JP6119311B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP6119311B2
JP6119311B2 JP2013043773A JP2013043773A JP6119311B2 JP 6119311 B2 JP6119311 B2 JP 6119311B2 JP 2013043773 A JP2013043773 A JP 2013043773A JP 2013043773 A JP2013043773 A JP 2013043773A JP 6119311 B2 JP6119311 B2 JP 6119311B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
current
positive electrode
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013043773A
Other languages
Japanese (ja)
Other versions
JP2014175066A (en
Inventor
酒井 政則
政則 酒井
鈴木 啓太
啓太 鈴木
柴原 敏夫
敏夫 柴原
箕浦 敏
敏 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013043773A priority Critical patent/JP6119311B2/en
Publication of JP2014175066A publication Critical patent/JP2014175066A/en
Application granted granted Critical
Publication of JP6119311B2 publication Critical patent/JP6119311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、充電受け入れ性に優れた制御弁式鉛蓄電池に関するものである。   The present invention relates to a control valve type lead storage battery excellent in charge acceptability.

鉛蓄電池は、安価で信頼性が高いという特徴を有するため、自動車始動用の動力源やゴルフカート等の電動車両の動力源の電源として、更には無停電電源装置等の産業機器の電源として広く使用されている。   Lead-acid batteries are inexpensive and highly reliable. Therefore, they are widely used as power sources for starting automobiles, power sources for electric vehicles such as golf carts, and power supplies for industrial equipment such as uninterruptible power supplies. It is used.

近年、自動車においては、大気汚染防止、地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、エンジンにかかる負荷を極力軽減するようにオルターネータ(alternator)の発電を抑制して、エンジンの回転を効率良く自動車の動力に使用する発電制御車や走行停止時にエンジンを停止して無駄なアイドリング運転を行なわせないことにより、エンジンの動作時間を少なくするアイドリングストップシステム(Idling Stop System)車(以下、ISS車)の普及が期待されている。ISS車はマイクロハイブリッドシステム(micro−hybrid system)車とも総称されている。   In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution and global warming. Automobiles that have taken measures to improve fuel efficiency include power generation control vehicles that use the engine rotation efficiently to power the vehicle, and stop running by suppressing alternator power generation to reduce the load on the engine as much as possible. It is expected that an idling stop system vehicle (hereinafter referred to as an ISS vehicle) that reduces the operating time of the engine by stopping the engine sometimes to prevent unnecessary idling operation from spreading. ISS vehicles are also collectively referred to as micro-hybrid system vehicles.

ISS車では、停止、停車中にエンジンが停止し、発車時にエンジンを始動するため、エンジンの始動回数が多くなり、その都度、鉛蓄電池の大電流放電が繰り返される。
また、アイドリングストップ時に、オルターネータが発電しないため、車載機器への電力供給は鉛蓄電池からのみとなる。このため、鉛蓄電池の容量は次のエンジンスタート等に必要な容量を確保しながら部分充電された状態、すなわちPSOC(Partial State Of Charge)の状態で使用される。
このため、ISS車に搭載される鉛蓄電池は従来の鉛蓄電池と基本的に使用方法が異なる。従来の鉛蓄電池は始動時のみ大電流を流し、その後はオルターネータの充電により満充電状態で使用されてきた。
In an ISS vehicle, the engine is stopped during stoppage and stoppage, and the engine is started when the vehicle is started. Therefore, the number of engine starts increases, and a large current discharge of the lead storage battery is repeated each time.
In addition, since the alternator does not generate power when idling is stopped, power is supplied to the in-vehicle device only from the lead storage battery. For this reason, the capacity | capacitance of a lead storage battery is used in the state charged partially, ie, the state of PSOC (Partial State Of Charge), ensuring the capacity | capacitance required for the next engine start etc.
For this reason, the usage method of the lead acid battery mounted in an ISS vehicle differs fundamentally from the conventional lead acid battery. Conventional lead-acid batteries carry a large current only at the time of start-up, and thereafter have been used in a fully charged state by charging an alternator.

ISS車に必要とされる鉛蓄電池は以下の特性を有している必要がある。1)鉛蓄電池が消費した電力を直ちに充電し、所定のPSOC状態を維持できる高速充電性能、及びブレーキ回生エネルギーを電池に蓄えるために必要な高速充電性能を有すること。これはオルターネータからの出力電流を十分受け入れきれる充電速度を有する。2)PSOCで十分な寿命(service life)を有する高耐久性鉛蓄電池であること。   A lead storage battery required for an ISS vehicle needs to have the following characteristics. 1) The battery should have high-speed charging performance that can immediately charge the power consumed by the lead-acid battery and maintain a predetermined PSOC state, and high-speed charging performance necessary to store the brake regenerative energy in the battery. This has a charging rate that can sufficiently accept the output current from the alternator. 2) A highly durable lead-acid battery having a sufficient service life with PSOC.

上記1)において、ISS車のオルターネータ出力電流は、従来の鉛蓄電池の充電受け入れ性能の1.5倍を十分に超える性能を有する。例えば、従来の日本工業規格(JIS)規定の80D23形鉛蓄電池は52Ahの容量を持つ。80D23形鉛蓄電池を14V定電圧において充電すると、時間とともに充電電流は時間軸に対して減衰して行く曲線を描いてゆく。この挙動は電気化学反応の反応過電圧の特性から説明できる現象である。この時、充電時間1秒目、5秒目の初期充電電流は25℃においてそれぞれ、約40アンペア(A)、約30Aである。一方、80D23形鉛蓄電池を搭載するISS車のオルターネータ出力電流は60Aを超えている。このため、従来の80D23形鉛蓄電池では電池の容量が低下した後、オルターネータの出力電流に見合う、充電性能がない。低下した電池容量が回復できない場合、エンジンの再スタートに支障が出るため、アイドリングストップができない状態が増えてくる。このため、燃費向上が期待できない。低下した鉛蓄電池の容量をオルターネータにより急速に回復できなければ、ISS車に搭載された鉛蓄電池の、ISSにおける放電、充電のサイクルは充電不足が原因となって停止せざるを得ない。このようにISS車には、少なくとも使った鉛蓄電池の電力を急速に回復させるための高速充電性能を有する鉛蓄電池が必要になる。したがって、ISS車に搭載される鉛蓄電池の充電受け入れ性能は、オルターネータの出力電流を十分電池に受け入れきれる特性を有するのが理想的である。この点において、ISS車に搭載される80D23形鉛蓄電池の場合、25℃、14V定電圧充電、1秒目においては60Aを超えるレベルの充電受け入れ性能が求められる。この値は、従来の鉛蓄電池の少なくとも1.5倍レベルの充電性能の向上に相当する。   In 1) above, the alternator output current of the ISS vehicle has a performance sufficiently exceeding 1.5 times the charge acceptance performance of the conventional lead-acid battery. For example, a conventional 80D23 type lead acid battery defined by Japanese Industrial Standard (JIS) has a capacity of 52 Ah. When an 80D23 type lead-acid battery is charged at a constant voltage of 14V, the charging current draws a curve that decays with time. This behavior is a phenomenon that can be explained from the characteristics of the reaction overvoltage of the electrochemical reaction. At this time, the initial charging currents at the first and fifth charging times are about 40 amperes (A) and about 30 A at 25 ° C., respectively. On the other hand, the alternator output current of an ISS vehicle equipped with an 80D23 type lead storage battery exceeds 60A. For this reason, in the conventional 80D23 type lead acid battery, after the capacity | capacitance of a battery falls, there is no charging performance corresponding to the output current of an alternator. If the reduced battery capacity cannot be recovered, engine restart will be hindered, increasing the number of situations where idling can not be stopped. For this reason, improvement in fuel consumption cannot be expected. If the reduced capacity of the lead storage battery cannot be recovered quickly by the alternator, the discharge and charge cycles in the ISS of the lead storage battery mounted on the ISS car must be stopped due to insufficient charging. As described above, the ISS vehicle requires a lead storage battery having high-speed charging performance for rapidly recovering at least the power of the used lead storage battery. Therefore, it is ideal that the charge acceptance performance of the lead storage battery mounted on the ISS vehicle has a characteristic that the output current of the alternator can be sufficiently received by the battery. In this respect, in the case of an 80D23 type lead-acid battery mounted on an ISS vehicle, charging acceptance performance of a level exceeding 60 A is required at 25 ° C. and 14 V constant voltage charging in the first second. This value corresponds to an improvement in charging performance at least 1.5 times that of a conventional lead acid battery.

上記2)において、鉛蓄電池は、PSOC下で使われると、完全充電状態で使用される場合よりも、寿命が短くなる傾向がある。PSOC下で使われると寿命が短くなる理由は、充電が不足している状態で充放電を繰り返すと、放電の際に負極板に生成される硫酸鉛が粗大化していき、硫酸鉛が充電生成物である金属鉛に戻り難くなるためと考えられている。従って、PSOC下で使用される鉛蓄電池においては、その寿命を延ばすためにも、充電受け入れ性を向上させて(短時間でできるだけ多くの充電行うことを可能にして)、充電が過度に不足している状態で充放電が繰り返されるのを防ぎ、充放電の繰り返しにより硫酸鉛が粗大化するのを抑制する必要がある。   In the above 2), when the lead-acid battery is used under PSOC, its life tends to be shorter than when it is used in a fully charged state. The reason for the shortening of the life when used under PSOC is that if charging / discharging is repeated in a state where charging is insufficient, lead sulfate produced on the negative electrode plate becomes coarse during discharge, and lead sulfate is generated by charging. It is thought that it becomes difficult to return to the metallic lead that is a thing. Therefore, in lead storage batteries used under PSOC, in order to extend their life, charge acceptance is improved (allowing as many charges as possible in a short time), and charging is excessively insufficient. It is necessary to prevent the charge / discharge from being repeated in a state where the lead is charged and to suppress the lead sulfate from becoming coarse due to the repeated charge / discharge.

このように、ISS車、すなわちマイクロハイブリッドシステム車に搭載される鉛蓄電池の最重要課題は充電受け入れ性能である。ISS車のアイドリングストップシステムを十分に働かせ、燃費向上を達成するためには、優れた充電受け入れ性能を有する鉛蓄電池が必要である。ISS車用の鉛蓄電池の充電受け入れ性能は、従来の鉛蓄電池の充電受け入れ性能の1.5倍以上必要であると考えられる。   As described above, the most important problem of the lead storage battery mounted in the ISS vehicle, that is, the micro hybrid system vehicle is the charge acceptance performance. In order to sufficiently operate the idling stop system of an ISS vehicle and achieve an improvement in fuel consumption, a lead storage battery having excellent charge acceptance performance is required. It is considered that the charge acceptance performance of a lead-acid battery for an ISS vehicle is required to be 1.5 times or more that of a conventional lead-acid battery.

ISS車用の鉛蓄電池は、液式鉛蓄電池と制御弁式鉛蓄電池(Valve Regulated Lead−Acid Battery 以下、「VRLA」と称す)に分けられ、それぞれ長所、短所がある。液式鉛蓄電池は、電解液(希硫酸)が豊富にあるため高温環境下でも強い。一方、VRLAは密閉形で有り、熱が逃げにくく、電解液量も制限されているため、液式鉛蓄電池に比べて耐熱性に劣る。VRLAは電解液(希硫酸)を含ませたリテーナをセパレータとして多量に用いるため、液式に比べて高価である。リテーナ、いわゆるAGM(Absorptive Glass Mat)を用いたVRLAは、一般的には電解液中の水の電気分解により正極で発生した酸素ガスが負極板上で吸収される構造を有しているため、密閉化が図られメンテナンスフリーの鉛蓄電池と言われている。ISS車用の鉛蓄電池としてみた場合、VRLAの最大の特長は、サイクル耐久性が優れていることである。もともとVRLAは電解液が溢れないようにリテーナに電解液を含ませた構造であり、正極板と負極板とにリテーナが加圧された状態で接している。ISS車ではブレーキ時に、エネルギーを回生するため、鉛蓄電池には急速な充電性能が求められている。VRLAは上記のようなセパレータ構造を有するため、ISS車のブレーキ時における急速回生充電により極板から急に湧き出してくる硫酸イオンが、近接するリテーナによって保持される。このため、液式鉛蓄電池のように電槽(Container)上下方向に、硫酸濃度分布が見られる、いわゆる硫酸の成層化(stratification)現象が起こりにくい。VRLAは成層化しにくいため、サイクル耐久性が優れているのである。液式鉛蓄電池の場合は、極板とセパレータ間に電解液の液空間が存在し、セパレータは薄いポリエチレン製であるので、リテーナのように硫酸イオンを蓄える機能と厚みはない。このため、充電時に湧き出してきた硫酸イオンはそのまま電解液中を沈降しやすい構造である。硫酸イオンが沈降すると電槽下部の電解液比重が上がり、上部の比重は低下する。このような成層化が生じると、硫酸イオンの濃度分布に伴って、放電反応の速度が変化し、極板の部位によって反応効率に差が生じる。すると、反応し易いところに電池反応が集中し、反応部の電流密度が上がり、結果的に反応し易い部分で劣化が早まり、早く寿命を迎えるのである。   Lead-acid batteries for ISS vehicles are divided into liquid-type lead-acid batteries and control-valve-type lead-acid batteries (hereinafter referred to as “VRLA”), each having advantages and disadvantages. Liquid lead-acid batteries are strong even in high-temperature environments due to their abundance of electrolyte (dilute sulfuric acid). On the other hand, VRLA is hermetically sealed, has difficulty in escaping heat, and has a limited amount of electrolyte, which is inferior in heat resistance compared to liquid lead-acid batteries. VRLA uses a retainer containing an electrolytic solution (dilute sulfuric acid) in a large amount as a separator, and is therefore more expensive than a liquid type. A VRLA using a retainer, so-called AGM (Absorptive Glass Mat), generally has a structure in which oxygen gas generated at the positive electrode due to electrolysis of water in the electrolyte is absorbed on the negative electrode plate. It is said to be sealed and maintenance-free lead-acid battery. When viewed as a lead-acid battery for ISS cars, the biggest feature of VRLA is that it has excellent cycle durability. Originally, VRLA has a structure in which an electrolytic solution is included in a retainer so that the electrolytic solution does not overflow, and is in contact with the positive electrode plate and the negative electrode plate in a state where the retainer is pressurized. In ISS cars, rapid recharge performance is required for lead-acid batteries to regenerate energy during braking. Since VRLA has the separator structure as described above, sulfate ions that suddenly spring out from the electrode plate due to rapid regenerative charging during braking of an ISS vehicle are held by an adjacent retainer. For this reason, the so-called sulfuric acid stratification phenomenon in which the sulfuric acid concentration distribution is seen in the vertical direction of the container like the liquid lead-acid battery is less likely to occur. Since VRLA is difficult to stratify, it has excellent cycle durability. In the case of a liquid lead-acid battery, there is an electrolyte solution space between the electrode plate and the separator, and since the separator is made of thin polyethylene, there is no function and thickness for storing sulfate ions like a retainer. For this reason, the sulfate ions that have springed up during charging tend to settle in the electrolyte as they are. When sulfate ions settle, the electrolyte specific gravity at the bottom of the battery case increases and the specific gravity at the top decreases. When such stratification occurs, the rate of the discharge reaction changes with the concentration distribution of sulfate ions, and the reaction efficiency varies depending on the location of the electrode plate. As a result, the battery reaction is concentrated at the place where the reaction is likely to occur, the current density of the reaction portion is increased, and as a result, the deterioration is accelerated at the portion where the reaction is likely to occur, and the life is quickly reached.

VRLAはメンテナンスフリー構造、成層化に強い構造ではあるが、電解液の絶対量が液式鉛蓄電池に比べて少ない。VRLAの電池容量は、リテーナの中に含まれる電解液中の硫酸量で決まる。このため、所定の電池容量を確保するためには、VRLAの電解液の硫酸濃度は、液式鉛蓄電池に比べて高く設定する必要がある。   Although VRLA is a maintenance-free structure and a structure that is strong against stratification, the absolute amount of electrolyte is smaller than that of a liquid lead-acid battery. The battery capacity of VRLA is determined by the amount of sulfuric acid in the electrolyte contained in the retainer. For this reason, in order to ensure a predetermined battery capacity, it is necessary to set the sulfuric acid concentration of the electrolytic solution of VRLA higher than that of the liquid lead acid battery.

しかし、鉛蓄電池の充電反応の速度は、以下に示すように、硫酸濃度が上がると低下する。原因は鉛蓄電池の充電反応の速度が硫酸鉛の溶解または解離によって生じる鉛2価イオン(Pb2+)の濃度によって大きく影響を受けるためである。すなわち、電解液中の硫酸濃度が高くなると、鉛2価イオン(Pb2+)の濃度が低下するため(Hans Bode「Lead−Acid Batteries」p.27、(1977)、John Wiley & Sons、 Inc.)、充電反応速度が低下するのである。 However, the charge reaction rate of the lead-acid battery decreases as the sulfuric acid concentration increases, as shown below. This is because the rate of charge reaction of the lead storage battery is greatly affected by the concentration of lead divalent ions (Pb 2+ ) generated by dissolution or dissociation of lead sulfate. That is, since the concentration of lead divalent ions (Pb 2+ ) decreases as the sulfuric acid concentration in the electrolytic solution increases (Hands “Lead-Acid Batteries” p. 27, (1977), John Wiley & Sons, Inc.). ), The charging reaction rate is reduced.

鉛蓄電池においては、もともと正極活物質の充電受け入れ性は高いが、負極活物質の充電受け入れ性が劣ると言われてきた。このため、鉛蓄電池の充電受け入れ性を向上させるためには、一般に負極活物質の充電受け入れ性を向上させることが必須であった。そのため、従来は、負極活物質の充電受け入れ性を向上させるための努力がされてきた。特許文献1や特許文献2には、負極活物質に添加する炭素質導電材を増量することにより充電受け入れ性を向上させ、PSOC下での寿命を向上させるVRLAが提案されている。   In lead-acid batteries, the charge acceptability of the positive electrode active material is originally high, but it has been said that the charge acceptability of the negative electrode active material is poor. For this reason, in order to improve the charge acceptance of a lead storage battery, it was generally essential to improve the charge acceptance of a negative electrode active material. Therefore, conventionally, efforts have been made to improve the charge acceptability of the negative electrode active material. Patent Documents 1 and 2 propose VRLA that increases charge acceptance by increasing the amount of carbonaceous conductive material added to the negative electrode active material and improves the life under PSOC.

液式鉛蓄電池においても、負極活物質に添加する炭素質導電材を増量することが考えられるが、液式鉛蓄電池において負極活物質に添加する炭素質導電材の量をむやみに増加させると、負極活物質中の炭素質導電材が電解液に流出して電解液に濁りを生じさせ、最悪の場合、内部短絡を引き起こしてしまう。従って、液式鉛蓄電池では、負極活物質に添加する炭素質導電材の量を制限せざるを得ず、負極活物質に炭素質導電材を添加することにより鉛蓄電池全体としての充電受け入性を向上させることには限界がある。   Even in a liquid lead acid battery, it is conceivable to increase the amount of carbonaceous conductive material added to the negative electrode active material, but if the amount of carbonaceous conductive material added to the negative electrode active material in the liquid lead acid battery is increased unnecessarily, The carbonaceous conductive material in the negative electrode active material flows into the electrolytic solution and causes turbidity in the electrolytic solution. In the worst case, an internal short circuit is caused. Therefore, in a liquid lead-acid battery, the amount of carbonaceous conductive material added to the negative electrode active material must be limited, and the charge acceptability of the lead acid battery as a whole by adding the carbonaceous conductive material to the negative electrode active material. There are limits to improving

一方、鉛蓄電池においては、負極活物質にリグニン(lignin)が昔から添加されている。リグニンは少量の添加で、優れた界面活性効果(surface−active effect)を示す。これにより電解液が活物質の細孔内に浸透し、電池反応の有効反応面積が増大する。添加されたリグニンは硫酸鉛等の電池反応生成物の粗大化を抑制する効果もあると言われている。これにより、放電反応はリグニン添加により増大する。その反面、リグニンは、充電反応を阻害する副次作用(side−effect)を有する。充電反応を阻害する原因は、リグニンが充電反応の出発物質である、鉛イオンに吸着して鉛イオンの反応性を低下させると考えられる。ここで、充電反応の出発物質である鉛イオンは硫酸鉛の解離平衡(dissociation equilibrium)によって供給される。従って、負極活物質へのリグニン添加は、放電反応を改善する重要な添加剤である。しかし、同時に負極活物質へのリグニン添加は充電反応を阻害するため、受入性の向上を妨げるという問題を有していた。   On the other hand, in lead acid batteries, lignin has been added to the negative electrode active material for a long time. Lignin exhibits excellent surface-active effect with a small amount of addition. As a result, the electrolytic solution penetrates into the pores of the active material, and the effective reaction area of the battery reaction increases. It is said that the added lignin also has an effect of suppressing the coarsening of battery reaction products such as lead sulfate. Thereby, the discharge reaction is increased by the addition of lignin. On the other hand, lignin has a side-effect that inhibits the charging reaction. The cause of inhibiting the charging reaction is thought to be that lignin is adsorbed on lead ions, which are the starting materials for the charging reaction, to reduce the reactivity of the lead ions. Here, lead ions, which are starting materials for the charging reaction, are supplied by the dissociation equilibria of lead sulfate. Therefore, lignin addition to the negative electrode active material is an important additive for improving the discharge reaction. However, at the same time, the addition of lignin to the negative electrode active material hinders the charging reaction, thus hindering improvement in acceptability.

このような観点から、リグニンに代えて、リグニンの基本構造であるフェニルプロパン構造の側鎖のα位にスルホン基を導入したリグニンスルホン酸ナトリウムや、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物などを負極活物質に添加することが提案されている。   From this point of view, instead of lignin, sodium lignin sulfonate with a sulfo group introduced into the α-position of the side chain of the phenylpropane structure, which is the basic structure of lignin, bisphenols, aminobenzene sulfonic acid, formaldehyde condensates, etc. It has been proposed to add to the negative electrode active material.

例えば、特許文献3及び特許文献4には、負極活物質にビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物と炭素質導電材とを添加することが開示されている。特に、特許文献4には、充放電に伴う硫酸鉛の粗大化を抑制する有機化合物として、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物を選択して、硫酸鉛の粗大化を抑制する効果を持続させることと、充電受け入れ性を向上させるために炭素質導電材を添加することとが開示されている。また、特許文献5には、負極活物質に導電性カーボンと活性炭を添加して、PSOC下での放電特性を改善することが開示されている。   For example, Patent Document 3 and Patent Document 4 disclose adding a bisphenol, aminobenzenesulfonic acid, formaldehyde condensate, and a carbonaceous conductive material to the negative electrode active material. In particular, Patent Document 4 shows the effect of suppressing the coarsening of lead sulfate by selecting bisphenols, aminobenzenesulfonic acid, and formaldehyde condensates as organic compounds that suppress the coarsening of lead sulfate associated with charge and discharge. Sustaining and adding a carbonaceous conductive material to improve charge acceptance are disclosed. Patent Document 5 discloses that conductive carbon and activated carbon are added to the negative electrode active material to improve discharge characteristics under PSOC.

更に、特許文献6(特開平10−40907号公報)には、正極活物質の比表面積を大きくして、放電容量を大きくすることが開示されている。これは、リグニンを電池化成時の電解液中に添加することにより、正極活物質を微細化し、比表面積を大きくするものである。特許文献6に開示されているのは正極に着眼し、電池の放電容量を大きくするための発明であり、ISS車の鉛蓄電池としてみた場合に必要な充電受け入れ性やPSOC下でのサイクル特性の向上においては、期待される効果は得られない。   Further, Patent Document 6 (Japanese Patent Laid-Open No. 10-40907) discloses that the specific surface area of the positive electrode active material is increased to increase the discharge capacity. In this method, lignin is added to the electrolytic solution at the time of battery formation to refine the positive electrode active material and increase the specific surface area. Patent Document 6 discloses an invention for focusing on the positive electrode and increasing the discharge capacity of the battery. The charge acceptability and cycle characteristics under PSOC required when viewed as a lead storage battery of an ISS car are disclosed. In the improvement, the expected effect cannot be obtained.

従来の発明には、より高い充電受け入れ性能を達成するにあたり、電池反応の原理に基づく本質的な必要条件(inherent conditions)が示されていない。このため、これまで負極の特性、正極の特性といった個々の構成因子で電池特性を改良してきた。   The prior art does not show any inherent conditions based on the principle of battery reaction in achieving higher charge acceptance performance. For this reason, battery characteristics have been improved by individual constituent factors such as negative electrode characteristics and positive electrode characteristics.

しかし、従来の鉛蓄電池の1.5倍以上の電池を得るために、電池反応の原理に基づく基本的な必要条件を明らかにすることは、電池を改良する場合、重要である。   However, in order to improve the battery, it is important to clarify the basic requirements based on the principle of battery reaction in order to obtain a battery that is 1.5 times more than conventional lead-acid batteries.

すなわち、個別構成因子で、電池の改良をする場合、一つの構成因子では目標特性の達成が困難な場合がある。このような場合、電池反応の原理に基づく本質的な必要条件が整理され、必要条件を満たすため、その他複数の構成因子の検討が必要となる。つまり、一つの構成因子の改良では必要条件が満たされず、目標特性を達成できない場合があるが、別の電池構成因子の検討により、必要条件が満たされ、目標特性を達成できる可能性が高くなる。すなわち、充電受け入れ性能向上に関する目標特性を達成するため、電池反応の原理に基づく本質的な必要条件の検討は、最も効率的、効果的な電池の基本構成を導き出すことを可能にすることができると考えられる。   That is, when the battery is improved with individual constituent factors, it may be difficult to achieve the target characteristics with one constituent factor. In such a case, essential requirements based on the principle of the battery reaction are arranged, and in order to satisfy the requirements, it is necessary to examine a plurality of other constituent factors. In other words, the improvement of one component factor does not satisfy the necessary condition and the target characteristic may not be achieved, but the examination of another battery component factor increases the possibility that the necessary condition is satisfied and the target characteristic can be achieved. . In other words, in order to achieve the target characteristics for improving the charge acceptance performance, the examination of essential requirements based on the principle of battery reaction can make it possible to derive the most efficient and effective basic battery configuration. it is conceivable that.

従来の文献には、ISS車の鉛蓄電池の重要命題である、より高い充電受け入れ性能に関し、電池反応の原理に基づく本質的な必要条件、及び示された必要条件に基づく電池構成条件が明らかにされていない。したがって、従来の鉛蓄電池の1.5倍以上の電池を得るための構成内容も、基本的な必要条件も開示されていない。   The conventional literature clearly shows the essential requirements based on the principle of the battery reaction and the battery configuration conditions based on the indicated requirements for higher charge acceptance performance, which is an important proposition of lead-acid batteries of ISS cars. It has not been. Therefore, neither the content of a structure for obtaining the battery more than 1.5 times of the conventional lead acid battery nor a basic requirement is disclosed.

特開2003−36882号公報JP 2003-36882 A 特開平07−201331号公報Japanese Patent Laid-Open No. 07-201331 特開平11−250913号公報JP-A-11-250913 特開2006−196191号公報JP 2006-196191 A 特開2003−051306号公報JP 2003-051306 A 特開平10−40907号公報Japanese Patent Laid-Open No. 10-40907

上記のように、従来技術のように負極活物質の充電受け入れ性を向上させ、寿命性能を改善しただけでは、鉛蓄電池の充電受け入れ性及びPSOC下で使用した際の寿命性能を向上させることに限界があり、PSOC下で使用される鉛蓄電池の性能の更なる向上を図ることは困難である。また、上記特許文献には、従来の鉛蓄電池の1.5倍以上の充電受け入れ性能を有する電池を得るために必要な電池の原理に基づく基本的な必要条件、及び電池構成は開示されていない。   As mentioned above, improving the charge acceptability of the negative electrode active material as in the prior art and improving the life performance will improve the charge acceptability of the lead storage battery and the life performance when used under PSOC. There is a limit, and it is difficult to further improve the performance of lead-acid batteries used under PSOC. In addition, the above-mentioned patent document does not disclose basic requirements based on the principle of a battery and a battery configuration necessary for obtaining a battery having a charge acceptance performance 1.5 times or more that of a conventional lead storage battery. .

本発明の目的の1つ目は、従来の鉛蓄電池の1.5倍以上の充電受け入れ性能が、電池反応の原理に基づくどのような必要条件で構成されているかを明らかにすること。目的の2つ目は、明らかにされた必要条件に基づき、必要な電池構成を決定することである。本願発明の対象となる鉛蓄電池は、ISS車用途において液式鉛蓄電池よりもサイクル耐久性を有するVRLAを提供することである。   The first of the objects of the present invention is to clarify the necessary conditions based on the principle of the battery reaction that the charge acceptance performance of 1.5 times or more of the conventional lead-acid battery is configured. The second purpose is to determine the required battery configuration based on the identified requirements. The lead acid battery which is the object of the present invention is to provide a VRLA having cycle durability more than a liquid lead acid battery in an ISS vehicle application.

上記課題を解決するために、本願発明のVRLAの特徴は、以下の通りである。
負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをリテーナを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、充電が間欠的に行われ、部分充電状態で負荷への高率放電が行われるVRLAであって、温度25℃において、比重1.32(20℃換算、以下同様)の電解液中で、負極板を構成する負極単板(面積108cm)と、負極単板に正対し前記正極板を構成する正極単板(面積108cm)との間に電位基準となる参照電極を設置してなる電気化学測定系を構成したVRLAを作製する。前記VRLAに充電電圧2.33Vで充電し、充電開始5秒目時点で印加される負極充電過電圧及び正極充電過電圧と、それぞれに対応する充電電流との関係をプロットし、電流電位曲線を作成する。本発明は、前記電流電位曲線において、充電過電圧の絶対値が0(ゼロ)から増加に転じる点を原点とし、当該原点から直線に近似してプロットして得られる領域において、|[負極充電過電圧(mV)/電流(アンペア)]|≦10.4を満足する負極活物質を具備してなる負極板と、[正極充電過電圧(mV)/電流(アンペア)]≦19.6を満足する正極活物質を具備してなる正極板で構成されることを特徴とする。
In order to solve the above problems, the VRLA features of the present invention are as follows.
A battery case in which a negative electrode plate formed by filling a negative electrode current collector with a negative electrode active material and a positive electrode plate formed by filling a positive electrode active material with a positive electrode current collector through a retainer together with an electrolytic solution A VRLA having a configuration housed therein, in which charging is performed intermittently and high rate discharge to a load is performed in a partially charged state, at a temperature of 25 ° C., a specific gravity of 1.32 (20 ° C. conversion, in electrolytic solution hereinafter the same), potential reference between the negative electrode veneer constituting the negative electrode plate (area 108cm 2), the positive pole, single plate constituting the positive against the positive electrode plate to the negative electrode veneer and (area 108cm 2) A VRLA having an electrochemical measurement system in which a reference electrode is installed is prepared. The VRLA is charged with a charging voltage of 2.33 V, and the relationship between the negative charging overvoltage and the positive charging overvoltage applied at the time of 5 seconds from the start of charging and the corresponding charging current is plotted, and a current potential curve is created. . In the current-potential curve, in the region obtained by plotting the point at which the absolute value of the charge overvoltage starts to increase from 0 (zero) as an origin, and approximating a straight line from the origin, | [negative electrode charge overvoltage (MV) / current (ampere)] | ≦ 10.4 A negative electrode plate comprising a negative electrode active material and a positive electrode satisfying [positive electrode charge overvoltage (mV) / current (ampere)] ≦ 19.6 It is characterized by comprising a positive electrode plate comprising an active material.

本発明は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをリテーナを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、充電が間欠的に行われ、部分充電状態で負荷への高率放電が行われるVRLAを対象とする。   The present invention electrolyzes an electrode plate group in which a negative electrode plate formed by filling a negative electrode current collector with a negative electrode active material and a positive electrode plate formed by filling a positive electrode active material with a positive electrode current collector via a retainer. It is intended for a VRLA that has a configuration housed in a battery case together with a liquid, is charged intermittently, and discharges at a high rate to a load in a partially charged state.

まず、電池反応の電気化学的な基本原理に基づく必要条件について示す。
本発明において、電池反応の電気化学的な基本原理に基づく必要条件は、所定の充電電圧に対応する負極及び正極それぞれの電気化学反応の“過電圧(overpotential)”で示される。すなわち、従来の電池の充電受け入れ性能に対して、1.5倍を超える性能を得るための必要条件を電池反応の過電圧に関する条件で示す。所定の充電電圧において、本発明で示される負極及び正極それぞれの過電圧で定義される必要条件を満たせば、従来の電池の充電受け入れ性能に対して1.5倍を超える性能が得られる。必要条件として示された過電圧条件を満たす負極及び正極の反応活物質の構成条件について明らかにし、実施例により必要条件を満たす電池の構成例を示す。
First, the necessary conditions based on the electrochemical basic principle of the battery reaction will be described.
In the present invention, the necessary condition based on the electrochemical basic principle of the battery reaction is indicated by “overpotential” of the electrochemical reaction of each of the negative electrode and the positive electrode corresponding to a predetermined charging voltage. That is, the necessary conditions for obtaining the performance exceeding 1.5 times the charge acceptance performance of the conventional battery are shown by the conditions relating to the overvoltage of the battery reaction. If the necessary conditions defined by the overvoltages of the negative electrode and the positive electrode shown in the present invention are satisfied at a predetermined charging voltage, a performance exceeding 1.5 times the charge acceptance performance of a conventional battery can be obtained. The structural conditions of the reaction active material of the negative electrode and the positive electrode satisfying the overvoltage condition indicated as the necessary conditions will be clarified, and an example of the structure of the battery satisfying the necessary conditions will be shown by examples.

ISS車市場で鉛蓄電池に要求される特性条件を電池の基本パラメータである、過電圧と充電受け入れ性能に関する関係を明らかにし、従来鉛蓄電池の充電受け入れ性能の1.5倍以上を達成するための必要条件を示し、前記条件を満足するための電池構成、活物質条件を明らかにした。これにより、ISS車市場でVRLAに必要とされる特性は大きく向上し、さらなる電池特性向上に向けた指針をえることもできた。これにより、ISS技術による自動車排ガス対策は効率よく実行され、地球温暖化抑制に寄与する。   It is necessary to clarify the characteristic conditions required for lead-acid batteries in the ISS car market, the basic parameters of the battery, the relationship between overvoltage and charge acceptance performance, and to achieve more than 1.5 times the charge acceptance performance of conventional lead-acid batteries Conditions were shown, and the battery configuration and active material conditions for satisfying the conditions were clarified. As a result, the characteristics required for VRLA in the ISS car market have been greatly improved, and it has been possible to obtain guidelines for further improving battery characteristics. Thereby, the vehicle exhaust gas countermeasure by the ISS technology is efficiently executed and contributes to the suppression of global warming.

充電電圧を14V(一定)として、開回路電圧が約12Vの自動車用VRLAを充電する場合の充電電流と負極板及び正極板の電位との関係を示した電流電位曲線(current−potential curve)の模式図である。A current-potential curve showing the relationship between the charging current and the potential of the negative electrode plate and the positive electrode plate when charging a vehicle VRLA with an open circuit voltage of about 12 V with a charging voltage of 14 V (constant). It is a schematic diagram. 硫酸比重とPb2+イオン濃度の関係を示す曲線図である。It is a curve figure which shows the relationship between sulfuric acid specific gravity and Pb2 + ion concentration. 充電電圧を2.333V(一定)として、開回路電圧が約2Vの自動車用VRLAの単板を用いて充電する場合の、充電電流と負極板及び正極板の電位との関係を表わした電流電位曲線を示す図である。Current potential representing the relationship between the charging current and the potential of the negative electrode plate and the positive electrode plate when charging is performed using a single plate of VRLA for automobiles with an open circuit voltage of about 2 V with a charging voltage of 2.333 V (constant). It is a figure which shows a curve. 電気化学計測に用いたJISのB形鉛蓄電池に用いる極板の集電体(格子体)を示す図である。It is a figure which shows the electrical power collector (grid body) of the electrode plate used for the JIS B type lead acid battery used for electrochemical measurement. 充電電流の時間変化曲線を示す図である。It is a figure which shows the time change curve of a charging current. 負極に添加したビスフェノールAアミノベンゼンスルホン酸ナトリウム塩のホルムアルデヒド縮合物を化成後の負極板から抽出し、NMR分光法によりスペクトルを測定した結果を示す図である。It is a figure which shows the result of having extracted the formaldehyde condensate of the bisphenol A aminobenzenesulfonic acid sodium salt added to the negative electrode from the negative electrode plate after conversion, and measuring the spectrum by NMR spectroscopy.

充電受け入れ性能と過電圧との関係を、電気化学反応速度論に基づき明らかにする。これにより、過電圧が電池反応の反応速度論における基本パラメータであることを示し、電池反応の原理に基づく必要条件として、過電圧に着眼する意義を明らかにする。   The relationship between charge acceptance performance and overvoltage is clarified based on electrochemical reaction kinetics. This shows that overvoltage is a basic parameter in the kinetics of battery reaction, and clarifies the significance of focusing on overvoltage as a necessary condition based on the principle of battery reaction.

電池反応は、負極と正極における電気化学反応によって説明される。負極及び正極の充電及び放電反応は、それぞれ固有の単純電気化学反応系(simple electrochemical reaction system)を有している。固有の単純電気化学反応系とは、複数の電気化学反応が混じった物では無く、ただ1種類の電気化学反応であることを意味する(玉虫玲太、「電気化学(第2版)」p.199、(1991)、東京化学同人 または Allen J.Bard and Larry R.Faulkner 、「ELECTROCHEMICAL METHODS」p.7、(2001)、John Wiley & Sons、 Inc.)。電池反応の負極、正極の反応は、それぞれ独立した1種類の電気化学反応で構成されている。充電受け入れ性能は充電反応に関する性能である。充電反応の反応速度は電気化学反応速度論(theorem of electrochemical kinetics)において、負極及び正極の単純電気化学反応系の電位と関係づけられる(玉虫玲太、「電気化学(第2版)」pp.235−236、(1991)、東京化学同人、または、Allen J.Bard and Larry R.Faulkner、「ELECTROCHEMICAL METHODS」、p.99−107、(2001)、John Wiley & Sons Inc.)。電気化学反応において、反応速度は電流そのものである。すなわち、充電反応速度及び放電反応速度は、それぞれ充電電流及び放電電流と等価である。負極、正極の単純電気化学反応系の電位がそれぞれの反応系の平衡電位(equilibrium potential)である場合、それぞれの平衡電位の絶対値の和が電池の開回路電圧に相当する。平衡電位は、国際的に標準水素電極(standard hydrogen electrode)基準で表示され、通常SHEと略される。鉛蓄電池においては、負極、正極の単純電気化学反応系が電気化学で定義される標準状態(standard conditions)の場合、負極の電位は−0.36V vs. SHEであり、正極の電位は+1.69V vs. SHEである。したがって、もしも鉛蓄電池が電気化学で定義される標準状態(25℃、イオン活量1など)の場合、開回路電圧は2.05Vである。   The battery reaction is explained by an electrochemical reaction between the negative electrode and the positive electrode. The charge and discharge reactions of the negative electrode and the positive electrode each have a unique simple electrochemical reaction system. A unique simple electrochemical reaction system means that it is not a mixture of a plurality of electrochemical reactions, but only one kind of electrochemical reaction (Yota Tamamushi, “Electrochemistry (2nd edition)” p. 199, (1991), Tokyo Chemical Doujin or Allen J. Bard and Larry R. Faulkner, “ELECTROCHEMICAL METHODS” p. 7, (2001), John Wiley & Sons, Inc.). The negative electrode and positive electrode reactions of the battery reaction are each composed of one independent electrochemical reaction. The charge acceptance performance is a performance related to the charge reaction. The reaction rate of the charging reaction is related to the electric potential of the simple electrochemical reaction system of the negative electrode and the positive electrode in the electrochemical of electrochemical kinetics (Yota Tamamushi, “Electrochemistry (2nd edition)” pp. 1 235-236, (1991), Tokyo Kagaku Dojin, or Allen J. Bard and Larry R. Faulkner, “ELECTROCHEMICAL METHODS”, p. 99-107, (2001), John Wiley & Sons Inc.). In electrochemical reactions, the reaction rate is the current itself. That is, the charge reaction rate and the discharge reaction rate are equivalent to the charge current and the discharge current, respectively. When the potential of the simple electrochemical reaction system of the negative electrode and the positive electrode is the equilibrium potential of each reaction system, the sum of the absolute values of the respective equilibrium potentials corresponds to the open circuit voltage of the battery. The equilibrium potential is internationally displayed on the basis of a standard hydrogen electrode and is usually abbreviated as SHE. In a lead-acid battery, when the simple electrochemical reaction system of the negative electrode and the positive electrode is in a standard state defined by electrochemical, the potential of the negative electrode is -0.36 V vs. SHE, and the potential of the positive electrode is +1.69 V vs.. SHE. Therefore, if the lead acid battery is in a standard state defined by electrochemistry (25 ° C., ion activity 1, etc.), the open circuit voltage is 2.05V.

負極、正極の電位が平衡電位から外れた場合、平衡電位から外れた電位分が“過電圧”と定義される。すなわち過電圧は負極、正極のある電位と平衡電位との差分である。単純電気化学反応系の反応速度と過電圧の関係は、電気化学反応速度式で関係づけられる(玉虫玲太、「電気化学(第2版)」p.236、(1991)、東京化学同人、または、Allen J.Bard and Larry R.Faulkner 、「ELECTROCHEMICAL METHODS」p.99、(2001)、John Wiley & Sons Inc.)。本発明において、過電圧を通常のギリシャ文字、“η“で表記することとする。一般的な単純電気化学反応速度式における過電圧と反応速度の関係式とは異なり、鉛蓄電池を含めた一般的な電池の電気化学反応速度式は複雑である。これは、電気化学反応系は、一般に化学反応やいくつかの電子移動反応ステップが混在したいくつかの素反応に分解され、反応速度を決める律速段階がどの素反応ステップに位置するかによって、電気化学反応速度式は影響を受けるためである。しかし、いずれの電気化学反応速度式においても、過電圧は反応速度に影響を与える決定的なパラメータである。電気化学反応速度式にはこの他のパラメータとして、反応物質の濃度、反応面積、反応速度定数(rate constant)または交換電流密度(exchange current density)、反応物質の拡散係数(diffusion coefficient)、気体定数(Gas constant、ファラデー定数(Faraday constant)、遷移係数(transient coefficient)、絶対温度(absolute temperature)など多くのパラメータが含まれる。電気化学反応速度式の中で、過電圧項は定数eを底とする、指数関数(exponential function)に含まれる。このため過電圧の変化は、電気化学反応速度に決定的な影響を与える。   When the negative and positive electrode potentials deviate from the equilibrium potential, the potential deviating from the equilibrium potential is defined as “overvoltage”. That is, the overvoltage is the difference between a certain potential of the negative electrode and the positive electrode and the equilibrium potential. The relationship between the reaction rate and the overvoltage of the simple electrochemical reaction system is related by the electrochemical reaction rate equation (Yota Tamamushi, “Electrochemistry (2nd edition)” p.236, (1991), Tokyo Chemical Dojin, or Allen J. Bard and Larry R. Faulkner, “ELECTROCHEMICAL METHODS” p. 99, (2001), John Wiley & Sons Inc.). In the present invention, the overvoltage is expressed by the usual Greek letter “η”. Unlike the relational expression between the overvoltage and the reaction rate in the general simple electrochemical reaction rate equation, the electrochemical reaction rate equation of a general battery including a lead storage battery is complicated. This is because an electrochemical reaction system is generally decomposed into several elementary reactions in which chemical reactions and several electron transfer reaction steps are mixed, and depending on which elementary reaction step the rate-determining step that determines the reaction rate is located. This is because the chemical reaction rate equation is affected. However, in any electrochemical reaction rate equation, the overvoltage is a decisive parameter that affects the reaction rate. The electrochemical reaction rate equation includes other parameters such as the concentration of the reactant, the reaction area, the rate constant or exchange current density, the diffusion coefficient of the reactant, and the gas constant. (Gas constant, Faraday constant, transient coefficient, absolute temperature, etc.) In the electrochemical reaction rate equation, the overvoltage term is based on the constant e. The change in overvoltage has a decisive influence on the electrochemical reaction rate.

充電反応が進行する場合は、正極の単純電気化学反応系の電位は、正極の平衡電位に対してよりプラス電位方向に移る。逆に負極の単純電気化学反応系の電位は、負極の平衡電位に対してよりマイナス電位方向に移る。したがって、充電反応の場合、正極の過電圧は平衡電位よりもプラス方向の電位分であり、負極の過電圧は平衡電位よりもマイナス電位方向の電位分である。充電反応の場合、負極、正極間の電位の差、すなわち電圧は開回路電圧よりも過電圧分高くなる。   When the charging reaction proceeds, the potential of the simple electrochemical reaction system of the positive electrode shifts in the positive potential direction more than the equilibrium potential of the positive electrode. Conversely, the potential of the simple electrochemical reaction system of the negative electrode shifts in the negative potential direction with respect to the equilibrium potential of the negative electrode. Therefore, in the case of a charging reaction, the overvoltage at the positive electrode is a potential in the positive direction with respect to the equilibrium potential, and the overvoltage at the negative electrode is a potential in the negative potential direction with respect to the equilibrium potential. In the case of a charging reaction, the potential difference between the negative electrode and the positive electrode, that is, the voltage is higher than the open circuit voltage by an overvoltage.

充電及び充電反応は原理的に上記内容である。すなわち、鉛蓄電池の負極の過電圧は、平衡電位よりもマイナス方向の電位分としてオルターネータ等から電位が印加され、正極の過電圧は平衡電位よりもプラス方向に電位が印加される。オルターネータの充電電圧は車種等によって異なる。このため、本発明ではISS車用の鉛蓄電池のサイクル試験の一つとして用いられる社団法人電池工業会(BATTERY ASSOCIATION OF JAPAN)規格 SBA S0101のサイクルパターンの充電電圧としても用いられる14Vを充電電圧として、充電受け入れ性能と過電圧との関係が数学的にどのように表されるかについて以下に示す。   Charging and charging reactions are in principle as described above. In other words, the overvoltage at the negative electrode of the lead storage battery is applied from the alternator or the like as a potential in the negative direction with respect to the equilibrium potential, and the potential at the positive electrode is applied in the positive direction with respect to the positive potential. The charging voltage of the alternator varies depending on the vehicle type. For this reason, in the present invention, the charging voltage is 14V, which is also used as the charging voltage of the cycle pattern of the BATTERY ASSOCIATION OF JAPAN standard SBA S0101, which is used as one of the cycle tests of lead-acid batteries for ISS cars. The following shows how the relationship between charge acceptance performance and overvoltage is expressed mathematically.

オルターネータから印加された14Vの電圧に対して、負極及び正極にかかる過電圧をそれぞれ、η(−)、η(+)と表記する。それぞれの過電圧に対して負極及び正極で流れる充電電流をそれぞれi(−)、i(+)と表記する。負極、正極に流れる充電電流は反応速度式からηを関数とした式1、式2で表されるものとする。ここでは、式の詳細内容は必要では無く、負極及び正極の電気化学反応速度式が異なることが定義されていれば良い。
i(−)=f(η(−))・・・・・・・・・・・式1
i(+)=g(η(+))・・・・・・・・・・・式2
ここに、f(η(−))、g(η(+))はそれぞれ電気化学反応速度論にもとづく関数を示すものである。本発明の場合、純粋に高精度の理論電流電位曲線を求める必要はない。本発明における速度式は、実際に使われている反応活物質で観測される充電電流と電位曲線または充電電流と過電圧曲線で代用することが出来る。電流が反応速度に対応するため、これらの電流電位曲線(current−potential curve)は電気化学反応速度論に基づく現実の速度と電位(過電圧)の関係を示す基本データである。
Overvoltages applied to the negative electrode and the positive electrode with respect to a voltage of 14 V applied from the alternator are denoted as η (−) and η (+), respectively. The charging currents flowing at the negative electrode and the positive electrode with respect to each overvoltage are denoted as i (−) and i (+), respectively. The charging current flowing through the negative electrode and the positive electrode is expressed by Equations 1 and 2 with η as a function from the reaction rate equation. Here, the detailed content of the formula is not necessary, and it is only necessary to define that the electrochemical reaction rate formulas of the negative electrode and the positive electrode are different.
i (−) = f (η (−))...
i (+) = g (η (+))... Equation 2
Here, f (η (−)) and g (η (+)) each represent a function based on electrochemical reaction kinetics. In the case of the present invention, it is not necessary to obtain a purely accurate theoretical current potential curve. The rate equation in the present invention can be substituted with a charging current and potential curve or a charging current and overvoltage curve observed with a reaction active material actually used. Since the current corresponds to the reaction rate, these current-potential curves are basic data showing the relationship between the actual rate and potential (overvoltage) based on the electrochemical reaction kinetics.

ここで、開回路電圧を12Vと仮定すると、η(−)、η(+)と充電電圧14Vとの間に以下の関係式が成立する。過電圧は絶対値表示とする。過電圧は充電反応の場合負極はよりマイナスの電位方向にシフトし、正極はよりプラスの電位方向にシフトするため、絶対値表示が本発明の内容を理解するのに適している。
|η(−)|+|η(+)|+12=14・・・・・・・・・・式3
式1、式2で示される、負極、正極に流れる充電電流の絶対値は等しい。したがって、以下の関係式が得られる。電流は向きを有し、負極の充電電流をプラスとすると、正極での充電電流はマイナスの符号となるため、絶対値表示が本発明の内容を理解するのに適している。
|i(−)|=|i(+)|・・・・・・・・・・・式4
または、
|f(η(−))|=|g(η(+))| ・・・・・・式5
式3より、|η(−)|と|η(+)|の合計は2Vとなる。2Vが|η(−)|と|η(+)|にどれくらいの割合で分配されているかは、η(−)とη(+)それぞれを未知数とする式3と式5の連立方程式を解くことにより求めることができる。
Assuming that the open circuit voltage is 12V, the following relational expression is established between η (−), η (+) and the charging voltage 14V. Overvoltage is displayed in absolute value. In the case of a charging reaction, the negative voltage shifts in the negative potential direction and the positive electrode shifts in the positive potential direction. Therefore, the absolute value display is suitable for understanding the contents of the present invention.
| Η (−) | + | η (+) | + 12 = 14 Equation 3
The absolute values of the charging currents flowing in the negative electrode and the positive electrode shown in Equations 1 and 2 are equal. Therefore, the following relational expression is obtained. If the current has a direction and the charging current at the negative electrode is positive, the charging current at the positive electrode has a negative sign. Therefore, the absolute value display is suitable for understanding the contents of the present invention.
| I (−) | = | i (+) |
Or
| F (η (−)) | = | g (η (+)) |
From Equation 3, the sum of | η (−) | and | η (+) | is 2V. To what extent 2V is distributed to | η (−) | and | η (+) | solve the simultaneous equations of Equation 3 and Equation 5 with η (−) and η (+) as unknowns, respectively. Can be obtained.

ここで、従来の鉛蓄電池の1.5倍以上の充電受け入れ性能を有する電池が得られる条件は以下のとおりとなる。式1から式5に示される過電圧および電気化学反応速度式を従来電池に対応するものとすれば、過電圧および電気化学反応速度式は区別しなければならない。なぜなら、活物質等の構成が変化し、より充電反応速度が速くなる場合、速度式に変化があると考えねばならない。負極、正極において分配される合計2Vの過電圧分配も変わると考えるのが一般的である。従来の鉛蓄電池の1.5倍以上の充電受け入れ性能を有する電池に関し、負極及び正極にかかる過電圧をそれぞれ、η1.5(−)、η1.5(+)、負極および正極に流れる充電電流をそれぞれi1.5(−)、i1.5(+)、負極および正極の充電反応に関する電気化学反応速度式をそれぞれ、h(η1.5(−))、j(η1.5(+))とすれば、以下の関係式が成立する。
|η1.5(−)|+|η1.5(+)|+12=14・・・・・・式6
|i1.5(−)|≧1.5|i(−)|・・・・・・・・・・・・式7
|i1.5(−)|=|i1.5(+)|・・・・・・・・・・・・式8
|h(η1.5(−))|=|j(η1.5(+))|・・・・・・式9
式6より、|η1.5(−)|と|η1.5(+)|の合計は|η(−)|と|η(+)|の合計と同じく2Vである。2Vが|η1.5(−)|と|η1.5(+)|にどのように分配されているかは、同様に、η1.5(−)とη1.5(+)を未知数とする式6と式9の連立方程式を解くことにより求めることができる。
Here, the conditions under which a battery having a charge acceptance performance 1.5 times or more that of a conventional lead storage battery is obtained are as follows. If the overvoltage and electrochemical reaction rate equations shown in Equations 1 to 5 correspond to conventional batteries, the overvoltage and electrochemical reaction rate equations must be distinguished. This is because if the composition of the active material or the like changes and the charge reaction rate becomes faster, it must be considered that the rate equation has changed. In general, it is considered that the overvoltage distribution of 2 V in total distributed in the negative electrode and the positive electrode also changes. Regarding a battery having a charge acceptance performance of 1.5 times or more that of a conventional lead-acid battery, the overvoltages applied to the negative electrode and the positive electrode are η 1.5 (−), η 1.5 (+), and the charge flowing through the negative electrode and the positive electrode, respectively. The currents are i 1.5 (−) and i 1.5 (+), respectively, and the electrochemical reaction rate equations regarding the charging reaction of the negative electrode and the positive electrode are h (η 1.5 (−)) and j (η 1. 5 (+)), the following relational expression is established.
| Η 1.5 (−) | + | η 1.5 (+) | + 12 = 14 Expression 6
| I 1.5 (−) | ≧ 1.5 | i (−) |
| I 1.5 (−) | = | i 1.5 (+) |
| H (η 1.5 (−)) | = | j (η 1.5 (+)) |
From Equation 6, the sum of | η 1.5 (−) | and | η 1.5 (+) | is 2V, the same as the sum of | η (−) | and | η (+) |. Similarly, how 2V is distributed to | η 1.5 (−) | and | η 1.5 (+) | is similar to η 1.5 (−) and η 1.5 (+). It can be obtained by solving simultaneous equations of Equation 6 and Equation 9 as unknowns.

すなわち、充電電圧がある値に設定されると、負極および正極の充電反応の過電圧の合計は充電反応の速度にかかわらず一定である。従来の電池の1.5倍の充電反応速度であっても、14V充電電圧が共通の場合、負極及び正極の過電圧の絶対値の合計は約2Vである。この値は、単セルが6個直列の場合(通常自動車用電池は12V)であり、単セル1個当たりで見ると、過電圧の合計は0.333V/単セルである。すなわち、充電電流が1.5倍になる場合、式5、式7、式9より
1.5|f(η(−))|=|h(η1.5(−))|・・・・・・・式10
である。負極の改善により、充電反応速度式が、f(η(−))からh(η1.5(−))に変化することを意味する。ここで、1.5倍の充電電流を得るため、負極の活物質を改良し、正極は従来のままであったと仮定する。この場合、改良された負極充電反応の過電圧、|η1.5(−)|は改良前の|η(−)|よりも必ず小さくなる。理由は以下である。式5より、従来の正極活物質には1.5倍の反応速度、1.5|g(η(+))|が必要となり、過電圧がη(+)のままでは1.5倍の電流は流せない。そこで、従来活物質である正極の充電反応の過電圧は、1.5倍の電流を流すのに必要な過電圧まで速度式にしたがい上昇する。この時の負極及び正極の過電圧に関する拘束条件が、式3及び式6である。
That is, when the charging voltage is set to a certain value, the sum of the overvoltages of the negative electrode and positive electrode charging reactions is constant regardless of the speed of the charging reaction. Even when the charge reaction rate is 1.5 times that of the conventional battery, when the 14V charge voltage is common, the sum of the absolute values of the overvoltages of the negative electrode and the positive electrode is about 2V. This value is obtained when 6 single cells are connected in series (usually a battery for automobiles is 12V), and when viewed per single cell, the total overvoltage is 0.333V / single cell. That is, when the charging current is 1.5 times, 1.5 | f (η (−)) | = | h (η 1.5 (−)) | .... Formula 10
It is. It means that the charge reaction rate equation changes from f (η (−)) to h (η 1.5 (−)) by improving the negative electrode. Here, in order to obtain a charging current of 1.5 times, it is assumed that the active material of the negative electrode is improved, and the positive electrode remains as before. In this case, the overvoltage of the improved negative electrode charging reaction, | η 1.5 (−) |, is necessarily smaller than | η (−) | before improvement. The reason is as follows. From Equation 5, the conventional positive electrode active material requires 1.5 times the reaction rate, 1.5 | g (η (+)) |, and 1.5 times the current if the overvoltage remains η (+). Can not be washed. Therefore, the overvoltage of the charge reaction of the positive electrode, which is a conventional active material, increases according to the speed equation up to the overvoltage necessary for flowing a current of 1.5 times. The constraint conditions regarding the overvoltage of the negative electrode and the positive electrode at this time are Expression 3 and Expression 6.

このため、正極充電反応の過電圧が大きくなると、改良された負極充電反応の過電圧が小さくなる。そして、負極活物質の改良の効果が大きければ大きいほど、負極の過電圧はより小さくなり、正極の過電圧はより一層大きくなる。目標とする充電受け入れ電流を満足するために必要な負極の過電圧は、式6から式10を用いて原理的に求められる。   For this reason, when the overvoltage of the positive electrode charging reaction increases, the overvoltage of the improved negative electrode charging reaction decreases. Then, the greater the improvement effect of the negative electrode active material, the smaller the negative electrode overvoltage and the higher the positive electrode overvoltage. The overvoltage of the negative electrode necessary for satisfying the target charge acceptance current is obtained in principle using Equations 6 to 10.

一方、負極の活物質は従来のままとし、正極の活物質を改良し、充電受け入れ性能を従来比1.5倍にする場合も同様である。この場合は、上記、負極を改良した場合とは逆となる。すなわち、改良された正極の充電反応の過電圧が小さくなり、改良されていない負極の過電圧は大きくなる。   On the other hand, the same applies to the case where the negative electrode active material is kept as it is, the positive electrode active material is improved, and the charge acceptance performance is 1.5 times that of the conventional one. In this case, it is the reverse of the case where the negative electrode is improved. That is, the overvoltage of the improved charge reaction of the positive electrode is reduced, and the overvoltage of the non-improved negative electrode is increased.

負極、正極両方が改良される場合、負極のみ、正極のみ改良される場合に比べ、もっとも高い改善効果が得られることが、上記の原理検討から明らかである。この場合、負極及び正極それぞれの充電反応過電圧の大小変化は複雑である。すなわち、負極を改良した場合、式3及び式6にしたがい、負極の充電反応過電圧の絶対値は低下し、正極は上昇する。ここで改良した負極を用いて、さらに、正極の充電受け入れ性能を改良すると、式3及び式6にしたがい、正極の過電圧は低下し、負極の過電圧の絶対値は上昇する。   It is clear from the above principle study that when both the negative electrode and the positive electrode are improved, the highest improvement effect is obtained as compared with the case where only the negative electrode and only the positive electrode are improved. In this case, the magnitude change of the charge reaction overvoltage of each of the negative electrode and the positive electrode is complicated. That is, when the negative electrode is improved, the absolute value of the charge reaction overvoltage of the negative electrode is lowered and the positive electrode is raised according to Equations 3 and 6. When the charge receiving performance of the positive electrode is further improved by using the improved negative electrode here, the positive voltage overvoltage of the positive electrode is decreased and the absolute value of the negative voltage of the negative electrode is increased according to Equations 3 and 6.

一方、平衡電位周りの過電圧と電流の関係は、一般に下記、式11の直線関係で与えられる(玉虫玲太、「電気化学(第2版)」p.243、(1991)、東京化学同人 または Allen J.Bard and Larry R.Faulkner、「ELECTROCHEMICAL METHODS」p.106、(2001)、John Wiley & Sons Inc.)。
|η|/|i|=(RT/nF)((1/I)+(1/|Ia|)+1/|Ic|)・・・・・・式11
ここに、|i|は平衡電位近傍における電流密度の絶対値、Rは気体定数、Tは絶対温度、nは反応電子数、Fはファラデー定数、Iは交換電流密度、|Ia|はアノード反応における限界電流密度の絶対値、|Ic|はカソード反応における限界電流密度の絶対値である。式11の右辺は、それぞれの電気化学系に固有な定数項である。本発明において、過電圧と電流の関係で得られる低過電圧領域に現れる直線関係を用いて、過電圧と電流の勾配を示し、直線勾配の大小で充電電流1.5倍を超える条件を示す。電流密度ではなく、全電流で見た場合も同様である。全電流と過電圧の電流電位曲線の関係においても、式11の直線関係は変わらない。このように純粋な理論面で、|η|/|i|は直線関係を与える条件を有する。本発明においては、電流電位曲線の初期充電電流と過電圧の関係から、同様に直線近似できる領域を設定し、|η|/|i|に対応する勾配を求める。これにより、過電圧と電流に関する充電電流の1.5倍化、及び1.5倍化を超える条件に関して定義することが可能となる。このようにして得られた直線勾配は、式11に示される条件が下限値となる。本実験で得られる|η|/|i|の値は式11で示される値より小さくならない。
図1は電流電位曲線の模式図である。すなわち、過電圧と充電電流の上記数式の関係を図で見える化したものである。電流電位曲線が得られた場合、図1は充電電流を求める場合の原理も包含している。図1は、12V電池に関する内容を示してあり、開回路電圧は12Vである。図において、N11は従来の鉛蓄電池の負極の電流電位曲線を示し、P11は従来の鉛蓄電池の正極の電流電位曲線を示す。ここでは同じ面積の極板を使っているとし、縦軸は電流を示す。N22は充電受け入れ性能が改善された負極の電流電位曲線を示し、P22は充電受け入れ性能が改善された正極の電流電位曲線を示す。したがって、N22は同じ過電圧(電位)に対してN11よりも充電電流が大きい。同様にP22は同じ過電圧(電位)に対してP11よりも充電電流が大きい。充電電圧14Vを図1に示す電位幅で表すと、従来電池の充電電流はI11である。図には、両端矢印線で、4本の14Vに相当する幅の線を示した。式3及び式6より、4本の線の長さはすべて同じである。
On the other hand, the relationship between the overvoltage and current around the equilibrium potential is generally given by the following linear relationship of Eq. 11 (Yuta Tamamushi, “Electrochemistry (2nd edition)” p. 243, (1991), Tokyo Chemical Dojin or Allen J. Bard and Larry R. Faulkner, “ELECTROCHEMICAL METHODS” p.106, (2001), John Wiley & Sons Inc.).
| Η | / | i | = (RT / nF) ((1 / I 0 ) + (1 / | Ia |) + 1 / | Ic |) Equation 11
Where | i | is the absolute value of the current density near the equilibrium potential, R is the gas constant, T is the absolute temperature, n is the number of reaction electrons, F is the Faraday constant, I 0 is the exchange current density, and | Ia | The absolute value of the limiting current density in the reaction, | Ic |, is the absolute value of the limiting current density in the cathode reaction. The right side of Equation 11 is a constant term unique to each electrochemical system. In the present invention, the gradient of the overvoltage and current is shown using a linear relationship appearing in the low overvoltage region obtained by the relationship between the overvoltage and current, and the condition where the charging current exceeds 1.5 times with the magnitude of the linear gradient. The same applies to the case of looking at the total current, not the current density. Even in the relationship between the current potential curve of the total current and the overvoltage, the linear relationship of Equation 11 does not change. Thus, in a pure theoretical aspect, | η | / | i | has a condition for giving a linear relationship. In the present invention, from the relationship between the initial charging current and the overvoltage of the current-potential curve, an area that can be linearly similarly set is set, and the gradient corresponding to | η | / | i | is obtained. As a result, it is possible to define the charging current related to overvoltage and current by 1.5 times and conditions exceeding 1.5 times. In the linear gradient obtained in this way, the condition shown in Equation 11 is the lower limit. The value of | η | / | i | obtained in this experiment is not smaller than the value shown in Equation 11.
FIG. 1 is a schematic diagram of a current-potential curve. That is, the relationship between the above formulas of overvoltage and charging current is visualized in the figure. In the case where a current-potential curve is obtained, FIG. 1 also includes a principle for obtaining a charging current. FIG. 1 shows the content for a 12V battery, with an open circuit voltage of 12V. In the figure, N11 shows the current potential curve of the negative electrode of the conventional lead storage battery, and P11 shows the current potential curve of the positive electrode of the conventional lead storage battery. Here, it is assumed that electrode plates having the same area are used, and the vertical axis indicates current. N22 shows the current potential curve of the negative electrode with improved charge acceptance performance, and P22 shows the current potential curve of the positive electrode with improved charge acceptance performance. Therefore, N22 has a larger charging current than N11 for the same overvoltage (potential). Similarly, P22 has a larger charging current than P11 for the same overvoltage (potential). When the charging voltage 14V is represented by the potential width shown in FIG. 1, the charging current of the conventional battery is I11. In the figure, four lines having a width corresponding to 14V are indicated by double-ended arrow lines. From Equation 3 and Equation 6, the lengths of the four lines are all the same.

ここで、電池構成として、負極は従来の電流電位曲線N11の特性を有する極板を使い、正極は充電受け入れ性能の改善された電流電位曲線P22の極板を使うとする。すると図から明らかな様に、充電電流は式3及び式6に示されるように充電電圧14Vをキープしたまま、I12まで上昇する。この時、これまで原理面から数学的に議論してきたように、正極の過電圧は低下し、負極の過電圧の絶対値は大きくなる。次に、電池構成として、正極は従来の電流電位曲線P11の特性を有する極板を使い、負極は充電受け入れ性能の改善された電流電位曲線N22の極板を使うとする。すると図から明らかな様に、充電電流は充電電圧14Vをキープしたまま、I21まで上昇する。この時、これまで議論してきたように、正極の過電圧は大きくなり、負極の過電圧の絶対値は小さくなる。   Here, as a battery configuration, it is assumed that a negative electrode having a characteristic of a current potential curve N11 is used as the negative electrode, and a positive electrode having a current potential curve P22 with improved charge acceptance performance is used as the positive electrode. Then, as is apparent from the figure, the charging current rises to I12 while keeping the charging voltage 14V as shown in equations 3 and 6. At this time, as discussed mathematically from the viewpoint of the principle, the overvoltage of the positive electrode is lowered and the absolute value of the overvoltage of the negative electrode is increased. Next, as a battery configuration, it is assumed that a positive electrode having the characteristics of the conventional current potential curve P11 is used for the positive electrode and a negative electrode having a current potential curve N22 with improved charge acceptance performance is used for the negative electrode. Then, as is apparent from the figure, the charging current rises to I21 while keeping the charging voltage 14V. At this time, as discussed so far, the overvoltage of the positive electrode increases and the absolute value of the negative electrode overvoltage decreases.

一方、電池構成として、負極および正極がともに改善された場合を考える。すなわち電流電位曲線N22とP22を有する極板の電池を発明した場合、充電電流は式3及び式6に示されるように充電電圧14Vをキープしたまま、I22まで上昇する。原理面での議論で示されたように、I22はこれらの検討例の中で最大の充電電流が得られることを示している。   On the other hand, a case where both the negative electrode and the positive electrode are improved as a battery configuration will be considered. That is, when the battery of the electrode plate having the current potential curves N22 and P22 is invented, the charging current rises to I22 while keeping the charging voltage 14V as shown in the equations 3 and 6. As shown in the discussion on the principle side, I22 indicates that the maximum charging current can be obtained in these examination examples.

電気化学反応の基本特性面で示した、式11に示す直線関係は、図1に示す、負極及び正極の平衡電位近傍から伸びる直線の勾配として取り扱う。   The linear relationship shown in Formula 11 shown in terms of basic characteristics of the electrochemical reaction is treated as a linear gradient extending from the vicinity of the equilibrium potential of the negative electrode and the positive electrode shown in FIG.

以上、式1から式11で示される内容は液式鉛蓄電池であっても、VRLAであっても共通である。   As described above, the contents expressed by Expressions 1 to 11 are common to both liquid lead acid batteries and VRLA.

以上、数学的及び図式に基づく議論の中で、一般的な電圧計測では見落とされる本質的な情報がある。それは、本発明の本質である過電圧である。図1から明らかなように、14V定電圧充電において、負極と正極の間の相対的な電位差を計測する限り、負極及び正極それぞれの過電圧変化は見えない。理由は式3及び式6から明らかであるが、図1はこの事実を明確に示している。電圧測定では一定の14Vであるにもかかわらず、極板の構成を変化させると過電圧がめまぐるしく変化し、それに伴い充電電流が変化している。   As described above, in the discussion based on the mathematical and schematic methods, there is essential information that is overlooked in general voltage measurement. That is the overvoltage that is the essence of the present invention. As apparent from FIG. 1, in 14V constant voltage charging, as long as the relative potential difference between the negative electrode and the positive electrode is measured, the change in overvoltage between the negative electrode and the positive electrode is not visible. The reason is clear from Equation 3 and Equation 6, but FIG. 1 clearly shows this fact. In spite of the constant 14V in the voltage measurement, when the electrode plate configuration is changed, the overvoltage changes rapidly, and the charging current changes accordingly.

したがって、本発明においては、過電圧を分離できる計測設備が必要である。それは電気化学計測装置で有り、電気化学計測装置を用いたデータを基に発明を構築する必要がある。以下、過電圧条件及び充電電流の関係を基にした本発明の具体的な構成は、以下の手順で明らかにされる。   Therefore, in the present invention, a measuring facility capable of separating overvoltage is required. It is an electrochemical measurement device, and it is necessary to construct an invention based on data using the electrochemical measurement device. Hereinafter, a specific configuration of the present invention based on the relationship between the overvoltage condition and the charging current will be clarified by the following procedure.

まず、従来の鉛蓄電池の負極及び正極それぞれの充電電流と過電圧の関係を実測する。電流電位曲線の実測は、ポテンショスタット(Potentiostat)機能及び、ガルバノスタット(Galvanostat)機能の両方を兼ね備えている電気化学計測設備で実測するのが正確である。ポテンショスタット、ガルバノスタットは、過電圧が分離できる電気化学計測装置である。ポテンショスタットは基準電極に対する評価電極の電位を制御し、制御電位において観測される電流を計測することができる。ガルバノスタットは評価電極に流れる電流を制御することができ、一定電流制御下における、評価電極の電位変化を基準電極に対して計測できる。電気化学計測上、計測は単セルに相当する、正極または負極1枚に関して計測するのが評価上簡便であり、十分である。   First, the relationship between the charging current and the overvoltage of the negative electrode and the positive electrode of a conventional lead storage battery is measured. It is accurate to actually measure the current-potential curve with an electrochemical measurement facility that has both a potentiostat function and a galvanostat function. Potentiostats and galvanostats are electrochemical measuring devices that can separate overvoltages. The potentiostat can control the potential of the evaluation electrode with respect to the reference electrode, and can measure the current observed at the control potential. The galvanostat can control the current flowing through the evaluation electrode, and can measure the potential change of the evaluation electrode with respect to the reference electrode under constant current control. In terms of electrochemical measurement, it is simple and sufficient for evaluation to measure one positive electrode or one negative electrode corresponding to a single cell.

充電電圧を一定とした場合の電気化学計測は、基準電極の電位に対して電位を制御することに等しい。すなわち、負極の場合は負極の平衡電位からより電位がマイナス側になるように過電圧を印加するのである。電位を一定に制御した場合、鉛蓄電池の充電電流は電気二重層充電過程の極短時間領域を除き、時間とともに充電電流が減衰してゆく。したがって、電位制御の基で、充電電流を定義する場合、何秒目の電流値であるかを定義しなければならない。電流を制御して過電圧の時間変化をモニターする場合は、過電圧の絶対値は測定経過時間とともに上昇してゆく。これらの現象は電気化学反応速度理論により、古くから知られていることである。電位を制御して電流を定義する場合も、電流を制御して過電圧(電位)を定義する場合も、得られた電流電位曲線が何秒目の電流または何秒目の過電圧データに基づいて得られたものであるかを定義しておかねばならない。本発明においては、これらの時間窓(time window)は、充電開始5秒目の電流または過電圧として定義する。温度は25℃とする。   Electrochemical measurement when the charging voltage is constant is equivalent to controlling the potential with respect to the potential of the reference electrode. That is, in the case of the negative electrode, the overvoltage is applied so that the potential becomes more negative from the equilibrium potential of the negative electrode. When the potential is controlled to be constant, the charging current of the lead-acid battery is attenuated with time except in the extremely short time region of the electric double layer charging process. Therefore, when defining the charging current based on the potential control, it is necessary to define how many seconds the current value is. In the case of monitoring the time variation of overvoltage by controlling the current, the absolute value of the overvoltage increases with the measurement elapsed time. These phenomena have long been known by electrochemical reaction rate theory. Whether the current is defined by controlling the potential, or the overvoltage (potential) is defined by controlling the current, the obtained current-potential curve is obtained based on the current in the second or overvoltage data in the second. It must be defined whether it is In the present invention, these time windows are defined as the current or overvoltage at the 5th second after the start of charging. The temperature is 25 ° C.

電池の状態に関しても定義が必要である。サイクル劣化に関して、電池特性を定義する場合は、どのようなサイクルパターンで何サイクル目等の条件が必要である。本発明においては、従来電池の1.5倍の充電受け入れ条件に関し、電池の初期状態に関する過電圧と電流および電流密度の関係について必要条件を定義する。   It is necessary to define the state of the battery. When defining battery characteristics with respect to cycle deterioration, conditions such as what cycle and what cycle pattern are necessary. In the present invention, regarding the charge acceptance condition 1.5 times that of the conventional battery, necessary conditions are defined for the relationship between the overvoltage, the current, and the current density regarding the initial state of the battery.

電解液比重は断りが無い限り、液式鉛蓄電池及びVRLAともに初期比重で代表することとする。   Unless otherwise specified, the electrolyte specific gravity is represented by the initial specific gravity for both the liquid lead acid battery and VRLA.

本発明において、従来電池の負極、及び正極の電流電位曲線に関するそれぞれの活物質条件は、明確に定義される必要がある。なぜならば、電流電位曲線、すなわち過電圧と電流密度に関する必要条件は、すべて、これら本発明において定義された従来電池の負極、正極のそれらを基準として示されているからである。従来電池の負極及び正極条件の詳細は実施例に示す。   In the present invention, each active material condition regarding the current potential curve of the negative electrode and the positive electrode of the conventional battery needs to be clearly defined. This is because the current-potential curve, that is, the necessary conditions related to overvoltage and current density are all shown with reference to those of the negative electrode and the positive electrode of the conventional battery defined in the present invention. Details of the negative electrode and positive electrode conditions of the conventional battery are shown in the Examples.

図1に見られるように、測定された従来の鉛蓄電池の1枚の負極及び1枚の正極に関する電流電位曲線は、横軸に電位vs.基準電極(通常SHE)、縦軸に電流の絶対値で表記する。単セル当たり充電受け入れ性能は、得られた電流電位曲線に関する図面を用いて、あるいは計算で求めることが出来る。図を用いる場合は、図1で議論した内容に他ならない。   As can be seen in FIG. 1, the measured current-potential curve for one negative electrode and one positive electrode of a conventional lead-acid battery has a potential vs. horizontal axis. The reference electrode (usually SHE) is represented by the absolute value of the current on the vertical axis. The charge acceptance performance per unit cell can be obtained by using a drawing relating to the obtained current-potential curve or by calculation. When using the figure, it is nothing but the content discussed in FIG.

計算で求める場合は、例えば従来電池の場合、図1に示されるN11、P11の電流電位曲線を表す近似式を予め求めておく。求められた近似式が式5に相当する。2V単セルに対応する式3は、下記式12で示される。式12は0.333V/単セルである。
(|η(−)|+|η(+)|)/6=(14−12)/6・・・・・・式12
式5と式12より、図1のN11、P11に関するそれぞれの過電圧は、連立方程式を解くことにより求めることが出来る。負極、正極にかかる過電圧が求まれば、式5より充電受け入れ電流または電流密度が求まる。
In the case of obtaining by calculation, for example, in the case of a conventional battery, an approximate expression representing the current potential curves of N11 and P11 shown in FIG. 1 is obtained in advance. The obtained approximate expression corresponds to Expression 5. Equation 3 corresponding to a 2V single cell is expressed by Equation 12 below. Equation 12 is 0.333 V / single cell.
(| Η (−) | + | η (+) |) / 6 = (14−12) / 6.
From the equations 5 and 12, the overvoltages relating to N11 and P11 in FIG. 1 can be obtained by solving simultaneous equations. If the overvoltage applied to the negative electrode and the positive electrode is obtained, the charge acceptance current or current density can be obtained from Equation 5.

次に充電受け入れ性能を改良した、負極の活物質に関して、同様に電流電位曲線を実測する。図1では、電流電位曲線N22である。さらに改良された正極の活物質の電流電位曲線を実測する。図1ではP22に相当する。   Next, the current-potential curve is measured in the same manner for the negative electrode active material with improved charge acceptance performance. In FIG. 1, it is a current-potential curve N22. Further, the current-potential curve of the improved positive electrode active material is measured. In FIG. 1, it corresponds to P22.

これらのデータを基にして、ISS車に搭載された鉛蓄電池の充電受け入れ性能が、従来の鉛蓄電池に対して1.5倍以上になる条件を発明の構成とする。すなわち、図1を参考にすれば、まず、I11とI12を比較し、I11に対してI12が1.5倍を超えているかを確認する。同様にI11に対して、I21及びI22の情報を確認する。   Based on these data, the condition of the present invention is that the charge acceptance performance of a lead storage battery mounted on an ISS vehicle is 1.5 times or more that of a conventional lead storage battery. That is, referring to FIG. 1, first, I11 and I12 are compared, and it is confirmed whether I12 exceeds 1.5 times with respect to I11. Similarly, information on I21 and I22 is confirmed for I11.

本発明の原理面において明らかにされた事実の1つは、従来負極を用いる限り、正極をどのように改良しても、充電電流の1.5倍化の過電圧条件が存在しない。すなわち、正極のみの改良では充電電流の1.5倍化は不可能であるとの事実である。この事実は、これまで負極の改良が充電受け入れ性能向上において鍵を握るとされた従来の考え方を、過電圧面から明確に支持する結果である。したがって、充電電流の1.5倍化の過電圧必要条件の基本は負極の過電圧条件に有り、改良された負極と改良された正極の組み合わせに最大の充電受け入れ条件がある。   One of the facts revealed in the principle of the present invention is that, as long as a conventional negative electrode is used, no matter how much the positive electrode is improved, there is no overvoltage condition of 1.5 times the charging current. That is, it is a fact that the charge current cannot be increased 1.5 times by improving only the positive electrode. This fact is a result of clearly supporting from the overvoltage aspect the conventional idea that the improvement of the negative electrode has been regarded as the key to improving the charge acceptance performance. Therefore, the basic overvoltage requirement of 1.5 times the charging current is the negative overvoltage condition, and the combination of the improved negative electrode and the improved positive electrode has the maximum charge acceptance condition.

本発明に係るVRLAでは、負極板の性能を改善するために、負極活物質に少なくとも、炭素質導電材と、充放電に伴う負極活物質の粗大化抑制及び反応表面積を維持する有機化合物とを添加する。   In the VRLA according to the present invention, in order to improve the performance of the negative electrode plate, at least the carbonaceous conductive material and the organic compound that maintains the coarsening suppression of the negative electrode active material and the reaction surface area accompanying charge / discharge are included in the negative electrode active material. Added.

炭素質導電材は、好ましくは、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる材料群の中から選択される。これらの内、好ましいのは黒鉛であり、さらに鱗片状黒鉛を選択するのが好ましい。鱗片状黒鉛を用いる場合、その平均一次粒子径は、100μm以上とするのが好ましい。炭素質導電材の添加量は、満充電状態の負極活物質(多孔質の金属鉛、海綿状金属鉛ともいう)100質量部に対し0.1〜3質量部の範囲とするのが好ましい。上記鱗片状黒鉛は、JIS M 8601(2005)記載のものを指す。   The carbonaceous conductive material is preferably selected from a material group consisting of graphite, carbon black, activated carbon, carbon fiber, and carbon nanotube. Of these, graphite is preferable, and scaly graphite is preferably selected. When using flaky graphite, the average primary particle diameter is preferably 100 μm or more. The addition amount of the carbonaceous conductive material is preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the fully charged negative electrode active material (also referred to as porous metallic lead or spongy metallic lead). The scaly graphite refers to that described in JIS M 8601 (2005).

また、充放電に伴う負極活物質の粗大化を抑制する有機化合物を負極活物質に添加し、添加量を最適化することで、充放電の反応性が長期間損なわれることがなく、充電受け入れ性が高い状態を長期間維持することができる負極板を得ることができる。   In addition, by adding an organic compound that suppresses the coarsening of the negative electrode active material associated with charge / discharge to the negative electrode active material and optimizing the amount added, the charge / discharge reactivity is not impaired for a long period of time, and charging is accepted. It is possible to obtain a negative electrode plate that can maintain a state with high properties for a long period of time.

上記のように、炭素質導電材と負極活物質の粗大化を抑制する有機化合物とを負極活物質に添加して負極板の性能を改善するだけでも、電池全体としての充電受け入れ性を向上させることが可能であるが、この負極板を前述した正極板と組み合せることにより、電池全体としての充電受け入れ性を更に向上させることができる。   As described above, it is possible to improve the charge acceptability of the entire battery simply by adding the carbonaceous conductive material and the organic compound that suppresses the coarsening of the negative electrode active material to the negative electrode active material to improve the performance of the negative electrode plate. However, by combining this negative electrode plate with the positive electrode plate described above, the charge acceptability of the entire battery can be further improved.

負極活物質の粗大化を抑制する有機化合物としては、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物を用いることが好ましい。上記ビスフェノール類は、ビスフェノールA、ビスフェノールF、ビスフェノールS等である。上記縮合物のうち、特に好ましいのは、以下に、[化1]の化学構造式で示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物である。   As the organic compound that suppresses the coarsening of the negative electrode active material, it is preferable to use bisphenols, aminobenzenesulfonic acid, and formaldehyde condensates. Examples of the bisphenols include bisphenol A, bisphenol F, and bisphenol S. Of the condensates, the bisphenol A / sodium benzenebenzene / formaldehyde condensate represented by the chemical structural formula of [Chemical Formula 1] is particularly preferable.

前述のように、負極活物質の充電反応は、放電生成物である硫酸鉛から溶解する鉛イオンの濃度に依存し、鉛イオンが多いほど充電受け入れ性が高くなる。充放電に伴う負極活物質の粗大化を抑制するために負極活物質に添加する有機化合物として、リグニンが広く用いられている。リグニンは、鉛イオンに吸着して鉛イオンの反応性を低下させてしまうため、負極活物質の充電反応を阻害し、充電受け入れ性の向上を抑制するという副作用がある。これに対し、上記[化1]の化学構造式を有するビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物は、鉛イオンへの吸着力が弱く、吸着量も少ないことから、リグニンに代えて上記の縮合物を用いると、充電受け入れ性を妨げることが少なくなり、炭素質導電材の添加による充電受け入れ性を維持することができる。   As described above, the charging reaction of the negative electrode active material depends on the concentration of lead ions dissolved from lead sulfate, which is a discharge product, and the charge acceptance increases as the amount of lead ions increases. Lignin is widely used as an organic compound added to the negative electrode active material in order to suppress the coarsening of the negative electrode active material associated with charge / discharge. Since lignin is adsorbed to lead ions and decreases the reactivity of lead ions, it has the side effect of inhibiting the charge reaction of the negative electrode active material and suppressing the improvement of charge acceptability. In contrast, the bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate having the chemical structural formula of [Chemical Formula 1] has a weak adsorptive power to lead ions and has a small amount of adsorption. When the condensate is used, the charge acceptability is less likely to be hindered, and the charge acceptability due to the addition of the carbonaceous conductive material can be maintained.

本発明は、充放電に伴う負極活物質の粗大化を抑制する有機化合物として、以下に、[化2]の化学構造式(部分構造)で示すリグニンスルホン酸ナトリウム等を選択することを妨げない。リグニンスルホン酸ナトリウムは、負極活物質の粗大化を抑制する有機化合物として多用されているが、鉛イオンへの吸着力が強く、充電反応を抑制する副作用が強いという難点がある。これに対し、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物は、鉛イオンへの吸着力が弱く、鉛イオンに吸着される量が少ないため、充電反応を阻害することがほとんどなく、充電受け入れ性を阻害することがない。   The present invention does not prevent selection of sodium lignin sulfonate or the like represented by the chemical structural formula (partial structure) of [Chemical Formula 2] as an organic compound that suppresses the coarsening of the negative electrode active material associated with charge / discharge. . Although sodium lignin sulfonate is frequently used as an organic compound that suppresses the coarsening of the negative electrode active material, it has a drawback that it has a strong adsorption power to lead ions and has a strong side effect of suppressing a charging reaction. In contrast, bisphenols, aminobenzene sulfonic acid, and formaldehyde condensates have a weak adsorption capacity to lead ions and are less likely to be adsorbed by lead ions. Will not be disturbed.

本発明はまず、液式鉛蓄電池の条件下において、充電受け入れ性能1.5倍以上とする条件を明らかにする。これに基づき、VRLAの充電受け入れ性能1.5倍以上とする条件を明らかにする。液式鉛蓄電池とVRLAの正極と負極の活物質条件、集電体条件を共通にした場合、VRLAの電解液濃度が液式鉛蓄電池に比べて高い。液式鉛蓄電池の充電受け入れ性能1.5倍以上とする条件とVRLAの充電受け入れ性能1.5倍以上とする条件の関係は、この電解液の硫酸濃度の違いが充電受け入れ速度に及ぼす影響を定量化することで示される。充電受け入れ性能1.5倍以上とする条件に関する、液式鉛蓄電池の条件とVRLAの条件の関係を明らかにするため、まず、負極の充電反応速度と電解液の硫酸濃度または比重との関係を、理論的な充電反応に関するパラメータを用いて定量化する。   First, the present invention clarifies the condition that the charge acceptance performance is 1.5 times or more under the condition of the liquid lead-acid battery. Based on this, the condition for making the charge acceptance performance of VRLA 1.5 times or more is clarified. When the active material conditions and current collector conditions of the liquid lead acid battery and the positive and negative electrodes of VRLA are made common, the electrolyte concentration of VRLA is higher than that of the liquid lead acid battery. The relationship between the charge acceptance performance of a liquid lead-acid battery of 1.5 times or more and the condition of 1.5 times or more of the VRLA charge acceptance performance depends on the difference in sulfuric acid concentration of the electrolyte on the charge acceptance speed. Shown by quantification. In order to clarify the relationship between the condition of the liquid lead-acid battery and the condition of the VRLA with respect to the condition that the charge acceptance performance is 1.5 times or more, first, the relationship between the charge reaction rate of the negative electrode and the sulfuric acid concentration or specific gravity of the electrolyte is determined. Quantify using parameters related to the theoretical charging reaction.

鉛蓄電池の負極の充電反応は、以下に示す2つの反応から構成されると考えるのが基本である。
PbSO → Pb2+ +SO 2− 速度 k・・・・・・・・式13
Pb2+ + 2e → Pb 速度 k・・・・・・・・式14
式13は硫酸鉛からPb2+イオンの溶解反応であり、式14はPb2+イオンの還元反応、いわゆる充電反応を示す。一般には式13と式14を合計した、全反応式15が負極反応を代表し、負極の電位決定反応は式15である。しかし、充電反応速度は式13、式14の関係を定量化して決定しなければならない。
全反応: PbSO + 2e →Pb + SO 2−・・・・・・式15
ここに、kはPb2+イオンの湧き出し(Flux)であり、次元はmol/cmsである。電気化学反応速度理論(Theorem of Electrochemical Kinetics)より、
=kexp[−(2αF/RT)(E−E)](cm/s)である。
ここに、k:標準速度定数(cm/s)(Standard Rate Constant)、α:遷移係数(Transient Coefficient)、F:ファラデー定数 (C/mol)(Faraday Constant)、R:気体定数 (J/Kmol)(Gas Constant)、T:絶対温度(K)(Absolute Temperature)、E:電位vs.標準水素電極電位(NHE)(Normal Hydrogen Electrode)、E:式14の標準電極電位(−0.126V)vs. NHEである。
Basically, it is considered that the charging reaction of the negative electrode of the lead-acid battery is composed of the following two reactions.
PbSO 4 → Pb 2+ + SO 4 2− speed k 1 ...
Pb 2+ + 2e → Pb velocity k 2 ...
Equation 13 is a dissolution reaction of Pb 2+ ions from lead sulfate, and Equation 14 shows a so-called charging reaction of Pb 2+ ions. In general, the total reaction formula 15 obtained by adding the formula 13 and the formula 14 represents the negative electrode reaction, and the negative electrode potential determination reaction is the formula 15. However, the charge reaction rate must be determined by quantifying the relationship of Equations 13 and 14.
Total reaction: PbSO 4 + 2e → Pb + SO 4 2 −... Formula 15
Here, k 1 is the Pb 2+ ion source (Flux), and the dimension is mol / cm 2 s. From Electrokinetic Kinetics (Theorem of Electrochemical Kinetics)
k 2 = k 0 exp [− (2αF / RT) (E−E 0 )] (cm / s).
Here, k 0 : standard rate constant (cm / s) (Standard Rate Constant), α: transition coefficient (F), F: Faraday constant (C / mol) (Faraday Constant), R: gas constant (J / Kmol) (Gas Constant), T: Absolute temperature (K) (Ebsolute Temperature), E: Potential vs. Standard hydrogen electrode potential (NHE) (Normal Hydrogen Electrode), E 0 : Standard electrode potential of formula 14 (−0.126 V) vs. NHE.

式13,式14より、充電反応種に関する物質移動、初期条件、境界条件に関する以下の一般的な関係式が成立する。式18より定常状態の条件下で解析する。
∂C/∂t=D(∂/∂x)・・・・・・・式16
(∂C/∂x)x=0=kAS − k・・式17
∂C/∂t=0・・・・・・・・・・・・・・・・・・式18
x=0 → C=CAS・・・・・・・・・・・・・・式19
x=δ → C=CA0・・・・・・・・・・・・・・式20
t=0 → C=CA0・・・・・・・・・・・・・・式21
ここに、C:Pb2+イオン濃度(mol/cm)、D:Pb2+イオンの拡散係数(cm/s)、CAS:Pb2+イオンの充電反応界面濃度(mol/cm)、CA0:Pb2+イオンの充電前初期濃度(mol/cm)、δ:Pb2+イオンの拡散層厚(cm)(Diffusion Layer)である。充電電流i(A)は、以下式22となる。
i(A)=2SFkAS・・・・・・・・式22
ここに、Sは負極の充電反応に有効な反応全面積である。
From the equations (13) and (14), the following general relational expressions relating to mass transfer, initial conditions, and boundary conditions relating to the charge reactive species are established. Analysis is performed under steady-state conditions from Equation 18.
∂C A / ∂t = D A (∂ 2 C A / ∂x 2 )... Equation 16
D A (∂C A / ∂x) x = 0 = k 2 C AS −k 1.
∂C A / ∂t = 0 ........... 18
x = 0 → C A = C AS ... Equation 19
x = δ → C A = C A0 ... Equation 20
t = 0 → C A = C A0 ... Equation 21
Here, C A : Pb 2+ ion concentration (mol / cm 3 ), D A : Pb 2+ ion diffusion coefficient (cm 2 / s), C AS : Pb 2+ ion charge reaction interface concentration (mol / cm 3 ) , C A0 : initial concentration before charge of Pb 2+ ions (mol / cm 3 ), δ: diffusion layer thickness (cm) of Pb 2+ ions (Diffusion Layer). The charging current i (A) is expressed by Equation 22 below.
i (A) = 2SFk 2 C AS Expression 22
Here, S is the total reaction area effective for the negative electrode charging reaction.

以上により、負極充電反応に関する理論電流電位曲線は、式16から式21により、CASを求め、式22に代入することにより得られる。求める理論充電電流の式22は、以下の式23となる。
i(A)=2SFkexp[−(2αF/RT)(E−E)][(k+(D/δ)CA0)/(kexp[−(2αF/RT)(E−E)]+(D/δ))]・・・・・・・・式23
式23で示される充電電流i(A)は基本的に電位の関数であるが、各電位において、Pb2+イオンの充電前初期濃度であるCA0によって影響を受ける。すなわち、Pb2+イオンの充電前初期濃度が仮に2倍になれば、充電速度は2倍になる。kは定数であり小さい値である。kの正確な値は現在不明であるが、この値が小さいことに間違いはない。なぜならば、鉛蓄電池は充電速度が小さいからである。このkの値が大きければ、鉛蓄電池は高い入力性能を持つ電池であり、本発明のニーズは不明瞭となる。したがって、ISS車の高速充電条件下における充電速度i(A)はPb2+イオンの充電前初期濃度、CA0の大小によって決まると考えられる。
As described above, the theoretical current-potential curve relating to the negative electrode charging reaction is obtained by obtaining C AS from Equation 16 to Equation 21 and substituting it into Equation 22. The theoretical charging current equation 22 to be obtained becomes the following equation 23.
i (A) = 2SFk 0 exp [− (2αF / RT) (E−E 0 )] [(k 1 + (D A / δ) C A0 ) / (k 0 exp [− (2αF / RT) (E −E 0 )] + (D A / δ))] Equation 23
The charging current i (A) expressed by Equation 23 is basically a function of potential, but is affected by C A0 , which is the initial concentration of Pb 2+ ions before charging, at each potential. That is, if the initial concentration of Pb 2+ ions before charging is doubled, the charging speed is doubled. k 1 is the smaller value is a constant. The exact value of k 1 is currently unknown, but there is no doubt that this value is small. This is because the lead storage battery has a low charging speed. If the value of the k 1 is greater, the lead-acid battery is a battery having a high input performance needs of the present invention will become unclear. Therefore, it is considered that the charging speed i (A) under the high-speed charging condition of the ISS car is determined by the magnitude of the initial concentration of Pb 2+ ions before charging, C A0 .

したがって、硫酸電解液比重と上記Pb2+イオンの充電前初期濃度の関係が得られれば、以上により、液式鉛蓄電池の充電受け入れ性能1.5倍以上とする条件と、VRLAの充電受け入れ性能1.5倍以上とする条件の関係は明らかになる。Pb2+イオンは式13に示すように、硫酸鉛の溶解、解離によって生じる。したがって、各硫酸比重下におけるPb2+イオン濃度の関係がわかれば液式鉛蓄電池の電流電位曲線を用いて、VRALの充電受け入れ性能1.5倍以上の関係を見いだすことができる。 Therefore, if the relationship between the specific gravity of the sulfuric acid electrolyte and the initial concentration of the Pb 2+ ions before charging is obtained, the conditions for increasing the charge acceptance performance of the liquid lead acid battery to 1.5 times or more and the charge acceptance performance of VRLA 1 The relationship between the conditions of 5 times or more becomes clear. As shown in Formula 13, Pb 2+ ions are generated by dissolution and dissociation of lead sulfate. Therefore, if the relationship between the Pb 2+ ion concentration under each sulfuric acid specific gravity is known, the relationship of 1.5 times or more of the charge acceptance performance of VRAL can be found using the current-potential curve of the liquid lead acid battery.

図2は25℃におけるPb2+イオンの濃度と硫酸電解液比重との関係を示す(Hans Bode「Lead−Acid Batteries」p.27、(1977)、John Wiley & Sons Inc.)。鉛蓄電池は基本的に硫酸鉛が存在しないと、式13から明らかなように、充電反応に必要なPb2+イオンがない。本発明では、実施例1に示す様に充電状態(SOC)90%、すなわち容量の10%分を放電した条件で、充電受け入れ性能が評価される。図2より、満充電状態で電解液比重1.320のVRLAの容量を10%放電し、充電状態90%になると、電解液比重は1.292まで低下する。一方満充電状態で電解液比重1.280の液式鉛蓄電池は、S充電状態90%になると電解液比重は1.267まで低下する。図2により、電解液比重1.292および1.267に対するPb2+イオンの濃度を求めることができる。Pb2+イオンの濃度は、電解液比重1.292において1.08(mg/リットル)、電解液比重1.267において、1.28(mg/リットル)である。したがって、充電状態が90%において、式23におけるCA0、すなわちPb2+イオンの濃度は、液式鉛蓄電池の方がVRALのそれに対して1.19倍である。したがって、液式鉛蓄電池の充電速度はこの条件において、VRALの1.19倍であると考えられる。 FIG. 2 shows the relationship between the concentration of Pb 2+ ions at 25 ° C. and the specific gravity of sulfuric acid electrolyte (Hans Board “Lead-Acid Batteries” p. 27, (1977), John Wiley & Sons Inc.). The lead storage battery basically has no Pb 2+ ions necessary for the charging reaction, as is apparent from Equation 13, when there is no lead sulfate. In the present invention, as shown in the first embodiment, the charge acceptance performance is evaluated under the condition that 90% of the state of charge (SOC), that is, 10% of the capacity is discharged. As shown in FIG. 2, when the capacity of the VRLA having an electrolyte specific gravity of 1.320 is discharged 10% in a fully charged state and reaches 90% in the charged state, the electrolyte specific gravity decreases to 1.292. On the other hand, in a fully charged state, a liquid lead acid battery having an electrolyte specific gravity of 1.280, when the S charge state reaches 90%, the electrolyte specific gravity decreases to 1.267. From FIG. 2, the concentration of Pb 2+ ions with respect to the electrolyte specific gravity of 1.292 and 1.267 can be obtained. The concentration of Pb 2+ ions is 1.08 (mg / liter) at an electrolyte specific gravity of 1.292 and 1.28 (mg / liter) at an electrolyte specific gravity of 1.267. Therefore, when the state of charge is 90%, the concentration of C A0 in Formula 23, that is, Pb 2+ ions, is 1.19 times that of the VRAL in the liquid lead acid battery. Therefore, the charging speed of the liquid lead acid battery is considered to be 1.19 times VRAL under this condition.

充電状態が80%まで低下した場合も同様である。VRALの初期比重1.320は1.270まで、液式鉛蓄電池の初期比重1.280は1.254まで低下する。図2より同様に、電解液比重1.270および1.254におけるPb2+イオンの濃度を求めると、それぞれ1.25、1.40(mg/リットル)となる。したがって、充電状態が80%において、23式におけるCA0、すなわちPb2+イオンの濃度は、液式鉛蓄電池の方が1.12倍である。したがって、液式鉛蓄電池の充電速度はこの条件において、VRALの1.12倍であると考えられる。 The same applies when the state of charge is reduced to 80%. The initial specific gravity 1.320 of VRAL is reduced to 1.270, and the initial specific gravity 1.280 of the liquid lead acid battery is reduced to 1.254. Similarly, when the concentration of Pb 2+ ions at the electrolyte specific gravity of 1.270 and 1.254 is determined from FIG. 2, they are 1.25 and 1.40 (mg / liter), respectively. Therefore, when the state of charge is 80%, the concentration of C A0 in Formula 23, that is, Pb 2+ ions, is 1.12 times that of the liquid lead acid battery. Therefore, the charge rate of the liquid lead-acid battery is considered to be 1.12 times VRAL under this condition.

なお、液式鉛蓄電池においても、VRALにおいても電解液比重は放電状態によって上記のように変化するため、鉛蓄電池の電解液比重は通常充電状態100%の比重で代表する。   In the liquid lead acid battery and the VRAL, the electrolyte specific gravity changes as described above depending on the discharge state. Therefore, the electrolyte specific gravity of the lead acid battery is typically represented by a specific gravity of 100% in the charged state.

本発明においては、式11で示したように、電流電位曲線の初期充電電流と過電圧の関係に関して、直線近似できる領域を設定し|η|/|i|に対応する勾配を求める。これにより、まず液式鉛蓄電池に関して、過電圧と電流に関する充電電流1.5倍化、及び1.5倍化を超える条件に関して定義する。これらを基に、VRALに関する条件を明らかにする。具体的には一般式、式7と式8に基づいて、従来活物質を用いた負極及び正極の電流電位曲線に対して、式7を満たす電流電位曲線を与える活物質開発により達成することになる。式7を満たす電流電位曲線の直線近似できる領域から|η|/|i|を決定する。   In the present invention, as shown by Expression 11, a region that can be linearly approximated is set with respect to the relationship between the initial charging current and the overvoltage of the current-potential curve, and a gradient corresponding to | η | / | i | is obtained. Thus, first, with respect to the liquid type lead-acid battery, the charging current 1.5 times with respect to overvoltage and current, and the conditions exceeding 1.5 times are defined. Based on these, the conditions regarding VRAL will be clarified. Specifically, based on the general formulas, Formulas 7 and 8, it is achieved by developing an active material that gives a current-potential curve satisfying Formula 7 with respect to the current-potential curve of the negative electrode and the positive electrode using the conventional active material. Become. | Η | / | i | is determined from a region where the current potential curve satisfying Equation 7 can be linearly approximated.

図2および式23より、|i(−)|Floodと|i(−)|VRLAの関係から式24を得ることができる。|i(−)|Floodは液式鉛蓄電池の負極の充電電流の絶対値を、|i(−)|VRLAはVRLAの負極の充電電流の絶対値を、それぞれ示す。
|i(−)|Flood=β|i(−)|VRLA・・・・・・・・式24
ここに、βは無次元の係数である。上記検討結果より、充電状態90%においてβ=1.19である。同じ活物質ペースト、同じ格子体の仕様で液式鉛蓄電池の充電速度に対してVRLAのそれは0.84倍(1/1.19)であることを意味する。
From FIG. 2 and Expression 23, Expression 24 can be obtained from the relationship between | i (−) | Flood and | i (−) | VRLA . | I (−) | Flood indicates the absolute value of the charging current of the negative electrode of the liquid lead-acid battery, and | i (−) | VRLA indicates the absolute value of the charging current of the negative electrode of VRLA.
| I (−) | Flood = β | i (−) | VRLA Expression 24
Here, β is a dimensionless coefficient. From the above examination result, β = 1.19 in the charged state 90%. It means that it is 0.84 times (1 / 1.19) of VRLA with respect to the charge rate of the liquid lead-acid battery with the same active material paste and the same grid body specifications.

ここで、23式は初期のPb2+濃度に関して、その濃度が時間に関わらず一定であるとした18式に基づく定常状態を仮定している。この仮定の妥当性は特に充電初期においては原理的に成立する。なぜならば、充電初期においてはPb2+の消費量はまだ少なく、図2で示される初期濃度に近い値を維持しているためである。充電反応によって、Pb2+は時間とともに消費され、濃度が低下してゆく。濃度の低下はPb2+の初期濃度が高いほど、低下度合いが理論的に大きくなる。このことは、上記で示した、充電状態が90%におけるβは1.19であるが、時間とともにPb2+イオンの濃度差が縮まり、βは1.19を下回ると予想できる。 Here, Equation 23 assumes a steady state based on Equation 18 assuming that the initial Pb 2+ concentration is constant regardless of time. The validity of this assumption holds in principle especially in the initial stage of charging. This is because the consumption amount of Pb 2+ is still small at the initial stage of charging, and a value close to the initial concentration shown in FIG. 2 is maintained. Due to the charging reaction, Pb 2+ is consumed over time, and the concentration decreases. The decrease in concentration theoretically increases as the initial concentration of Pb 2+ increases. As shown above, β is 1.19 when the state of charge is 90%, but the concentration difference of Pb 2+ ions decreases with time, and β can be expected to be lower than 1.19.

23式は、Pb2+イオンに関する線形拡散条件で導かれた充電反応速度式である。しかし、現実の鉛蓄電池の活物質内での反応場は多くの細孔を有し、複雑な反応場を形成している。このため、時間依存性を考慮した充電速度式は、線形拡散のみですべての時間領域をカバーするのは困難である。23式は、このような複雑な反応場においても、充電反応開始後の短時間領域においては原理的に成立する。 Equation 23 is a charge kinetic equation derived under linear diffusion conditions for Pb 2+ ions. However, the reaction field in the active material of an actual lead storage battery has many pores and forms a complex reaction field. For this reason, it is difficult for the charge rate equation considering time dependency to cover all the time regions only by linear diffusion. Equation 23 holds in principle even in such a complex reaction field in a short time region after the start of the charging reaction.

したがって、充電開始後、何秒目まで23式の取り扱いが妥当であるかは、実際の測定データを基に確認する必要がある。少なくとも充電開始後の短い時間領域においては、上記充電状態90%におけるβ=1.19とした値は、原理的に成り立つはずである。   Therefore, it is necessary to confirm on the basis of actual measurement data how many seconds after the start of charging it is appropriate to handle the equation (23). At least in a short time region after the start of charging, the value of β = 1.19 in the charged state 90% should hold in principle.

実施例1における表2が示すように、充電状態90%におけるβは、充電開始後1秒目の実測値がβ=1.19である。また、充電開始後5秒目の値がβ=1.11である。1秒目は理論式およびPb2+イオンの濃度から計算された値と一致する。5秒目では予想通りβは低下している。本発明では、実施例1で示すように|η|/|i|評価は充電開始後、5秒目の電流電位曲線の情報に基づき検討する。5秒という時間条件は、ISS車の実際の運転環境とブレーキ回生時間が関係する現実的な時間領域である。つまり、ブレーキが踏まれ続ける間、鉛蓄電池は充電され続けるのである。本発明では、以上で示された原理的な背景を基に、充電開始後、5秒目の実験値β=1.11を使用する。 As Table 2 in Example 1 shows, β in the charging state 90% is β = 1.19 5 in an actual measurement value 1 second after the start of charging. The value of 5 seconds after the start of charging is beta = 1.11 1. The first second is in agreement with the value calculated from the theoretical formula and the concentration of Pb 2+ ions. As expected, β decreases at 5 seconds. In the present invention, as shown in Example 1, | η | / | i | evaluation is examined based on information on a current-potential curve at 5 seconds after the start of charging. The time condition of 5 seconds is a realistic time region in which the actual driving environment of the ISS vehicle and the brake regeneration time are related. In other words, the lead-acid battery continues to be charged while the brake is being depressed. In the present invention, based on the above-described principle background, the experimental value β = 1.11 at the fifth second after the start of charging is used.

式24より、液式鉛蓄電池の|i(−)|Floodが決まると|i(−)|VRLAが決定される。これらの関係から、過電圧と電流に関する充電電流1.5倍化に関する以下の関係が得られる。すなわち、液式鉛蓄電池に関する式25、|η(−)|/|i(−)|Floodが決まると、VRLAに関する式26、|η(−)|/|i(−)|VRLAが決まる。ここに、|η(−)|は負極それぞれの充電電流に対応する過電圧の絶対値を示す。
|η(−)|/|i(−)|Flood・・・・・・・・式25
|η(−)|/|i(−)|VRLA=β|η(−)|/|i(−)|Flood・・・・・・・・式26
正極の充電反応においても同様である。正極の充電反応も負極の充電反応と同様に、式13で示される硫酸鉛の溶解反応が、式27に示される電気化学反応の先行化学反応として存在する。
PbSO → Pb2+ +SO 2−・・・・・・・・式13
Pb2+ +2HO → PbO+4H+2e・・ 式27
正極の充電反応速度も式16から式21に示される同様な条件で、基本的に式23と同様な正極の充電反応速度式を得ることになる。負極に関する関係式、式24、式25、式26に対応する正極の関係式は、以下、式28、式29、式30で定義される。
|i(+)|Flood=β|i(+)|VRLA・・・・式28
|η(+)|/|i(+)|Flood・・・・・・・・・式29
|η(+)|/|i(+)|VRLA=β|η(+)|/|i(+)|Flood・・・・・・・・式30
ここに、|i(+)|Floodは、液式の正極の充電電流の絶対値、|i(+)|VRLAはVRALの正極の充電電流の絶対値を示す。|η(+)|は正極それぞれの充電電流に対応する過電圧の絶対値を示す。式24および式28の係数βは負極及び正極の充電反応メカニズム上同じである。充電開始後、5秒目のβは負極と同様、β=1.11である。
From Expression 24, when | i (−) | Flood of the liquid lead-acid battery is determined, | i (−) | VRLA is determined. From these relationships, the following relationship regarding 1.5 times charging current regarding overvoltage and current is obtained. That is, when the expression 25, | η (−) | / | i (−) | Flood for the liquid lead-acid battery is determined, the expression 26, | η (−) | / | i (−) | VRLA for VRLA is determined. Here, | η (−) | indicates the absolute value of the overvoltage corresponding to the charging current of each negative electrode.
| Η (−) | / | i (−) | Flood Expression 25
| Η (-) | / | i (-) | VRLA = β | η (-) | / | i (-) | Flood ········ formula 26
The same applies to the charging reaction of the positive electrode. Similarly to the charging reaction of the negative electrode, the lead sulfate dissolution reaction represented by the formula 13 exists as a preceding chemical reaction of the electrochemical reaction represented by the formula 27.
PbSO 4 → Pb 2+ + SO 4 2 −... Equation 13
Pb 2+ + 2H 2 O → PbO 2 + 4H + + 2e
The charge reaction rate of the positive electrode is basically the same as that of Equation 23 under the same conditions as shown in Equations 16 to 21. The relational expressions regarding the negative electrode, the relational expressions of the positive electrode corresponding to the expressions 24, 25, and 26 are defined by the following expressions 28, 29, and 30.
| I (+) | Flood = β | i (+) | VRLA
| Η (+) | / | i (+) | Flood ········· formula 29
| Η (+) | / | i (+) | VRLA = β | η (+) | / | i (+) | Flood ········ formula 30
Here, | i (+) | Flood is the absolute value of the charging current of the liquid positive electrode, and | i (+) | VRLA is the absolute value of the charging current of the positive electrode of VRAL. | Η (+) | indicates the absolute value of the overvoltage corresponding to the charging current of each positive electrode. The coefficients β in Equation 24 and Equation 28 are the same in terms of the charging reaction mechanism of the negative electrode and the positive electrode. Β of 5 seconds after the start of charging is β = 1.11 as in the negative electrode.

このような負極および正極の充電反応速度に関する定量的な取り扱いは、液式鉛蓄電池、VRALともに負極活物質、正極活物質、集電体構造の条件を共通にし、電解液比重のみを変えた場合の条件において基本的に成立している。これは実施例1、表2に示される結果からも明らかである。   Quantitative handling of the negative electrode and positive electrode charge kinetics is the same when the conditions for the negative electrode active material, positive electrode active material, and current collector structure are the same for both liquid lead-acid batteries and VRAL, and only the electrolyte specific gravity is changed. The above conditions are basically established. This is also clear from the results shown in Example 1 and Table 2.

まず、液式鉛蓄電池における|η(−)|/|i(−)|Flood、|η(+)|/|i(+)|Floodを明らかにする。これらの値および式26、式30より、VRALの充電電流1.5倍化、及び1.5倍化を超える条件を明らかにする。 First, | η (−) | / | i (−) | Flood , | η (+) | / | i (+) | Flood in a liquid lead-acid battery is clarified. From these values and Equations 26 and 30, the VRAL charging current is 1.5 times and the condition exceeding 1.5 times is clarified.

本発明における電池の充電受け入れ試験すなわち充電電流評価試験条件は、断りが無い限り以下に示す通りである。すなわち、充電受け入れ試験における実施温度は温度25℃、充電電流の制限電流は200A、14V定電圧、充電状態SOC(State of Charge)が90%において、定電圧充電開始後の5秒目充電電流の値で評価する。電解液比重(SOC調整される前の満充電状態における比重)は液式鉛蓄電池で1.28である。   The battery charge acceptance test, that is, the charge current evaluation test condition in the present invention is as follows unless otherwise specified. That is, when the charge acceptance test is performed at a temperature of 25 ° C., the charge current limit current is 200 A, 14 V constant voltage, and the state of charge (SOC) is 90%, the charge current of the fifth second after the start of constant voltage charge is Evaluate by value. The specific gravity of the electrolyte (specific gravity in the fully charged state before SOC adjustment) is 1.28 for a liquid lead acid battery.

従来の液式鉛蓄電池として、JIS規定の80D23形鉛蓄電池の電池特性を示す。すなわち、80D23形鉛蓄電池の初期充電受け入れ性能は、14V定電圧充電開始5秒目充電電流として、33±2Aレベルである。この電池の本質的な特性は、以下に示す電気化学計測により明らかにされる。すなわち、電池の最小構成単位である2V単セルの特性を電気化学計測で明らかにしてゆく。計測温度(電解液)は、断りが無い限り25℃である。   As a conventional liquid lead acid battery, the battery characteristics of an 80D23 type lead acid battery defined by JIS are shown. That is, the initial charge acceptance performance of the 80D23 type lead-acid battery is 33 ± 2 A level as the charge current at the start of 14 V constant voltage charge at the 5th second. The essential characteristics of this battery are revealed by the following electrochemical measurements. That is, the characteristics of the 2V single cell, which is the minimum structural unit of the battery, will be clarified by electrochemical measurement. The measurement temperature (electrolytic solution) is 25 ° C. unless otherwise specified.

充電受け入れ試験における活物質の状態は、初期状態であるとする。すなわち、負極、正極の活物質を集電体に塗布し、熟成、化成等を経て、所定のSOC等に調整された活物質の充電受け入れ特性である。サイクル試験の途中とか、電池の劣化状態での充電受け入れ特性では無い。サイクル評価試験を除き、本発明における1.5倍化条件等の充電受け入れ試験評価は、すべてこのような劣化が顕在化していない状態の特性である。   The state of the active material in the charge acceptance test is assumed to be the initial state. That is, the active material of the negative electrode and the positive electrode is applied to the current collector, and after aging, chemical conversion, and the like, the charge acceptance characteristics of the active material adjusted to a predetermined SOC or the like. It is not a charge acceptance characteristic in the middle of a cycle test or in a battery deterioration state. Except for the cycle evaluation test, the charge acceptance test evaluation such as the 1.5-fold condition in the present invention is a characteristic in a state where such deterioration is not manifested.

本発明における電流電位曲線の測定条件は以下の通りである。電流電位曲線は単板、すなわち負極及び正極それぞれの評価極板を1枚用いて計測する。いわゆる、単セル2V系、評価極板1枚の電気化学計測である。単セルとは、6直列12V電池の1直列分に相当する鉛蓄電池の最小単位である。電気化学計測はポテンショスタット、ガルバノスタット機能を有する物で実施する必要がある。電気化学計測は評価極板(working electrode)1枚、対極1枚の間にルギンキャピラリー(Luggin capillary)を設けた通常の3電極系で構成される電気化学計測セルを用いる。ルギンキャピラリーの中には取り扱いが容易な硫酸第一水銀参照電極を入れ、電気化学計測の基準電極とした。硫酸第一水銀電極の標準電極電位は、標準水素電極電位(SHE)に対して+0.615Vvs.SHEである。したがって、硫酸第一水銀電極で計測された電流電位の関係は容易にSHEに換算できる。   The measurement conditions of the current-potential curve in the present invention are as follows. The current-potential curve is measured using a single plate, that is, one evaluation electrode plate for each of the negative electrode and the positive electrode. This is so-called electrochemical measurement of a single cell 2V system and one evaluation electrode plate. A single cell is a minimum unit of a lead storage battery corresponding to one series of 6 series 12V batteries. Electrochemical measurement must be performed with a potentiostat or galvanostat function. Electrochemical measurement uses an electrochemical measurement cell composed of a normal three-electrode system in which one evaluation electrode plate (working electrode) and one counter electrode are provided with a lugin capillary (Luggin capillary). An easy-to-handle mercuric sulfate reference electrode was placed in the Lugin capillary to serve as a reference electrode for electrochemical measurements. The standard electrode potential of the mercuric sulfate electrode was +0.615 V vs. standard hydrogen electrode potential (SHE). SHE. Therefore, the relationship between the current potential measured at the mercuric sulfate electrode can be easily converted to SHE.

単セルでの電気化学計測の場合、14V充電電圧に相当する電圧は2.333Vである。   In the case of electrochemical measurement in a single cell, the voltage corresponding to the 14V charging voltage is 2.333V.

前記電気化学計測セルのSOCを90%(25℃、0.2Cで容量10%分放電させる)に調整後、評価極板の平衡電位が参照電極に対して安定するのを確認後、電流電位曲線を測定した。平衡電位が安定する目安として、電位変動が±0.5mV以内に収まることとした。平衡電位計測前に電解液中の溶存酸素を窒素で脱気し、電気化学計測は電解液を無撹拌状態の窒素雰囲気で実施した。電流電位曲線は、電位制御の場合は5秒目電流、電流制御の場合は5秒目電位に基づき測定されたものである。対象とする評価極板の電流電位曲線の測定が終了した後、ルギンキャピラリーと評価極板間のオーミック損(IRドロップ)を計測し、得られた電流電位曲線から、IR損を差し引いた真の電位と電流の関係を得、最終の電流電位曲線とした。オーミック損計測条件は、周波数1kHz、平衡電位からの電位変動幅はPeak to Peakで10mVとした。これらは通常の電気化学計測において、正確な電流電位曲線を求める場合に通常実施される計測内容である。   After adjusting the SOC of the electrochemical measurement cell to 90% (discharge at a temperature of 25 ° C. and 0.2C for a capacity of 10%), after confirming that the equilibrium potential of the evaluation electrode plate is stable with respect to the reference electrode, The curve was measured. As a guideline for stabilizing the equilibrium potential, the potential fluctuation was set within ± 0.5 mV. Before the equilibrium potential measurement, the dissolved oxygen in the electrolyte was degassed with nitrogen, and the electrochemical measurement was performed in a nitrogen atmosphere without stirring the electrolyte. The current-potential curve is measured based on the current at the fifth second in the case of potential control and the potential at the fifth second in the case of current control. After the measurement of the current-potential curve of the target evaluation electrode plate is completed, the ohmic loss (IR drop) between the Luggin capillary and the evaluation electrode plate is measured, and the true current obtained by subtracting the IR loss from the obtained current-potential curve The relationship between potential and current was obtained and used as the final current-potential curve. The ohmic loss measurement conditions were a frequency of 1 kHz, and a potential fluctuation range from the equilibrium potential was 10 mV, Peak to Peak. These are the contents of measurements that are normally performed when obtaining an accurate current-potential curve in normal electrochemical measurements.

図4は、電流電位曲線計測用の極板の集電体の詳細を示す。負極、正極ともに図4に示すエキスパンド集電体に活物質を塗布し電流電位曲線を計測した。電気化学計測では、JIS規定のD形鉛蓄電池の極板よりも小さいB形鉛蓄電池の極板の方が、電気化学計測上及び電気化学計測設備の計測能力上も好ましい。図4に示す活物質塗布部分の投影面積は108cmである。両面合わせた面積は216cmである。 FIG. 4 shows the details of the current collector of the electrode plate for current potential curve measurement. An active material was applied to the expanded current collector shown in FIG. 4 for both the negative electrode and the positive electrode, and a current-potential curve was measured. In electrochemical measurement, an electrode plate of a B-type lead storage battery that is smaller than an electrode plate of a D-type lead storage battery defined by JIS is also preferable in terms of electrochemical measurement and the measurement capability of the electrochemical measurement equipment. The projected area of the active material application portion shown in FIG. 4 is 108 cm 2 . The combined area of both sides is 216 cm 2 .

電気化学計測において、電流電位曲線の表示は電流密度表示が良く用いられる。しかし、実電池の評価をする場合、困難な面がある。それは投影面積にせよ、多くの細孔を有する反応活物質が実質投影面積よりも大きい実反応面積を有すること、実電池において、負極及び正極極板の枚数の構成が同じでない場合が多いこと等により、多孔質電池活物質を有する実用電池の評価において、電流密度の定義が困難となるのである。本発明における電気化学計測のセル構成は、ルギンキャピラリーを極板の一方向のみに設置し、評価極板の反対面は絶縁シールも何も施していない通常の極板のままである。このような状態の場合、対極と反対面にある評価極板からの電流の回り込みは溶液抵抗の関係から小さくなる。しかし、評価極板の裏面からの電流の流れ込みが存在するのは明らかである。この場合、電流密度の意味するところが曖昧になる。実電池においても正極6枚、負極7枚構成の並列構成の場合、両端の極板面には相対する極板が存在しない状態である。この場合も反応面積をどのように評価するかは単純ではない。   In electrochemical measurement, current density display is often used to display a current-potential curve. However, there are difficult aspects when evaluating an actual battery. That is, the reaction active material having many pores has an actual reaction area larger than the actual projected area, and the configuration of the number of the negative electrode and the positive electrode plate in the actual battery is often not the same. This makes it difficult to define the current density in the evaluation of a practical battery having a porous battery active material. In the cell configuration for electrochemical measurement in the present invention, the Lugin capillary is installed only in one direction of the electrode plate, and the opposite surface of the evaluation electrode plate is a normal electrode plate without any insulating seal. In such a state, the wraparound of the current from the evaluation electrode plate on the surface opposite to the counter electrode becomes smaller due to the solution resistance. However, it is clear that current flows from the back surface of the evaluation electrode plate. In this case, the meaning of current density is ambiguous. Also in the actual battery, in the case of a parallel configuration of 6 positive electrodes and 7 negative electrodes, there is no opposing electrode plate on the electrode plate surfaces at both ends. Again, how to evaluate the reaction area is not simple.

本発明における電気化学計測は、このような視点から、観測される電流値を全電流値として評価に用いることとする。電気化学反応速度論の点から、過電圧と電流の関係はオーミック損を補正している場合、電流密度と過電圧の関係を示している(玉虫玲太、「電気化学(第2版)」p.236、(1991)、東京化学同人)。理論的には、電流電位曲線において、同じ電流密度は同じ過電圧であるため、極板の面積の大小関係で変化する全電流で評価しても過電圧は変わらないと考えることができる。例えば、本実施例で示される電気化学計測では、1枚の評価極板に1枚の対極を正対させて測定している。仮に、2枚の対極を評価極板の両サイドに設置し、電気化学計測を実施したとすると、観測される電流は増加する。これは反応面積が実質増加し、評価極板の表裏両方に対極を有するため、観測される電流が増加するのである。しかし、結果として、反応面積が増加することで増加した電流は、反応面積で全電流を除した電流密度表示の場合は同じとなる。したがって、電流電位曲線を得るための電気化学計測条件は、同じ条件で実施しなくてはならない。   In the electrochemical measurement in the present invention, from such a viewpoint, the observed current value is used as the total current value for evaluation. From the viewpoint of electrochemical reaction kinetics, the relationship between overvoltage and current shows the relationship between current density and overvoltage when the ohmic loss is corrected (Yuta Tamamushi, “Electrochemistry (2nd edition)” p. 236, (1991), Tokyo Chemical Doujin). Theoretically, in the current-potential curve, since the same current density is the same overvoltage, it can be considered that the overvoltage does not change even when evaluated with all currents that change depending on the size of the area of the electrode plate. For example, in the electrochemical measurement shown in the present embodiment, measurement is performed with one counter electrode facing one evaluation electrode plate. If two counter electrodes are installed on both sides of the evaluation electrode plate and electrochemical measurement is performed, the observed current increases. This is because the reaction area is substantially increased and the counter electrode is provided on both the front and back of the evaluation electrode plate, so that the observed current increases. However, as a result, the current increased by increasing the reaction area is the same in the case of current density display obtained by dividing the total current by the reaction area. Therefore, the electrochemical measurement conditions for obtaining the current-potential curve must be performed under the same conditions.

図3は、電気化学計測の結果を整理した実測電流電位曲線(N1、N3、P1、P3)及び1.5倍以上の充電電流を与える閾値に関する電流電位曲線(N2、P2)を示す。評価極板1枚、対極1枚で得られた電流電位曲線である。図3の電流電位曲線を評価極板1枚に対して、その両面に対極2枚を用いた場合は、図3に示す電流の値が大きくなる。しかし、上述のように結果的に過電圧は電流密度と理論的には関係づけられているため、図3に示す電流値が変化した場合においても、本発明の本質パラメータである過電圧条件は理論的には等価とみるのである。これは重要なポイントで、極板の面積を変えても、同じ活物質であれば、極板のサイズに寄らず、過電圧条件が原理的に開示できている点である。したがって、本発明で示すオーミック損を補正した、同じ電気化学計測用のセル構成(評価極板1枚に対極1枚)であれば、等価な過電圧条件が原理的に示されている。   FIG. 3 shows a measured current potential curve (N1, N3, P1, P3) in which the results of electrochemical measurement are arranged, and a current potential curve (N2, P2) relating to a threshold value that gives a charging current of 1.5 times or more. It is a current-potential curve obtained with one evaluation electrode plate and one counter electrode. When the current potential curve of FIG. 3 is used for one evaluation electrode plate and two counter electrodes are used on both surfaces thereof, the current value shown in FIG. 3 increases. However, since the overvoltage is theoretically related to the current density as described above, even when the current value shown in FIG. 3 changes, the overvoltage condition that is an essential parameter of the present invention is theoretically. Is considered equivalent. This is an important point, and even if the area of the electrode plate is changed, overvoltage conditions can be disclosed in principle regardless of the size of the electrode plate if the same active material is used. Therefore, in the case of the same electrochemical measurement cell configuration (one evaluation electrode plate and one counter electrode) in which the ohmic loss shown in the present invention is corrected, an equivalent overvoltage condition is shown in principle.

電池を構成した場合においても充電電流の取り扱いは同じである。80D23形鉛蓄電池(単セルが正極6枚、負極7枚による極板群構成)の電池で、14V定電圧充電時の5秒目の充電電流は約33Aである。極板群の枚数構成を仮に正極9枚、負極10枚、または、正極4枚、負極5枚等と増減すると、充電電流はそれに伴い33Aから増減する。または、80D23形鉛蓄電池の極板の活物質でB形鉛蓄電池を構成しても、80D23形鉛蓄電池よりも大きい電池を構成しても、充電電流は33Aより小さくなったり、大きくなったりする。しかし、図3に示される過電圧の関係、すなわち充電電圧単セル2.333Vに対する過電圧分配条件は基本的に動かない。   The handling of the charging current is the same even when the battery is configured. The battery is an 80D23 type lead-acid battery (a single plate is composed of 6 plates of positive electrodes and 7 plates of negative electrodes), and the charging current in the 5th second at the time of 14V constant voltage charging is about 33A. If the number of electrode plates is increased or decreased to 9 positive electrodes, 10 negative electrodes, 4 positive electrodes, 5 negative electrodes, etc., the charging current increases or decreases from 33A accordingly. Alternatively, even if the B-type lead storage battery is configured with the active material of the electrode plate of the 80D23-type lead storage battery, or the battery larger than the 80D23-type lead storage battery is configured, the charging current becomes smaller or larger than 33A. . However, the overvoltage relationship shown in FIG. 3, that is, the overvoltage distribution condition for the charging voltage single cell 2.333 V, basically does not move.

図3に示す、N1、N3は負極に関する、P1、P3は正極に関する実測電流電位曲線である。N2及びP2が従来電池に対して1.5倍以上の充電電流を与える閾値に関する推定電流電位曲線を示す。N1とP1はそれぞれ従来負極及び従来正極に関する電流電位曲線である。N3は改良負極、P3は改良正極に関する本発明の実施例である。   In FIG. 3, N1 and N3 are measured current-potential curves related to the negative electrode, and P1 and P3 are measured current-potential curves related to the positive electrode. The estimated current electric potential curve regarding the threshold value in which N2 and P2 give a charging current 1.5 times or more to the conventional battery is shown. N1 and P1 are current-potential curves for the conventional negative electrode and the conventional positive electrode, respectively. N3 is an example of the present invention relating to an improved negative electrode and P3 is an improved positive electrode.

図3に示される従来極板(N1/P1)の組み合わせで、充電電流5.40Aが観測されている。   With the combination of the conventional electrode plates (N1 / P1) shown in FIG. 3, a charging current of 5.40 A is observed.

本発明においては、従来の活物質を用いた過電圧の定義は以下の通りである。図3に見られる様に、負極の電流電位曲線N1は従来負極としての大きな特徴を有する。それは電流電位曲線が低い充電電流域で大きく変曲(図中のX2点)していることである。7Aレベルの充電電流を境に、過電圧が大きく上昇し、水素ガス発生へとシフトしている。すなわち、十分な充電反応速度が無いため、過電圧が急に上昇する挙動である。従来の負極はこのように従来正極P1、改良負極N3と明確に異なることが確認できる。すなわち、従来の充電受け入れ性能は負極支配である。これより、正極の従来活物質は、従来の負極活物質の定義に追随できる。   In the present invention, the definition of overvoltage using a conventional active material is as follows. As seen in FIG. 3, the negative electrode current-potential curve N1 has a great feature as a conventional negative electrode. That is, the current-potential curve is greatly inflected (point X2 in the figure) in the low charging current region. Overvoltage rises greatly at the 7A level charging current, and shifts to hydrogen gas generation. That is, since there is not a sufficient charge reaction rate, the overvoltage suddenly increases. Thus, it can be confirmed that the conventional negative electrode is clearly different from the conventional positive electrode P1 and the improved negative electrode N3. In other words, the conventional charge acceptance performance is dominated by the negative electrode. From this, the conventional active material of a positive electrode can follow the definition of the conventional negative electrode active material.

本発明における従来活物質は、上述のように活物質塗布投影面積108cmの極板を評価極板とし、電気化学計測条件として、評価極板1枚の片面に正対するかたちで対極を1枚設け、その間に電位基準となる参照電極を設置した電気化学測定系で、単セル充電電圧2.333V(=14V/6)に対する充電電流と、過電圧に関する電流電位曲線の計測結果に基づき定義される。 As described above, the conventional active material in the present invention has an electrode plate with an active material application projected area of 108 cm 2 as an evaluation electrode plate, and, as an electrochemical measurement condition, has one counter electrode in the form of facing one side of one evaluation electrode plate. This is an electrochemical measurement system provided with a reference electrode serving as a potential reference in the meantime, and is defined based on the measurement result of the charging current for a single cell charging voltage of 2.333 V (= 14 V / 6) and the current-potential curve for overvoltage. .

すなわち、単セル充電電圧2.333Vに対する充電過電圧の絶対値がゼロから増加に転じる点X1(過電圧ゼロ、充電電流約1A)を原点とし、当該原点から負極N1電流電位曲線の変曲点X2(point of inflection)、すなわち、約7A領域の電流値を用い、式11に関係する過電圧(η(mV))と充電電流(A)の勾配(mV/A)を直線近似で示すと、従来の活物質のそれぞれの勾配は、以下のとおりとなる。すなわち、従来の負極の活物質は、電流電位曲線を与えるN1の勾配25.6(mV/A)である。従来の正極の活物質は、電流電位曲線を与えるP1の勾配は17.7(mV/A)である。式11に示す、本発明における過電圧と電流プロットの勾配は、本発明の電流電位曲線の計測条件において、充電電流7A以下の電流領域で観測される電流電位曲線の過電圧と電流に関する勾配とする。図3は全電流表示である。   That is, the point X1 (the overvoltage is zero and the charging current is about 1 A) at which the absolute value of the charging overvoltage with respect to the single cell charging voltage 2.333V starts to increase from zero is the origin, and the inflection point X2 ( point of inflection), that is, the current value in the region of about 7 A, and the slope of the overvoltage (η (mV)) and the charging current (A) related to Equation 11 are expressed by linear approximation. Each gradient of the active material is as follows. That is, the conventional negative electrode active material has an N1 gradient of 25.6 (mV / A) giving a current-potential curve. In the conventional positive electrode active material, the slope of P1 giving a current-potential curve is 17.7 (mV / A). The slope of the overvoltage and current plot in the present invention shown in Equation 11 is the slope related to the overvoltage and current of the current potential curve observed in the current region of the charging current of 7 A or less under the measurement conditions of the current potential curve of the present invention. FIG. 3 is a total current display.

以下、実施結果及び従来電池に対して1.5倍の充電電流を得るための条件を具体的に明らかにする。   Hereinafter, the implementation results and conditions for obtaining a charging current 1.5 times that of the conventional battery will be clarified.

図3は、種々の電流電位曲線N1、N2、N3、P1、P2、P3を示すと同時に、充電電流1.5倍以上を与えるための条件、種々の過電圧に関する内容を示してある。電流電位曲線N2及びP2は、それぞれ従来電池の充電電流1.5倍及び1.75倍を与えるのに必要な推定電流電位曲線である。N3、P3は、本発明において示される実際の充電電流2倍、および2倍を超える条件を満足する負極及び正極の実測電流電位曲線である。   FIG. 3 shows various current-potential curves N1, N2, N3, P1, P2, and P3, as well as the conditions for providing a charging current of 1.5 times or more and the contents regarding various overvoltages. Current-potential curves N2 and P2 are estimated current-potential curves necessary to give the conventional battery charging current 1.5 times and 1.75 times, respectively. N3 and P3 are measured current potential curves of the negative electrode and the positive electrode satisfying the actual charging current doubled and the condition exceeding the doubled shown in the present invention.

表1に、充電電流1.5倍化条件を実際に満足する負極及び正極の実測電流電位曲線N3およびP3に基づく改良負極活物質と改良正極活物質を用いて、JIS規定の80D23形鉛蓄電池を作製し、充電受け入れ性能を実測したデータを示す。従来電池と並べて比較した。図3の電流電位曲線から考えられる特性結果を反映できていると考えられる。改良電池1は、負極を改良した電流電位曲線N3と従来正極P1極板を組み合わせた(N3/P1)電池である。改良電池2は、改良負極電流電位曲線N3と改良正極電流電位曲線P3の極板の組み合わせ(N3/P3)に相当する。表1に示す電池の極板群構成は、従来品、改良電池1、改良電池2いずれもJIS規定の80D23形鉛蓄電池の正極6枚、負極7枚の構成である。電流のサンプリング時間は1、2、3、5、10秒であり、充電電流表示は電池容量52Ahに対して電流を52Aで割って表示してある。したがって、充電電流がある電流サンプリング時に52Aとした場合、電流表示は1.00である。5秒目の電流で見ると、改良電池1、すなわち図3のN3とP1の組み合わせ(N3/P1)は、従来電池の充電電流に対して、1.81倍の充電電流を得ていることがわかる。この値は、図3のN3とP1の組み合わせから推定される値に近い。図3の電流電位曲線はオーミック損を補正したものであるが、実電池で観測される充電電圧には種々のオーミック損がそのまま含まれる。このため、図3のN3とP1の組み合わせから推定される倍率は2倍に近いことを考慮すると、実電池で示された1.81倍は、電流電位曲線の関係と十分整合していると考えられる。改良電池2、すなわち図3のN3とP3の組み合わせ(N3/P3)は、従来電池の充電電流に対して、5秒目において2.34倍の充電電流を得ていることがわかる。この値も、図3に示されるN3とP3の関係から推定される充電受け入れ性能と十分整合していると考えられる。(N3/P3)電池は、図3及びこれまでの原理検討面から示される様に、最大の充電電流の向上が期待できる組み合わせである。   Table 1 shows the JIS standard 80D23 type lead acid battery using the improved negative electrode active material and the improved positive electrode active material based on the measured current potential curves N3 and P3 of the negative electrode and the positive electrode that actually satisfy the charging current 1.5-fold condition. The data which measured the charge acceptance performance are shown. A side-by-side comparison with conventional batteries was made. It is thought that the characteristic result considered from the current-potential curve of FIG. 3 can be reflected. The improved battery 1 is a (N3 / P1) battery in which a current potential curve N3 with an improved negative electrode and a conventional positive electrode P1 electrode plate are combined. The improved battery 2 corresponds to a combination (N3 / P3) of electrode plates of the improved negative electrode current potential curve N3 and the improved positive electrode current potential curve P3. The electrode plate group configuration of the battery shown in Table 1 is a configuration of 6 positive electrodes and 7 negative electrodes of 80D23 type lead storage battery of JIS standard for all of the conventional product, the improved battery 1 and the improved battery 2. The current sampling time is 1, 2, 3, 5, 10 seconds, and the charging current is displayed by dividing the battery capacity 52Ah by the current 52A. Therefore, when the charging current is set to 52 A during a certain current sampling, the current display is 1.00. Looking at the current at 5 seconds, the improved battery 1, that is, the combination of N3 and P1 (N3 / P1) in FIG. 3, obtains a charging current 1.81 times that of the conventional battery. I understand. This value is close to the value estimated from the combination of N3 and P1 in FIG. The current-potential curve in FIG. 3 is obtained by correcting the ohmic loss, but various ohmic losses are included as they are in the charging voltage observed in the actual battery. For this reason, considering that the magnification estimated from the combination of N3 and P1 in FIG. 3 is nearly twice, the 1.81 times shown in the actual battery is sufficiently consistent with the relationship of the current-potential curve. Conceivable. It can be seen that the improved battery 2, that is, the combination of N3 and P3 (N3 / P3) in FIG. 3, obtained a charging current of 2.34 times in the 5th second compared to the charging current of the conventional battery. This value is also considered to be sufficiently consistent with the charge acceptance performance estimated from the relationship between N3 and P3 shown in FIG. The (N3 / P3) battery is a combination that can be expected to improve the maximum charging current, as shown in FIG.

表2は、改良電池2(N3/P3)において、通常の液式鉛蓄電池の電解液比重1.28の条件と、VRLAの電解液比重1.32の条件で充電電流を計測した結果である。充電開始後1秒目、5秒目の充電電流を示す。表1と同様に、充電電流値は電池容量52Aで割っている。24式で定義されるβの値が、実験結果に基づき示されている。短い時間領域におけるβは23式から理論的にβ=1.19になると推定されるが、表2の1秒目の値は推定値と一致している。さらに、時間とともにβが低下することが5秒目の値として示されている。5秒目のβは、表2に示されるβ=1.11を用い、|η(−)|/|i(−)|VRLA、および|η(+)|/|i(+)|VRLAを明らかにする。 Table 2 shows the result of measuring the charging current in the improved battery 2 (N3 / P3) under the condition of the electrolyte specific gravity of 1.28 of a normal liquid lead acid battery and the condition of the electrolyte specific gravity of 1.32 of VRLA. . The charging current at 1 second and 5 seconds after the start of charging is shown. As in Table 1, the charging current value is divided by the battery capacity 52A. The value of β defined by Equation 24 is shown based on experimental results. Β in the short time region is estimated from Equation 23 to be theoretically β = 1.19, but the value of the first second in Table 2 matches the estimated value. Furthermore, it is shown as a value at the fifth second that β decreases with time. For β at the 5th second, β = 1.11 shown in Table 2 is used, and | η (−) | / | i (−) | VRLA and | η (+) | / | i (+) | VRLA To clarify.

図3に示されるN1(VRLA)、P1(VRLA)は、β=1.11及び24式、28式を用いて得られた計算に基づく電流と電位の関係を示す。N1(VRLA)はX2屈曲点の領域までを示す。   N1 (VRLA) and P1 (VRLA) shown in FIG. 3 indicate the relationship between current and potential based on the calculation obtained by using β = 1.11 and Equations 24 and 28. N1 (VRLA) indicates the region up to the X2 inflection point.

以下、本発明の実施結果に基づく、液式鉛蓄電池に関する充電電流1.5倍化の原理的な条件、閾値条件、および前記原理的な条件を満たす図3の電流電位曲線N3及びP3等の詳細を示す。これらの液式鉛蓄電池結果を基に、式26、式30、およびSOC90%5秒目におけるβの値、β=1.11を用いて、VRLAに関する過電圧(mV)/充電電流条件を示す。   In the following, based on the implementation results of the present invention, the basic conditions of charging current 1.5 times, the threshold conditions, and the current-potential curves N3 and P3 in FIG. Show details. Based on these liquid lead-acid battery results, the overvoltage (mV) / charge current condition for VRLA is shown using Equation 26, Equation 30, and the value of β at 90% of SOC 90%, β = 1.11.

以下(a1)から(a6)は、従来の液式鉛蓄電池の単セル負極及び正極に関する平衡電位、開回路電圧、全過電圧、及び負極正極への過電圧分配、および、過電圧(mV)/充電電流(約7A以下、約1A(X1)以上の領域)を示す。Hg/HgSOは硫酸第一水銀参照電極である。
(a1)従来電極の平衡電位
正極:1.170 V vs. Hg/HgSO(基準電極)
負極:−0.965 V vs. Hg/HgSO
(a2)開回路電圧
1.170+|−0.965|=2.135V
(a3)14.0V充電電圧で単セルに印加される電圧
14.0V/6=2.333V
(a4)単セルに印加される全過電圧
2.333−2.135=0.198V
(a5)負極及び正極への過電圧の絶対値分配(図3より)
負極η(−)=119 mV
正極η(+)=79 mV
(a6)過電圧(mV)/充電電流
N1電流電位曲線の勾配(mV/アンペア)=25.6
P1電流電位曲線の勾配(mV/アンペア)=17.7
したがって、負極活物質、正極活物質、格子体の仕様をすべて共通にし、電解液の初期比重を液式鉛蓄電池の条件1.28からVRLAの条件1.32にした場合、従来のN1,P1を与える電流電位曲線の勾配は式26、式30、及びβ=1.11より、以下のとおりになる。
(a7)VRLAの過電圧(mV)/充電電流
N1(VRLA)電流電位曲線の勾配(mV/アンペア)=28.4
P1(VRLA)電流電位曲線の勾配(mV/アンペア)=19.6
以下、まず液式鉛蓄電池の充電電流1.5倍以上を満足する条件を示し、液式鉛蓄電池の結果に基づき、式26、式30、及びβ=1.11より、VRLAの充電電流1.5倍以上を満足する要件を示す。以下詳細である。
The following (a1) to (a6) are the equilibrium potential, open circuit voltage, total overvoltage, overvoltage distribution to the negative electrode, and overvoltage (mV) / charging current regarding the single cell negative electrode and the positive electrode of the conventional liquid lead acid battery. (Area of about 7 A or less, about 1 A (X1) or more). Hg / Hg 2 SO 4 is a mercuric sulfate reference electrode.
(A1) Equilibrium potential of conventional electrode Positive electrode: 1.170 V vs. Hg / Hg 2 SO 4 (reference electrode)
Negative electrode: -0.965 V vs. Hg / Hg 2 SO 4
(A2) Open circuit voltage 1.170+ | −0.965 | = 2.135V
(A3) Voltage applied to a single cell at a 14.0V charging voltage 14.0V / 6 = 2.333V
(A4) Total overvoltage applied to a single cell 2.333-2.135 = 0.198V
(A5) Overvoltage absolute value distribution to the negative and positive electrodes (from Fig. 3)
Negative electrode η (−) = 119 mV
Positive electrode η (+) = 79 mV
(A6) Overvoltage (mV) / charging current N1 current-potential curve slope (mV / ampere) = 25.6
The slope of the P1 current potential curve (mV / ampere) = 17.7
Therefore, when all the specifications of the negative electrode active material, the positive electrode active material, and the lattice are made common, and the initial specific gravity of the electrolyte is changed from the liquid lead acid battery condition 1.28 to the VRLA condition 1.32, the conventional N1, P1 The slope of the current-potential curve that gives is as follows from Equation 26, Equation 30, and β = 1.11.
(A7) VRLA overvoltage (mV) / charge current N1 (VRLA) slope of current-potential curve (mV / ampere) = 28.4
The slope of the P1 (VRLA) current-potential curve (mV / ampere) = 19.6
Hereinafter, first, the conditions satisfying the charging current of 1.5 times or more of the liquid type lead acid battery are shown. Based on the results of the liquid type lead acid battery, the charging current 1 of VRLA is obtained from the equations 26, 30 and β = 1.11. Indicates a requirement that satisfies 5 times or more. Details are as follows.

(b1)負極改良:1.5倍化
負極のみを改良し、正極は従来の正極を用い、充電受け入れ性能が従来の電池の1.5倍以上になる組み合わせは図3に示す(N2/P1)の組み合わせとなる。すなわち、これらの電流電位曲線の組み合わせに関する過電圧と充電電流を直線近似した時の勾配(改良負極過電圧/充電電流)は以下のとおりである。なお、N2勾配の原点は、過電圧ゼロで充電電流ゼロのX0としている。
(B1) Improvement of negative electrode: 1.5-fold The combination in which only the negative electrode is improved, the positive electrode is a conventional positive electrode, and the charge acceptance performance is 1.5 times or more that of a conventional battery is shown in FIG. 3 (N2 / P1 ). That is, the gradient (improved negative electrode overvoltage / charging current) when the overvoltage and the charging current relating to a combination of these current potential curves are linearly approximated is as follows. Note that the origin of the N2 gradient is X0 where the overvoltage is zero and the charging current is zero.

N2改良負極過電圧(mV)/充電電流≦9.4
P1従来正極過電圧(mV)/充電電流=17.7
改良負極、図3のN2の過電圧絶対値は74mV、一方、従来正極P1にかかる過電圧は124mVである。
N2 improved negative electrode overvoltage (mV) / charging current ≦ 9.4
P1 conventional positive electrode overvoltage (mV) / charge current = 17.7
The overvoltage absolute value of the improved negative electrode, N2 in FIG. 3, is 74 mV, while the overvoltage applied to the conventional positive electrode P1 is 124 mV.

従来負極に関しては、N1従来負極過電圧(mV/充電電流(約7A以下、約1A(X1)以上の領域)=25.6である。したがって、1.5倍を達成するには従来負極の電流電位曲線の勾配(mV/アンペア)を25.6から9.4以下に低下させる必要がある。その他の電流電位曲線N2、P1、P2、P3に関する勾配も同様な意味を有する。   For the conventional negative electrode, N1 conventional negative electrode overvoltage (mV / charge current (about 7 A or less, region of about 1 A (X1) or more)) = 25.6. It is necessary to reduce the slope (mV / ampere) of the potential curve from 25.6 to 9.4, and the slopes for the other current potential curves N2, P1, P2, and P3 have the same meaning.

したがって、VRLAの過電圧(mV)/充電電流に関する条件は、以下のとおりである。
N2(VRLA)改良負極過電圧(mV)/充電電流≦10.4
P1(VRLA)従来正極過電圧(mV)/充電電流=19.6
図3より、従来正極はそのまま用い、負極のみの改良で充電電流2倍以上を満足する条件が理論上存在する。すなわち、負極が現実的に取り得る過電圧領域で、図3に示される2倍の充電電流を満たす大きく改良された負極と、従来正極の過電圧の関係が得られる。該当する負極の電流電位曲線は、図3に示す実測電流電位曲線N3に大変近い。充電電流2倍以上を満足する条件は(b1)の必要条件に示される負極及び正極過電圧条件に含まれるが、2倍を超える負極及び正極過電圧条件の有無を原理的に確認することは重要な意味がある。充電電流2倍以上を満足する改良負極を本発明では大改良負極と呼ぶこととする。
Therefore, the conditions regarding VRLA overvoltage (mV) / charging current are as follows.
N2 (VRLA) improved negative electrode overvoltage (mV) / charging current ≦ 10.4
P1 (VRLA) Conventional positive overvoltage (mV) / charging current = 19.6
From FIG. 3, there is theoretically a condition that the conventional positive electrode is used as it is, and the charging current is more than doubled by improving only the negative electrode. That is, in the overvoltage region that the negative electrode can actually take, the relationship between the greatly improved negative electrode satisfying the double charging current shown in FIG. 3 and the overvoltage of the conventional positive electrode can be obtained. The current potential curve of the corresponding negative electrode is very close to the actually measured current potential curve N3 shown in FIG. Conditions satisfying the charging current of 2 times or more are included in the negative electrode and positive electrode overvoltage conditions shown in the necessary condition of (b1), but it is important to confirm in principle whether or not the negative electrode and positive electrode overvoltage conditions exceed twice. There is a meaning. In the present invention, an improved negative electrode satisfying a charging current of twice or more is referred to as a greatly improved negative electrode.

(b2)負極改良:2倍化
単セル2Vに対する充電電圧2.333Vの条件において、従来負極及び正極を用いた場合の2倍の電流を流す条件は以下のとおりである。図3に示す従来電池の充電電流の2倍の電流値が、P1と負極の電流電位曲線を横断する過電圧分配条件である。図3より正極にかかる過電圧は164mVで、全過電圧は198mVで一定であるため、2倍以上の電流を流すための負極条件は、(198−164)mV=34mVである。充電電流が2倍以上になる大改良負極の負極過電圧(mV)/充電電流(約7A以下、0A以上の領域)はN3電流電位の関係と重なり、以下になる。
大改良負極過電圧(mV)/充電電流≦2.8
P1従来正極過電圧(mV)/充電電流=17.7
大改良負極過電圧(mV)/充電電流(約7A以下、0A以上の領域)≦2.8は、実測のN3で示される負極の電流電位曲線負極と同じ勾配を与えられる。なお、N3勾配の原点は、過電圧ゼロで充電電流ゼロのX0としている。
(B2) Improvement of negative electrode: doubling Under conditions of a charging voltage of 2.333 V with respect to a single cell 2V, the conditions for flowing twice the current when using a conventional negative electrode and positive electrode are as follows. A current value that is twice the charging current of the conventional battery shown in FIG. 3 is an overvoltage distribution condition that crosses the current-potential curve of P1 and the negative electrode. From FIG. 3, the overvoltage applied to the positive electrode is 164 mV, and the total overvoltage is constant at 198 mV. Therefore, the negative electrode condition for flowing a current more than twice is (198-164) mV = 34 mV. The negative overvoltage (mV) / charging current (area of about 7 A or less, 0 A or more) of the greatly improved negative electrode, in which the charging current becomes twice or more, overlaps with the relationship of the N3 current potential and becomes the following.
Greatly improved negative electrode overvoltage (mV) / charging current ≦ 2.8
P1 conventional positive electrode overvoltage (mV) / charge current = 17.7
Largely improved negative electrode overvoltage (mV) / charging current (approximately 7 A or less, region of 0 A or more) ≦ 2.8 is given the same gradient as the negative electrode current potential curve negative electrode indicated by the measured N3. Note that the origin of the N3 gradient is X0 where the overvoltage is zero and the charging current is zero.

したがって、VRLAの過電圧(mV)/充電電流に関する条件は、以下のとおりである。
大改良負極(VRLA)過電圧(mV)/充電電流≦3.1
P1(VRLA)従来正極過電圧(mV)/充電電流=19.6
(c1)正極のみ改良:1.5倍化
従来負極N1を用いる限り、正極のみの改良で1.5倍の正極条件は存在しない。これは図3より明らかである。正極のプラス過電圧が負極過電圧領域(マイナス)に入り込んでしまう、いわゆる転極が必要になり、そうなった場合に鉛蓄電池の機能が喪失した状態となる。
Therefore, the conditions regarding VRLA overvoltage (mV) / charging current are as follows.
Greatly improved negative electrode (VRLA) overvoltage (mV) / charging current ≦ 3.1
P1 (VRLA) Conventional positive overvoltage (mV) / charging current = 19.6
(C1) Only positive electrode is improved: 1.5 times As long as the conventional negative electrode N1 is used, there is no positive electrode condition of 1.5 times by improving only the positive electrode. This is apparent from FIG. A so-called reversal is required in which the positive overvoltage of the positive electrode enters the negative electrode overvoltage region (minus), and in this case, the function of the lead storage battery is lost.

(d1)負極と正極両方の改良:1.75倍化
図3に示す1.75倍化の充電電流を与える組み合わせは(N2/P2)である。1.75倍を超えるN2改良負極に関する勾配(mV/アンペア(約7A以下、0A以上の領域))と、P2改良正極に関する勾配(mV/アンペア(約7A以下、約1A(X1)以上の領域))は以下の条件になる。なお、N2勾配の原点は、過電圧ゼロで充電電流ゼロのX0としている。
N2改良負極過電圧(mV)/充電電流≦9.4
P2改良正極過電圧(mV)/充電電流≦12.4
この事実は改良負極N2の過電圧をより低下させると同時に、改良正極P2の過電圧をより低下させることで、図3に示される充電電流2倍を超える条件があることを明確に示している。2倍を超える条件は、ISS車に搭載される鉛蓄電池の充電性能向上において飛躍的である。表1に示される、改良1の(N3/P1)電池及び改良2の(N3/P3)電池は、図3に示されるN3、P3の負極正極の組み合わせで作製されたJIS規定の80D23形鉛蓄電池である。得られた電池の性能は、上記の1.5倍化、1.75倍化、2倍超えの条件を電池で再現している。
(D1) Improvement of both negative electrode and positive electrode: 1.75 times The combination giving a charging current of 1.75 times shown in FIG. 3 is (N2 / P2). 1. The gradient for N2 modified negative electrode exceeding 0.75 times (mV / ampere (about 7A or less, 0A or more region)) and the gradient for P2 modified positive electrode (mV / ampere (about 7A or less, about 1A (X1) or more region) )) Is under the following conditions. Note that the origin of the N2 gradient is X0 where the overvoltage is zero and the charging current is zero.
N2 improved negative electrode overvoltage (mV) / charging current ≦ 9.4
P2 improved positive electrode overvoltage (mV) / charging current ≦ 12.4
This fact clearly shows that there is a condition that exceeds twice the charging current shown in FIG. 3 by further reducing the overvoltage of the improved negative electrode N2 and further reducing the overvoltage of the improved positive electrode P2. Conditions exceeding twice are dramatic in improving the charging performance of lead-acid batteries mounted on ISS cars. The improved (N3 / P1) battery and the improved (N3 / P3) battery shown in Table 1 are JIS standard 80D23 type lead produced by combining the negative electrode of N3 and P3 shown in FIG. It is a storage battery. The performance of the obtained battery reproduces the above-mentioned conditions of 1.5 times, 1.75 times and more than 2 times.

したがって、本条件におけるYRLAの過電圧(mV)/充電電流に関する条件は、以下である。
N2(VRLA)改良負極過電圧(mV)/充電電流≦10.4
P2(VRLA)改良正極過電圧(mV)/充電電流≦13.7
N3及びP3の実測電流電位曲線の過電圧(mV)/充電電流(約7A以下、約1A(X1)以上の領域))の値はそれぞれ以下のとおりである。なお、N3勾配の原点は、過電圧ゼロで充電電流ゼロのX0としている。
N3電流電位曲線の勾配(mV/アンペア)=2.8
P3電流電位曲線の勾配(mV/アンペア)=8.9
図3から明らかであるが、N3の条件は(b1)の条件に、及びP3の条件は(d1)の条件に含まれる。本発明の過電圧と電流の関係に示された(b1)から(b2)及び(c1)および(d1)のそれぞれの条件が、ISS車に搭載される鉛蓄電池に必要な充電受け入れ性能を向上させる本質的な条件を開示していることが明らかである。
Therefore, the conditions regarding the overvoltage (mV) / charge current of YRLA in this condition are as follows.
N2 (VRLA) improved negative electrode overvoltage (mV) / charging current ≦ 10.4
P2 (VRLA) improved positive overvoltage (mV) / charging current ≦ 13.7
The values of overvoltage (mV) / charging current (area of about 7 A or less, about 1 A (X1) or more)) in the measured current potential curves of N3 and P3 are as follows. Note that the origin of the N3 gradient is X0 where the overvoltage is zero and the charging current is zero.
N3 current potential curve slope (mV / Ampere) = 2.8
P3 current potential curve slope (mV / ampere) = 8.9
As is apparent from FIG. 3, the condition of N3 is included in the condition (b1), and the condition of P3 is included in the condition (d1). Each condition of (b1) to (b2) and (c1) and (d1) shown in the relationship between overvoltage and current of the present invention improves the charge acceptance performance necessary for the lead storage battery mounted on the ISS car. It is clear that essential conditions are disclosed.

したがって、N3及びP3の電流電位曲線はVRLAにおいては、以下のとおりとなる。
N3(VRLA)電流電位曲線の勾配(mV/アンペア)=3.1
P3(VRLA)電流電位曲線の勾配(mV/アンペア)=9.9
<負極及び正極活物質条件>
図3に示されるN1、N3、P1、P3を与える負極及び正極の活物質の充電前(未化成)の極板作製内容及び電槽化成(Container Formation)条件を以下に示す。電解液を液式鉛蓄電池の比重1.28に調製する場合も、VRLAの電解液比重1.32に調製する場合も、これらの条件は同じである。VRLAの電解液比重1.32は、初期条件で作製した負極、正極で、電解液比重を1.28から1.32に最終調製したものである。表2のデータはこのようにして得られた。
Therefore, the current potential curves of N3 and P3 are as follows in VRLA.
N3 (VRLA) current potential curve slope (mV / ampere) = 3.1
P3 (VRLA) current-potential curve slope (mV / ampere) = 9.9
<Negative electrode and positive electrode active material conditions>
The electrode plate preparation contents and container formation conditions before charging (unformed) the negative electrode and positive electrode active materials that give N1, N3, P1, and P3 shown in FIG. 3 are shown below. These conditions are the same whether the electrolyte is prepared to have a specific gravity of 1.28 of a liquid lead-acid battery or to the electrolyte specific gravity of 1.32. The electrolyte specific gravity 1.32 of VRLA is a negative electrode and a positive electrode manufactured under initial conditions, and is finally prepared from 1.28 to 1.32. The data in Table 2 was obtained in this way.

先ず、未化成の負極板の作製内容を示す。酸化鉛と、カットファイバ(ポリエチレンテレフタレート短繊維、以下同じ)と、硫酸バリウムと、炭素質導電材と、負極活物質の粗大化を抑制する有機化合物との混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、負極用活物質ペーストを作製した。この活物質ペーストを、鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体(格子体)に充填し、40℃、湿度95%の雰囲気で24時間熟成(Curing)し、その後乾燥して未化成の負極板を作製した。電気化学測定用の極板の場合は、図4に示すエキスパンド式集電体(格子体)に充填した。   First, the production contents of the unformed negative electrode plate are shown. Kneaded by adding water to a mixture of lead oxide, cut fiber (polyethylene terephthalate short fiber, hereinafter the same), barium sulfate, carbonaceous conductive material, and organic compound that suppresses coarsening of the negative electrode active material, Then, the mixture was kneaded while dilute sulfuric acid was added little by little to prepare a negative electrode active material paste. This active material paste is filled in an expanded current collector (grid) produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity. Then, it was dried to produce an unformed negative electrode plate. In the case of the electrode plate for electrochemical measurement, the expanded current collector (grid body) shown in FIG. 4 was filled.

次に、未化成の正極板の作製内容を示す。酸化鉛と鉛丹とカットファイバとの混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、正極用活物質ペーストを製造した。この活物質ペーストを、鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体(格子体)に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の正極板を作製した。電気化学測定用の極板の場合は、図4に示すエキスパンド式集電体(格子体)に充填した。   Next, the production content of the unchemically formed positive electrode plate is shown. Water was added to a mixture of lead oxide, red lead and cut fiber and kneaded, and then kneaded while adding dilute sulfuric acid little by little to produce an active material paste for positive electrode. This active material paste is filled into an expanded current collector (lattice) produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and aged for 24 hours in an atmosphere of 40 ° C. and a humidity of 95%. It dried and the unchemically formed positive electrode plate was produced. In the case of the electrode plate for electrochemical measurement, the expanded current collector (grid body) shown in FIG. 4 was filled.

次に、前記未化成の正極板7枚と、前記未化成の負極板8枚を、1枚ずつリテーナを介して交互に積層し、極板群を作製する。この極板群を電槽に挿入して電槽化成を実施する。リテーナは、ガラス短繊維を主体とし、これを集積したマット状の電解液保持体である。このリテーナは、VRLAにおいて常用されているものである。   Next, the seven unformed positive electrode plates and the eight unformed negative electrode plates are alternately laminated one by one via a retainer to produce an electrode plate group. The electrode plate group is inserted into the battery case to form a battery case. The retainer is a mat-like electrolyte solution holder mainly composed of short glass fibers and integrated with these. This retainer is commonly used in VRLA.

電槽化成では、比重1.24の希硫酸を電槽内に注入し、活物質量に基づく理論容量の200%の電気量を通電して鉛蓄電池を完成した。電気化学計測用の極板作製の場合も同等の条件である
本発明における従来負極N1は、カーボンブラック0.1質量%、リグニン([化2]の化学構造式で示すリグニンスルホン酸ナトリウム)0.3質量%、硫酸バリウム1質量%、カットファイバ0.1質量%を活物質の主原料である鉛粉(PbO)に混ぜ、化成前の硫酸鉛量15質量%の活物質としたものである。従来正極P1は、硫酸塩(NaSO)0.026質量%、カットファイバ0.25質量%を、活物質の主原料である鉛粉(PbO)に混ぜ、化成前の硫酸鉛量16質量%の活物質としたものである。N3とN1それぞれの電流電位曲線を与える活物質構成の違いは、N1を与える負極活物質は[化2]の化学構造式(部分構造)で示すリグニンスルホン酸ナトリウムを0.3質量%用いているが、N3は[化1]の化学構造式で示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物(分子量1.0万〜4.0万、化合物中のイオウ含有量は6〜11質量%)を0.2質量%用いていることである。P1とP3それぞれの電流電位曲線を与える活物質構成の違いは、P1を与える正極活物質のペースト状活物質密度が3.85g/cmであるのに対して、P3を与える正極活物質のペースト状活物質密度が4.45g/cmである点にある。この違いは、ペースト状活物質を作製するときに生成した硫酸鉛の含有量の違いに起因する。したがって、P3を与える活物質は、同じ体積の活物質量を塗布した場合においても、P1を与える従来の活物質より充填量が10%以上増加する。
In the battery case formation, dilute sulfuric acid having a specific gravity of 1.24 was injected into the battery case, and an amount of electricity of 200% of the theoretical capacity based on the amount of active material was passed through to complete a lead storage battery. The same conditions apply for the production of an electrode plate for electrochemical measurement. Conventional negative electrode N1 in the present invention is 0.1% by mass of carbon black, lignin (sodium lignin sulfonate represented by the chemical structural formula of [Chemical Formula 2]) 0 .3% by mass, 1% by mass of barium sulfate, 0.1% by mass of cut fiber were mixed with lead powder (PbO), which is the main raw material of the active material, to make an active material with 15% by mass of lead sulfate before chemical conversion. is there. In the conventional positive electrode P1, 0.026% by mass of sulfate (Na 2 SO 4 ) and 0.25% by mass of cut fiber are mixed with lead powder (PbO) which is the main raw material of the active material, and the amount of lead sulfate before conversion is 16 It is a mass% active material. The difference in the active material composition that gives the current-potential curves of N3 and N1 is that the negative electrode active material that gives N1 uses 0.3% by mass of sodium lignin sulfonate represented by the chemical structural formula (partial structure) of [Chemical Formula 2]. N3 is bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate represented by the chemical structural formula of [Chemical Formula 1] (molecular weight: 10,000 to 40,000, sulfur content in the compound is 6 to 11 mass) %) Is 0.2 mass%. The difference in the active material configuration that gives the current-potential curves of P1 and P3 is that the positive electrode active material that gives P1 has a paste-like active material density of 3.85 g / cm 3 , whereas the positive electrode active material that gives P3 gives The paste-like active material density is 4.45 g / cm 3 . This difference is due to the difference in the content of lead sulfate produced when producing the paste-like active material. Therefore, the active material giving P3 has a filling amount increased by 10% or more compared to the conventional active material giving P1 even when the same volume of active material is applied.

図3に示すP3の過電圧の低下は、この活物質量の増加が基本的に最上位の要因であると考えられる。すなわちP3を与える高密度活物質ペーストにより、活物質中の導電ネットワークも密になると考えられる。SOCが低下して生成する硫酸鉛も高密度に微細分散しやすくなると考えられる。導電ネットワークが密になり硫酸鉛が細かく分散すると、硫酸鉛の解離平衡で生じる鉛2価イオンの絶対量が増え、導電ネットワークの効果により、充電電流が流れやすくなったためと考えられる。正極1枚あたりの活物質体積をJIS規定のB形鉛蓄電池の極板で見ると、15〜16cmレベルである。15cmの場合、P1を与える従来の活物質の充填量は57.7gである。一方、P3を与える従来の活物質の充填量は15cmの場合、66.75gである。B形電池の正極板で、塗布体積を15cmとすれば、66.0〜67.5gの充填重量はペースト状活物質密度4.40〜4.50g/cmの正極活物質を用いることにより得ることができる。したがって、P3の電流電位曲線を得るためには、ペースト状活物質密度4.40〜4.50g/cm、水分量11.5±1.0質量%、針入度135±40(10−1mm)の正極ペースト状活物質が必要であり、塗布体積を15cmとすれば、66.0〜67.5gの充填重量となる。針入度は、JIS K2220規定の(グリース)ちょう度試験器で計測する。 The decrease in the overvoltage of P3 shown in FIG. 3 is considered to be basically due to the increase in the amount of active material. That is, it is considered that the conductive network in the active material becomes dense due to the high-density active material paste that gives P3. It is considered that lead sulfate produced by lowering of the SOC is likely to be finely dispersed with high density. When the conductive network becomes dense and lead sulfate is finely dispersed, the absolute amount of divalent lead ions generated by the dissociation equilibrium of lead sulfate increases, and it is considered that the charging current easily flows due to the effect of the conductive network. When the active material volume per one positive electrode is viewed on the electrode plate of a B-type lead acid battery defined in JIS, it is 15 to 16 cm 3 level. In the case of 15 cm 3 , the filling amount of the conventional active material that gives P1 is 57.7 g. On the other hand, the filling amount of the conventional active material that gives P3 is 66.75 g in the case of 15 cm 3 . If the coating volume of the positive electrode plate of the B-type battery is 15 cm 3 , the filling weight of 66.0 to 67.5 g should use the positive electrode active material having a paste-like active material density of 4.40 to 4.50 g / cm 3. Can be obtained. Therefore, in order to obtain the P3 current-potential curve, the paste-like active material density is 4.40 to 4.50 g / cm 3 , the moisture content is 11.5 ± 1.0 mass%, and the penetration is 135 ± 40 (10 − 1 mm) of a positive electrode paste-like active material is required, and if the coating volume is 15 cm 3 , the filling weight is 66.0 to 67.5 g. The penetration is measured with a (grease) consistency tester specified in JIS K2220.

1.75倍以上の充電受け入れ性能を満たす正極電流電位曲線の閾値を示すP2の正極活物質条件は、ペースト状活物質密度3.80〜4.40g/cm、水分量11〜14質量%、針入度135±40(10−1mm)である。 The positive electrode active material condition of P2 showing the threshold value of the positive electrode current potential curve satisfying the charge acceptance performance of 1.75 times or more is a paste-like active material density of 3.80 to 4.40 g / cm 3 , and a moisture content of 11 to 14% by mass. The penetration is 135 ± 40 (10 −1 mm).

図5は、電解液比重1.28の液式鉛蓄電池における充電電流の時間推移を示す。電池は同様にJIS規定の80D23形鉛蓄電池である。図5で充電電流が最も低いのは、図3に示すN1とP1構成(N1/P1)、すなわち従来電池である。中間の充電受け入れ電流を示すものがN3とP1構成(N3/P1)電池である。そして、最大充電電流を示すのは、N3とP3構成(N3/P3)電池である。電池での評価結果は、図3において解析された充電電流1.5倍化の条件と整合している。ただし、図3の電流電位曲線は、図5における5秒目のデータに相当する。   FIG. 5 shows the time transition of the charging current in a liquid lead acid battery having an electrolyte specific gravity of 1.28. The battery is similarly a JIS regulated 80D23 type lead acid battery. The lowest charging current in FIG. 5 is the N1 and P1 configuration (N1 / P1) shown in FIG. 3, that is, the conventional battery. N3 and P1 configuration (N3 / P1) batteries exhibit intermediate charge acceptance currents. It is the N3 and P3 configuration (N3 / P3) batteries that show the maximum charging current. The battery evaluation results are consistent with the conditions for charging current 1.5 times as analyzed in FIG. However, the current-potential curve in FIG. 3 corresponds to the data for the fifth second in FIG.

<分析>
[化1]に示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物が、図3に示す電流電位曲線N3及び改良N3の負極活物質中に存在していることを、核磁気共鳴(Nuclear Magnetic Resonance、以下NMR)分光法により確認した。日本電子株式会社製のNMR分光装置(型式:ECA−500FT−NMR)を用い、以下のとおり分析を実施した。
<Analysis>
The presence of the bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate shown in [Chemical Formula 1] in the negative electrode active material of the current-potential curve N3 and the improved N3 shown in FIG. 3 is confirmed by nuclear magnetic resonance (Nuclear Magnetic). It was confirmed by Resonance (hereinafter NMR) spectroscopy. Analysis was carried out as follows using an NMR spectrometer (model: ECA-500FT-NMR) manufactured by JEOL Ltd.

まず、化成終了後の本実施例の鉛蓄電池を解体し、負極板を取り出し、水洗して硫酸分を洗い流した。化成後の負極活物質は多孔質の金属鉛である。負極活物質の酸化を防ぐために、窒素などの不活性ガス中で負極板を乾燥した。乾燥させた負極板から負極活物質を分離して粉砕し、その粉砕物を10%水酸化ナトリウム溶液に投入して、生成する沈殿物(水酸化鉛)を除いた抽出液を、前記装置で分析・測定した。測定条件は表3のとおりである   First, the lead storage battery of this example after the chemical conversion was disassembled, the negative electrode plate was taken out, washed with water, and the sulfuric acid content was washed away. The negative electrode active material after chemical conversion is porous metallic lead. In order to prevent oxidation of the negative electrode active material, the negative electrode plate was dried in an inert gas such as nitrogen. The negative electrode active material was separated from the dried negative electrode plate and pulverized, the pulverized product was put into a 10% sodium hydroxide solution, and the extracted liquid from which the generated precipitate (lead hydroxide) was removed was extracted with the above apparatus. Analyzed and measured. The measurement conditions are as shown in Table 3.

図6はNMR分光法により測定したスペクトルを示す。横軸は化学シフト(ppm)を、縦軸はピーク強度を示している。   FIG. 6 shows the spectrum measured by NMR spectroscopy. The horizontal axis represents chemical shift (ppm), and the vertical axis represents peak intensity.

図6に二重丸を付して示したように、化学シフト6.7ppmと7.5ppmに、[化1]に示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物のp−アミノベンゼンスルホン酸基に由来するピークが認められた。さらに、図6に三角を付して示したように、化学シフト0.5ppmから2.5ppmの領域に、[化1]に示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物のビスフェノールA骨格に由来するピークが認められた。   As shown in FIG. 6 with double circles, p-aminobenzene sulfone of bisphenol A / sodium benzenesulfonic acid / formaldehyde condensate shown in [Chemical Formula 1] has chemical shifts of 6.7 ppm and 7.5 ppm. A peak derived from an acid group was observed. Further, as indicated by a triangle in FIG. 6, the bisphenol A skeleton of the bisphenol A / sodium benzenesulfonate / formaldehyde condensate shown in [Chemical Formula 1] in the chemical shift range of 0.5 ppm to 2.5 ppm. A peak derived from was observed.

上記の結果から、負極活物質中に[化1]に示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物が存在することを確認できた。   From the above results, it was confirmed that the bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate represented by [Chemical Formula 1] was present in the negative electrode active material.

以上のように本発明は、充電受け入れ性及びPSOC下での寿命性能が従来より向上したVRLAを提供することを可能にするものであり、ISS車や発電制御車などのマイクロハイブリッド車等の普及に寄与するものである。従って、本発明は、自動車の燃費向上により炭酸ガスの排出量の低減を図り、地球温暖化を抑制するという地球規模の課題の解決に役立つものであり、産業上の利用可能性が大である。   As described above, the present invention makes it possible to provide a VRLA with improved charge acceptability and lifetime performance under PSOC, and the spread of micro hybrid vehicles such as ISS vehicles and power generation control vehicles. It contributes to. Therefore, the present invention is useful for solving the global problem of reducing carbon dioxide emission by improving the fuel efficiency of automobiles and suppressing global warming, and has great industrial applicability. .

Claims (10)

負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをリテーナを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、充電が間欠的に行われ、部分充電状態で負荷への高率放電が行われる制御弁式鉛蓄電池であって、
温度25℃において、比重1.32の硫酸電解液中で、前記負極板を構成する負極単板(面積108cm)と前記負極単板に正対し前記正極板を構成する正極単板(面積108cm)を、前記負極単板と前記正極単板との間に電位基準となる参照電極を設置してなる電気化学測定系を構成し、前記負極単板および前記正極単板で構成される前記制御弁式鉛蓄電池に対して充電電圧2.33Vで充電し、充電開始5秒目時点で印加される負極充電過電圧及び正極充電過電圧とそれぞれに対応する充電電流との関係をプロットして求めた電流電位曲線を用いて、
充電過電圧の絶対値が0(ゼロ)から増加に転じる点を原点とし、当該原点から直線に近似してプロットして得られる領域において、
|[負極充電過電圧(mV)/充電電流(アンペア)]|≦10.4を満足する負極活物質を具備してなる負極板と、
[正極充電過電圧(mV)/充電電流(アンペア)]≦19.6を満足する正極活物質を具備してなる正極板で構成され
前記正極活物質が、密度4.4〜4.5g/cm に調製された正極ペースト状活物質を用いて構成されたものであることを特徴とする制御弁式鉛蓄電池。
A battery case in which a negative electrode plate formed by filling a negative electrode current collector with a negative electrode active material and a positive electrode plate formed by filling a positive electrode active material with a positive electrode current collector through a retainer together with an electrolytic solution It is a control valve type lead acid battery having a configuration housed therein, in which charging is performed intermittently and high rate discharge to the load is performed in a partially charged state,
In a sulfuric acid electrolyte solution having a specific gravity of 1.32 at a temperature of 25 ° C., a negative electrode single plate (area 108 cm 2 ) constituting the negative electrode plate and a positive electrode single plate (area 108 cm) constituting the positive electrode plate facing the negative electrode single plate. 2 ) comprises an electrochemical measurement system in which a reference electrode serving as a potential reference is installed between the negative electrode single plate and the positive electrode single plate, and the negative electrode single plate and the positive electrode single plate The control valve-type lead-acid battery was charged at a charging voltage of 2.33 V, and the relationship between the negative charge overvoltage and the positive charge overvoltage applied at the time of 5 seconds from the start of charging and the corresponding charging current was plotted. Using the current-potential curve,
In the region obtained by plotting the point where the absolute value of the charge overvoltage starts to increase from 0 (zero) as an origin, approximating a straight line from the origin,
| [Negative electrode overvoltage (mV) / Charge current (Ampere)] | Negative electrode plate comprising a negative electrode active material that satisfies 10.4.
[Positive electrode charge overvoltage (mV) / Charge current (ampere)] ≦ 19.6, comprising a positive electrode plate comprising a positive electrode active material ,
The positive electrode active material, a valve-regulated lead-acid battery, characterized in der Rukoto those configured using the positive electrode paste active material prepared in density 4.4~4.5g / cm 3.
前記負極活物質が、充放電に伴う負極活物質の粗大化を抑制する有機化合物として、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物を主成分とする有機化合物と、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる材料群から選択された少なくとも1つの炭素質導電材を含有するものである請求項1記載の制御弁式鉛蓄電池。   As an organic compound in which the negative electrode active material suppresses the coarsening of the negative electrode active material due to charge / discharge, an organic compound mainly composed of bisphenols / aminobenzenesulfonic acid / formaldehyde condensate, graphite, carbon black, activated carbon, 2. The control valve-type lead-acid battery according to claim 1, comprising at least one carbonaceous conductive material selected from a material group consisting of carbon fibers and carbon nanotubes. 前記ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物が、以下の〔化1〕の化学構造式で示されるものである請求項2記載の制御弁式鉛蓄電池。
The control valve-type lead-acid battery according to claim 2, wherein the bisphenol / aminobenzenesulfonic acid / formaldehyde condensate is represented by the following chemical structural formula:
前記正極活物質が、[正極充電過電圧(mV)/充電電流(アンペア)]≦13.7を満足する正極活物質であることを特徴とする請求項1記載の制御弁式鉛蓄電池。   2. The valve-regulated lead-acid battery according to claim 1, wherein the positive electrode active material is a positive electrode active material satisfying [positive electrode charge overvoltage (mV) / charge current (ampere)] ≦ 13.7. 前記正極活物質が、水分量11〜14質量%、針入度95〜175に調製された正極ペースト状活物質を用いて構成されたものである請求項4記載の制御弁式鉛蓄電池。 The positive electrode active material, water content 11 to 14 wt%, a valve-regulated lead-acid battery of claim 4, wherein those constructed using the positive electrode paste active material prepared in penetration from 95 to 175. 前記負極活物質が、|[負極充電過電圧(mV)/充電電流(アンペア)]|≦3.1を満足する負極活物質であり、
前記正極活物質が、[正極充電過電圧(mV)/充電電流(アンペア)]≦19.6を満足する正極活物質であることを特徴とする請求項1記載の制御弁式鉛蓄電池。
The negative electrode active material is a negative electrode active material satisfying | [negative electrode charge overvoltage (mV) / charge current (ampere)] | ≦ 3.1,
2. The valve-regulated lead-acid battery according to claim 1, wherein the positive electrode active material is a positive electrode active material satisfying [positive electrode charge overvoltage (mV) / charge current (ampere)] ≦ 19.6.
前記負極活物質が、充放電に伴う負極活物質の粗大化を抑制する有機化合物として〔化1〕の化学構造式で示されるビスフェノール類・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物を主成分とする有機化合物と、炭素質導電材として鱗片状黒鉛を含有するものである請求項6記載の制御弁式鉛蓄電池。   The negative electrode active material is mainly composed of bisphenols / sodium aminobenzenesulfonate / formaldehyde condensate represented by the chemical structural formula of [Chemical Formula 1] as an organic compound that suppresses the coarsening of the negative electrode active material accompanying charge / discharge. The control valve-type lead-acid battery according to claim 6, which contains an organic compound and scaly graphite as a carbonaceous conductive material. 前記鱗片状黒鉛の平均一次粒子径が100μm以上である請求項7記載の制御弁式鉛蓄電池。   The control valve-type lead acid battery according to claim 7, wherein an average primary particle diameter of the flake graphite is 100 µm or more. 前記負極活物質が、|[負極充電過電圧(mV)/充電電流(アンペア)]|≦3.1を満足する負極活物質であり、正極活物質が、[正極充電過電圧(mV)/充電電流(アンペア)]≦9.9を満足する正極活物質であることを特徴とする請求項1記載の制御弁式鉛蓄電池。   The negative electrode active material is a negative electrode active material satisfying | [negative electrode charge overvoltage (mV) / charge current (ampere)] | ≦ 3.1, and the positive electrode active material is [positive electrode charge overvoltage (mV) / charge current]. The control valve-type lead-acid battery according to claim 1, wherein the positive-electrode active material satisfies (ampere)] ≤9.9. 前記負極活物質が、充放電に伴う負極活物質の粗大化を抑制する有機化合物として、〔化1〕の化学構造式で示されるビスフェノール類・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物を主成分とする有機化合物と、炭素質導電材として平均一次粒子径が100μm以上である鱗片状黒鉛を含有するものであり、
前記正極活物質が、水分量10.5〜12.5質量%、針入度95〜175に調製された正極ペースト状活物質を用いて構成されたものである請求項9記載の制御弁式鉛蓄電池。
As the organic compound that suppresses the coarsening of the negative electrode active material due to charge and discharge, the negative electrode active material is mainly composed of a bisphenol, sodium aminobenzenesulfonate, and formaldehyde condensate represented by the chemical structural formula of [Chemical Formula 1]. An organic compound to be used, and a scale-like graphite having an average primary particle size of 100 μm or more as a carbonaceous conductive material,
The positive electrode active material, water content 10.5 to 12.5% by weight, valve-regulated according to claim 9, wherein those constructed using the positive electrode paste active material prepared in penetration from 95 to 175 Lead acid battery.
JP2013043773A 2013-03-06 2013-03-06 Control valve type lead acid battery Active JP6119311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043773A JP6119311B2 (en) 2013-03-06 2013-03-06 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043773A JP6119311B2 (en) 2013-03-06 2013-03-06 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2014175066A JP2014175066A (en) 2014-09-22
JP6119311B2 true JP6119311B2 (en) 2017-04-26

Family

ID=51696110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043773A Active JP6119311B2 (en) 2013-03-06 2013-03-06 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP6119311B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110036526A (en) * 2016-12-07 2019-07-19 日立化成株式会社 Lead storage battery
US20220082630A1 (en) * 2019-01-15 2022-03-17 Goiku Battery Co., Ltd. Soh/soc detecting device for power storage element, and power storage element managing unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59869A (en) * 1982-06-25 1984-01-06 Shin Kobe Electric Mach Co Ltd Manufacture of positive plate for lead storage battery
JPH08124566A (en) * 1994-10-25 1996-05-17 Shin Kobe Electric Mach Co Ltd Manufacture of positive electrode paste for lead-acid battery
JPH10188966A (en) * 1996-12-24 1998-07-21 Yuasa Corp Manufacture of paste for lead storage battery
JP2003151617A (en) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Lead-acid battery
MX2013002125A (en) * 2010-09-30 2013-04-03 Shin Kobe Electric Machinery Lead storage battery.

Also Published As

Publication number Publication date
JP2014175066A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5083481B2 (en) Lead acid battery
JP6597842B2 (en) Lead acid battery
EP3288107B1 (en) Lead storage battery
JP5618008B2 (en) Lead acid battery
JP5621841B2 (en) Lead acid battery
JP5500315B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
EP2960978B1 (en) Flooded lead-acid battery
WO2013073420A1 (en) Lead storage battery
JP2013065443A (en) Lead storage battery
JP6119311B2 (en) Control valve type lead acid battery
JP7060858B2 (en) Judgment method of liquid reduction performance of lead-acid battery, and lead-acid battery and its charging method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250