、まず、差分値Sの閾値を0と、樹脂片P1の厚さ1mmの平均差分値Sa1との間に閾値J2を設定することでおおよその判定はできる。しかし、樹脂片P1及び樹脂片P2を確実に除去するためには、樹脂片P1及びP2の差分値S1及びS2の分布を考慮して、出来る限り0に近い閾値とする。しかし、このようにした場合、樹脂片P0の回収量は少なくなってしまうことがわかる。   First, when determining whether the resin piece P0 does not contain an additive, the resin piece P1 containing an additive, and the resin piece P2, first, the threshold value of the difference value S is set to 0, and the thickness of the resin piece P1. An approximate determination can be made by setting a threshold value J2 between the average difference value Sa1 of 1 mm. However, in order to reliably remove the resin piece P1 and the resin piece P2, the threshold value is set as close to 0 as possible in consideration of the distribution of the difference values S1 and S2 between the resin pieces P1 and P2. However, in this case, it can be seen that the recovered amount of the resin piece P0 is reduced.

また、実施の形態1で説明した通り、差分値Sの閾値J2の設定のみでは樹脂片P1と、樹脂片P2とを判定できないため、樹脂片P0、樹脂片P1、及び、樹脂片P2を3種類に判定することはできないが、差分値Sと低エネルギー側の透過X線強度Iの関係を用いることで、厚さによらず樹脂片P1及び樹脂片P2を判定することができる。樹脂片P0、樹脂片P1、及び、樹脂片P2の低エネルギー側の透過X線強度Iと差分値Sの組み合わせをあらかじめ設けておき、樹脂片の差分値が閾値以下である樹脂片については、測定した低エネルギー側の透過X線強度とあらかじめ記憶した差分値と低エネルギー側の透過X線強度との関係を比較することで、添加剤の種類を判定し、その種類毎に応じて樹脂片P0、樹脂片P1、及び、樹脂片P2の3種類の樹脂片を選別することができる。
の判定が可能になる。
Further, as described in the first embodiment, since the resin piece P1 and the resin piece P2 cannot be determined only by setting the threshold value J2 of the difference value S, the resin piece P0, the resin piece P1, and the resin piece P2 are set to 3 can not be judged on the type, by using the relationship between the transmitted X-ray intensity I L of the difference value S and the low energy side, it is possible to determine the resin piece P1 and the resin piece P2 regardless of the thickness. Resin piece P0, resin pieces P1, and leave the combination of low transmission X-ray intensity of the energy side I L and the difference value S of the resin piece P2 in advance provided, the resin piece difference value of the resin piece is equal to or less than the threshold The type of additive is determined by comparing the relationship between the measured low-energy side transmitted X-ray intensity, the difference value stored in advance and the low-energy side transmitted X-ray intensity, and the resin is determined according to the type. Three types of resin pieces, that is, the piece P0, the resin piece P1, and the resin piece P2, can be selected.
Can be determined.

また、樹脂片P1及びP2と判定された樹脂片について、厚さ毎の個数の集計をして、その集計結果を閾値の設定にフィードバックすることで、樹脂片P0の回収量を多くすることができる場合がある。例えば、集計結果から、樹脂片P1の厚さが1mm及び2mmの破砕片、若しくは、樹脂片P2の厚さが1mmの破砕片が、測定対象の任意の破砕片からなる樹脂片群にほとんど存在しない場合には、閾値J2を更に下げて閾値J3とすることができる。これにより添加剤を含む破砕片である除去対象を回収することなく、回収対象である添加剤を含有しない破砕片の回収量を大きくすることができる。   Moreover, about the resin piece determined to be the resin pieces P1 and P2, the number of collection | recovery of the resin piece P0 may be increased by totaling the number for every thickness, and feeding back the total result to the setting of a threshold value. There are cases where it is possible. For example, from the counting results, the resin pieces P1 with a thickness of 1 mm and 2 mm, or the resin pieces P2 with a thickness of 1 mm are almost present in the resin piece group consisting of arbitrary pieces to be measured. If not, the threshold value J2 can be further lowered to the threshold value J3. Thereby, the collection amount of the shredded pieces that do not contain the additive that is the collection target can be increased without collecting the removal target that is the shredded piece containing the additive.

ここでは、前述した破砕片を判定して回収する手法の一例について、フローチャートに基づいてより具体的に説明する。判定方法のフローチャートを図6に示す。ステップF21〜F25では、上記実施の形態2で説明したステップF1〜F5と同様なステップを行う。   Here, an example of a method for determining and collecting the above-described crushed pieces will be described more specifically based on a flowchart. A flowchart of the determination method is shown in FIG. In steps F21 to F25, the same steps as steps F1 to F5 described in the second embodiment are performed.

まず、ステップF21に示すように、添加剤を含有しない破砕片の平均差分値Sa0と、添加剤を含有する破砕片の平均差分値Sa1及びSa2の間に、差分値Sの閾値J2が設定される。添加剤を含有しない破砕片(樹脂片P0)、添加剤として10wt%ガラス繊維を含有する破砕片(樹脂片P1)、及び、添加剤として1wt%の臭素(Br)を含有する破砕片(樹脂片P2)からなる破砕片群の場合、図5に示すように、樹脂片P0の平均差分値Sa0のグラフGと、樹脂片P1の平均差分値Sa1のグラフHにおける厚さ1mmの平均差分値Saの間であって、差分値Sの分布を示すエラーバーを考慮して樹脂片P1を確実に除去するために、出来る限り0に近い位置に閾値J2が設定される。   First, as shown in step F21, a threshold value J2 of the difference value S is set between the average difference value Sa0 of the crushed pieces containing no additive and the average difference values Sa1 and Sa2 of the crushed pieces containing the additive. The Fragment pieces containing no additive (resin piece P0), crush pieces containing 10 wt% glass fiber as an additive (resin piece P1), and crush pieces containing 1 wt% bromine (Br) as an additive (resin In the case of a crushed piece group consisting of pieces P2), as shown in FIG. 5, the average difference value of 1 mm thickness in the graph G of the average difference value Sa0 of the resin piece P0 and the graph H of the average difference value Sa1 of the resin piece P1. A threshold value J2 is set at a position as close to 0 as possible in order to reliably remove the resin piece P1 between Sa and taking into account error bars indicating the distribution of the difference value S.

ステップF22及びステップF23を経て、ステップF24に示すように、破砕片の差分値Sと閾値J2とが比較される。このとき、差分値Sが閾値J2よりも大きい破砕片は回収対象とされる。なお、ステップF22及びステップF23は、上記実施の形態1で説明したステップF2及びF3と同様なステップであるため、ここでは説明を省略する。   After step F22 and step F23, as shown in step F24, the difference value S of the fragments and the threshold value J2 are compared. At this time, shredded pieces whose difference value S is larger than the threshold value J2 are targeted for collection. Steps F22 and F23 are the same steps as steps F2 and F3 described in the first embodiment, and a description thereof is omitted here.

一方、破砕片の差分値Sが閾値J2以下である場合は、回収対象と判定されずに次のステップF25に移る。   On the other hand, when the difference value S of the crushed pieces is equal to or less than the threshold value J2, the process proceeds to the next step F25 without being determined as a collection target.

ここで、実施の形態1と同様に差分値Sが閾値J2以下である破砕片の差分値Sと低エネルギー側の透過X線強度Iを、あらかじめ記憶した樹脂片P1及び樹脂片P2の差分値Sと低エネルギー側の透過X線強度Iと比較することにより判定することができる。このように、樹脂片P0、樹脂片P1、及び、樹脂片P2のそれぞれで構成された樹脂片群から3種類の樹脂片を選別し、これらの樹脂片を用途に応じて除去または回収することができる。 Here, the transmitted X-ray intensity I L of the difference value S and the low energy side of the debris likewise difference value S as in the first embodiment is the threshold value J2 less, previously stored difference of resin pieces P1 and resin piece P2 it can be determined by comparing the transmitted X-ray intensity I L of the value S and the low energy side. In this way, three types of resin pieces are selected from the resin piece group composed of the resin piece P0, the resin piece P1, and the resin piece P2, and these resin pieces are removed or collected according to the application. Can do.

次いでステップF26で、樹脂片P1または樹脂片P2のいずれかに判定された破砕片を厚さ毎に集計する。集計の結果、破砕片群の中に樹脂片P1と判定された厚さ1mm及び2mmの破砕片や、樹脂片P2と判定された厚さ1mmの破砕片が含まれない場合には、ステップF27で差分値Sの閾値をJ3により低く設定することができ、樹脂片P0に相当する添加剤を含有しない樹脂の破砕片の回収量を増やすことができる。   Next, in step F26, the crushed pieces determined as either the resin piece P1 or the resin piece P2 are tabulated for each thickness. As a result of counting, if the crushed pieces group does not include crushed pieces having a thickness of 1 mm and 2 mm determined as the resin piece P1 or crushed pieces having a thickness of 1 mm determined as the resin piece P2, step F27. Thus, the threshold value of the difference value S can be set lower by J3, and the recovered amount of the resin crushed pieces not containing the additive corresponding to the resin piece P0 can be increased.

実施の形態3.
上記の実施の形態では、この発明に係る樹脂の判定方法について説明したが、この発明に係る実施の形態3では、上記判定方法を利用したこの発明に係る樹脂の選別装置について説明する。図において、上記実施の形態で示した番号が付された部分については、上記実施の形態で記載した構成と同様であるため、ここでは説明を省略する。以下、樹脂と記載する場合には、新規な樹脂成形品を含むことはもちろんのことであるが、本発明は、プラスチックリサイクルの観点からなされた発明であり、主として使用済みプラスチック樹脂に係る破砕片を念頭に入れて説明する。
Embodiment 3 FIG.
In the above embodiment, the resin determination method according to the present invention has been described, but in Embodiment 3 according to the present invention, a resin sorting apparatus according to the present invention using the above determination method will be described. In the figure, the portions denoted by the numbers shown in the above embodiments are the same as the configurations described in the above embodiments, and thus the description thereof is omitted here. Hereinafter, when it is described as a resin, it is a matter of course that a new resin molded product is included. However, the present invention is an invention made from the viewpoint of plastic recycling, and is mainly a fragment of a used plastic resin. With this in mind, explain.

この発明の実施の形態3に係る樹脂の選別装置は、複数の樹脂片にX線を照射するX線照射部と、複数の樹脂片のそれぞれを透過した後のX線の透過強度を測定する検出部を備えている。計算部は、検出部で測定した低エネルギー側の透過X線強度と高エネルギー側の透過X線強度の差分値を計算する。メモリーまたはハードディスクなどで構成される記憶部には、あらかじめ添加剤を含有しない樹脂片からなる既知の厚さの樹脂片群、及び、添加剤を含有する樹脂片からなる既知の厚さの樹脂片群のそれぞれで測定した、差分値、及び、差分値と低エネルギー側の透過X線強度との関係が記憶されており、照合部では差分値及び低エネルギー側の透過X線強度の測定値と、あらかじめ記憶した添加剤を含有しない樹脂片からなる既知の厚さの樹脂片群、及び、添加剤を含有する樹脂片からなる既知の厚さの樹脂片群のそれぞれで測定した、差分値、及び、差分値と低エネルギー側の透過X線強度との関係とを比較する。これにより添加剤の種類毎に樹脂片が判定される。   A resin sorting apparatus according to Embodiment 3 of the present invention measures an X-ray irradiator that irradiates a plurality of resin pieces with X-rays, and a transmission intensity of X-rays after passing through each of the plurality of resin pieces. A detection unit is provided. The calculation unit calculates a difference value between the transmission X-ray intensity on the low energy side and the transmission X-ray intensity on the high energy side measured by the detection unit. In a storage unit composed of a memory or a hard disk, a group of resin pieces having a known thickness composed of resin pieces not containing additives in advance, and a resin piece having a known thickness consisting of resin pieces containing additives The difference value measured in each of the groups and the relationship between the difference value and the transmitted X-ray intensity on the low energy side are stored, and in the verification unit, the difference value and the measured value of the transmitted X-ray intensity on the low energy side are stored. , A difference value measured in each of a resin piece group of a known thickness consisting of a resin piece containing no pre-stored additive and a resin piece group of a known thickness consisting of a resin piece containing an additive, And the relationship between the difference value and the transmitted X-ray intensity on the low energy side is compared. Thereby, the resin piece is determined for each type of additive.

判定部では、添加剤を含有しない樹脂片の差分値と添加剤を含有する樹脂片の差分値の間に閾値を設定し、計算した差分値と比較することにより添加剤を含まない樹脂片と添加剤を含む樹脂片を判定し、判定結果に基づいて選別部において選別される。   In the determination unit, a threshold value is set between the difference value of the resin piece not containing the additive and the difference value of the resin piece containing the additive, and the resin piece not containing the additive is compared with the calculated difference value. The resin piece containing the additive is determined, and is selected by the selection unit based on the determination result.

集計部では、差分値及び低エネルギー側の透過X線強度の測定値と、あらかじめ記憶した添加剤を含有しない樹脂片からなる既知の厚さの樹脂片群、及び、添加剤を含有する樹脂片からなる既知の厚さの樹脂片群のそれぞれで測定した、差分値及び低エネルギー側の透過X線強度の関係を比較するステップで得た樹脂片の材質と厚さの分布を集計する。
樹脂片の材質と厚さの分布の集計結果は、判定部にフィードバックされて閾値が再設定される。
In the counting section, the difference value and the measured value of the transmitted X-ray intensity on the low energy side, a resin piece group of a known thickness composed of resin pieces not containing additives stored in advance, and resin pieces containing additives The distribution of the material and thickness of the resin pieces obtained in the step of comparing the relationship between the difference value and the transmitted X-ray intensity on the low energy side, measured for each of the resin piece groups having a known thickness, is tabulated.
The total result of the distribution of the material and thickness of the resin piece is fed back to the determination unit and the threshold value is reset.

以下、この発明の実施の形態3に係る樹脂の選別装置の一例について、図を用いて具体的に説明する。図7は、この発明の実施の形態3に係る選別装置を示す模式図である。図に示すように、樹脂の選別装置1は、ホッパーとフィーダーで構成される供給部2から使用済みプラスチックの破砕片を搬送部3に供給する、例えばベルトコンベアなどで構成される搬送部3により破砕片を搬送する。搬送部3で搬送された破砕片20は、搬送部3上または搬送部3を飛び出した後に、X線照射部4からX線を照射され、照射されたX線の内、破砕片を透過したX線をデュアルセンサーから構成されるX線検出部5で測定する。X線検出部5で検出された透過X線強度に基づき制御部6により、回収すべき破砕片であるか、廃棄すべき破砕片であるか判断する。選別部7は、制御部6からの情報に基づき、破砕片の選別を行う。   Hereinafter, an example of a resin sorting apparatus according to Embodiment 3 of the present invention will be specifically described with reference to the drawings. FIG. 7 is a schematic diagram showing a sorting apparatus according to Embodiment 3 of the present invention. As shown in the figure, a resin sorting apparatus 1 is configured to supply a used plastic crushed piece from a supply unit 2 composed of a hopper and a feeder to a conveyance unit 3, for example, a conveyance unit 3 composed of a belt conveyor or the like. Transport the fragments. The crushed pieces 20 conveyed by the conveying unit 3 are irradiated with X-rays from the X-ray irradiation unit 4 after jumping out on the conveying unit 3 or the conveying unit 3, and transmitted through the crushed pieces among the irradiated X-rays. X-rays are measured by the X-ray detection unit 5 including a dual sensor. Based on the transmitted X-ray intensity detected by the X-ray detection unit 5, the control unit 6 determines whether the fragment is to be collected or to be discarded. The sorting unit 7 sorts the crushed pieces based on the information from the control unit 6.

制御部6は、主に、X線検出部5からの画像データを読み取る画像読取部10と、X線検出部5で得た低エネルギー側と高エネルギー側の透過X線強度のデータに基づき低エネルギー側及び高エネルギー側の透過X線強度の差分値を計算する計算部11と、添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する厚さの異なる樹脂片についての差分値、及び、差分値と低エネルギー側の透過X線強度との関係が記憶された記憶部12と、記憶部12に記憶したデータと実測により得られる計算部11のデータとを比較照合する照合部13と、照合部13の結果に基づき回収すべき破砕片であるか、廃棄すべき破砕片であるかの判定を行う判定部14とを備えている。   The control unit 6 is based on the image reading unit 10 that reads image data from the X-ray detection unit 5 and the low-energy side and high-energy side transmission X-ray intensity data obtained by the X-ray detection unit 5. A calculation unit 11 for calculating a difference value of transmitted X-ray intensities on the energy side and the high energy side, a resin piece group not containing an additive, a first resin piece group containing a first additive, and a second The difference value about the resin piece from which thickness differs which comprises each of the 2nd resin piece group containing the additive of this, and the memory | storage part by which the relationship between a difference value and the transmission X-ray intensity on the low energy side was memorize | stored 12, collating unit 13 for comparing and collating data stored in storage unit 12 with data of calculation unit 11 obtained by actual measurement, crushing pieces to be collected based on the result of collating unit 13, or crushing to be discarded And a determination unit 14 for determining whether it is a piece To have.

選別部7は、主に、例えば、エアガン等を用いて、空中に存在する選別対象である破砕片20を除去または回収をするために、その破砕片20の方向(軌道)を変更する選択部8、回収する破砕片20と除去する破砕片20を収める複数に区切られた小部屋を持つ回収部9を備えている。   The selection unit 7 mainly uses, for example, an air gun or the like to select or change the direction (trajectory) of the crushed pieces 20 in order to remove or collect the crushed pieces 20 to be sorted in the air. 8. A recovery unit 9 having a small room divided into a plurality of compartments for storing the fragment 20 to be collected and the fragment 20 to be removed is provided.

次に、上述した樹脂の選別装置1の動作について、図7を用いて具体的に説明する。供給部2に蓄えられた破砕片20が、搬送ベルト等で構成される搬送部3に供給される。破砕片20には、たとえば、添加剤を含有しない破砕片201、ガラス繊維を含有した破砕片202、および、臭素(Br)を含有した破砕片203が含まれるものとする。搬送部3に供給された破砕片20は、搬送部3で搬送され、搬送部3上または搬送部3から飛び出した空中で、X線照射部4およびX線検出部5との間を通過するときに、X線照射部4からX線が照射されて、破砕片20を透過したX線がX線検出部5によって検出される。   Next, the operation of the above-described resin sorting apparatus 1 will be specifically described with reference to FIG. The crushed pieces 20 stored in the supply unit 2 are supplied to the conveyance unit 3 configured by a conveyance belt or the like. The crushed pieces 20 include, for example, crushed pieces 201 containing no additive, crushed pieces 202 containing glass fibers, and crushed pieces 203 containing bromine (Br). The crushed pieces 20 supplied to the transport unit 3 are transported by the transport unit 3 and pass between the X-ray irradiation unit 4 and the X-ray detection unit 5 on the transport unit 3 or in the air jumping out of the transport unit 3. Sometimes, X-rays are irradiated from the X-ray irradiation unit 4, and X-rays transmitted through the fragment 20 are detected by the X-ray detection unit 5.

制御部6では、X線検出部5で得られた透過X線強度に係るデータに基づいて、破砕片20のそれぞれについて、回収すべき破砕片であるか、廃棄すべき破砕片であるかが判定され、その判定結果に基づいて、選別部7で選別される。ここでは除去すべき破砕片と規定する破砕片202および破砕片203を、空気ボンベから送られた空気を噴射する空気銃等の選択部8を動作させることで、選択的に回収部9の除去すべき領域に落とす。一方、回収すべきであると規定した破砕片201は、選択部8を動作させずに通過させて、回収すべき領域に落下させる。   In the control unit 6, based on the data relating to the transmitted X-ray intensity obtained by the X-ray detection unit 5, whether each of the crushed pieces 20 is a crushed piece to be recovered or a crushed piece to be discarded. It is judged and sorted by the sorting unit 7 based on the judgment result. Here, the crushed pieces 202 and crushed pieces 203 that are defined as crushed pieces to be removed are selectively removed from the collection unit 9 by operating the selection unit 8 such as an air gun that injects air sent from an air cylinder. Drop it into the area that should be. On the other hand, the crushed pieces 201 that are defined to be collected are allowed to pass without operating the selection unit 8 and dropped to the area to be collected.

なお、選択部8を複数の空気銃で構成することにより、選別対象である複数種類の樹脂の破砕片をそれぞれ異なる領域に落下させることが可能となる。例えば、破砕片201乃至203をそれぞれ異なる領域に分ける場合には、破砕片202を選別する第一の空気銃801と、破砕片203を選別する第二の空気銃802を設けることで、第一の空気銃801を動作させた場合には、破砕片202を第一の領域901に落とし、第二の空気銃802を動作させた場合には、破砕片203を第二の領域902に落とし、第一の空気銃801および第二の空気銃802を動作させずに通過させた場合には、破砕片201を第3の領域903に落とすように設定することも可能である。   Note that, by configuring the selection unit 8 with a plurality of air guns, it is possible to drop a plurality of types of crushed pieces of resin to be sorted into different regions. For example, when the crushed pieces 201 to 203 are divided into different areas, a first air gun 801 that sorts the crushed pieces 202 and a second air gun 802 that sorts the crushed pieces 203 are provided. When the air gun 801 is operated, the crushed piece 202 is dropped into the first region 901, and when the second air gun 802 is operated, the crushed piece 203 is dropped into the second region 902, When the first air gun 801 and the second air gun 802 are passed without being operated, it is possible to set so that the fragment 201 is dropped in the third region 903.

次いで、制御部6での判定動作について説明する。計算部11は、X線検出器5から取得した低エネルギー側の透過X線強度および高エネルギー側の透過X線強度に基づいて差分値を計算する。記憶部12は、添加剤を含有しない樹脂片からなる既知の厚さの樹脂片群、及び、添加剤を含有する樹脂片からなる既知の厚さの樹脂片群のそれぞれで測定した、差分値及び低エネルギー側の透過X線強度の関係が記憶され、照合部13において、あらかじめ記憶部11に記憶したデータおよび実測により得られた計算部11のデータを比較して、差分値が閾値よりも大きい場合は、判定部14が回収対象として判定し、回収部9で回収される。   Next, the determination operation in the control unit 6 will be described. The calculation unit 11 calculates a difference value based on the transmitted X-ray intensity on the low energy side and the transmitted X-ray intensity on the high energy side acquired from the X-ray detector 5. The memory | storage part 12 measured with each of the resin piece group of the known thickness which consists of the resin piece of known thickness which consists of the resin piece which does not contain an additive, and the resin piece which contains the additive. And the relationship of the transmitted X-ray intensity on the low energy side is stored, and the collation unit 13 compares the data stored in the storage unit 11 in advance with the data of the calculation unit 11 obtained by actual measurement, and the difference value is greater than the threshold value. If it is larger, the determination unit 14 determines that it is a collection target, and the collection unit 9 collects it.

閾値と計算した差分値を比較して、差分値が閾値以下の場合は、記憶部12に記憶された添加剤を含有しない樹脂片、添加剤として10wt%ガラス繊維を含有する樹脂片、および、添加剤として1wt%の臭素(Br)を含有する樹脂片からなる既知の厚さの樹脂片群で測定した差分値および低エネルギー側の透過X線強度の関係、若しくは、計算した差分値および低エネルギー側の透過X線強度の関係を比較することにより、添加剤として10wt%のガラス繊維を含有する破砕片202、および、添加剤として1wt%の臭素(Br)を含有する破砕片203を判定することができる。したがって、破砕片群から3種類の樹脂それぞれの樹脂片を除去および回収することができる   Comparing the calculated difference value with the threshold value, if the difference value is equal to or less than the threshold value, the resin piece not containing the additive stored in the storage unit 12, the resin piece containing 10 wt% glass fiber as the additive, and The relationship between the difference value measured with a resin piece group of a known thickness consisting of a resin piece containing 1 wt% bromine (Br) as an additive and the transmitted X-ray intensity on the low energy side, or the calculated difference value and low By comparing the relationship of the transmitted X-ray intensity on the energy side, a crushed piece 202 containing 10 wt% glass fiber as an additive and a crushed piece 203 containing 1 wt% bromine (Br) as an additive are determined. can do. Therefore, the resin pieces of the three kinds of resins can be removed and collected from the crushed pieces group.

実施の形態4.
上記の実施の形態3では、樹脂の選別装置の一例について説明したが、実施の形態4では、樹脂の選別装置の別の一例について説明する。図8は、この発明の実施の形態4に係る選別装置の一例を示す模式図である。図に示すように、上記この発明の実施の形態3に係る樹脂の選別装置の一例で示した番号が付された部分については、上記樹脂の選別装置の一例で記載した構成と同様であるため、ここでは説明を省略する。
Embodiment 4 FIG.
In the above-described third embodiment, an example of a resin sorting device has been described. In the fourth embodiment, another example of a resin sorting device will be described. FIG. 8 is a schematic diagram showing an example of a sorting apparatus according to Embodiment 4 of the present invention. As shown in the figure, the numbered portions shown in the example of the resin sorting apparatus according to Embodiment 3 of the present invention are the same as the configuration described in the example of the resin sorting apparatus. The description is omitted here.

上記実施の形態3に係る選別装置と異なる部分は、制御部6に照合部13の判定結果を集計する集計部15と、集計部15の集計結果を判定部14に送信するフィードバック部16とを備えていることである。   The difference from the sorting apparatus according to the third embodiment is that the control unit 6 includes a totaling unit 15 that totals the determination results of the collation unit 13 and a feedback unit 16 that transmits the totaling results of the totaling unit 15 to the determination unit 14. It is to have.

以下、制御部6での判別動作について説明する。上記実施の形態3に係る樹脂の選別装置の一例で説明した箇所については、説明が重複するため、ここでは説明を省略する。記憶部12は、添加剤を含有しない樹脂片からなる既知の厚さの樹脂片群、及び、添加剤を含有する樹脂片からなる既知の厚さの樹脂片群のそれぞれで測定した、差分値及び低エネルギー側の透過X線強度の関係が記憶され、照合部13において、あらかじめ記憶部12に記憶したデータおよび実測により得られた計算部11のデータを比較して、差分値が閾値よりも大きい場合は、判定部14が回収対象として判定し、回収部9で回収される。   Hereinafter, the determination operation in the control unit 6 will be described. Since the description of the portion described in the example of the resin sorting apparatus according to the third embodiment is repeated, the description thereof is omitted here. The memory | storage part 12 measured with each of the resin piece group of the known thickness which consists of the resin piece of known thickness which consists of the resin piece which does not contain an additive, and the resin piece which contains the additive. And the relationship of the transmitted X-ray intensity on the low energy side is stored, and the collation unit 13 compares the data stored in the storage unit 12 in advance with the data of the calculation unit 11 obtained by actual measurement, and the difference value is smaller than the threshold value. If it is larger, the determination unit 14 determines that it is a collection target and the collection unit 9 collects it.

また、照合部13は、その判定結果に係るデータを集計部15に送信する。集計部15は、送信された判定結果に係るデータを所定の一定期間集計し、その集計結果をフィードバック部16に送信する。フィードバック部16は、集計結果を判定部14に送信し、判定部14は、集計結果に基づいて閾値の値を再設定する。なお、集計部15が、判定結果に係るデータの集計、及び、集計結果の判定部14への送信を行っても構わない。   The collation unit 13 transmits data related to the determination result to the totaling unit 15. The totaling unit 15 totals the data related to the transmitted determination results for a predetermined period, and transmits the totaled results to the feedback unit 16. The feedback unit 16 transmits the aggregation result to the determination unit 14, and the determination unit 14 resets the threshold value based on the aggregation result. The aggregation unit 15 may aggregate data related to the determination result and transmit the aggregation result to the determination unit 14.

例えば、上記実施の形態3で説明した添加剤として10wt%のガラス繊維を含有する破砕片202、および、添加剤として1wt%の臭素(Br)を含有する破砕片203について、具体的に説明すれば、判定部14で得た破砕片202および破砕片203について厚さに基づくデータを集計部15で集計する。この結果、破砕片202には、厚さ1mmまたは2mmのものが含まれない場合、および、破砕片203には、厚さ1mmのものが含まれない場合には、判定部14で差分値の閾値を低く再設定することにより、添加剤を含有しない樹脂の破砕片の回収量を増やすことができる。   For example, the crushed piece 202 containing 10 wt% glass fiber as the additive described in Embodiment 3 and the crushed piece 203 containing 1 wt% bromine (Br) as the additive will be specifically described. For example, the data based on the thickness of the crushed pieces 202 and the crushed pieces 203 obtained by the determination unit 14 are totaled by the totaling unit 15. As a result, when the crushed piece 202 does not include a piece having a thickness of 1 mm or 2 mm, and when the crushed piece 203 does not contain a piece having a thickness of 1 mm, the determination unit 14 determines the difference value. By resetting the threshold value low, it is possible to increase the amount of resin fragments that do not contain additives.

以上説明したように、上記実施の形態に係る樹脂の選別装置によれば、低エネルギー側の透過X線強度と差分値との関係を既存の情報と比較することで添加剤の種類毎の樹脂片を選別できる。また、低エネルギー側の透過X線強度と差分値との関係を既存の情報と比較による添加剤の種類毎の樹脂片に係る分布情報に基づいて添加剤を含まない樹脂片と添加剤を含む樹脂片の閾値を調整することにより添加剤を含まない樹脂片の回収量を増やすことができる。   As described above, according to the resin sorting apparatus according to the above embodiment, the resin for each type of additive can be obtained by comparing the relationship between the transmitted X-ray intensity on the low energy side and the difference value with the existing information. You can sort pieces. Moreover, the resin piece and additive which do not contain an additive are included based on the distribution information which concerns the resin piece for every kind of additive by comparison with the existing information and the relationship between the transmission X-ray intensity on the low energy side and the difference value By adjusting the threshold value of the resin piece, it is possible to increase the amount of the resin piece that does not contain the additive.

1 選別装置、2 供給部、3 搬送部、4 X線照射部、5 X線検出部、6 制御部、7 選別部、8 選択部、9 回収部、10 画像読取部、11 計算部、12 記憶部、13 照合部、14 判定部、15 集計部、16 フィードバック部、20 破砕片、201 添加剤を含有しない破砕片、202 ガラス繊維を含有した破砕片、203 臭素(Br)を含有した破砕片   DESCRIPTION OF SYMBOLS 1 Sorting device, 2 Supply part, 3 Conveyance part, 4 X-ray irradiation part, 5 X-ray detection part, 6 Control part, 7 Sorting part, 8 Selection part, 9 Collection | recovery part, 10 Image reading part, 11 Calculation part, 12 Storage unit, 13 verification unit, 14 determination unit, 15 counting unit, 16 feedback unit, 20 crushed piece, 201 crushed piece not containing additive, 202 crushed piece containing glass fiber, 203 crushed containing bromine (Br) Fragment

Claims (4)

所定の厚さを有する複数の樹脂片からなる樹脂片群であって、添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群において、
それぞれの樹脂片群を構成する各樹脂片にX線を照射し、透過した低エネルギー側のX線強度と高エネルギー側のX線強度との差分である差分値、及び、該差分値と透過した低エネルギー側のX線強度との関係を予め記録し、
任意の樹脂片にX線を照射し、透過した低エネルギー側のX線強度と高エネルギー側のX線強度との差分である差分値、及び、該差分値と透過した低エネルギー側のX線強度との関係を求め、前記予め記録した差分値、及び、該差分値と透過した低エネルギー側のX線強度との関係と比較することで、前記任意の樹脂片の添加剤の含有及び種別を判定する樹脂の判定方法であって、
添加剤を含有しない樹脂片の低エネルギー側の減弱係数をμNL、添加剤を含有しない樹脂片の高エネルギー側の減弱係数をμNH、添加剤を含有しない樹脂片の低エネルギー側の減弱係数と添加剤を含有しない樹脂片の高エネルギー側の減弱係数との比をk=μNL/μNH、透過した低エネルギー側のX線強度をIL、照射した低エネルギー側のX線強度をIL0、透過した高エネルギー側のX線強度をIH、および照射した高エネルギー側のX線強度をIH0、としたとき、前記差分値は、ln(IL/IL0)-k・ln(IH/IH0)である樹脂の判定方法。
A resin piece group composed of a plurality of resin pieces having a predetermined thickness, the resin piece group containing no additive, the first resin piece group containing the first additive, and the second additive In the second resin piece group containing
Each resin piece constituting each resin piece group is irradiated with X-rays, and a difference value that is a difference between the transmitted X-ray intensity on the low energy side and the X-ray intensity on the high energy side, and the difference value and transmission Record the relationship with the X-ray intensity on the low energy side in advance,
A difference value which is a difference between the X-ray intensity on the low energy side and the X-ray intensity on the high energy side, which is irradiated with X-rays on an arbitrary resin piece, and the X-ray on the low energy side which is transmitted with the difference value By determining the relationship with the intensity, and comparing the difference value recorded in advance and the relationship between the difference value and the transmitted X-ray intensity on the low energy side, the content and type of the additive in the arbitrary resin piece A method for determining resin ,
Addition of μNL to the low energy side attenuation coefficient of resin pieces not containing additives, μNH to the high energy side of resin pieces not containing additives, and addition of low energy side attenuation coefficients to resin pieces containing no additives The ratio of the resin piece not containing the agent to the attenuation coefficient on the high energy side is k = μNL / μNH, the transmitted X-ray intensity on the low energy side is IL, the X-ray intensity on the irradiated low energy side is IL0, and the transmitted high When the X-ray intensity on the energy side is IH and the X-ray intensity on the irradiated high energy side is IH0, the difference value is ln (IL / IL0) −k · ln (IH / IH0). Judgment method.
添加剤を含有しない樹脂片群を構成する樹脂片に係る差分値と、第一の樹脂片群及び第二の樹脂片群を構成する樹脂片に係る差分値との間に閾値を設け、
任意の樹脂片に係る差分値が前記閾値以下であるか否かにより、任意の樹脂片が添加剤を含有するか否かを判別し、
任意の樹脂片に係る差分値が前記閾値以下である場合には、差分値と透過した低エネルギー側のX線強度との関係により、添加剤の種別を判別する請求項1記載の樹脂の判定方法。
A threshold value is provided between the difference value relating to the resin piece constituting the resin piece group not containing the additive and the difference value relating to the resin piece constituting the first resin piece group and the second resin piece group,
It is determined whether or not any resin piece contains an additive depending on whether or not a difference value related to any resin piece is equal to or less than the threshold value.
The resin determination according to claim 1, wherein when the difference value related to an arbitrary resin piece is equal to or less than the threshold value, the type of additive is determined based on the relationship between the difference value and the transmitted X-ray intensity on the low energy side. Method.
選別対象である複数の任意の樹脂片の判定結果に基づいて、閾値を再設定する請求項2記載の樹脂の判定方法。   The resin determination method according to claim 2, wherein the threshold is reset based on determination results of a plurality of arbitrary resin pieces to be selected. 任意の樹脂片にX線を照射するX線照射部と、
前記任意の樹脂片を透過したX線の強度を検出するX線検出部と、
前記X線検出部で検出した低エネルギー側の透過X線強度と高エネルギー側の透過X線強度との差分値を計算する計算部と、
所定の厚さを有する複数の樹脂片からなる樹脂片群であって、添加剤を含有しない樹脂片群、第一の添加剤を含有する第一の樹脂片群、及び、第二の添加剤を含有する第二の樹脂片群のそれぞれを構成する厚さの異なる樹脂片についての差分値、及び、差分値と低エネルギー側の透過X線強度との関係を予め記憶する記憶部と、
前記計算部により前記任意の樹脂片にX線を照射して得られた差分値、及び、差分値と低エネルギー側の透過X線強度との関係と、前記記憶部に記憶された差分値、及び、差分値と低エネルギー側の透過X線強度との関係とを比較する判定部とを備え、
前記判定部の判定結果に基づいて、前記任意の樹脂片が添加剤を含有しない樹脂片、第一の添加剤を含有する樹脂片、及び、第二の添加剤を含有する樹脂片のいずれかであるかを選別する樹脂の選別装置であって、
添加剤を含有しない樹脂片の低エネルギー側の減弱係数をμNL、添加剤を含有しない樹脂片の高エネルギー側の減弱係数をμNH、添加剤を含有しない樹脂片の低エネルギー側の減弱係数と添加剤を含有しない樹脂片の高エネルギー側の減弱係数との比をk=μNL/μNH、透過した低エネルギー側のX線強度をIL、照射した低エネルギー側のX線強度をIL0、透過した高エネルギー側のX線強度をIH、および照射した高エネルギー側のX線強度をIH0、としたとき、前記差分値は、ln(IL/IL0)-k・ln(IH/IH0)である樹脂の選別装置。
An X-ray irradiation unit for irradiating an arbitrary resin piece with X-rays;
An X-ray detector that detects the intensity of X-rays transmitted through the arbitrary resin piece;
A calculation unit that calculates a difference value between the transmission X-ray intensity on the low energy side detected by the X-ray detection unit and the transmission X-ray intensity on the high energy side;
A resin piece group composed of a plurality of resin pieces having a predetermined thickness, the resin piece group containing no additive, the first resin piece group containing the first additive, and the second additive A difference value for the resin pieces having different thicknesses that constitute each of the second resin piece group containing, and a storage unit that stores in advance the relationship between the difference value and the transmitted X-ray intensity on the low energy side,
The difference value obtained by irradiating the arbitrary resin piece with X-rays by the calculation unit, the relationship between the difference value and the transmitted X-ray intensity on the low energy side, and the difference value stored in the storage unit, And a determination unit that compares the relationship between the difference value and the transmitted X-ray intensity on the low energy side,
Based on the determination result of the determination unit, any one of the resin piece in which the arbitrary resin piece does not contain an additive, the resin piece containing the first additive, and the resin piece containing the second additive a sorting device for resin sorting or is,
Addition of μNL to the low energy side attenuation coefficient of resin pieces not containing additives, μNH to the high energy side of resin pieces not containing additives, and addition of low energy side attenuation coefficients to resin pieces containing no additives The ratio of the resin piece not containing the agent to the attenuation coefficient on the high energy side is k = μNL / μNH, the transmitted X-ray intensity on the low energy side is IL, the X-ray intensity on the irradiated low energy side is IL0, and the transmitted high When the X-ray intensity on the energy side is IH and the X-ray intensity on the irradiated high energy side is IH0, the difference value is ln (IL / IL0) −k · ln (IH / IH0). Sorting device.
JP2014024187A 2014-02-12 2014-02-12 Resin determination method and sorting apparatus Active JP6119630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024187A JP6119630B2 (en) 2014-02-12 2014-02-12 Resin determination method and sorting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024187A JP6119630B2 (en) 2014-02-12 2014-02-12 Resin determination method and sorting apparatus

Publications (2)

Publication Number Publication Date
JP2015152343A JP2015152343A (en) 2015-08-24
JP6119630B2 true JP6119630B2 (en) 2017-04-26

Family

ID=53894779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024187A Active JP6119630B2 (en) 2014-02-12 2014-02-12 Resin determination method and sorting apparatus

Country Status (1)

Country Link
JP (1) JP6119630B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4330460C2 (en) * 1993-09-08 1996-05-23 Siemens Ag Device for examining tissue with light of different wavelengths
NZ502033A (en) * 2000-06-11 2003-05-30 Inst Of Geol & Nuclear Science Assessing properties of meat such as the fat or lean meat content using dual energy x-ray absorption scanner
JP4033750B2 (en) * 2002-10-07 2008-01-16 大和製衡株式会社 Sensitivity calibration method and sensitivity calibration apparatus for X-ray foreign substance inspection apparatus
JP5463909B2 (en) * 2007-04-11 2014-04-09 三菱電機株式会社 Method for detecting Br in resin, resin sorting apparatus, and method for producing recycled resin product
GB0807474D0 (en) * 2008-04-24 2008-12-03 Durham Scient Crystals Ltd Determination of Composition of Liquids
JP5110011B2 (en) * 2009-03-12 2012-12-26 三菱電機株式会社 Resin sorting method and resin sorting apparatus
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus
US8290120B2 (en) * 2009-09-30 2012-10-16 Varian Medical Systems, Inc. Dual energy radiation scanning of contents of an object based on contents type

Also Published As

Publication number Publication date
JP2015152343A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US8875901B2 (en) Sorting mined material on the basis of two or more properties of the material
JP5498400B2 (en) Plastic sorting method and sorting apparatus
US9566615B2 (en) Resin piece sorting method and resin piece sorting apparatus
JP2022552246A (en) Management of recyclable products and their raw materials
JP2017122705A (en) Calculation method, determination method, selection method, and selection apparatus
WO2014082135A1 (en) Sorting mined material
KR20220083727A (en) Management of recyclables and their raw materials
US20060115037A1 (en) System and a method of automatically sorting objects
JP2016099888A (en) Sensor data classification system, method, and program
JP6119630B2 (en) Resin determination method and sorting apparatus
US11867645B2 (en) System and method for detection and identification of foreign elements in a substance by X-ray or Gamma-ray detection and emission
JP4870014B2 (en) Recycled plastic material sorting method
JP4536548B2 (en) X-ray inspection apparatus and stored information extraction system
JP2009279541A (en) Apparatus and method for selecting bromine-base flame retardant-containing resin
JP2017101988A (en) Plastic discrimination method and plastic discrimination device
JP2011235203A (en) Apparatus for sorting plastic piece
Sepehri Rad et al. Towards identifying arguments in Wikipedia pages
JP5967017B2 (en) Method and program for extracting influence factors
JP6399967B2 (en) Resin piece sorting method and resin piece sorting apparatus
JP2014130066A (en) Resin determination method and resin selection device
JP2004219366A (en) Classifier and classifying method for plastics containing flame retardant
US12030086B2 (en) Method and system for sorting of diamonds
US20160096355A1 (en) Composite material cutting system and method utilizing a weight distribution map
Zhu et al. Impact of measurement error on container inspection policies at port-of-entry
JP2009198387A (en) Sorter of bromine-based flame retardant-containing plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250