JP6118092B2 - Diaphragm valve device - Google Patents

Diaphragm valve device Download PDF

Info

Publication number
JP6118092B2
JP6118092B2 JP2012269634A JP2012269634A JP6118092B2 JP 6118092 B2 JP6118092 B2 JP 6118092B2 JP 2012269634 A JP2012269634 A JP 2012269634A JP 2012269634 A JP2012269634 A JP 2012269634A JP 6118092 B2 JP6118092 B2 JP 6118092B2
Authority
JP
Japan
Prior art keywords
chamber
diaphragm
pressure
valve
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012269634A
Other languages
Japanese (ja)
Other versions
JP2014114888A (en
Inventor
笹尾 起美仁
起美仁 笹尾
康令 渡辺
康令 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2012269634A priority Critical patent/JP6118092B2/en
Publication of JP2014114888A publication Critical patent/JP2014114888A/en
Application granted granted Critical
Publication of JP6118092B2 publication Critical patent/JP6118092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)

Description

本発明は、半導体素子や液晶パネルの製造に用いられる薬液の流れを制御するに適したダイヤフラム式弁装置に関する。   The present invention relates to a diaphragm type valve device suitable for controlling the flow of a chemical used for manufacturing a semiconductor element or a liquid crystal panel.

従来、例えば、半導体素子の製造においては、半導体ウェハーに形成したパターンにコーティングしてなるレジストが、上記パターンに基づきエッチングされた後に、薬液により剥離される。このレジストの剥離にあたり、薬液が、その流動系統に介装したダイヤフラム式弁装置によりそのダイヤフラムの変位に基づき流量制御される。   Conventionally, for example, in the manufacture of semiconductor elements, a resist formed by coating a pattern formed on a semiconductor wafer is etched based on the pattern and then peeled off by a chemical solution. In stripping the resist, the flow rate of the chemical solution is controlled based on the displacement of the diaphragm by a diaphragm type valve device interposed in the flow system.

上述のようなレジストの剥離に対し、薬液としては、生産性の向上の観点から、高温、例えば、200(℃)を超える温度の薬液が用いられることから、ダイヤフラム式弁装置のダイヤフラムが良好な耐熱特性を有することが必要である。   With respect to the resist peeling as described above, as the chemical solution, since a chemical solution having a high temperature, for example, a temperature exceeding 200 (° C.) is used from the viewpoint of improving productivity, the diaphragm of the diaphragm type valve device is good. It is necessary to have heat resistance characteristics.

これに対しては、当該ダイヤフラム式弁装置として、例えば、下記特許文献1により開示された樹脂製ダイヤフラム弁を採用することが考えられる。このダイヤフラム弁に設けたダイヤフラムは、弁箱とシリンダーケースとの間に介装されており、当該ダイヤフラム弁は、弁体と、この弁体の周囲に一体に形成した環状薄膜部と、この環状薄膜部の周囲に一体に形成した筒状保持部とにより構成されている。ここで、弁体は、ピストンのピストンロッドの先端部に支持されている。また、筒状保持部は、弁箱の溝とシリンダーケースのダイヤフラム押さえとの間に押さえ込まれている。   In response to this, for example, a resin diaphragm valve disclosed in Patent Document 1 below may be adopted as the diaphragm valve device. The diaphragm provided in the diaphragm valve is interposed between the valve box and the cylinder case. The diaphragm valve includes a valve body, an annular thin film portion integrally formed around the valve body, and the annular film portion. It is comprised by the cylindrical holding part integrally formed in the circumference | surroundings of the thin film part. Here, the valve body is supported by the front-end | tip part of the piston rod of a piston. Moreover, the cylindrical holding | maintenance part is pressed down between the groove | channel of a valve box, and the diaphragm holding | suppressing of a cylinder case.

これにより、当該ダイヤフラム弁は、空気圧に基づきスプリングに抗してダイヤフラムの環状薄膜部を変位させることで、弁体を弁箱の弁座から離隔させて開弁して、レジストを剥離するように薬液を半導体ウェハーに流動させる。   Thus, the diaphragm valve disengages the resist from the valve seat by opening the valve body away from the valve seat of the valve box by displacing the annular thin film portion of the diaphragm against the spring based on the air pressure. The chemical is flowed to the semiconductor wafer.

ここで、ダイヤフラム弁は薬液をダイヤフラムの環状薄膜部に接触させながら流動させる。従って、上述した良好な耐熱特性が、ダイヤフラムの環状薄膜部に対して要求されることから、ダイヤフラム弁においては、弁箱の形成材料であるポリテトラフルオロエチレン樹脂(PTFE)が、ダイヤフラムの環状薄膜部の形成材料として採用されることが要請される。   Here, the diaphragm valve causes the chemical solution to flow while being in contact with the annular thin film portion of the diaphragm. Therefore, since the above-mentioned good heat resistance is required for the annular thin film portion of the diaphragm, in the diaphragm valve, polytetrafluoroethylene resin (PTFE) which is a material for forming the valve box is made of the annular thin film of the diaphragm. It is required to be adopted as a material for forming the part.

特開平11−37329号公報JP-A-11-37329

ところで、近年、半導体素子の製造におけるレジストの剥離にあたり、上述した薬液としては、今後のさらなる生産性の向上のために、より一層高温、例えば、250(℃)の薬液を採用することが必要とされる傾向にある。これに伴い、上述した樹脂製ダイヤフラム弁のダイヤフラムの環状薄膜部に対しても、250(℃)の高温に対する耐熱特性が要求される。   By the way, in recent years, it is necessary to employ a chemical solution at a higher temperature, for example, 250 (° C.), in order to further improve productivity in the future, as the above-described chemical solution in peeling resist in the manufacture of semiconductor elements. Tend to be. Along with this, heat resistance characteristics to high temperatures of 250 (° C.) are also required for the annular thin film portion of the diaphragm of the resin diaphragm valve described above.

しかしながら、ダイヤフラムの環状薄膜部の形成材料がPFAやPTFEであっても、薬液の温度が200(℃)を超えて高くなると、水蒸気やガスが環状薄膜部に浸透していく。このような浸透は、250(℃)の高温では、より一層進行する。   However, even if the material for forming the annular thin film portion of the diaphragm is PFA or PTFE, when the temperature of the chemical solution exceeds 200 (° C.), water vapor or gas penetrates into the annular thin film portion. Such permeation further proceeds at a high temperature of 250 (° C.).

ここで、PFAやPTFEは、その製造の過程において非晶質部を複数必然的に含んでしまう。このため、上述のように水蒸気やガスが環状薄膜部に浸透していくと、当該水蒸気やガスは各非晶質部にも浸入していくことになる。このような過程において、環状薄膜部の温度が繰り返し変動すると、各非晶質部内に浸入した水蒸気やガスが、当該各非晶質部内にて気化、凝縮或いは凝固を繰り返すことになる。   Here, PFA and PTFE inevitably include a plurality of amorphous parts in the process of manufacturing. For this reason, when water vapor | steam and gas penetrate | invade into an annular thin film part as mentioned above, the said water vapor | steam and gas will penetrate | invade also into each amorphous part. In such a process, when the temperature of the annular thin film portion repeatedly fluctuates, the water vapor or gas that has entered the amorphous portion repeats vaporization, condensation, or solidification in the amorphous portion.

これに伴い、各非晶質部の容積(体積)が、上述した気化、凝縮或いは凝固の繰り返しに伴い変化する。従って、各非晶質部が膨張したりクラックを生じたりして、ダイヤフラムの破損等の損傷や当該ダイヤフラムの寿命の短縮を招くという不具合を発生する。換言すれば、薬液が高温であればある程、PFAやPTFEのように一般に良好な耐熱特性を有するとされるフッ素樹脂であっても、上記不具合が発生してしまう。 Accordingly, the amorphous part of the volume (volume), the above-mentioned vaporization, varies with the repetition of condensation or solidification. Accordingly, each amorphous portion expands or cracks are generated, causing a problem such as damage to the diaphragm or the like, or shortening the life of the diaphragm. In other words, the higher the temperature of the chemical solution, the more problems occur even with fluororesins that are generally considered to have good heat resistance properties such as PFA and PTFE.

そこで、本発明は、以上のようなことに対処するため、一般的に良好な耐熱特性を有するとされるフッ素樹脂をダイヤフラムの形成材料として採用しても、当該ダイヤフラムの性能を、薬液の高温化に影響されることなく、長期に亘り良好に維持し得るダイヤフラム式弁装置を提供することを目的とする。   Therefore, in order to deal with the above, the present invention adopts a fluororesin, which is generally considered to have good heat resistance characteristics, as a diaphragm forming material, and the performance of the diaphragm is not affected by the high temperature of the chemical solution. It is an object of the present invention to provide a diaphragm type valve device that can be well maintained over a long period of time without being affected by the increase in the size.

上記課題の解決にあたり、本発明に係るダイヤフラム式弁装置は、請求項1の記載によれば、
筒状周壁(30a、40a)と、当該筒状周壁の軸方向両端部を閉塞する両端壁(30b、40b)とを備え、当該両端壁のうちの一方の端壁(40b)に一側流路(44、43a)を形成するとともに筒状周壁のうちの上記一方の端壁の近傍部位に他側流路(45、43b)を形成して、高温の液体を一側及び他側の流路のうちの一方の流路から流入させて他方の流路内に流動させるようになっているハウジング(H)と、
筒状周壁の軸方向中間部位内に嵌装される隔壁(50)と、
筒状周壁内にて両端壁のうちの他方の端壁(30b)と隔壁との間に軸方向に摺動可能に嵌装されて筒状周壁を通して外部に連通する第1室部(32d)及び筒状周壁を通して外部に連通する第2室部(32e)をそれぞれ上記他方の端壁側及び隔壁側に位置するように区画形成するピストン本体(61)と、当該ピストン本体から隔壁を通り上記一方の端壁に形成してなる環状弁座(40c)に向けて軸方向に摺動可能に延出するピストンロッド(63)とを有するピストン(60)と、
上記第1室部内に設けられてピストン本体を上記第2室部側へ付勢する付勢手段(70)と、
ピストンロッドの延出端部に環状弁座に対向するように設けられて当該環状弁座と共に弁手段を構成する弁体(90)と、
筒状周壁内の隔壁と上記一方の端壁(40b)との間において軸方向に湾曲変位可能となるように筒状周壁の内周部と弁体の外周部との間に設けられて隔壁及び筒状周壁を通して外部に連通する第3室部(Ra)を隔壁側に位置するように形成するとともに弁体を内包する第4室部(Rb)を上記一方の端壁側に位置するように形成すべく、ハウジング及び弁体と共に所定の耐熱性能を有するフッ素樹脂でもって形成してなるダイヤフラム(80)とを備えており、
上記一方の流路は、その内端開孔部にて、環状弁座を通り上記第4室部内に連通可能となっており、一方、上記他方の流路は、その内端開孔部にて、上記第4室部内に連通しており、
空気流が外部から筒状周壁を通し上記第2室部内に流入してピストン本体に作用させる圧力を制御圧Paとし、ピストン本体の上記第2室部側の面積を受圧面積Spとし、付勢手段が上記第1室部内にてピストン本体に作用させる付勢力を付勢荷重Wとし、空気流が外部から筒状周壁及び隔壁を通り上記第3室部内に流入してダイヤフラムに作用させる圧力をダイヤフラム空圧Pcとし、かつ、ダイヤフラムの上記第3室部側の面積を受圧面積Sdとしたとき
記ダイヤフラム空圧Pcが上記第3室部内にてダイヤフラムに作用している状態において、弁手段の開弁の際には、上記高温の液体が上記一方の流路及び環状弁座を通り弁体に達したとき当該弁体に作用させる圧力を弁体液圧P1とし、弁体の環状弁座に対する対向部位の面積を受圧面積Ssとし、上記液体が上記第4室部内に流入してダイヤフラムに作用させる圧力をダイヤフラム液圧P2としたとき、
次の不等式1:
P1×Ss+P2×Sd+Pa×Sp>W+Pc×Sd…1
が成立するように、制御圧Paを上記第2室部内にてピストン本体に作用させ、上記弁体液圧P1を弁体に作用させ、かつダイヤフラム液圧P2を上記第4室部内にてダイヤフラムに作用させるに伴い、ピストンが、付勢手段による付勢荷重W及び上記第3室部内の上記ダイヤフラム空圧Pcに抗して、上記第1室部内の空気を、筒状周壁を通して外部に排出しながら上記第1室部側へ摺動することで、弁手段が弁体にて環状弁座から解離して開弁し上記液体を、上記第4室部を通して上記他方の流路内に流動させ、
また、弁手段の閉弁の際には、
次の不等式2:
W+Pc×Sd>P1×Ss+P2×Sd…2
が成立するように、上記第2室部内におけるピストン本体への上記制御圧Paの作用を停止し、ピストンが、上記第4室部内にてダイヤフラムに作用するダイヤフラム液圧P2及び弁体に作用する上記弁体液圧P1に抗して、付勢手段による付勢荷重W及び上記第3室部内の上記ダイヤフラム空圧Pcに応じて上記第2室部側へ摺動することで、弁手段が弁体にて環状弁座に着座して閉弁し、上記一方の流路から上記第4室部内への上記液体の流動を遮断するようにした。
In solving the above problems, the diaphragm type valve device according to the present invention, according to the description of claim 1,
A cylindrical peripheral wall (30a, 40a) and both end walls (30b, 40b) that close both axial ends of the cylindrical peripheral wall are provided. One end wall (40b) of the both end walls A channel (44, 43a) is formed, and another channel (45, 43b) is formed in the vicinity of the one end wall of the cylindrical peripheral wall, so that a high-temperature liquid flows on one side and the other side. A housing (H) adapted to flow from one flow path of the path and flow into the other flow path;
A partition wall (50) fitted in the axially intermediate portion of the cylindrical peripheral wall;
A first chamber portion (32d) that is slidably fitted in the axial direction between the other end wall (30b) of the both end walls and the partition wall in the cylindrical peripheral wall and communicates with the outside through the cylindrical peripheral wall. And a piston body (61) that partitions the second chamber portion (32e) communicating with the outside through the cylindrical peripheral wall so as to be positioned on the other end wall side and the partition wall side, and the piston body through the partition wall and the above. A piston (60) having a piston rod (63) extending slidably in an axial direction toward an annular valve seat (40c) formed on one end wall;
A biasing means (70) provided in the first chamber for biasing the piston body toward the second chamber;
A valve body (90) provided on the extended end of the piston rod so as to face the annular valve seat and constituting valve means together with the annular valve seat;
A partition provided between the inner peripheral part of the cylindrical peripheral wall and the outer peripheral part of the valve body so as to be able to bend and bend in the axial direction between the partition wall in the cylindrical peripheral wall and the one end wall (40b). The third chamber (Ra) communicating with the outside through the cylindrical peripheral wall is formed so as to be positioned on the partition wall side, and the fourth chamber (Rb) including the valve body is positioned on the one end wall side. And a diaphragm (80) formed of a fluororesin having a predetermined heat resistance performance together with a housing and a valve body,
The one channel can be communicated with the inner chamber through the annular valve seat at the inner end opening portion, and the other channel can be communicated with the inner end opening portion. And communicated with the fourth chamber,
The pressure that causes the air flow from the outside to flow into the second chamber through the cylindrical peripheral wall and act on the piston body is the control pressure Pa, the area on the second chamber side of the piston body is the pressure receiving area Sp, and the bias The urging force applied to the piston body in the first chamber by the means is the urging load W, and air pressure flows from the outside through the cylindrical peripheral wall and the partition wall into the third chamber and pressure applied to the diaphragm. When the diaphragm air pressure Pc and the area of the diaphragm on the third chamber side are the pressure receiving area Sd ,
As in the state in which the upper Symbol diaphragm air pressure Pc acts on diaphragm in the third chamber section, upon opening of the valve means, the upper SL liquid flow path is one the high temperatures and the annular valve seat When the valve body reaches the valve body, the pressure acting on the valve body is the valve body hydraulic pressure P1, the area of the valve body facing the annular valve seat is the pressure receiving area Ss, and the liquid flows into the fourth chamber and the diaphragm When the pressure acting on the diaphragm is the diaphragm hydraulic pressure P2,
The following unequal equation 1:
P1 * Ss + P2 * Sd + Pa * Sp> W + Pc * Sd ... 1
So that the control pressure Pa is applied to the piston body in the second chamber, the valve fluid pressure P1 is applied to the valve body, and the diaphragm fluid pressure P2 is applied to the diaphragm in the fourth chamber. Along with the action, the piston, and anti to the diaphragm pneumatic P c of the biasing load heavy W及 beauty the inner third chamber portion by the biasing means, the air of the first chamber portion, the outside through the cylindrical peripheral wall The valve means is disengaged from the annular valve seat by the valve body and is opened by sliding to the first chamber side while discharging to the other chamber, through the fourth chamber portion. Flow to
When the valve means is closed,
The following unequal equation 2:
W + Pc × Sd> P1 × Ss + P2 × Sd 2
As but satisfied, the stop action of the control pressure Pa to the piston body in the second chamber portion, the piston, acts on the diaphragm pressure P2及 beauty valve body which acts on the diaphragm in the fourth chamber portion to be anti to the valve body fluid pressure P1, that slides into the second chamber portion in response to the diaphragm pneumatic Pc of the biasing load heavy W及 beauty the inner third chamber portion by the biasing means, the valve The means is seated on the annular valve seat by the valve body and is closed to block the flow of the liquid from the one flow path into the fourth chamber.

これによれば、当該弁装置は、常閉型弁装置として、ハウジング、隔壁、ピストン、付勢手段、弁体及びダイヤフラムをそれぞれ上記構成にて備えており
該弁装置の弁手段の開弁の際には、ダイヤフラム空圧Pcが第3室部内にてダイヤフラムに作用している状態において、弁体液圧P1、受圧面積Ss、ダイヤフラム液圧P2、受圧面積Sd、制御圧Pa、受圧面積Sp、付勢荷重W、ダイヤフラム空圧Pc及び受圧面積Sdが、上記不等式1を満たすようになっており、
また、当該弁装置の閉弁の際には、付勢荷重W、ダイヤフラム空圧Pc、受圧面積Sd、弁体液圧P1、受圧面積Ss、ダイヤフラム液圧P2及び受圧面積Sdが、上記不等式2を満たすようになっている。
これにより、第3室部内にてダイヤフラムに作用するダイヤフラム空圧Pcと第4室部内にてダイヤフラムに作用するダイヤフラム液圧P2とでもって、ダイヤフラムの両面に作用する各圧力の差圧を減少させるようにした。
According to this, the valve device, as normally closed valve unit, a housing, a partition wall, a piston, provided with biasing means, the valve body and the diaphragm in each of the above configuration,
Upon opening of the valve means of this valve device, in a state in which the diaphragm pneumatic Pc is acting on the da Iyafuramu Te in the third chamber portion, the valve body fluid pressure P1, the pressure receiving area Ss, diaphragm pressure P2, receiving area Sd, the control pressure Pa, the pressure receiving area Sp, the biasing load W, the diaphragm pneumatic Pc and the pressure receiving area Sd is being adapted to satisfy the above inequalities 1,
At the time of closing of the valve device, the biasing load W, the diaphragm pneumatic Pc, the pressure receiving area Sd, the valve body fluid pressure P1, the pressure receiving area Ss, diaphragm pressure P2 and the pressure receiving area Sd is, the inequalities 2 is satisfied.
Thus, the differential pressure between the pressures acting on both surfaces of the diaphragm is reduced by the diaphragm air pressure Pc acting on the diaphragm in the third chamber and the diaphragm hydraulic pressure P2 acting on the diaphragm in the fourth chamber. I did it.

これにより、薬液の温度が高温化する程、水蒸気やガスがダイヤフラムに浸透する傾向となっても、上述のようにダイヤフラム両面に作用する各圧力の差圧が減少することで、水蒸気やガスのダイヤフラムに対する浸透が良好に抑制される。その結果、薬液が温度変動を繰り返しても、所定の耐熱特性を有する材料、例えば、PTFE或いはPFAからなるダイヤフラムが損傷することなく長い寿命を維持し得る。このことは、薬液の温度のより一層の高温化にもかかわらず、当該弁装置は、上述した開閉弁作動を長期に亘り良好に維持し得ることを意味する。   As a result, as the temperature of the chemical solution increases, even if water vapor or gas tends to penetrate the diaphragm, the differential pressure between the pressures acting on both surfaces of the diaphragm decreases as described above. Penetration to the diaphragm is well suppressed. As a result, even if the chemical solution repeatedly fluctuates in temperature, a long life can be maintained without damaging a material having a predetermined heat resistance, for example, a diaphragm made of PTFE or PFA. This means that the valve device can satisfactorily maintain the above-described on-off valve operation over a long period of time despite the further increase in the temperature of the chemical solution.

また、本発明に係るダイヤフラム式弁装置は、請求項2の記載によれば、
筒状周壁(30a、40a)と、当該筒状周壁の軸方向両端部を閉塞する両端壁(30b、40b)とを備え、当該両端壁のうちの一方の端壁(40b)に一側流路(44、43a)を形成するとともに筒状周壁のうちの上記一方の端壁の近傍部位に他側流路(45、43b)を形成して、高温の液体を上記一側及び他側の流路のうちの一方の流路から流入させて他方の流路内に流動させるようになっているハウジング(H)と、
筒状周壁の軸方向中間部位内に嵌装される隔壁(50)と、
筒状周壁内にて両端壁のうちの他方の端壁(30b)と隔壁との間に軸方向に摺動可能に嵌装されて筒状周壁を通して外部に連通する第1室部(32d)及び筒状周壁を通して外部に連通する第2室部(32e)をそれぞれ他方の端壁側及び隔壁側に位置するように区画形成するピストン本体(61)と、当該ピストン本体から隔壁を通り上記一方の端壁に形成してなる環状弁座(40c)に向けて軸方向に摺動可能に延出するピストンロッド(63)とを有するピストン(60)と、
上記第2室部内に設けられてピストン本体を上記第1室部側へ付勢する付勢手段(70)と、
ピストンロッドの延出端部に環状弁座に対向するように設けられて当該環状弁座と共に弁手段を構成する弁体(90)と、
筒状周壁内の隔壁と上記一方の端壁(40b)との間において軸方向に湾曲変位可能となるように筒状周壁の内周部と弁体の外周部との間に設けられて隔壁及び筒状周壁を通して外部に連通する第3室部(Ra)を隔壁側に位置するように形成するとともに弁体を内包する第4室部(Rb)を上記一方の端壁側に位置するように形成すべく、ハウジング及び弁体と共に所定の耐熱性能を有するフッ素樹脂でもって形成してなるダイヤフラム(80)とを備えており、
上記一方の流路は、その内端開孔部にて、環状弁座を通り上記第4室部内に連通可能となっており、一方、上記他方の流路は、その内端開孔部にて、上記第4室部内に連通しており、
空気流が外部から筒状周壁を通り上記第1室部内に流入してピストン本体に作用させる圧力を制御圧Paとし、ピストン本体の上記第1室部側の面積を受圧面積Spとし、付勢手段が上記第2室部内にてピストン本体に作用させる付勢力を付勢荷重Wとし、空気流が外部から筒状周壁及び隔壁を通り上記第3室部内に流入してダイヤフラムに作用させる圧力をダイヤフラム空圧Pcとし、かつ、ダイヤフラムの上記第3室部側の面積を受圧面積Sdとしたとき
記ダイヤフラム空圧Pcが上記第3室部内にてダイヤフラムに作用している状態において、弁手段の閉弁の際には、上記高温の液体が上記一方の流路及び環状弁座を通り弁体に達したとき当該弁体に作用させる圧力を弁体液圧P1とし、弁体の環状弁座に対する対向部位の面積を受圧面積Ssとし、上記液体が上記第4室部内に流入してダイヤフラムに作用させる圧力をダイヤフラム液圧P2としたとき、
次の不等式3:
Pa×Sp+Pc×Sd>W+P1×Ss+P2×Sd…3
が成立するように、制御圧Paを上記第1室部内にてピストン本体に作用させ、ピストンが、上記第2室部内にてピストン本体に作用する上記付勢荷重W、弁体に作用する上記弁体液圧P1及び上記第4室部内にてダイヤフラムに作用するダイヤフラム液圧P2に抗して、上記制御圧及び上記第3室部内にてダイヤフラムに作用する上記ダイヤフラム空圧Pcに応じて、上記第2室部側へ摺動することで、弁手段が弁体にて環状弁座に着座して閉弁し上記液体の上記一方の流路から上記第4室部内への流動を遮断し、
また、前記弁手段の開弁の際には、上記一方の流路への流入薬液が環状弁座を通り上記第4室部に流入してダイヤフラムに液圧を作用させながら当該第4室部から上記他方の流路内に流入し、
次の不等式4:
W+P1×Ss+P2×Sd>Pc×Sd…4
が成立するように、上記第1室部内における上記制御圧Paのピストン本体に対する作用を停止し、ピストンが、上記第3室部内にてダイヤフラムに作用する上記ダイヤフラム空圧Pcに抗して、上記第2室部内にてピストン本体に作用する上記付勢荷重、弁体に作用する上記弁体液圧及び上記第4室部内にてダイヤフラムに作用するダイヤフラム液圧に応じて、上記第1室部側へ摺動することで、上記一方の流路への流入薬液を環状弁座を介し上記第4室部内へ流動させるようにした。
Moreover, according to the description of Claim 2, the diaphragm type valve device according to the present invention is as follows.
A cylindrical peripheral wall (30a, 40a) and both end walls (30b, 40b) that close both axial ends of the cylindrical peripheral wall are provided. One end wall (40b) of the both end walls road (4 4,4 3a) to form another side passageway (45,43b) adjacent the site of said one end wall of the cylindrical wall to form a said one side and the other a hot liquid A housing (H) adapted to flow from one of the channels on the side and flow into the other channel;
A partition wall (50) fitted in the axially intermediate portion of the cylindrical peripheral wall;
A first chamber portion (32d) that is slidably fitted in the axial direction between the other end wall (30b) of the both end walls and the partition wall in the cylindrical peripheral wall and communicates with the outside through the cylindrical peripheral wall. And a piston body (61) that partitions the second chamber portion (32e) communicating with the outside through the cylindrical peripheral wall so as to be positioned on the other end wall side and the partition wall side, and the one through the partition wall from the piston body. A piston (60) having a piston rod (63) slidably extending in an axial direction toward an annular valve seat (40c) formed on the end wall of
A biasing means (70) provided in the second chamber for biasing the piston body toward the first chamber;
A valve body (90) provided on the extended end of the piston rod so as to face the annular valve seat and constituting valve means together with the annular valve seat;
A partition provided between the inner peripheral part of the cylindrical peripheral wall and the outer peripheral part of the valve body so as to be able to bend and bend in the axial direction between the partition wall in the cylindrical peripheral wall and the one end wall (40b). The third chamber (Ra) communicating with the outside through the cylindrical peripheral wall is formed so as to be positioned on the partition wall side, and the fourth chamber (Rb) including the valve body is positioned on the one end wall side. And a diaphragm (80) formed of a fluororesin having a predetermined heat resistance performance together with a housing and a valve body,
The one channel can be communicated with the inner chamber through the annular valve seat at the inner end opening portion, and the other channel can be communicated with the inner end opening portion. And communicated with the fourth chamber,
The pressure that causes the air flow to flow from the outside through the cylindrical peripheral wall into the first chamber and act on the piston body is the control pressure Pa, and the area of the piston body on the first chamber side is the pressure receiving area Sp. The urging force applied to the piston body in the second chamber by the means is the urging load W, and air pressure flows from the outside through the cylindrical peripheral wall and the partition wall into the third chamber and pressure applied to the diaphragm. When the diaphragm air pressure Pc and the area of the diaphragm on the third chamber side are the pressure receiving area Sd ,
As in the state in which the upper Symbol diaphragm air pressure Pc acts on diaphragm in the third chamber section, during closing of the valve means, the upper SL liquid flow path is one the high temperatures and the annular valve seat When the valve body reaches the valve body, the pressure acting on the valve body is the valve body hydraulic pressure P1, the area of the valve body facing the annular valve seat is the pressure receiving area Ss, and the liquid flows into the fourth chamber and the diaphragm When the pressure acting on the diaphragm is the diaphragm hydraulic pressure P2,
The following unequal equation 3:
Pa * Sp + Pc * Sd> W + P1 * Ss + P2 * Sd ... 3
As but satisfied, controls the pressure Pa is applied to the piston body Te in the first chamber portion, the piston, the said biasing acting on the piston body in the second chamber section load weight W, acting on the valve body to be anti to the diaphragm pressure P2 acting on diaphragm in the valve body fluid pressure P1及 beauty the fourth chamber portion, depending on the diaphragm pneumatic Pc acting on the diaphragm at the control pressure and the third chamber portion Then, by sliding to the second chamber side, the valve means is seated on the annular valve seat by the valve body and is closed to allow the liquid to flow from the one flow path into the fourth chamber. Shut off,
At the time of opening of said valve means, said fourth while applying a hydraulic pressure da Iyafuramu influx chemical into one of the channel the flows into passing Ri said fourth chamber portion an annular valve seat Flows into the other channel from the chamber,
The following unequal equation 4:
W + P1 * Ss + P2 * Sd> Pc * Sd ... 4
As but satisfied, the action on the piston body of the control pressure Pa in the first chamber portion stops, the piston, and anti to the diaphragm air pressure Pc acting on the diaphragm in the third chamber section, the In accordance with the biasing load acting on the piston body in the second chamber, the valve fluid pressure acting on the valve body, and the diaphragm fluid pressure acting on the diaphragm in the fourth chamber, the first chamber side The inflowing chemical liquid flowing into the one channel is caused to flow into the fourth chamber through the annular valve seat.

これによれば、当該弁装置は、常開型弁装置として、ハウジング、隔壁、ピストン、付勢手段、弁体及びダイヤフラムをそれぞれ上記構成にて備えており
該弁装置の弁手段の閉弁の際には、ダイヤフラム空圧Pcが第3室部内にてダイヤフラムに作用している状態において、弁体液圧P1、受圧面積Ss、ダイヤフラム液圧P2、受圧面積Sd、制御圧Pa、受圧面積Sp、付勢荷重W、ダイヤフラム空圧Pc及び受圧面積Sdが、上記不等式3を満たすようになっており、
また、当該弁装置の開弁の際には、付勢荷重W、ダイヤフラム空圧Pc、受圧面積Sd、弁体液圧P1、受圧面積Ss、ダイヤフラム液圧P2及び受圧面積Sdが、上記不等式4を満たすようになっている。
これにより、第3室部内にてダイヤフラムに作用するダイヤフラム空圧Pcと第4室部内にてダイヤフラムに作用するダイヤフラム液圧P2とでもって、ダイヤフラムの両面に作用する各圧力の差圧を減少させるようにした。
According to this, the valve device, as normally open valve device, the housing, the partition wall, the piston is provided with biasing means, the valve body and the diaphragm in each of the above configuration,
Upon closing of the valve means of this valve device, in a state in which the diaphragm pneumatic Pc acts on diaphragm in the third chamber portion, the valve body fluid pressure P1, the pressure receiving area Ss, diaphragm pressure P2, the pressure receiving area Sd, the control pressure Pa, the pressure receiving area Sp, the biasing load W, the diaphragm pneumatic Pc and the pressure receiving area Sd is being adapted to satisfy the above inequality formula 3,
At the time of opening of the valve device, the biasing load W, the diaphragm pneumatic Pc, the pressure receiving area Sd, the valve body fluid pressure P1, the pressure receiving area Ss, diaphragm pressure P2 and the pressure receiving area Sd is, the inequalities 4 is satisfied.
Thus, the differential pressure between the pressures acting on both surfaces of the diaphragm is reduced by the diaphragm air pressure Pc acting on the diaphragm in the third chamber and the diaphragm hydraulic pressure P2 acting on the diaphragm in the fourth chamber. I did it.

従って、このような弁装置の構成によっても、当該弁装置は、薬液の温度のより一層の高温化にもかかわらず、ダイヤフラムにその両側から作用する空気圧及び液圧の差が減少させるようにして、当該ダイヤフラム式弁装置が常開型弁装置であっても、上述の常閉型弁装置と同様の作用効果を達成し得る。Therefore, even with such a valve device configuration, the valve device reduces the difference in air pressure and fluid pressure acting on the diaphragm from both sides despite the higher temperature of the chemical solution. Even if the diaphragm type valve device is a normally open type valve device, it is possible to achieve the same effect as the above-described normally closed type valve device.

また、本発明に係るダイヤフラム式弁装置は、請求項3の記載によれば、
筒状周壁(30a、40a)と、当該筒状周壁の軸方向両端部を閉塞する両端壁(30b、40b)とを備え、当該両端壁のうちの一方の端壁(40b)に一側流路(44、43a)を形成するとともに筒状周壁のうちの上記一方の端壁の近傍部位に他側流路(45、43b)を形成して、高温の液体を一側及び他側の流路のうちの一方の流路から流入させて他方の流路内に流動させるようになっているハウジング(H)と、
筒状周壁の軸方向中間部位内に嵌装される隔壁(50)と、
筒状周壁内にて両端壁のうちの他方の端壁(30b)と隔壁との間に軸方向に摺動可能に嵌装されて筒状周壁を通して外部に連通する第1室部(32d)及び筒状周壁を通して外部に連通する第2室部(32e)をそれぞれ上記他方の端壁側及び隔壁側に位置するように区画形成するピストン本体(61)と、当該ピストン本体から隔壁を通り上記一方の端壁に形成してなる環状弁座(40c)に向けて軸方向に摺動可能に延出するピストンロッド(63)とを有するピストン(60)と、
上記第1室部内に設けられてピストン本体を上記第2室部側へ付勢する付勢手段(70)と、
ピストンロッドの延出端部に環状弁座に対向するように設けられて当該環状弁座と共に弁手段を構成する弁体(90)と、
筒状周壁内の隔壁と上記一方の端壁(40b)との間において軸方向に湾曲変位可能となるように筒状周壁の内周部と弁体の外周部との間に設けられて隔壁を通り上記第2室部内に連通する第3室部(Ra)を隔壁側に位置するように形成するとともに弁体を内包する第4室部(Rb)を上記一方の端壁側に位置するように形成すべく、ハウジング及び弁体と共に所定の耐熱性能を有するフッ素樹脂でもって形成してなるダイヤフラム(80)とを備えており、
上記一方の流路は、その内端開孔部にて、環状弁座を通り上記第4室部内に連通可能となっており、一方、上記他方の流路は、その内端開孔部にて、上記第4室部内に連通しており、
空気流が外部から筒状周壁を通し上記第2室部内に流入してピストン本体に作用させる圧力を制御圧Paとし、ピストン本体の上記第2室部側の面積を受圧面積Spとし、付勢手段が上記第1室部内にてピストン本体に作用させる付勢力を付勢荷重Wとし、空気流が上記第2室部から隔壁を通り上記第3室部内に流入してダイヤフラムに作用させる圧力をダイヤフラム空圧Pcとし、かつ、ダイヤフラムの上記第3室部側の面積を受圧面積Sdとしたとき
記ダイヤフラム空圧Pcが上記第3室部内にてダイヤフラムに作用している状態において、弁手段の開弁の際には、上記高温の液体が上記一方の流路及び環状弁座を通り弁体に達したとき当該弁体に作用させる圧力を弁体液圧P1とし、弁体の環状弁座に対する対向部位の面積を受圧面積Ssとし、上記液体が上記第4室部内に流入してダイヤフラムに作用させる圧力をダイヤフラム液圧P2としたとき、
次の不等式5:
P1×Ss+P2×Sd+Pa×Sp>W+Pc×Sd…5
が成立するように、制御圧Paを上記第2室部内にてピストン本体に作用させ、上記弁体液圧P1を弁体に作用させ、かつダイヤフラム液圧P2を上記第4室部内にてダイヤフラムに作用させるに伴い、ピストンが、付勢手段による付勢荷重W及び上記第3室部内の上記ダイヤフラム空圧Pcに抗して、上記第1室部内の空気を、筒状周壁を通して外部に排出しながら上記第1室部側へ摺動することで、弁手段が弁体にて環状弁座から解離して開弁し上記液体を、上記第4室部を通して上記他方の流路内に流動させ、
また、弁手段の閉弁の際には、
次の不等式6:
W+Pc×Sd>P1×Ss+P2×Sd…6
が成立するように、上記第2室部内におけるピストン本体への上記制御圧Paの作用を停止し、ピストンが、上記第4室部内にてダイヤフラムに作用する上記ダイヤフラム液圧P2及び弁体に作用する上記弁体液圧P1に抗して、付勢手段による付勢荷重W及び上記第3室部内の上記ダイヤフラム空圧に応じて上記第2室部側へ摺動することで、弁手段が弁体にて環状弁座に着座して閉弁し、上記一方の流路から上記第4室部内への前記液体の流動を遮断するようにした。
Moreover, according to the description of claim 3, the diaphragm type valve device according to the present invention,
A cylindrical peripheral wall (30a, 40a) and both end walls (30b, 40b) that close both axial ends of the cylindrical peripheral wall are provided. One end wall (40b) of the both end walls A channel (44, 43a) is formed, and another channel (45, 43b) is formed in the vicinity of the one end wall of the cylindrical peripheral wall, so that a high-temperature liquid flows on one side and the other side. A housing (H) adapted to flow from one flow path of the path and flow into the other flow path;
A partition wall (50) fitted in the axially intermediate portion of the cylindrical peripheral wall;
A first chamber portion (32d) that is slidably fitted in the axial direction between the other end wall (30b) of the both end walls and the partition wall in the cylindrical peripheral wall and communicates with the outside through the cylindrical peripheral wall. And a piston body (61) that partitions the second chamber portion (32e) communicating with the outside through the cylindrical peripheral wall so as to be positioned on the other end wall side and the partition wall side, and the piston body through the partition wall and the above. A piston (60) having a piston rod (63) extending slidably in an axial direction toward an annular valve seat (40c) formed on one end wall;
A biasing means (70) provided in the first chamber for biasing the piston body toward the second chamber;
A valve body (90) provided on the extended end of the piston rod so as to face the annular valve seat and constituting valve means together with the annular valve seat;
A partition provided between the inner peripheral part of the cylindrical peripheral wall and the outer peripheral part of the valve body so as to be able to bend and bend in the axial direction between the partition wall in the cylindrical peripheral wall and the one end wall (40b). A third chamber (Ra) communicating with the second chamber through the first chamber is formed so as to be positioned on the partition wall side, and a fourth chamber (Rb) containing the valve element is positioned on the one end wall side. A diaphragm (80) formed of a fluororesin having a predetermined heat resistance performance together with a housing and a valve body.
One of the flow path described above, at its inner end opening, as the fourth chamber portion the annular valve seat serves can communicate, while the other flow path at its inner end opening And communicated with the fourth chamber,
The pressure that causes the air flow from the outside to flow into the second chamber through the cylindrical peripheral wall and act on the piston body is the control pressure Pa, the area on the second chamber side of the piston body is the pressure receiving area Sp, and the bias The urging force applied to the piston body in the first chamber by the means is the urging load W, and the air flow flows from the second chamber through the partition wall into the third chamber and pressure applied to the diaphragm. When the diaphragm air pressure Pc and the area of the diaphragm on the third chamber side are the pressure receiving area Sd ,
As in the state in which the upper Symbol diaphragm air pressure Pc acts on diaphragm in the third chamber section, upon opening of the valve means, the upper SL liquid flow path is one the high temperatures and the annular valve seat When the valve body reaches the valve body, the pressure acting on the valve body is the valve body hydraulic pressure P1, the area of the valve body facing the annular valve seat is the pressure receiving area Ss, and the liquid flows into the fourth chamber and the diaphragm When the pressure acting on the diaphragm is the diaphragm hydraulic pressure P2,
The following unequal equation 5:
P1 * Ss + P2 * Sd + Pa * Sp> W + Pc * Sd ... 5
So that the control pressure Pa is applied to the piston body in the second chamber, the valve fluid pressure P1 is applied to the valve body, and the diaphragm fluid pressure P2 is applied to the diaphragm in the fourth chamber. Along with the action, the piston, and anti to the diaphragm pneumatic Pc of the biasing load heavy W及 beauty the inner third chamber portion by the biasing means, the air of the first chamber section, to the outside through the cylindrical peripheral wall By sliding toward the first chamber while discharging, the valve means is dissociated from the annular valve seat by the valve body, and the valve is opened to allow the liquid to enter the other channel through the fourth chamber. Flow,
When the valve means is closed,
The following unequal equation 6:
W + Pc × Sd> P1 × Ss + P2 × Sd ... 6
As but satisfied, the stop action of the control pressure Pa to the piston body in the second chamber portion, the piston, the said diaphragm pressure P2及 beauty valve body which acts on the diaphragm in the fourth chamber portion and anti to the valve body fluid pressure P1 acting, by sliding into said second chamber portion in response to the diaphragm pneumatic biasing load heavy W及 beauty the inner third chamber portion by the biasing means, the valve The means is seated on the annular valve seat by the valve body and is closed to block the flow of the liquid from the one flow path into the fourth chamber.

これによれば、請求項1に記載の発明にて述べた第3室部が隔壁及び筒状周壁を通り外部に連通する構成に代えて、第3室部が隔壁を通り第2室部内に連通する構成を有する点において、請求項1に記載の発明と相違するのみである。According to this, instead of the configuration in which the third chamber portion described in the first aspect of the invention communicates with the outside through the partition wall and the cylindrical peripheral wall, the third chamber portion passes through the partition wall and enters the second chamber portion. The present invention is only different from the invention described in claim 1 in that it has a communication structure.
従って、第3室部内の空圧が第2室部内の制御圧と同一になる点で請求項に記載の発明と相違するのみである。これによっても、請求項1に記載の発明と実質的に同様の作用効果を達成することができる。Therefore, only the air pressure in the third chamber portion is the same as the control pressure in the second chamber portion, which is different from the invention described in the claims. Also by this, it is possible to achieve substantially the same effect as the invention of the first aspect.

また、本発明は、請求項4の記載によれば、請求項1に記載のダイヤフラム式弁装置において、
上記第3室部は、隔壁内に形成してなる連通路部(53)を通り、筒状周壁を介して外部に連通しており、
上記連通路部は、その通路方向中間部位にて、隔壁内に形成してなる分岐路部(56)を通して上記第2室部内に連通することを特徴とする。
According to a fourth aspect of the present invention, in the diaphragm type valve device according to the first aspect ,
The third chamber portion passes through a communication passage portion (53) formed in the partition wall and communicates with the outside through a cylindrical peripheral wall.
The communication passage portion communicates with the second chamber portion through a branch passage portion (56) formed in the partition wall at an intermediate portion in the passage direction .

これによれば、外部から筒状周壁を介し隔壁の連通路部を通り第3室部内に流入して当該第3室部内に空圧を生ずる空気流が、上記分岐路部を通り上記第2室部内にも流入して当該第2室部内に制御圧を生ずる
従って、第3室部及び第2室部の双方の内部へ空気流を流入させる空気流供給源を共通にして単一にしつつ、請求項1に記載の発明と同様の作用効果を実質的に同様に達成し得る。
According to this, air flow causing pneumatic flow into the third chamber portion Ri through the communication passage of the partition through the cylindrical peripheral wall from the outside to those third chamber portion is, on the SL component branch portion causing the control pressure to the second chamber portion and also flows into the upper Stories second chamber portion street.
Therefore, the same effect as that of the invention according to claim 1 can be substantially achieved while a single air flow supply source for introducing an air flow into both the third chamber portion and the second chamber portion is made common. It can be achieved as well.

また、本発明は、請求項5の記載によれば、請求項1〜4のいずれ1つに記載のダイヤフラム式弁装置において、ダイヤフラムの両面のうち上記第3室部内側面に沿い設けてなる断熱層(80a)を備えることを特徴とする。 The present invention, according to the description of claim 5, in diaphragm valve device according to any one of claims 1-4, formed by providing along the upper Symbol third chamber portion side of the both sides of the diaphragm A heat insulating layer (80a) is provided.

これによれば、断熱層が、その断熱特性に基づき、ダイヤフラムの両面の間の温度差を減少させる役割を果たす。このため、ガスや水蒸気がダイヤフラム内に浸透しても、当該ガスや水蒸気がダイヤフラムの非晶質部内にて凝縮或いは凝固しないように当該ダイヤフラムの薬液室部側から第3室部側への温度勾配が断熱層によって緩和される。 According to this, a heat insulation layer plays the role which reduces the temperature difference between both surfaces of a diaphragm based on the heat insulation characteristic. Thus, even gas and water vapor to permeate into the diaphragm, into the drug solution chamber side or al third chamber side of the diaphragm such that the gas and water vapor does not condense or solidify at amorphous portion of the diaphragm The temperature gradient is relaxed by the heat insulating layer.

これに伴い、ガスや水蒸気は、ダイヤフラム内で凝固或いは凝縮することなく当該ダイヤフラムを透過して、第3室部内にて凝固或いは凝縮することとなる。従って、ダイヤフラムの寿命をより一層改善することができ、その結果、弁装置の開閉弁作動をより一層長期に亘り良好に維持し得る。 As a result, the gas and water vapor pass through the diaphragm without being solidified or condensed in the diaphragm, and are solidified or condensed in the third chamber . Therefore, the lifetime of the diaphragm can be further improved, and as a result, the on-off valve operation of the valve device can be maintained better for a longer period of time.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means as described in embodiment mentioned later.

半導体製造装置のレジスト剥離系統に本発明に係るダイヤフラム式弁装置を適用してなる第1実施形態を表すブロック回路図である。It is a block circuit diagram showing a 1st embodiment formed by applying the diaphragm type valve device concerning the present invention to the resist exfoliation system of a semiconductor manufacturing device. 図1のダイヤフラム式主弁装置を閉弁状態にて示す拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing the diaphragm main valve device of FIG. 1 in a closed state. 図1のダイヤフラム式主弁装置を開弁状態にて示す拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing the diaphragm main valve device of FIG. 1 in a valve open state. 図1のダイヤフラム式副弁装置を開弁状態にて示す拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing the diaphragm type sub valve device of FIG. 1 in a valve open state. 本発明に係るダイヤフラム式弁装置の第2実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the diaphragm type valve apparatus which concerns on this invention. 本発明に係るダイヤフラム式弁装置の第3実施形態の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of 3rd Embodiment of the diaphragm type valve apparatus which concerns on this invention.

以下、本発明の各実施形態を図面により説明する。
(第1実施形態)
図1は、半導体製造装置のレジスト剥離系統に適用される本発明の第1実施形態を示している。当該半導体製造装置においては、調達済みの複数の半導体ウェハー(図1にて各符号W1、W2参照)をそれぞれ半導体素子として形成するにあたり、概略的には、所定のパターンが各半導体ウェハーW1、W2に対し成膜により形成されると、レジストが当該所定のパターンを介し各半導体ウェハーW1、W2に対しレジスト膜としてコーティングされる。このようにコーティングされたレジスト膜は、上記所定のパターンに応じてエッチング処理される。然る後、このようにエッチングされたレジスト膜は、半導体製造装置のレジスト剥離系統において、剥離されることで、各半導体素子が製造される。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 shows a first embodiment of the present invention applied to a resist stripping system of a semiconductor manufacturing apparatus. In the semiconductor manufacturing apparatus, when forming a plurality of semiconductor wafers that have already been procured (see the respective symbols W1 and W2 in FIG. 1) as semiconductor elements, a predetermined pattern is roughly formed by each of the semiconductor wafers W1 and W2. In contrast, the resist is coated as a resist film on each of the semiconductor wafers W1 and W2 through the predetermined pattern. The resist film coated in this way is etched according to the predetermined pattern. Thereafter, the resist film etched in this way is peeled off in the resist peeling system of the semiconductor manufacturing apparatus, whereby each semiconductor element is manufactured.

ここで、上記レジスト剥離系統の構成につき、図1を参照して説明する。当該レジスト剥離系統は、薬液を蓄える薬液供給源10及び供給ポンプ20を備えている。当該供給ポンプ20は、その作動に伴い、配管Q1を通し薬液供給源10から薬液を汲み出して配管Q2内に吐出する。   Here, the configuration of the resist stripping system will be described with reference to FIG. The resist stripping system includes a chemical solution supply source 10 and a supply pump 20 that store chemical solutions. With the operation, the supply pump 20 draws out the chemical solution from the chemical solution supply source 10 through the piping Q1 and discharges it into the piping Q2.

上記レジスト剥離系統は、ダイヤフラム式主弁装置Vmを備えており、この主弁装置Vmは、両配管Q2、Q3の間に介装されている。当該主弁装置Vmは、図2或いは図3にて拡大して示すごとく、円筒状ハウジングHを備えている。このハウジングHは、上下両側円筒状ハウジング部材30、40を有しており、上側ハウジング部材30は、図2にて示すごとく、その軸方向開口端部31にて、下側ハウジング部材40の軸方向開口端部41に接合されて、当該下側ハウジング部材40と共にハウジングHを構成している。本第1実施形態では、上下両側円筒状ハウジング部材30、40の形成材料としては、所定の耐熱特性(例えば、20(℃)〜250(℃)の高温に耐え得る耐熱特性)を有するポリテトラフルオロエチレン(以下、PTFEともいう)が採用されている。   The resist stripping system includes a diaphragm main valve device Vm, and this main valve device Vm is interposed between both pipes Q2 and Q3. The main valve device Vm includes a cylindrical housing H as shown in an enlarged manner in FIG. The housing H has upper and lower cylindrical housing members 30 and 40, and the upper housing member 30 has a shaft of the lower housing member 40 at its axially open end 31 as shown in FIG. The housing H is configured together with the lower housing member 40 by being joined to the direction opening end portion 41. In the first embodiment, the upper and lower cylindrical housing members 30 and 40 are made of polytetrahedral having predetermined heat resistance characteristics (for example, heat resistance characteristics that can withstand high temperatures of 20 (° C.) to 250 (° C.)). Fluoroethylene (hereinafter also referred to as PTFE) is employed.

上側ハウジング部材30は、円筒状周壁30aと、上壁30bとを備えており、上壁30bは、円筒状周壁30aの上端開口部を閉塞するように当該円筒状周壁30aと一体的に形成されて上側ハウジング部材30を構成している。   The upper housing member 30 includes a cylindrical peripheral wall 30a and an upper wall 30b. The upper wall 30b is formed integrally with the cylindrical peripheral wall 30a so as to close the upper end opening of the cylindrical peripheral wall 30a. The upper housing member 30 is configured.

円筒状周壁30aは、その中空部にて、段付き内孔部32(以下、上側段付き内孔部32ともいう)として形成されており、当該上側段付き内孔部32は、大径内孔部32a、中径内孔部32b及び小径内孔部32cでもって構成されている。   The cylindrical peripheral wall 30a is formed as a stepped inner hole portion 32 (hereinafter also referred to as an upper stepped inner hole portion 32) in the hollow portion, and the upper stepped inner hole portion 32 has a large inner diameter. It consists of a hole 32a, a medium diameter inner hole 32b, and a small diameter inner hole 32c.

ここで、これら大径内孔部32a、中径内孔部32b及び小径内孔部32cは、上側ハウジング部材30の軸方向開口端部31から当該上側ハウジング部材30の上壁30bにかけて、順次同軸的に形成されている。なお、上側段付き内孔部32は、後述する下側ハウジング部材40の段付き内孔部42と共に、ハウジングHの中空部である段付き内孔部を構成する。   Here, the large-diameter inner hole portion 32a, the medium-diameter inner hole portion 32b, and the small-diameter inner hole portion 32c are sequentially coaxial from the axially open end 31 of the upper housing member 30 to the upper wall 30b of the upper housing member 30. Is formed. The upper stepped inner hole portion 32 constitutes a stepped inner hole portion that is a hollow portion of the housing H together with a stepped inner hole portion 42 of the lower housing member 40 described later.

また、上側ハウジング部材30は、流入孔部33及び排出孔部34を有しており、流入孔部33は、円筒状周壁30aの中間部位に貫通状に形成した連通路部33aを介し中径内孔部32b内に連通している。   The upper housing member 30 has an inflow hole portion 33 and a discharge hole portion 34. The inflow hole portion 33 has a medium diameter through a communication passage portion 33a formed in a penetrating manner in an intermediate portion of the cylindrical peripheral wall 30a. It communicates with the inner hole 32b.

これにより、空気流供給源A1からの高圧の空気流は、開閉弁33cを介しハウジング部材30の中径内孔部32bの下室部32e(後述する)内に流入孔部33及び連通路部33aを通り流入する。なお、空気流供給源A1は高圧の空気流を供給するように構成されている。また、連通路部34aは、排出孔部34を通して上室部32d(後述する)の内部を円筒状周壁30aの外部に連通させるように当該円筒状周壁30aに形成されている。   As a result, the high-pressure airflow from the airflow supply source A1 passes through the opening / closing valve 33c into the lower chamber portion 32e (described later) of the medium-diameter inner hole portion 32b of the housing member 30 and the communication passage portion. It flows in through 33a. The air flow supply source A1 is configured to supply a high-pressure air flow. The communication passage 34a is formed in the cylindrical peripheral wall 30a so that the inside of the upper chamber 32d (described later) communicates with the outside of the cylindrical peripheral wall 30a through the discharge hole 34.

また、上側ハウジング部材30は、他の流入孔部35を有しており、この流入孔部35は、連通路部35aとともに、流入孔部33及び連通路部33aの図2にて図示直下にて、円筒状周壁30aに貫通状に形成されている。   Further, the upper housing member 30 has another inflow hole portion 35. The inflow hole portion 35 is directly below the inflow hole portion 33 and the communication passage portion 33a in FIG. 2 together with the communication passage portion 35a. Thus, the cylindrical peripheral wall 30a is formed in a penetrating manner.

これにより、空圧供給源A2からの空気流は、流入孔部35及び連通路部35aを通り、下側ハウジング部材40内に後述のごとく流入する。なお、空圧供給源A2は、所定圧の空気流を供給するように構成されている。また、連通路部35aは、流入孔部35を下側ハウジング部材40内に後述のごとく連通させるように円筒状周壁30aに形成されている。   As a result, the air flow from the pneumatic pressure supply source A2 flows into the lower housing member 40 through the inflow hole portion 35 and the communication passage portion 35a as described later. The air pressure supply source A2 is configured to supply an air flow having a predetermined pressure. Further, the communication passage portion 35a is formed in the cylindrical peripheral wall 30a so as to allow the inflow hole portion 35 to communicate with the lower housing member 40 as described later.

一方、下側ハウジング部材40は、円筒状周壁40aと、底壁40bとを備えており、底壁40bは、円筒状周壁40aの下端開口部を閉塞するように当該円筒状周壁40aとともに一体的に形成されて、下側ハウジング部材40を構成している。なお、本実施形態において、上壁30b及び底壁40bは、それぞれ、ハウジングHの上壁及び底壁を構成する。   On the other hand, the lower housing member 40 includes a cylindrical peripheral wall 40a and a bottom wall 40b. The bottom wall 40b is integrated with the cylindrical peripheral wall 40a so as to close the lower end opening of the cylindrical peripheral wall 40a. The lower housing member 40 is formed. In the present embodiment, the upper wall 30b and the bottom wall 40b constitute the upper wall and the bottom wall of the housing H, respectively.

円筒状周壁40aは、図2にて示すごとく、その中空部にて、段付き内孔部42(以下、下側段付き内孔部42ともいう)として形成されており、当該下側段付き内孔部42は、上側ハウジング部材30の大径内孔部32aに同軸的に位置するように、下側ハウジング部材40内にて縦断面コの字状に形成されている。   As shown in FIG. 2, the cylindrical peripheral wall 40 a is formed as a stepped inner hole portion 42 (hereinafter also referred to as a lower stepped inner hole portion 42) in the hollow portion, and the lower stepped portion is formed. The inner hole portion 42 is formed in a U-shaped longitudinal section in the lower housing member 40 so as to be positioned coaxially with the large-diameter inner hole portion 32 a of the upper housing member 30.

当該下側段付き内孔部42は、小径内孔部42a及び大径内孔部42bでもって構成されている。大径内孔部42bは、図2にて示すごとく、小径内孔部42aの開口端部側にて当該小径内孔部42aと同軸的に形成されて、上側ハウジング部材30の大径内孔部32aの開口部に対向するように接合されている。なお、当該大径内孔部42b内には、隔壁部材50の大径部51(後述する)が、その延出端部にて、同軸的に嵌装されている。   The lower stepped inner hole portion 42 includes a small diameter inner hole portion 42a and a large diameter inner hole portion 42b. As shown in FIG. 2, the large-diameter inner hole portion 42b is formed coaxially with the small-diameter inner hole portion 42a on the opening end side of the small-diameter inner hole portion 42a. It joins so that the opening part of the part 32a may be opposed. In the large-diameter inner hole portion 42b, a large-diameter portion 51 (described later) of the partition wall member 50 is coaxially fitted at the extended end portion.

また、下側ハウジング部材40は、図2にて示すごとく、環状弁座40cを有しており、当該環状弁座40cは、小径内孔部42aの底壁中央部にて開口するように形成されて、弁体90(後述する)の着座部材として機能する。   Further, as shown in FIG. 2, the lower housing member 40 has an annular valve seat 40c, and the annular valve seat 40c is formed so as to open at the center of the bottom wall of the small-diameter inner hole portion 42a. Thus, it functions as a seating member for the valve body 90 (described later).

また、下側ハウジング部材40は、流入路部43a、流出路部43b、流入筒部44及び流出筒部45を備えている。流入路部43aは、下側ハウジング部材40の底壁40bの内部にて、環状弁座40cと流入筒部44の内端開口部との間に形成されており、当該流入路部43aは、その内端開口部にて、段付き内孔部42の小径内孔部42a内に環状弁座40cの中空部を通り連通している。   The lower housing member 40 includes an inflow path portion 43a, an outflow path portion 43b, an inflow tube portion 44, and an outflow tube portion 45. The inflow passage portion 43a is formed between the annular valve seat 40c and the inner end opening of the inflow cylinder portion 44 inside the bottom wall 40b of the lower housing member 40, and the inflow passage portion 43a is The inner end opening communicates with the small diameter inner hole portion 42a of the stepped inner hole portion 42 through the hollow portion of the annular valve seat 40c.

一方、流出路部43bは、下側ハウジング部材40の内部にて、段付き内孔部42の小径内孔部42aの周壁開口部と流出筒部45の内端開口部との間に形成されており、当該流出路部43bは、小径内孔部42aの内部を流出筒部45の内部に連通させる。   On the other hand, the outflow passage 43 b is formed between the peripheral wall opening of the small diameter inner hole 42 a of the stepped inner hole 42 and the inner end opening of the outflow cylinder 45 in the lower housing member 40. The outflow path portion 43 b allows the inside of the small diameter inner hole portion 42 a to communicate with the inside of the outflow cylinder portion 45.

流入筒部44は、その内端開口部にて、流入路部43aの外端開口部に連結されており、この流入筒部44は、その外端開口部にて、配管Q2の流出端開口部に連結されている。しかして、配管Q2からの薬液は、流入筒部44、連通路部43及び環状弁座40cを通り段付き内孔部42内に流入可能となっている。   The inflow cylinder portion 44 is connected to the outer end opening portion of the inflow passage portion 43a at the inner end opening portion, and the inflow cylinder portion 44 is connected to the outflow end opening of the pipe Q2 at the outer end opening portion. It is connected to the part. Accordingly, the chemical solution from the pipe Q2 can flow into the stepped inner hole portion 42 through the inflow cylinder portion 44, the communication passage portion 43, and the annular valve seat 40c.

流出筒部45は、その内端開口部にて、流出路部43bの外端開口部に連結されており、当該流出筒部45は、その外端開口部にて、配管Q3の流入端開口部に連結されている。しかして、段付き内孔部42内の薬液は、流出路部43b及び流出筒部45を通り配管Q3内に流入する。   The outflow cylinder 45 is connected to the outer end opening of the outflow passage 43b at the inner end opening, and the outflow cylinder 45 is connected to the inflow end of the pipe Q3 at the outer end opening. It is connected to the part. Accordingly, the chemical solution in the stepped inner hole portion 42 flows into the pipe Q3 through the outflow passage portion 43b and the outflow tube portion 45.

また、当該主弁装置Vmは、図2にて示すごとく、ハウジングH内に組み付けられた隔壁部材50、円柱状ピストン60、コイルスプリング70、ダイヤフラム80及び弁体90を備えている。   The main valve device Vm includes a partition member 50, a cylindrical piston 60, a coil spring 70, a diaphragm 80, and a valve body 90 assembled in a housing H as shown in FIG.

隔壁部材50は、図2にて示すごとく、上側ハウジング部材30の大径内孔部32a及び中径内孔部32bの双方の内部に亘り次のように構成されて同軸的に嵌着されている。   As shown in FIG. 2, the partition wall member 50 is configured as follows and coaxially fitted inside both the large-diameter inner hole portion 32 a and the medium-diameter inner hole portion 32 b of the upper housing member 30. Yes.

当該隔壁部材50は、円筒状大径部51及び円筒状小径部52でもって一体的に構成されている。円筒状大径部51は、上側ハウジング部材30の大径内孔部32a内に当該上側ハウジング部材30の軸方向開口端部31側から同軸的にかつ気密的に嵌着されており、当該円筒状大径部51は、その下端部にて、大径内孔部32aから下方へ向け下側ハウジング部材40の大径内孔部42b内に延出している。円筒状小径部52は、円筒状大径部51の上端部から同軸的に延出されて上側ハウジング部材30の中径内孔部32bの下側半分部内に気密的に嵌着されている。なお、本第1実施形態では、隔壁部材50の形成材料としては、PTFEが採用されている。   The partition member 50 is integrally configured with a cylindrical large diameter portion 51 and a cylindrical small diameter portion 52. The cylindrical large-diameter portion 51 is fitted coaxially and airtightly from the axially open end portion 31 side of the upper housing member 30 into the large-diameter inner hole portion 32a of the upper housing member 30. The large-diameter portion 51 has a lower end portion that extends downward from the large-diameter inner hole portion 32 a into the large-diameter inner hole portion 42 b of the lower housing member 40. The cylindrical small-diameter portion 52 extends coaxially from the upper end portion of the cylindrical large-diameter portion 51 and is airtightly fitted into the lower half of the medium-diameter inner hole portion 32b of the upper housing member 30. In the first embodiment, PTFE is adopted as a material for forming the partition member 50.

また、当該隔壁部材50は、連通路部53を有しており、当該連通路部53は、上側ハウジング部材30の連通路部35aを下側ハウジング部材40の大径内孔部42b内に連通させるように、隔壁部材50の円筒状大径部51及び円筒状小径部52の各周壁の内部に亘りL字状に形成されている。これにより、空圧供給源A2からの空気流は、上側ハウジング部材30の流入孔部35及び連通路部35a並びに隔壁部材50の連通路部53を通り下側ハウジング部材40の大径内孔部42b内に流入する。   Further, the partition member 50 has a communication passage portion 53, and the communication passage portion 53 communicates the communication passage portion 35 a of the upper housing member 30 into the large-diameter inner hole portion 42 b of the lower housing member 40. As shown in the figure, the cylindrical large-diameter portion 51 and the cylindrical small-diameter portion 52 of the partition wall member 50 are formed in an L shape over the respective peripheral walls. As a result, the air flow from the pneumatic supply source A2 passes through the inflow hole portion 35 and the communication passage portion 35a of the upper housing member 30 and the communication passage portion 53 of the partition wall member 50, and the large-diameter inner hole portion of the lower housing member 40. 42b flows into 42b.

円柱状ピストン60は、図2にて示すごとく、大径のピストン本体61、中径の頭部62及び小径のピストンロッド63でもって構成されている。ピストン本体61は、隔壁部材50の円筒状小径部52と上側ハウジング部材30の中径内孔部32bの小径内孔部32cに対する環状境界段部との間にて、Oリング61aを介し中径内孔部32b内に同軸的にかつ摺動可能に嵌装されている。   As shown in FIG. 2, the columnar piston 60 includes a large-diameter piston main body 61, a medium-diameter head 62, and a small-diameter piston rod 63. The piston main body 61 has a medium diameter through an O-ring 61a between the cylindrical small diameter portion 52 of the partition member 50 and the annular boundary step portion of the medium diameter inner hole portion 32b of the upper housing member 30 with respect to the small diameter inner hole portion 32c. The inner hole 32b is fitted coaxially and slidably.

これにより、当該ピストン本体61は、上側ハウジング部材30の上壁30bと隔壁部材50の円筒状小径部52との間にて上側ハウジング部材30の中空部を区画して上室部32d及び下室部32eを形成する。これに伴い、上室部32dは、上側ハウジング部材30の連通路部34aを通して排出孔部34内に連通するとともに、下室部32eは、上側ハウジング部材30の連通路部33aを介し流入口部33内に連通する。なお、Oリング61aは、ピストン本体61の外周部に形成した環状溝部内に嵌装されて、当該ピストン本体61の外周面と上側ハウジング部材30の中径内孔部32bの内周面との間を気密的にシールする。   Accordingly, the piston main body 61 divides the hollow portion of the upper housing member 30 between the upper wall 30b of the upper housing member 30 and the cylindrical small diameter portion 52 of the partition wall member 50, thereby separating the upper chamber portion 32d and the lower chamber. A portion 32e is formed. Accordingly, the upper chamber portion 32d communicates with the discharge hole portion 34 through the communication passage portion 34a of the upper housing member 30, and the lower chamber portion 32e communicates with the inlet portion via the communication passage portion 33a of the upper housing member 30. 33 communicates with the inside. The O-ring 61a is fitted in an annular groove formed in the outer peripheral portion of the piston main body 61, and the outer peripheral surface of the piston main body 61 and the inner peripheral surface of the medium-diameter inner hole portion 32b of the upper housing member 30. Seal the space hermetically.

中径の頭部62は、ピストン本体61から同軸的に上室部32d内に向けて延出されている。また、ピストンロッド63は、ロッド部63a及び雄ねじ部63bを有しており、ロッド部63aは、ピストン本体61から頭部62とは逆方向に向け同軸的に下室部32e及び隔壁部材50の中空部を通りOリング54を介し気密的に下側ハウジング部材40の段付き内孔部42内に延出されている。   The medium-diameter head 62 extends coaxially from the piston body 61 into the upper chamber portion 32d. The piston rod 63 has a rod portion 63a and a male screw portion 63b. The rod portion 63a is coaxially directed from the piston main body 61 in the direction opposite to the head portion 62, so that the lower chamber portion 32e and the partition wall member 50 It extends through the hollow portion into the stepped inner hole portion 42 of the lower housing member 40 through the O-ring 54 in an airtight manner.

雄ねじ部63bは、ロッド部63aよりも小径に形成されており、当該雄ねじ部63bは、ロッド部63aの延出端部から段付き内孔部42内に延出されている。なお、Oリング54は、隔壁部材50の大径部51の中空部内周面に形成した環状溝部内に嵌装されて、ロッド部63aの外周面と隔壁部材50の中空部内周面との間を気密的にシールする。   The male screw portion 63b is formed with a smaller diameter than the rod portion 63a, and the male screw portion 63b extends into the stepped inner hole portion 42 from the extending end portion of the rod portion 63a. The O-ring 54 is fitted in an annular groove formed on the inner peripheral surface of the hollow portion of the large-diameter portion 51 of the partition wall member 50, and is between the outer peripheral surface of the rod portion 63 a and the inner peripheral surface of the hollow portion of the partition wall member 50. Seal hermetically.

コイルスプリング70は、上側ハウジング部材30の上室部32d内にて、上壁30bとピストン60のピストン本体61との間に同軸的に介装されており、当該コイルスプリング70は、ピストン本体61を下室部32eに向けて付勢する。   The coil spring 70 is coaxially interposed between the upper wall 30 b and the piston main body 61 of the piston 60 in the upper chamber portion 32 d of the upper housing member 30, and the coil spring 70 is connected to the piston main body 61. Is urged toward the lower chamber portion 32e.

ダイヤフラム80は、弁体90と共に、一体的に構成されている。当該ダイヤフラム80は、段付き内孔部42の大径内孔部42b内に収容されて、環状薄膜部81と、環状厚膜部82とでもって、PTFEにより、一体的に形成されている。   The diaphragm 80 is configured integrally with the valve body 90. The diaphragm 80 is accommodated in the large-diameter inner hole portion 42b of the stepped inner hole portion 42, and is integrally formed of PTFE with the annular thin film portion 81 and the annular thick film portion 82.

ここで、環状薄膜部81は、その内周縁部にて、弁体90の開口端部91(後述する)と同心的にかつ一体的に形成されている。環状厚膜部82は、環状薄膜部81の外周縁部に沿い当該環状薄膜部81と一体的に形成されており、当該環状圧膜部82は、隔壁部材50の大径部51の下端面と下側ハウジング部材40の大径内孔部42bの環状底面と間に挟持されている。これにより、ダイヤフラム80は、段付き内孔部42の内部を区画して、空圧室部Ra及び液圧室部Rbを形成する。   Here, the annular thin film portion 81 is formed concentrically and integrally with an opening end portion 91 (described later) of the valve body 90 at the inner peripheral edge portion thereof. The annular thick film portion 82 is integrally formed with the annular thin film portion 81 along the outer peripheral edge portion of the annular thin film portion 81, and the annular pressure film portion 82 is a lower end surface of the large diameter portion 51 of the partition wall member 50. And the annular bottom surface of the large-diameter inner hole portion 42b of the lower housing member 40. Thereby, the diaphragm 80 partitions the inside of the stepped inner hole portion 42 to form the pneumatic chamber portion Ra and the hydraulic chamber portion Rb.

本第1実施形態では、環状薄膜部81の外周部が環状厚膜部82の内周下縁部と一体となっているため、ダイヤフラム80は、図2にて示すごとく、縦断面凹状に形成されている。これに伴い、当該ダイヤフラム80においては、空圧室部Raが、環状厚膜部82の内周面側にて環状薄膜部81の上面上に形成されて、隔壁部材50の連通路部53並びに上側ハウジング部材30の連通路部35aを介し上側ハウジング部材30の流入孔部35内に連通する。一方、液圧室部Rbは、ダイヤフラム80の環状薄膜部81の下側に位置する下側段付き内孔部42の小径内孔部42aにより構成されている。ここで、液圧室部Rbは、その底壁(小径内孔部42aの底壁)の中央開口部に位置する環状弁座40cを介し下側ハウジング部材40の流入路部43a内に連通しており、当該液圧室部Rbの周壁に形成した開口部は流出路部43b内に連通している。   In the first embodiment, since the outer peripheral portion of the annular thin film portion 81 is integrated with the inner peripheral lower edge portion of the annular thick film portion 82, the diaphragm 80 is formed in a concave shape in the longitudinal section as shown in FIG. Has been. Accordingly, in the diaphragm 80, the pneumatic chamber portion Ra is formed on the upper surface of the annular thin film portion 81 on the inner peripheral surface side of the annular thick film portion 82, and the communication passage portion 53 of the partition wall member 50 and The upper housing member 30 communicates with the inflow hole portion 35 of the upper housing member 30 through the communication passage portion 35 a. On the other hand, the hydraulic chamber portion Rb is constituted by a small-diameter inner hole portion 42 a of a lower stepped inner hole portion 42 located below the annular thin film portion 81 of the diaphragm 80. Here, the hydraulic chamber Rb communicates with the inflow passage 43a of the lower housing member 40 via the annular valve seat 40c located at the center opening of the bottom wall (the bottom wall of the small-diameter inner hole 42a). The opening formed in the peripheral wall of the hydraulic pressure chamber Rb communicates with the outflow passage 43b.

従って、空圧供給源A2から上側ハウジング部材30の流入孔部35及び連通路部35a並びに隔壁部材50の連通路部53を通り下側ハウジング部材40の大径内孔部42b内に供給される空気流は、空圧室部Ra内に流入し、一方、下側ハウジング部材40の流入路部43aに流入する薬液は、環状弁座40cを介し液圧室部Rb内に流入する。   Accordingly, the air pressure supply source A2 passes through the inflow hole 35 and the communication passage 35a of the upper housing member 30 and the communication passage 53 of the partition wall member 50 and is supplied into the large-diameter inner hole 42b of the lower housing member 40. The air flow flows into the pneumatic chamber Ra, while the chemical liquid flowing into the inlet passage 43a of the lower housing member 40 flows into the hydraulic chamber Rb via the annular valve seat 40c.

このことは、空圧室部Ra内に流入した空気流は、当該空圧室部Ra内にてダイヤフラム80に作用する空圧を発生するとともに、液圧室部Rb内に流入した薬液の流れは、当該液圧室部Rb内にてダイヤフラム80に作用する液圧を発生することを意味する。なお、空圧室部Raに生ずる空圧(実質的には空圧供給源A2からの空気流の圧力)は、液圧室部Rb内に生ずる液圧に実質的に等しくてもよく、また、当該液圧に比べて、高くても低くてもよい。   This is because the air flow that flows into the pneumatic chamber Ra generates an air pressure that acts on the diaphragm 80 in the pneumatic chamber Ra and the flow of the chemical solution that flows into the hydraulic chamber Rb. Means that a hydraulic pressure acting on the diaphragm 80 is generated in the hydraulic pressure chamber Rb. The air pressure generated in the air pressure chamber portion Ra (substantially the pressure of the air flow from the air pressure supply source A2) may be substantially equal to the liquid pressure generated in the air pressure chamber portion Rb. The pressure may be higher or lower than the hydraulic pressure.

しかして、ダイヤフラム80では、環状薄膜部81が、空圧室部Ra内への空気流の空圧と液圧室部Rb内への薬液の液圧との差圧のもとに、ピストン60の軸方向摺動に伴い、弾性変形により湾曲変位するようになっている。   Thus, in the diaphragm 80, the annular thin film portion 81 has the piston 60 under the pressure difference between the air pressure of the air flow into the pneumatic chamber Ra and the hydraulic pressure of the chemical into the hydraulic chamber Rb. As the shaft slides in the axial direction, it is curved and displaced by elastic deformation.

ここで、本第1実施形態において、上側ハウジング部材30の流入孔部35及び連通路部35a並びに隔壁部材50の連通路部53を付加的に採用した根拠について説明する。   Here, the grounds for additionally employing the inflow hole portion 35 and the communication passage portion 35a of the upper housing member 30 and the communication passage portion 53 of the partition wall member 50 in the first embodiment will be described.

本明細書の冒頭にて説明したように、ダイヤフラム80に対する水蒸気やガスの浸透が薬液の高温化に伴い増大してダイヤフラム80の形成材料内の非晶質部が容積(体積)増大を生じたりクラックを発生させたりする。このようなダイヤフラム80における水蒸気やガスの浸透の増加は、ダイヤフラム80の両面に作用する各圧力間の大きな差に起因して生じ、その結果、ダイヤフラム80の損傷等による寿命の短縮を招く。   As described at the beginning of the present specification, the penetration of water vapor or gas into the diaphragm 80 increases as the temperature of the chemical increases, and the amorphous portion in the material forming the diaphragm 80 increases in volume (volume). Cracks are generated. Such an increase in the penetration of water vapor or gas in the diaphragm 80 is caused by a large difference between the pressures acting on both surfaces of the diaphragm 80, and as a result, the life of the diaphragm 80 is shortened due to damage or the like.

本第1実施形態において、仮に、空圧室部Ra内への空気流の流入がないものとすれば、ダイヤフラム80は、その環状薄膜部81の下面(液圧室部Rb側の面)にて、薬液の圧力を受けるのみである。このことは、ダイヤフラム80の両面に作用する各圧力の差が大きいことを意味する。   In the first embodiment, if there is no inflow of air flow into the pneumatic chamber Ra, the diaphragm 80 is placed on the lower surface of the annular thin film portion 81 (surface on the hydraulic chamber Rb side). Only receiving the pressure of the chemical solution. This means that the difference between the pressures acting on both surfaces of the diaphragm 80 is large.

そこで、本第1実施形態では、空圧室部Ra内に空気流を流入させることで、ダイヤフラム80の両面に作用する各圧力の差を減少させて、ダイヤフラム80の形成材料内の非晶質部の容積(体積)変化やクラックの発生を未然に防止して、ダイヤフラム80の性能を長期にわたり良好に維持するようにした。   Therefore, in the first embodiment, an air flow is caused to flow into the pneumatic chamber Ra to reduce the difference between the pressures acting on both surfaces of the diaphragm 80, so that the amorphous material in the forming material of the diaphragm 80 is reduced. The change in volume (volume) of the part and the generation of cracks were prevented in advance, and the performance of the diaphragm 80 was maintained well over a long period of time.

弁体90は、下側ハウジング部材40の小径内孔部42a(液圧室部Rb)内に収容されて、環状弁座40cとともに、主弁装置Vmの弁部を構成する。当該弁体90は、ダイヤフラム80と一体的に、PTFEにより縦断面略円筒状に形成されており、この弁体90は、その中空部にて、ピストン60のロッド63の雄ねじ部63b及びロッド部63aの延出端部に亘り嵌装されて、雄ねじ部63bに締着されている。これに伴い、弁体90の開口端部91は、ロッド部63aの延出端部の外周面に沿うように、ダイヤフラム80の環状薄膜部81の内周縁部と一体的に形成されている。   The valve body 90 is accommodated in the small-diameter inner hole portion 42a (hydraulic pressure chamber portion Rb) of the lower housing member 40, and constitutes the valve portion of the main valve device Vm together with the annular valve seat 40c. The valve body 90 is integrally formed with the diaphragm 80 and is formed into a substantially cylindrical shape with a vertical cross section by PTFE. The valve body 90 has a male thread portion 63b and a rod portion of the rod 63 of the piston 60 in its hollow portion. It fits over the extended end part of 63a, and is fastened by the external thread part 63b. Accordingly, the opening end 91 of the valve body 90 is formed integrally with the inner peripheral edge of the annular thin film portion 81 of the diaphragm 80 so as to follow the outer peripheral surface of the extending end of the rod portion 63a.

また、弁体90は、着座部92を有しており、この着座部92は、環状弁座40cに対向するように、弁体90の底壁中央部にて厚肉状に隆起形成されている。   Further, the valve body 90 has a seating portion 92, and the seating portion 92 is formed to be thickly formed at the center of the bottom wall of the valve body 90 so as to face the annular valve seat 40c. Yes.

しかして、以上のように構成した主弁装置Vmにおいては、ピストン60が、その下動端に位置するとき、弁体90は、着座部92にて、環状弁座40cに着座して液圧室部Rbと下側ハウジング部材40の流入路部43aとの間の連通を遮断する(図3参照)。このことは、主弁装置Vmは、その弁部の閉弁により、配管Q2から配管Q3への薬液の流入を遮断することを意味する。 Thus, in the main valve device Vm configured as described above, when the piston 60 is located at the lower moving end, the valve body 90 is seated on the annular valve seat 40c at the seating portion 92 and hydraulic pressure is increased. to cut off the communication between the inlet passage portion 43a of the chamber portion Rb and the lower housing member 40 (see Figure 3). This means that the main valve device Vm shuts off the inflow of the chemical liquid from the pipe Q2 to the pipe Q3 by closing the valve portion.

また、弁体90は、ピストン60の上動に伴い、環状弁座40cから解離して、液圧室部Rbを下側ハウジング部材40の流入路部43a内に連通させる(図2参照)。このことは、主弁装置Vmは、その弁部の開弁により、配管Q2からの薬液を配管Q3内に流入させることを意味する。 Further, the valve body 90, with the upward movement of the piston 60, to dissociate from the annular valve seat 40c, communicates the fluid pressure chamber portion Rb in the inlet channel portion 43a of the lower housing member 40 (see Figure 2) . This means that the main valve device Vm allows the chemical solution from the pipe Q2 to flow into the pipe Q3 by opening the valve portion.

本第1実施形態における主弁装置Vmの作動特性について説明する。この説明にあたり、当該主弁装置Vmにおいて空圧供給源A2から上側ハウジング部材30の流入孔部35及び連通路部35a、隔壁部材50の連通路部53並びに下側ハウジング部材40の空圧室部Ra内に至るまでの空気流の供給経路構成を除いた構成からなる弁装置、即ち、従来の弁装置の作動特性について説明する。   The operation characteristics of the main valve device Vm in the first embodiment will be described. In this description, in the main valve device Vm, from the pneumatic pressure supply source A2, the inlet hole portion 35 and the communication passage portion 35a of the upper housing member 30, the communication passage portion 53 of the partition wall member 50, and the pneumatic chamber portion of the lower housing member 40 are provided. The operating characteristics of the valve device having a configuration excluding the air flow supply path configuration up to Ra, that is, the conventional valve device will be described.

この従来の弁装置が閉弁状態にあるときには、次の不等式(1)が成立する。   When this conventional valve device is in the closed state, the following inequality (1) is established.

W>P1×Ss+P2×Sd・・・(1)
この不等式(1)において、W、P1、Ss、P2及びSdは、次の各物理量を表す。
W> P1 × Ss + P2 × Sd (1)
In this inequality (1), W, P1, Ss, P2 and Sd represent the following physical quantities.

W・・・スプリング荷重
P1・・・弁体液圧
Ss・・・弁体受圧面積
P2・・・ダイヤフラム液圧
Sd・・・ダイヤフラム受圧面積
ここで、スプリング荷重Wは、上室部32d側からピストン本体61に対し作用するコイルスプリング70の付勢荷重をいう。弁体液圧P1は、環状弁座40cを介し弁体90の着座部92に作用する流入路部43a内の薬液の圧力をいう。弁体受圧面積Ssは、弁体90の着座部92の表面積をいう。
W ... Spring load P1 ... Valve fluid pressure Ss ... Valve pressure receiving area P2 ... Diaphragm fluid pressure Sd ... Diaphragm pressure receiving area Here, the spring load W is applied to the piston from the upper chamber portion 32d side. The biasing load of the coil spring 70 acting on the main body 61 is said. The valve body fluid pressure P1 refers to the pressure of the chemical solution in the inflow path portion 43a that acts on the seating portion 92 of the valve body 90 via the annular valve seat 40c. The valve body pressure receiving area Ss refers to the surface area of the seating portion 92 of the valve body 90.

また、ダイヤフラム液圧P2は、ダイヤフラム80の環状薄膜部81の下面に作用する液圧室部Rb内の薬液の圧力をいう。ダイヤフラム受圧面積Sdは、環状薄膜部81の上面及び下面の各面積をいう。   The diaphragm fluid pressure P <b> 2 is the pressure of the chemical solution in the fluid pressure chamber Rb that acts on the lower surface of the annular thin film portion 81 of the diaphragm 80. The diaphragm pressure receiving area Sd refers to each area of the upper surface and the lower surface of the annular thin film portion 81.

一方、当該従来の弁装置が開弁状態にあるときには、次の不等式(2)が成立する。   On the other hand, when the conventional valve device is in an open state, the following inequality (2) is established.

P1×Ss+P2×Sd+Pa×Sp>W・・・(2)
この不等式(2)において、Pa及びSpは、次の各物理量を表す。
P1 * Ss + P2 * Sd + Pa * Sp> W (2)
In this inequality (2), Pa and Sp represent the following physical quantities.

Pa・・・ピストン制御圧
Sp・・・ピストン受圧面積
ここで、ピストン制御圧Paは、ピストン本体61の環状下面に作用する下室部32e内の空気流の圧力をいう。ピストン受圧面積Spは、ピストン本体61の環状下面の面積をいう。
Pa—Piston control pressure Sp—Piston pressure receiving area Here, the piston control pressure Pa refers to the pressure of the air flow in the lower chamber portion 32 e that acts on the annular lower surface of the piston body 61. The piston pressure receiving area Sp refers to the area of the annular lower surface of the piston body 61.

以上のような作動特性を有する上記構成の従来の弁装置にあっては、本明細書の冒頭にて述べたように、薬液の温度が200(℃)を超えて高くなる程、ダイヤフラムがその非晶質部に対する水蒸気やガスの浸入の進行に起因して破損ないし寿命の短縮等の劣化を招く。このため、上記構成の従来の弁装置では、その本来の作動を維持し得ないおそれがある。   In the conventional valve device having the above-described configuration having the above-described operation characteristics, as described at the beginning of the present specification, the higher the temperature of the chemical solution exceeds 200 (° C.), the more the diaphragm Due to the progress of water vapor or gas intrusion into the amorphous part, it causes deterioration such as breakage or shortened life. For this reason, in the conventional valve apparatus of the said structure, there exists a possibility that the original action | operation cannot be maintained.

このような従来の弁装置におけるダイヤフラムの劣化を未然に防止する対策としては、ダイヤフラムの非晶質部に対する水蒸気やガスの浸入を抑制することが挙げられる。そこで、このような観点から、本第1実施形態では、ダイヤフラムの両面の間に作用する差圧を減少させればダイヤフラムの非晶質部に対する水蒸気やガスの浸入を抑制し得ることに着目して、主弁装置Vmは、上記構成の従来の弁装置とは異なり、上述したごとく、空圧供給源A2から上側ハウジング部材30の流入孔部35及び連通路部35a、隔壁部材50の連通路部53並びに下側ハウジング部材40の空圧室部Ra内に至るまでの空気流の供給経路構成を備えている。   As a measure for preventing the deterioration of the diaphragm in such a conventional valve device, it is possible to suppress the intrusion of water vapor or gas into the amorphous part of the diaphragm. Therefore, from this point of view, in the first embodiment, attention is paid to the fact that the intrusion of water vapor and gas into the amorphous portion of the diaphragm can be suppressed by reducing the differential pressure acting between both surfaces of the diaphragm. The main valve device Vm is different from the conventional valve device having the above-described configuration, as described above, from the air pressure supply source A2 to the inlet hole portion 35 and the communication passage portion 35a of the upper housing member 30, and the communication passage of the partition wall member 50. An air flow supply path configuration extending to the portion 53 and the pneumatic chamber Ra of the lower housing member 40 is provided.

このような構成によれば、空圧供給源A2からの空気流の空圧が、空圧室部Ra内において、液圧室部Rb内にてダイヤフラム80に作用する薬液の液圧に抗して、ダイヤフラム80に作用することとなる。このため、ダイヤフラム80の両面に対する差圧が減少する。   According to such a configuration, the air pressure of the air flow from the air pressure supply source A2 resists the liquid pressure of the chemical liquid acting on the diaphragm 80 in the liquid pressure chamber portion Rb in the air pressure chamber portion Ra. Thus, it acts on the diaphragm 80. For this reason, the differential pressure with respect to both surfaces of the diaphragm 80 decreases.

但し、空圧室部Ra内においてダイヤフラム80に作用する空圧は、主弁装置Vmを閉弁する方向に作用するため、上述の不等式(2)のままでは、当該主弁装置Vmを開弁することができない。従って、当該主弁装置Vmを開弁するには、ピストン本体61の環状下面の面積(ピストン受圧面積Sp)がダイヤフラム80の環状薄膜部81の上面及び下面の各面積(ダイヤフラム受圧面積Sd)よりも広い値とすることが必要である。即ち、次の不等式(3)の成立が必要である。   However, since the air pressure acting on the diaphragm 80 in the air pressure chamber Ra acts in the direction of closing the main valve device Vm, the main valve device Vm is opened with the above inequality (2). Can not do it. Therefore, in order to open the main valve device Vm, the area of the annular lower surface of the piston body 61 (piston pressure receiving area Sp) is greater than the area of the upper and lower surfaces of the annular thin film portion 81 of the diaphragm 80 (diaphragm pressure receiving area Sd). Also, it is necessary to set a wide value. That is, the following inequality (3) must be established.

Pa×Sp>W+Pc×Sd ・・・(3)
この不等式(3)において、Pcは、空圧室部Ra内の空気流の圧力がダイヤフラム80の環状薄膜部81の上面に加わる空圧(ダイヤフラム空圧)を表す。
Pa × Sp> W + Pc × Sd (3)
In this inequality (3), Pc represents the air pressure (diaphragm air pressure) applied to the upper surface of the annular thin film portion 81 of the diaphragm 80 by the pressure of the air flow in the air pressure chamber portion Ra.

そこで、本第1実施形態にいう主弁装置Vmでは、空圧供給源A2から上側ハウジング部材30の流入孔部35及び連通路部35a、隔壁部材50の連通路部53並びに下側ハウジング部材40の空圧室部Ra内に至るまでの空気流の供給経路構成に加え、不等式(3)を成立させるべく、ピストン受圧面積Spがダイヤフラム受圧面積Sdよりも広い値となっている。   Therefore, in the main valve device Vm referred to in the first embodiment, from the pneumatic supply source A2, the inflow hole portion 35 and the communication passage portion 35a of the upper housing member 30, the communication passage portion 53 of the partition wall member 50, and the lower housing member 40 are provided. In addition to the air flow supply path configuration up to the air pressure chamber Ra, the piston pressure receiving area Sp is larger than the diaphragm pressure receiving area Sd in order to establish the inequality (3).

これにより、主弁装置Vmが閉弁状態にあるときには、上述の不等式(1)とは異なり、次の不等式(4)が成立する。   Thus, when the main valve device Vm is in a closed state, the following inequality (4) is established, unlike the inequality (1) described above.

W+Pc×Sd>P1×Ss+P2×Sd・・・(4)
一方、当該主弁装置Vmが開弁状態にあるときには、上述の不等式(2)とは異なり、次の不等式(5)が成立する。
W + Pc × Sd> P1 × Ss + P2 × Sd (4)
On the other hand, when the main valve device Vm is in the open state is different from the above mentioned inequality (2), the following inequality (5) is satisfied.

P1×Ss+P2×Sd+Pa×Sp>W+Pc×Sd・・・(5)
但し、本第1実施形態では、空気流供給源A2からの空気流は、主弁装置Vmの開弁及び閉弁のいずれの状態においても、空圧室部Ra内に流入するようになっている。このことは、空圧室部Ra内の空気流の圧力Pcが、主弁装置Vmの開弁及び閉弁のいずれの状態においても、ダイヤフラム80の環状薄膜部81の上面に加わることを意味する。
P1 * Ss + P2 * Sd + Pa * Sp> W + Pc * Sd (5)
However, in the first embodiment, the air flow from the air flow supply source A2 flows into the pneumatic chamber Ra regardless of whether the main valve device Vm is open or closed. Yes . This means that the pressure Pc of the air flow in the pneumatic chamber Ra is applied to the upper surface of the annular thin film portion 81 of the diaphragm 80 regardless of whether the main valve device Vm is open or closed. .

また、当該レジスト剥離系統は、図1にて示すごとく、ヒータ100及び背圧弁110を備えている。ヒータ100は、主弁装置Vmから配管Q3を介して薬液を供給されて、当該薬液を所定の高温(例えば、250(℃))に加熱して、加熱薬液として配管Q4内に流入させる。背圧弁110は、配管Q4内の加熱薬液の圧力を所定のリリーフ圧以下に維持する。また、配管Q4内の加熱薬液の圧力が上記所定のリリーフ圧を超えて上昇すると、背圧弁110は、配管Q4内の加熱薬液を配管Q5内に排出して薬液供給源10内に戻す。このことは、背圧弁110は、配管Q4内の加熱薬液の液圧を上記所定のリリーフ圧に維持することを意味する。   The resist stripping system includes a heater 100 and a back pressure valve 110 as shown in FIG. The heater 100 is supplied with a chemical solution from the main valve device Vm via the pipe Q3, heats the chemical solution to a predetermined high temperature (for example, 250 (° C.)), and flows the chemical solution into the pipe Q4 as a heated chemical solution. The back pressure valve 110 maintains the pressure of the heated chemical solution in the pipe Q4 below a predetermined relief pressure. When the pressure of the heated chemical liquid in the pipe Q4 rises above the predetermined relief pressure, the back pressure valve 110 discharges the heated chemical liquid in the pipe Q4 into the pipe Q5 and returns it to the chemical liquid supply source 10. This means that the back pressure valve 110 maintains the liquid pressure of the heated chemical solution in the pipe Q4 at the predetermined relief pressure.

また、当該レジスト剥離系統は、図1にて示すごとく、ダイヤフラム式の両副弁装置Vsa、Vsbを備えており、当該両副弁装置Vsa、Vsbは、その各流入孔部33にて、空気流供給源A1から空気流を供給され、その各流入筒部44にて、それぞれ、各配管Q6、Q7を介し配管Q4に接続されている。   Further, as shown in FIG. 1, the resist stripping system includes a diaphragm type sub-valve devices Vsa and Vsb. The both sub-valve devices Vsa and Vsb are connected to the air inlet 33 by air. An air flow is supplied from the flow supply source A1 and is connected to the pipe Q4 via the pipes Q6 and Q7 at the respective inflow cylinder portions 44.

本第1実施形態において、両副弁装置Vsa、Vsbは、共に、同一の構成を有するから、副弁装置Vsaを例に挙げて、その構成につき説明する。   In the first embodiment, since both the auxiliary valve devices Vsa and Vsb have the same configuration, the auxiliary valve device Vsa will be described as an example.

当該副弁装置Vsaは、図4にて示すごとく、主弁装置Vmにおいて、流入孔部35、連通路部35a及び連通路部53に代えて、連通路部55を、隔壁部材50に設けた構成となっている。 As shown in FIG. 4, the sub-valve device Vsa has a communication passage portion 55 provided in the partition wall member 50 instead of the inflow hole portion 35, the communication passage portion 35 a and the communication passage portion 53 in the main valve device Vm . and it has a configuration.

ここで、連通路部55は、上述した空圧室部Raの内部を下室部32eの内部に連通させるように、隔壁部材50の周壁にその軸方向に沿い貫通状に形成されている。このため、空気流供給源A1からの空気流は、図4にて示すごとく、下室部32e内に流入し、かつ、隔壁部材50の連通路部55を通り空圧室部Ra内にも流入する。従って、空気流供給源A1からの空気流の圧力は、下室部32e内にてピストン本体61に対し制御圧として作用するとともに空圧室部Ra内に対しダイヤフラム80に対し空圧として作用する。 Here, the communication passage portion 55 is formed in a penetrating shape along the axial direction of the peripheral wall of the partition wall member 50 so as to allow the inside of the above-described pneumatic chamber portion Ra to communicate with the inside of the lower chamber portion 32e. Therefore, as shown in FIG. 4, the air flow from the air flow supply source A1 flows into the lower chamber portion 32e and passes through the communication passage portion 55 of the partition wall member 50 and also into the pneumatic chamber portion Ra. Inflow. Therefore, the pressure of the air flow from the air flow source A1 as pneumatic respect diaphragm 80 relative to the pneumatic chamber section Ra in together to act as a control pressure to the piston body 61 at the lower chamber portion 32e Works.

当該副弁装置Vsaの閉弁時においては、空気流供給源A1からの空気流は、下室部32e内へ供給されないから、空圧室部Ra内には空圧は生じない。従って、当該副弁装置Vsaの閉弁状態においては、次の不等式(6)が、上述の不等式(4)に代えて、成立する。   When the sub valve device Vsa is closed, the air flow from the air flow supply source A1 is not supplied into the lower chamber portion 32e, so that no air pressure is generated in the air pressure chamber portion Ra. Therefore, in the closed state of the sub valve device Vsa, the following inequality (6) is established instead of the above inequality (4).

W>P1×Ss+P2×Sd・・・(6)
一方、当該副弁装置Vsaの開弁時には、空気流供給源A1からの空気流は、下室部32e及び空圧室部Raの双方の内部に供給される。このため、下室部32e内に生ずる制御圧は当該副弁装置Vsaの開弁方向に作用するものの、空圧室部Ra内に生ずる空圧は、当該副弁装置Vsaの閉弁方向に作用する。従って、当該副弁装置Vsaの開弁状態では、上述した不等式(5)が成立する。
W> P1 × Ss + P2 × Sd (6)
On the other hand, when the sub valve device Vsa is opened, the air flow from the air flow supply source A1 is supplied to both the lower chamber portion 32e and the pneumatic chamber portion Ra. For this reason, although the control pressure generated in the lower chamber portion 32e acts in the valve opening direction of the sub valve device Vsa, the air pressure generated in the pneumatic chamber portion Ra acts in the valve closing direction of the sub valve device Vsa. To do. Thus, the open state of the auxiliary valve device Vsa, above mentioned inequality (5) is satisfied.

しかして、当該副弁装置Vsaは、その閉弁時には、空気流供給源A1から開閉弁33a(図1或いは図4参照)を介し下室部32e及び空圧室部Raの各内部への空気流の供給停止のもと、不等式(6)のもとに、コイルスプリング70のピストン本体61に対する付勢力及び流入路部43a内の薬液による弁体90及びダイヤフラム80に対する各液圧に基づき、弁体90の環状弁座40cに対する着座でもって、配管Q6からの薬液の配管Q8への流入を遮断する。   Thus, when the sub-valve device Vsa is closed, air is supplied from the air flow supply source A1 to the inside of the lower chamber portion 32e and the pneumatic chamber portion Ra via the on-off valve 33a (see FIG. 1 or 4). Based on the inequality (6), the valve spring 90 is stopped based on the urging force of the coil spring 70 against the piston body 61 and the fluid pressures on the valve body 90 and the diaphragm 80 due to the chemical in the inflow passage 43a. The body 90 is seated on the annular valve seat 40c to block the flow of the chemical solution from the pipe Q6 into the pipe Q8.

また、当該副弁装置Vsaは、その開弁時には、空気流供給源A1から開閉弁33aを介し下室部32e及び空圧室部Raの各内部への空気流の供給に基づき、不等式(5)のもとに、コイルスプリング70のピストン本体61に対する付勢力、空圧室部Ra内にてダイヤフラム80に作用する空圧、下室部32e内にてピストン本体61に作用する制御圧、流入路部43a内の薬液による弁体90及びダイヤフラム80に対する各液圧に応じ、弁体90の環状弁座40cからの解離でもって、配管Q6からの薬液を、配管Q8を介し半導体ウェハーW1に向けて流動させる。   In addition, the sub-valve device Vsa is inequality (5) based on the supply of air flow from the air flow supply source A1 to the interior of the lower chamber portion 32e and the pneumatic chamber portion Ra via the on-off valve 33a. ), The biasing force of the coil spring 70 against the piston body 61, the air pressure acting on the diaphragm 80 in the air pressure chamber Ra, the control pressure acting on the piston body 61 in the lower chamber portion 32e, and the inflow The chemical solution from the pipe Q6 is directed to the semiconductor wafer W1 through the pipe Q8 by dissociation from the annular valve seat 40c of the valve body 90 according to the respective liquid pressures with respect to the valve body 90 and the diaphragm 80 by the chemical liquid in the passage portion 43a. Make it flow.

副弁装置Vsbは、上述のごとく、副弁装置Vsaと同様の構成を有する。従って、当該副弁装置Vsbは、その閉弁時には、弁体90の環状弁座40cに対する着座でもって、配管Q7からの薬液の配管Q9に対する流入を遮断する。また、当該副弁装置Vsbは、その開弁時には、弁体90の環状弁座40cからの解離でもって、配管Q7からの薬液を、配管Q9を介し半導体ウェハーW2に向けて流動させる。   As described above, the auxiliary valve device Vsb has the same configuration as the auxiliary valve device Vsa. Therefore, the sub-valve device Vsb blocks the inflow of the chemical solution from the pipe Q7 to the pipe Q9 by seating the valve body 90 on the annular valve seat 40c when the valve is closed. In addition, when the sub-valve device Vsb is opened, the chemical solution from the pipe Q7 flows toward the semiconductor wafer W2 through the pipe Q9 by dissociating the valve body 90 from the annular valve seat 40c.

以上のように構成した本第1実施形態において、上記レジスト剥離系統の主弁装置Vm及び両副弁装置Vsa、Vsbが共に閉弁状態にあるものとする。これに伴い、各開閉弁33a〜33cの閉弁のもと、空気流供給源A1からの主弁装置Vm及び両副弁装置Vsa、Vsbに対する空気流の供給は停止している。但し、空気流供給源A2からの空気流は、主弁装置Vmに対しその開閉弁作動とはかかわりなく、主弁装置Vmの流入孔部35、連通路部35a、隔壁部材50の連通路部53を通り空圧室部Ra内に流入してこの空圧室部Ra内にてダイヤフラム80に対し空圧を作用させているものとする。   In the first embodiment configured as described above, it is assumed that the main valve device Vm and the sub valve devices Vsa and Vsb of the resist stripping system are both closed. Accordingly, the supply of airflow from the airflow supply source A1 to the main valve device Vm and the sub valve devices Vsa and Vsb is stopped under the closing of the on-off valves 33a to 33c. However, the air flow from the air flow supply source A2 is not related to the on / off valve operation with respect to the main valve device Vm, but the inflow hole portion 35, the communication passage portion 35a of the main valve device Vm, and the communication passage portion of the partition wall member 50. It is assumed that the air flows into the pneumatic chamber Ra through 53 and the pneumatic pressure is applied to the diaphragm 80 in the pneumatic chamber Ra.

このような状態において、供給ポンプ20が、配管Q1を介し薬液供給源10から薬液を汲み上げて配管Q2内に吐出するとともに、空気流供給源A1が、各開閉弁33a〜33cの開弁により、空気流を主弁装置Vm及び両副弁装置Vsa、Vsbに対し供給すると、配管Q2内に吐出された薬液は、主弁装置Vmの液圧室部Rb内に流入筒部44及び流入路部43aを通り流入して当該液圧室部Rb内にて液圧を生じてダイヤフラム80に作用させ、一方、空気流供給源A2からの空気流は、主弁装置Vm及び両副弁装置Vsa、Vsbの各下室部32e内に各対応の流入孔部33及び連通路部33aを通り流入して各下室部32e内にてピストン本体61に対し制御圧を作用させる。さらに、上述のように両副弁装置Vsa、Vsbの各下室部32e内に流入した空気流は、各対応の隔壁部材50の連通路部55を通り各対応の空圧室部Ra内に流入する。このため、各対応の空圧室部Ra内に流入した空気流は、両副弁装置Vsa、Vsbの各空圧室部Ra内にて各対応のダイヤフラム80に対し空圧を生じて作用させる。   In such a state, the supply pump 20 pumps up the chemical liquid from the chemical liquid supply source 10 via the pipe Q1 and discharges it into the pipe Q2, and the air flow supply source A1 opens the open / close valves 33a to 33c. When an air flow is supplied to the main valve device Vm and the sub valve devices Vsa and Vsb, the chemical liquid discharged into the pipe Q2 flows into the inflow cylinder portion 44 and the inflow passage portion in the hydraulic pressure chamber portion Rb of the main valve device Vm. 43a and flows into the hydraulic chamber Rb to cause the diaphragm 80 to act on the diaphragm 80. On the other hand, the air flow from the air flow supply source A2 is supplied to the main valve device Vm and the sub valve devices Vsa, The Vsb flows into the lower chamber portions 32e through the corresponding inflow hole portions 33 and the communication passage portions 33a, and a control pressure is applied to the piston body 61 in the lower chamber portions 32e. Further, as described above, the air flow that has flowed into the lower chamber portions 32e of the auxiliary valve devices Vsa and Vsb passes through the communication passage portions 55 of the corresponding partition members 50 and enters the corresponding pneumatic chamber portions Ra. Inflow. For this reason, the air flow that has flowed into the corresponding pneumatic chambers Ra causes air pressure to act on the corresponding diaphragms 80 in the pneumatic chambers Ra of the auxiliary valve devices Vsa and Vsb. .

すると、主弁装置Vmにおいては、ピストン60が、不等式(3)のもとに、コイルスプリング70のピストン本体61に対する付勢力及び空圧室部Ra内のダイヤフラム80に対する空圧に抗して、下室部32e内の制御圧、流入路部43aから環状弁座40cを介し薬液の弁体90に作用する薬液の液圧及び液圧室部Rb内のダイヤフラム80に対する液圧に基づき、上方へ摺動して、弁体90を環状弁座40cから解離させて、開弁する。このとき、不等式(5)が成立している。すると、主弁装置Vmの液圧室部Rb内に流入した薬液は、流出路部43b及び配管Q3を通り、ヒータ100内に流入する。 Then, in the main valve device Vm, the piston 60 resists the urging force of the coil spring 70 against the piston main body 61 and the air pressure against the diaphragm 80 in the air pressure chamber Ra based on the inequality (3) . Based on the control pressure in the lower chamber 32e, the hydraulic pressure of the chemical acting on the valve body 90 of the chemical from the inflow passage 43a via the annular valve seat 40c, and the hydraulic pressure on the diaphragm 80 in the hydraulic pressure chamber Rb. By sliding, the valve body 90 is dissociated from the annular valve seat 40c and opened . At this time, inequality (5) holds. If you that, the chemical solution flows into the liquid chamber portion Rb of the main valve device Vm passes through the outlet passage portion 43b and the pipe Q3, it flows into the heater 100.

ここで、ダイヤフラム80の両面に作用する各圧力の差が、液圧室Rb内の液圧に抗してダイヤフラム80に作用する空圧室部Ra内の空圧に基づき減少する。従って、薬液の温度が高くても、ダイヤフラム80の形成材料の非晶質部内への水蒸気等の浸透が抑制されて、当該ダイヤフラム80をその損傷等による劣化を招くことなく、長期間に亘り良好に維持することができる。このことは、ダイヤフラム80の寿命の改善につながる。   Here, the difference between the pressures acting on both surfaces of the diaphragm 80 decreases based on the air pressure in the pneumatic chamber Ra acting on the diaphragm 80 against the fluid pressure in the fluid pressure chamber Rb. Therefore, even if the temperature of the chemical solution is high, the penetration of water vapor or the like into the amorphous part of the material forming the diaphragm 80 is suppressed, and the diaphragm 80 is good for a long period of time without causing deterioration due to damage or the like. Can be maintained. This leads to an improvement in the lifetime of the diaphragm 80.

上述のごとく、薬液がヒータ100内に流入すると、当該薬液は、ヒータ100により加熱されて、上記所定の高温の加熱薬液として配管Q4内に流入する。このように配管Q4内に流入した加熱薬液は、背圧弁110により上記所定のリリーフ圧に維持されて両副弁装置Vsa、Vsbに各対応の配管Q6、Q7を通り流入する。なお、配管Q4内の加熱薬液の圧力が上記所定のリリーフ圧よりも上昇すると、当該圧力が上記所定のリリーフ圧に低下するまで、配管Q4内の加熱薬液は、背圧弁110を通り配管Q5を介して薬液供給源10に戻る。従って、供給ポンプ20により吐出される薬液の温度は、通常、高い。   As described above, when the chemical solution flows into the heater 100, the chemical solution is heated by the heater 100 and flows into the pipe Q4 as the predetermined high-temperature heating chemical solution. Thus, the heated chemical liquid that has flowed into the pipe Q4 is maintained at the predetermined relief pressure by the back pressure valve 110 and flows into the auxiliary valve devices Vsa and Vsb through the corresponding pipes Q6 and Q7. When the pressure of the heated chemical liquid in the pipe Q4 rises above the predetermined relief pressure, the heated chemical liquid in the pipe Q4 passes through the back pressure valve 110 and passes through the pipe Q5 until the pressure decreases to the predetermined relief pressure. Return to the chemical solution supply source 10. Therefore, the temperature of the chemical liquid discharged by the supply pump 20 is usually high.

上述のように加熱薬液が副弁装置Vsaに流入すると、当該副弁装置Vsaにおいては、配管Q6からの加熱薬液が流入筒部44及び流入路部43aを通り液圧室部Rb内に流入してダイヤフラム80に対し液圧を作用させる。   When the heated chemical liquid flows into the auxiliary valve device Vsa as described above, in the auxiliary valve device Vsa, the heated chemical solution from the pipe Q6 flows into the hydraulic pressure chamber portion Rb through the inflow cylinder portion 44 and the inflow passage portion 43a. Then, a hydraulic pressure is applied to the diaphragm 80.

すると、当該副弁装置Vsaは、コイルスプリング70のピストン本体61に対する付勢力及びダイヤフラム80に作用する空圧室部Ra内の空圧に抗して、ピストン本体61に作用する下室部32e内の制御圧、流入路部43aから環状弁座40cを介し薬液の弁体90に作用する薬液の液圧及び液圧室部Rb内のダイヤフラム80に対する液圧に基づき、弁体90を弁座40cから解離させて開弁する。このとき、不等式(3)の成立のもとに、不等式(5)が成立している。ただし、ピストン制御圧Pc=ダイヤフラム空圧Pcである。 Then, the sub-valve device Vsa resists the urging force of the coil spring 70 against the piston body 61 and the air pressure in the air pressure chamber portion Ra acting on the diaphragm 80, and the inside of the lower chamber portion 32e acting on the piston body 61. The valve body 90 is adjusted to the valve seat 40c on the basis of the control pressure, the hydraulic pressure of the chemical liquid acting on the valve body 90 of the chemical liquid from the inflow passage 43a through the annular valve seat 40c and the hydraulic pressure on the diaphragm 80 in the hydraulic pressure chamber Rb Dissociate from and open . At this time, the inequality (5) is established under the inequality (3). However, piston control pressure Pc = diaphragm air pressure Pc.

ここで、副弁装置Vsaにおいても、ダイヤフラム80の両面に作用する各圧力の差が、液圧室Rb内の液圧に抗してダイヤフラム80に作用する空圧室部Ra内の空圧に基づき減少する。従って、薬液の温度が高くても、ダイヤフラム80の形成材料の非晶質部内への水蒸気等の浸透が抑制されて、当該ダイヤフラム80をその損傷等による劣化を招くことなく、長期間に亘り良好に維持することができる。このことは、ダイヤフラム80の寿命の改善につながる。   Here, also in the auxiliary valve device Vsa, the difference between the pressures acting on both surfaces of the diaphragm 80 is caused by the air pressure in the air pressure chamber portion Ra acting on the diaphragm 80 against the fluid pressure in the fluid pressure chamber Rb. Decrease based on. Therefore, even if the temperature of the chemical solution is high, the penetration of water vapor or the like into the amorphous part of the material forming the diaphragm 80 is suppressed, and the diaphragm 80 is good for a long period of time without causing deterioration due to damage or the like. Can be maintained. This leads to an improvement in the lifetime of the diaphragm 80.

上述のように副弁装置Vsaが開弁すると、当該副弁装置Vsaにおいては、配管Q6内の加熱薬液が、流入筒部44、流入路部43a、環状弁座40c、液圧室部Rb、流出路部43b及び配管Q8を通り半導体ウェハーW1に向けて流動する。これにより、半導体ウェハーW1のエッチング済みのレジスト膜が剥離されて半導体素子として製造される。   When the auxiliary valve device Vsa is opened as described above, in the auxiliary valve device Vsa, the heated chemical liquid in the pipe Q6 flows into the inflow cylinder portion 44, the inflow passage portion 43a, the annular valve seat 40c, the hydraulic pressure chamber portion Rb, It flows toward the semiconductor wafer W1 through the outflow passage 43b and the pipe Q8. Thereby, the etched resist film of the semiconductor wafer W1 is peeled off and manufactured as a semiconductor element.

副弁装置Vsbも、副弁装置Vsaと同様に開弁し、配管Q7内の加熱薬液が、流入筒部44、流入路部43a、環状弁座40c、液圧室部Rb、流出路部43b及び配管Q9を通り半導体ウェハーW2に向けて流動する。これにより、半導体ウェハーW2のエッチング済みのレジスト膜が剥離されて半導体素子として製造される。   The auxiliary valve device Vsb is also opened in the same manner as the auxiliary valve device Vsa, and the heated chemical solution in the pipe Q7 is supplied with the inflow cylinder portion 44, the inflow passage portion 43a, the annular valve seat 40c, the hydraulic pressure chamber portion Rb, and the outflow passage portion 43b. And flows through the pipe Q9 toward the semiconductor wafer W2. Thereby, the etched resist film of the semiconductor wafer W2 is peeled off and manufactured as a semiconductor element.

ここで、当該副弁装置Vsbにおいても、ダイヤフラム80の両面に作用する各圧力の差が、液圧室Rb内の液圧に抗してダイヤフラム80に作用する空圧室部Ra内の空圧に基づき減少する。従って、薬液の温度が高くても、ダイヤフラム80の形成材料の非晶質部内への水蒸気等の浸透が抑制されて、当該ダイヤフラム80をその損傷等による劣化を招くことなく、長期間に亘り良好に維持することができる。このことは、ダイヤフラム80の寿命の改善につながる。   Here, also in the sub-valve device Vsb, the difference between the pressures acting on both surfaces of the diaphragm 80 is such that the pneumatic pressure in the pneumatic chamber portion Ra acting on the diaphragm 80 against the hydraulic pressure in the hydraulic pressure chamber Rb. Decrease based on Therefore, even if the temperature of the chemical solution is high, the penetration of water vapor or the like into the amorphous part of the material forming the diaphragm 80 is suppressed, and the diaphragm 80 is good for a long period of time without causing deterioration due to damage or the like. Can be maintained. This leads to an improvement in the lifetime of the diaphragm 80.

以上説明したように、本第1実施形態では、主弁装置Vmは、ダイヤフラム80を介し液圧室部Rbに対向する空圧室部Raを備えて、液圧室部Rb内に生ずる液圧に抗して空圧室部Ra内に生ずる空圧でもって、ダイヤフラム80の両面に作用する各圧力の差圧を減少させるようにした。   As described above, in the first embodiment, the main valve device Vm includes the pneumatic chamber portion Ra facing the hydraulic chamber portion Rb through the diaphragm 80, and the hydraulic pressure generated in the hydraulic chamber portion Rb. The differential pressure between the pressures acting on both surfaces of the diaphragm 80 is reduced by the air pressure generated in the air pressure chamber portion Ra against the above.

従って、薬液の温度が高くても、ダイヤフラム80の形成材料の非晶質部内への水蒸気等の浸透が抑制されて、当該ダイヤフラム80をその損傷等による劣化を招くことなく、長期間に亘り良好に維持することができる。このことは、薬液の温度が高くても、所定の耐熱特性を有するダイヤフラム80の寿命の改善につながることを意味する。その結果、主弁装置Vmは、上述した開閉弁作動を長期に亘り良好に維持し得て、寿命の長期化につながる。以上のようなことは、両副弁装置Vsa、Vsbにおいても同様に成立する。   Therefore, even if the temperature of the chemical solution is high, the penetration of water vapor or the like into the amorphous part of the material forming the diaphragm 80 is suppressed, and the diaphragm 80 is good for a long period of time without causing deterioration due to damage or the like. Can be maintained. This means that even if the temperature of the chemical solution is high, the lifetime of the diaphragm 80 having predetermined heat resistance characteristics is improved. As a result, the main valve device Vm can maintain the above-described on-off valve operation satisfactorily over a long period of time, leading to a long life. The above is also true for the two auxiliary valve devices Vsa and Vsb.

ここで、主弁装置Vm及び両副弁装置Vsa、Vsbのいずれにおいても、ピストン60のピストン本体61の受圧面積は、上述のごとく、ダイヤフラム80の環状薄膜部81の受圧面積よりも広く設定されているから、主弁装置Vm及び両副弁装置Vsa、Vsbの開弁作動が確保され得る。
(第2実施形態)
図5は、本発明の第2実施形態の要部である副弁装置Vsaを示している。当該副弁装置Vsaは、上記第1実施形態にて述べた主弁装置Vmにおいて、分岐路部56を、隔壁50に付加的に設けたことにその構成上の特徴がある。
Here, in any of the main valve device Vm and the both sub-valve devices Vsa and Vsb, the pressure receiving area of the piston body 61 of the piston 60 is set wider than the pressure receiving area of the annular thin film portion 81 of the diaphragm 80 as described above. Therefore, the valve opening operation of the main valve device Vm and the both sub-valve devices Vsa and Vsb can be ensured.
(Second Embodiment)
FIG. 5 shows an auxiliary valve device Vsa that is a main part of the second embodiment of the present invention. The sub-valve device Vsa is characterized in that the branch passage portion 56 is additionally provided in the partition wall 50 in the main valve device Vm described in the first embodiment.

ここで、分岐路部56は、上述した連通路部53の中間部位の内部を下室部32eの内部に連通させるように、隔壁50の周壁にその軸方向に沿い分岐して形成されている。このため、空気流供給源A2からの空気流は、上記第1実施形態にて述べた上側ハウジング部材30の流入孔部35及び連通路部35a並びに隔壁部材50の連通路部53の上流部に流入するとともに、このように上流部内に流入下空気流は、分岐路部56を通り下室部32e内に流入するとともに、連通路部53の下流部を通り空圧室部Ra内に流入する。   Here, the branch path portion 56 is formed by branching along the axial direction of the peripheral wall of the partition wall 50 so that the inside of the intermediate portion of the communication passage portion 53 described above communicates with the inside of the lower chamber portion 32e. . For this reason, the airflow from the airflow supply source A2 flows into the upstream portion of the inflow hole portion 35 and the communication passage portion 35a of the upper housing member 30 and the communication passage portion 53 of the partition wall member 50 described in the first embodiment. In this way, the inflowing lower air flow into the upstream portion in this way flows into the lower chamber portion 32e through the branch path portion 56 and into the pneumatic chamber Ra through the downstream portion of the communication passage portion 53. .

従って、空気流供給源A2からの空気流の圧力は、下室部32e内にてピストン本体61に対し制御圧として作用するとともに空圧室部Ra内に対しダイヤフラム80に対し空圧として作用する。これに伴い、副弁装置Vsaに対する空気流供給源A1からの空気流の供給は不要となる。本第2実施形態における副弁装置Vsaのその他の構成は、上記第1実施形態にて述べた副弁装置Vsaと同様である。なお、本第2実施形態の他の副弁装置Vsbは、本第2実施形態における上記副弁装置Vsaと同様の構成を有する。本第2実施形態におけるその他の構成は、上記第1実施形態と同様である。 Therefore, the pressure of the air flow from the air flow source A2 as pneumatic respect diaphragm 80 relative to the pneumatic chamber section Ra in together to act as a control pressure to the piston body 61 at the lower chamber portion 32e Works. Accordingly, it is not necessary to supply an air flow from the air flow supply source A1 to the auxiliary valve device Vsa. The other configuration of the sub valve device Vsa in the second embodiment is the same as that of the sub valve device Vsa described in the first embodiment. In addition, the other subvalve device Vsb of the second embodiment has the same configuration as the subvalve device Vsa in the second embodiment. Other configurations in the second embodiment are the same as those in the first embodiment.

このように構成した本第2実施形態によれば、隔壁部材50が、上述のごとく、連通路部53に対する分岐路部56を有する構成となっているから、主弁装置Vmの開弁の際には、空気流供給源A2から上側ハウジング部材30の流入開孔部35及び連通路部35a並びに隔壁部材50の連通路部53を通り空圧室部Ra内に供給されて当該空圧室部Ra内に空圧を生ずる空気流が、連通路部53の上流部及び分岐路部56を通り制御室部32e内にも流入して当該制御室部32e内に制御圧を生ずる。   According to the second embodiment configured as described above, the partition wall member 50 is configured to have the branch path portion 56 with respect to the communication path portion 53 as described above, and therefore, when the main valve device Vm is opened. The air flow supply source A2 is supplied into the pneumatic chamber Ra through the inlet hole 35 and the communication passage 35a of the upper housing member 30 and the communication passage 53 of the partition wall member 50, and is supplied to the pneumatic chamber Ra. An air flow that generates air pressure in Ra passes through the upstream portion of the communication passage portion 53 and the branch passage portion 56 and also flows into the control chamber portion 32e to generate a control pressure in the control chamber portion 32e.

従って、空圧室部及び制御圧室部内に対する空気流供給源を共通にして単一にしつつ、ピストン60が、空圧室部Ra内の空圧と液圧室部Rb内の液圧との差のもとに、制御圧室部32e内の制御圧に基づき、コイルスプリング70に抗して上方へ摺動して弁体90を環状弁座40cから確実に解離させることができる。その結果、主弁装置Vmの開弁作動が良好になされ得る。その他の作用効果は、上記第1実施形態と同様である。
(第3実施形態)
図6は、本発明の第3実施形態の要部を示している。この第3実施形態では、上記第1実施形態にて述べた主弁装置Vmにおいて、断熱膜80aを付加的に設けたことにその構成上の特徴がある。
Accordingly, while the air flow supply source for the air pressure chamber portion and the control pressure chamber portion is made to be a single unit, the piston 60 has the air pressure in the air pressure chamber portion Ra and the liquid pressure in the liquid pressure chamber portion Rb. Based on the difference, based on the control pressure in the control pressure chamber portion 32e, the valve body 90 can be reliably dissociated from the annular valve seat 40c by sliding upward against the coil spring 70. As a result, the valve opening operation of the main valve device Vm can be satisfactorily performed. Other functions and effects are the same as those of the first embodiment.
(Third embodiment)
FIG. 6 shows a main part of the third embodiment of the present invention. The third embodiment is characterized in that the main valve device Vm described in the first embodiment is additionally provided with a heat insulating film 80a.

当該断熱膜80aは、PTFEからなるもので、当該断熱膜80aは、上記第1実施形態にて述べた空圧室部Ra内にてダイヤフラム80の環状薄膜部81に貼着されている。これにより、当該断熱膜80aは、その断熱特性に基づき、ダイヤフラム80の両面の間の温度差を減少させる役割を果たす。本第3実施形態において、断熱膜80aの形成材料としては、PTFEやゴアテックス(登録商標)等の断熱材料が挙げられる。その他の構成は、上記第1実施形態と同様である。   The heat insulating film 80a is made of PTFE, and the heat insulating film 80a is adhered to the annular thin film portion 81 of the diaphragm 80 in the pneumatic chamber portion Ra described in the first embodiment. Thereby, the said heat insulation film | membrane 80a plays the role which reduces the temperature difference between both surfaces of the diaphragm 80 based on the heat insulation characteristic. In the third embodiment, the material for forming the heat insulating film 80a includes a heat insulating material such as PTFE or Gore-Tex (registered trademark). Other configurations are the same as those in the first embodiment.

このように構成した本第3実施形態にいては、断熱膜80aが、上述のごとく、ダイヤフラム80の空圧室部Raからの面に貼着されて、その断熱特性に基づき、ダイヤフラム80の両面の間の温度差を減少させる役割を果たす。   In the third embodiment configured as described above, the heat insulating film 80a is attached to the surface of the diaphragm 80 from the air pressure chamber Ra as described above, and both surfaces of the diaphragm 80 are based on the heat insulating characteristics. It serves to reduce the temperature difference between.

このため、ガスや水蒸気がダイヤフラム内に浸透しても、当該ガスや水蒸気がダイヤフラム80の非晶質部内にて凝縮或いは凝固しないように当該ダイヤフラム80の薬液室部Rb側から空圧室部Ra側への温度勾配が断熱膜80aによって緩和される。   For this reason, even if gas or water vapor penetrates into the diaphragm, the pneumatic chamber portion Ra from the chemical solution chamber portion Rb side of the diaphragm 80 prevents the gas or water vapor from condensing or solidifying in the amorphous portion of the diaphragm 80. The temperature gradient toward the side is relaxed by the heat insulating film 80a.

これに伴い、ガスや水蒸気は、ダイヤフラム80内で凝固或いは凝縮することなく当該ダイヤフラム80を透過して、空気室部Ra内にて凝固或いは凝縮することとなる。従って、ダイヤフラム80の寿命をより一層改善することができ、その結果、主弁装置Vmの上述した開閉弁作動をより一層長期に亘り良好に維持し得る。その他の作用効果は、上記第1実施形態と同様である。   Along with this, the gas or water vapor passes through the diaphragm 80 without being solidified or condensed in the diaphragm 80, and is solidified or condensed in the air chamber Ra. Therefore, the lifetime of the diaphragm 80 can be further improved, and as a result, the above-described on-off valve operation of the main valve device Vm can be favorably maintained for a longer period of time. Other functions and effects are the same as those of the first embodiment.

なお、本発明の実施にあたり、上記実施形態に限ることなく、次のような種々の変形例が挙げられる。
(1)本発明の実施にあたり、ハウジングHの段付き内孔部は、上記実施形態とは異なり、同一内径からなる内孔部であってもよい。なお、当該同一内径の内孔部にあわせて、隔壁部材50の外径も同一外径とすればよい。
(2)本発明の実施にあたり、ハウジングHの段付き内孔部は、上記実施形態とは異なり、横断面四角形状であってもよい。なお、これに伴い、隔壁部材50及びピストン60も、共に、横断面四角形状とすればよい。
(3)本発明の実施にあたり、主弁装置Vm及び各副弁装置Vsa、Vsaの少なくともいずれかの弁装置において、コイルスプリング70は、上記各実施形態とは異なり、下室部32a内にてピストン本体61と隔壁部材50との間に同軸的に介装するようにしてもよい。これにより、上記いずれかの弁装置は、ダイヤフラム式常開型弁装置として機能する
この場合には、不等式(3)に代えて、次の不等式(7)
W<Pa×Sp+Pc×Sd・・・(7)が成立し、
不等式(4)に代えて、次の不等式(8)
Pa×Sp+Pc×Sd>W+P1×Ss+P2×Sd・・・(8)が成立し、
また、不等式(5)に代えて、次の不等式(9)
W+P1×Ss+P2×Sd>Pc×Sd・・・(9)
が成立する。
(4)本発明の実施にあたり、ハウジングH、ダイヤフラム80及び弁体90の各形成材料としては、上記実施形態にて述べたPTFEに限ることなく、PFAその他の耐熱特性の良好なフッ素樹脂を採用してもよい。
(5)本発明の実施にあたり、隔壁部材50の形成材料は、上記実施形態にて述べたPTFEに限ることなく、PFAその他の耐熱特性の良好なフッ素樹脂を採用してもよい。
(6)本発明の実施にあたり、上記第3実施形態にて述べた断熱膜80aは、主弁装置Vmに限ることなく、各副弁装置Vsa、Vsbのダイヤフラム80に空圧室部Ra側から貼着しても、上記第3実施形態と同様の作用効果を達成することができる。
(7)また、本発明の実施にあたり、上記第1実施形態にて述べた主弁装置Vm及び各副弁装置Vsa、Vsaの少なくともいずれかの弁装置において、コイルスプリング70、上側ハウジング部材30の流入孔部33、流出孔部34、各連通路部33a、34a、上室部32d及び下室部32e並びに空気供給源A1からなる構成に代えて、例えば、電磁式アクチュエータを採用し、この電磁式アクチュエータでもって、ピストン60を上記第1実施形態と同様に上下方向に摺動させるように駆動してもよい。
In carrying out the present invention, the following various modifications are possible without being limited to the above embodiment.
(1) In carrying out the present invention, the stepped inner hole portion of the housing H may be an inner hole portion having the same inner diameter, unlike the above embodiment. Note that the outer diameter of the partition member 50 may be the same outer diameter in accordance with the inner hole portion having the same inner diameter.
(2) In carrying out the present invention, the stepped inner hole portion of the housing H may have a rectangular cross section, unlike the above embodiment. Accordingly, both the partition wall member 50 and the piston 60 may have a rectangular cross section.
(3) In carrying out the present invention, in at least one of the valve devices of the main valve device Vm and each of the sub valve devices Vsa and Vsa, the coil spring 70 differs from the above embodiments in the lower chamber portion 32a. You may make it interpose coaxially between the piston main body 61 and the partition member 50. FIG. Thereby, any one of the valve devices described above functions as a diaphragm-type normally open valve device .
In this case, instead of inequality (3), the following inequality (7)
W <P a × Sp + Pc × Sd (7) is established,
Instead of inequality (4), the following inequality (8)
Pa × Sp + Pc × Sd> W + P1 × Ss + P2 × Sd (8) is established,
Also, instead of inequality (5), the following inequality (9)
W + P1 × Ss + P2 × Sd> Pc × Sd (9)
Is established.
(4) In implementing the present invention, the housing H, the diaphragm 80, and the valve body 90 are not limited to the PTFE described in the above embodiment, but are made of PFA or other fluororesins with good heat resistance. May be.
(5) In carrying out the present invention, the material for forming the partition member 50 is not limited to PTFE described in the above embodiment, but may be PFA or other fluororesins having good heat resistance.
(6) In the implementation of the present invention, the heat insulating film 80a described in the third embodiment is not limited to the main valve device Vm, and the diaphragms 80 of the sub valve devices Vsa and Vsb are provided from the pneumatic chamber Ra side. Even if it sticks, the effect similar to the said 3rd Embodiment can be achieved.
(7) In implementing the present invention, in the valve device of at least one of the main valve device Vm and the auxiliary valve devices Vsa and Vsa described in the first embodiment, the coil spring 70 and the upper housing member 30 Instead of the configuration including the inflow hole portion 33, the outflow hole portion 34, the respective communication passage portions 33a and 34a, the upper chamber portion 32d and the lower chamber portion 32e, and the air supply source A1, for example, an electromagnetic actuator is employed. A piston actuator may be driven to slide up and down in the same manner as in the first embodiment.

30a、40a…円筒状周壁、30b…上壁、32、42…段付き内孔部、
32d…開放室部、32e…制御圧室部、33、35…流入孔部、
33a、35a、55…連通路部、40b…底壁、40c…環状弁座、
43a…流入路部、43b…流出路部、44…流入筒部、45…流出筒部、
50…隔壁部材、56…分岐路部、60…ピストン、61…ピストン本体、
63…ピストンロッド、70…コイルスプリング、80…ダイヤフラム、
80a…断熱膜、90…弁体、H…ハウジング、Ra…空圧室部、
Rb…液圧室部。
30a, 40a ... cylindrical peripheral wall, 30b ... upper wall, 32, 42 ... stepped inner hole,
32d ... Open chamber portion, 32e ... Control pressure chamber portion, 33, 35 ... Inlet hole portion,
33a, 35a, 55 ... communication passage part, 40b ... bottom wall, 40c ... annular valve seat,
43a ... Inflow passage portion, 43b ... Outflow passage portion, 44 ... Inflow tube portion, 45 ... Outflow tube portion,
50 ... partition member, 56 ... branch passage, 60 ... piston, 61 ... piston body,
63 ... piston rod, 70 ... coil spring, 80 ... diaphragm,
80a ... heat insulation film, 90 ... valve body, H ... housing, Ra ... pneumatic chamber,
Rb: Hydraulic chamber.

Claims (5)

筒状周壁と、当該筒状周壁の軸方向両端部を閉塞する両端壁とを備え、当該両端壁のうちの一方の端壁に一側流路を形成するとともに前記筒状周壁のうちの前記一方の端壁の近傍部位に他側流路を形成して、高温の液体を前記一側及び他側の流路のうちの一方の流路から流入させて他方の流路内に流動させるようになっているハウジングと、
前記筒状周壁の軸方向中間部位内に嵌装される隔壁と、
前記筒状周壁内にて前記両端壁のうちの他方の端壁と前記隔壁との間に軸方向に摺動可能に嵌装されて前記筒状周壁を通して外部に連通する第1室部及び前記筒状周壁を通して外部に連通する第2室部をそれぞれ前記他方の端壁側及び前記隔壁側に位置するように区画形成するピストン本体と、当該ピストン本体から前記隔壁を通り前記一方の端壁に形成してなる環状弁座に向けて軸方向に摺動可能に延出するピストンロッドとを有するピストンと、
前記第1室部内に設けられて前記ピストン本体を前記第2室部側へ付勢する付勢手段と、
前記ピストンロッドの延出端部に前記環状弁座に対向するように設けられて当該環状弁座と共に弁手段を構成する弁体と、
前記筒状周壁内の前記隔壁と前記一方の端壁との間において軸方向に湾曲変位可能となるように前記筒状周壁の内周部と前記弁体の外周部との間に設けられて前記隔壁及び前記筒状周壁を通して外部に連通する第3室部を前記隔壁側に位置するように形成するとともに前記弁体を内包する第4室部を前記一方の端壁側に位置するように形成すべく、前記ハウジング及び前記弁体と共に所定の耐熱性能を有するフッ素樹脂でもって形成してなるダイヤフラムとを備えており、
前記一方の流路は、その内端開孔部にて、前記環状弁座を通り前記第4室部内に連通可能となっており、一方、前記他方の流路は、その内端開孔部にて、前記第4室部内に連通しており、
空気流が外部から前記筒状周壁を通し前記第2室部内に流入して前記ピストン本体に作用させる圧力を制御圧Paとし、前記ピストン本体の前記第2室部側の面積を受圧面積Spとし、前記付勢手段が前記第1室部内にて前記ピストン本体に作用させる付勢力を付勢荷重Wとし、空気流が外部から前記筒状周壁及び前記隔壁を通り前記第3室部内に流入して前記ダイヤフラムに作用させる圧力をダイヤフラム空圧Pcとし、かつ、前記ダイヤフラムの前記第3室部側の面積を受圧面積Sdとしたとき
記ダイヤフラム空圧Pcが前記第3室部内にて前記ダイヤフラムに作用している状態において、前記弁手段の開弁の際には、前記高温の液体が前記一方の流路及び前記環状弁座を通り前記弁体に達したとき当該弁体に作用させる圧力を弁体液圧P1とし、前記弁体の前記環状弁座に対する対向部位の面積を受圧面積Ssとし、前記液体が前記第4室部内に流入して前記ダイヤフラムに作用させる圧力をダイヤフラム液圧P2としたとき、
次の不等式1:
P1×Ss+P2×Sd+Pa×Sp>W+Pc×Sd…1
が成立するように、制御圧Paを前記第2室部内にて前記ピストン本体に作用させ、前記弁体液圧P1を前記弁体に作用させ、かつダイヤフラム液圧P2を前記第4室部内にて前記ダイヤフラムに作用させるに伴い、前記ピストンが、前記付勢手段による付勢荷重W及び前記第3室部内の前記ダイヤフラム空圧Pcに抗して、前記第1室部内の空気を、前記筒状周壁を通して外部に排出しながら前記第1室部側へ摺動することで、前記弁手段が前記弁体にて前記環状弁座から解離して開弁し前記液体を、前記第4室部を通して前記他方の流路内に流動させ、
また、前記弁手段の閉弁の際には、
次の不等式2:
W+Pc×Sd>P1×Ss+P2×Sd…2
が成立するように、前記第2室部内における前記ピストン本体への前記制御圧Paの作用を停止し、前記ピストンが、前記第4室部内にて前記ダイヤフラムに作用するダイヤフラム液圧P2及び前記弁体に作用する前記弁体液圧P1に抗して、前記付勢手段による付勢荷重W及び前記第3室部内の前記ダイヤフラム空圧Pcに応じて前記第2室部側へ摺動することで、前記弁手段が前記弁体にて前記環状弁座に着座して閉弁し、前記一方の流路から前記第4室部内への前記液体の流動を遮断するようにしたダイヤフラム式弁装置。
A cylindrical peripheral wall, and both end walls closing both axial ends of the cylindrical peripheral wall, and forming a one-side flow channel in one end wall of the both end walls and the cylindrical peripheral wall The other side flow path is formed in the vicinity of one end wall so that the high temperature liquid flows from one of the one side and the other side flow paths and flows into the other flow path. A housing that is
A partition wall fitted in the axially intermediate portion of the cylindrical peripheral wall;
A first chamber portion that is slidably fitted in an axial direction between the other end wall of the both end walls and the partition wall in the cylindrical peripheral wall and communicates with the outside through the cylindrical peripheral wall; A piston main body that partitions the second chamber portion communicating with the outside through the cylindrical peripheral wall so as to be positioned on the other end wall side and the partition wall side, and from the piston body to the one end wall through the partition wall. A piston having a piston rod extending slidably in an axial direction toward the formed annular valve seat;
A biasing means provided in the first chamber and biasing the piston body toward the second chamber;
A valve body that is provided at the extended end of the piston rod so as to face the annular valve seat and constitutes valve means together with the annular valve seat;
Provided between the inner peripheral portion of the cylindrical peripheral wall and the outer peripheral portion of the valve body so as to be able to be bent and displaced in the axial direction between the partition wall in the cylindrical peripheral wall and the one end wall. A third chamber portion communicating with the outside through the partition wall and the cylindrical peripheral wall is formed so as to be positioned on the partition wall side, and a fourth chamber portion containing the valve body is positioned on the one end wall side. In order to form, it comprises a diaphragm formed of a fluororesin having a predetermined heat resistance performance together with the housing and the valve body,
The one channel can communicate with the fourth chamber through the annular valve seat at the inner end opening, while the other channel has the inner end opening. And communicates with the fourth chamber.
The pressure that causes the air flow from the outside to flow into the second chamber through the cylindrical peripheral wall and act on the piston body is defined as the control pressure Pa, and the area of the piston body on the second chamber side is defined as the pressure receiving area Sp. The urging force that the urging means acts on the piston body in the first chamber portion is set as a urging load W, and an air flow flows from the outside through the cylindrical peripheral wall and the partition wall into the third chamber portion. When the pressure acting on the diaphragm is the diaphragm air pressure Pc, and the area of the diaphragm on the third chamber side is the pressure receiving area Sd ,
In a state where front Symbol diaphragm air pressure Pc acts on the diaphragm in the third chamber section, upon opening of the valve means, before Symbol hot flow path of the liquid is the one and the annular valve The pressure that acts on the valve body when it passes through the seat and reaches the valve body is a valve body fluid pressure P1, the area of the portion of the valve body facing the annular valve seat is the pressure receiving area Ss, and the liquid is in the fourth chamber. When the pressure that flows into the part and acts on the diaphragm is the diaphragm hydraulic pressure P2,
The following unequal equation 1:
P1 * Ss + P2 * Sd + Pa * Sp> W + Pc * Sd ... 1
So that the control pressure Pa is applied to the piston body in the second chamber, the valve fluid pressure P1 is applied to the valve body, and the diaphragm fluid pressure P2 is applied in the fourth chamber. Along with to act on the diaphragm, the piston, and anti to the diaphragm pneumatic P c of the biasing means urging the load weight W及 beauty said third chamber section by the air in said first chamber portion, By sliding to the first chamber portion side while discharging to the outside through the cylindrical peripheral wall, the valve means dissociates from the annular valve seat by the valve body and opens the liquid, Flow through the chamber into the other channel,
When the valve means is closed,
The following unequal equation 2:
W + Pc × Sd> P1 × Ss + P2 × Sd 2
As but satisfied, the action of the control pressure Pa to the piston body in the second chamber portion stops, the piston, the diaphragm pressure P2及 beauty said acting on the diaphragm in the fourth chamber portion and anti to the valve body fluid pressure P1 acting on the valve body, sliding into said second chamber portion in response to said diaphragm pneumatic Pc of the biasing load heavy W及 beauty said third chamber portion by said biasing means Thus, the valve means is seated on the annular valve seat with the valve body and is closed, and the diaphragm type is configured to block the flow of the liquid from the one flow path into the fourth chamber portion. Valve device.
筒状周壁と、当該筒状周壁の軸方向両端部を閉塞する両端壁とを備え、当該両端壁のうちの一方の端壁に一側流路を形成するとともに前記筒状周壁のうちの前記一方の端壁の近傍部位に他側流路を形成して、高温の液体を前記一側及び他側の流路のうちの一方の流路から流入させて他方の流路内に流動させるようになっているハウジングと、
前記筒状周壁の軸方向中間部位内に嵌装される隔壁と、
前記筒状周壁内にて前記両端壁のうちの他方の端壁と前記隔壁との間に軸方向に摺動可能に嵌装されて前記筒状周壁を通して外部に連通する第1室部及び前記筒状周壁を通して外部に連通する第2室部をそれぞれ前記他方の端壁側及び前記隔壁側に位置するように区画形成するピストン本体と、当該ピストン本体から前記隔壁を通り前記一方の端壁に形成してなる環状弁座に向けて軸方向に摺動可能に延出するピストンロッドとを有するピストンと、
前記第2室部内に設けられて前記ピストン本体を前記第1室部側へ付勢する付勢手段と、
前記ピストンロッドの延出端部に前記環状弁座に対向するように設けられて当該環状弁座と共に弁手段を構成する弁体と、
前記筒状周壁内の前記隔壁と前記一方の端壁との間において軸方向に湾曲変位可能となるように前記筒状周壁の内周部と前記弁体の外周部との間に設けられて前記隔壁及び前記筒状周壁を通して外部に連通する第3室部を前記隔壁側に位置するように形成するとともに前記弁体を内包する第4室部を前記一方の端壁側に位置するように形成すべく、前記ハウジング及び前記弁体と共に所定の耐熱性能を有するフッ素樹脂でもって形成してなるダイヤフラムとを備えており、
前記一方の流路は、その内端開孔部にて、前記環状弁座を通り前記第4室部内に連通可能となっており、一方、前記他方の流路は、その内端開孔部にて、前記第4室部内に連通しており、
空気流が外部から前記筒状周壁を通り前記第1室部内に流入して前記ピストン本体に作用させる圧力を制御圧Paとし、前記ピストン本体の前記第1室部側の面積を受圧面積Spとし、前記付勢手段が前記第2室部内にて前記ピストン本体に作用させる付勢力を付勢荷重Wとし、空気流が外部から前記筒状周壁及び前記隔壁を通り前記第3室部内に流入して前記ダイヤフラムに作用させる圧力をダイヤフラム空圧Pcとし、かつ、前記ダイヤフラムの前記第3室部側の面積を受圧面積Sdとしたとき
記ダイヤフラム空圧Pcが前記第3室部内にて前記ダイヤフラムに作用している状態において、前記弁手段の閉弁の際には、前記高温の液体が前記一方の流路及び前記環状弁座を通り前記弁体に達したとき当該弁体に作用させる圧力を弁体液圧P1とし、前記弁体の前記環状弁座に対する対向部位の面積を受圧面積Ssとし、前記液体が前記第4室部内に流入して前記ダイヤフラムに作用させる圧力をダイヤフラム液圧P2としたとき、
次の不等式3:
Pa×Sp+Pc×Sd>W+P1×Ss+P2×Sd…3
が成立するように、制御圧Paを前記第1室部内にて前記ピストン本体に作用させ、前記ピストンが、前記第2室部内にて前記ピストン本体に作用する前記付勢荷重W、前記弁体に作用する前記弁体液圧P1及び前記第4室部内にて前記ダイヤフラムに作用するダイヤフラム液圧P2に抗して、前記制御圧及び前記第3室部内にて前記ダイヤフラムに作用する前記ダイヤフラム空圧に応じて、前記第2室部側へ摺動することで、前記弁手段が前記弁体にて前記環状弁座に着座して閉弁し前記液体の前記一方の流路から前記第4室部内への流動を遮断し、
また、前記弁手段の開弁の際には、前記一方の流路への流入薬液が前記環状弁座を通り前記第4室部に流入して前記ダイヤフラムに液圧を作用させながら当該第4室部から前記他方の流路内に流入し、
次の不等式4:
W+P1×Ss+P2×Sd>Pc×Sd…4
が成立するように、前記第1室部内における前記制御圧Paの前記ピストン本体に対する作用を停止し、前記ピストンが、前記第3室部内にて前記ダイヤフラムに作用する前記ダイヤフラム空圧に抗して、前記第2室部内にて前記ピストン本体に作用する前記付勢荷重、前記弁体に作用する前記弁体液圧及び前記第4室部内にて前記ダイヤフラムに作用するダイヤフラム液圧に応じて、前記第1室部側へ摺動することで、前記一方の流路への流入薬液を前記環状弁座を介し前記第4室部内へ流動させるようにしたダイヤフラム式弁装置。
A cylindrical peripheral wall, and both end walls closing both axial ends of the cylindrical peripheral wall, and forming a one-side flow channel in one end wall of the both end walls and the cylindrical peripheral wall The other side flow path is formed in the vicinity of one end wall so that the high temperature liquid flows from one of the one side and the other side flow paths and flows into the other flow path. A housing that is
A partition wall fitted in the axially intermediate portion of the cylindrical peripheral wall;
A first chamber portion that is slidably fitted in an axial direction between the other end wall of the both end walls and the partition wall in the cylindrical peripheral wall and communicates with the outside through the cylindrical peripheral wall; A piston main body that partitions the second chamber portion communicating with the outside through the cylindrical peripheral wall so as to be positioned on the other end wall side and the partition wall side, and from the piston body to the one end wall through the partition wall. A piston having a piston rod extending slidably in an axial direction toward the formed annular valve seat;
A biasing means provided in the second chamber for biasing the piston body toward the first chamber;
A valve body that is provided at the extended end of the piston rod so as to face the annular valve seat and constitutes valve means together with the annular valve seat;
Provided between the inner peripheral portion of the cylindrical peripheral wall and the outer peripheral portion of the valve body so as to be able to be bent and displaced in the axial direction between the partition wall in the cylindrical peripheral wall and the one end wall. A third chamber portion communicating with the outside through the partition wall and the cylindrical peripheral wall is formed so as to be positioned on the partition wall side, and a fourth chamber portion containing the valve body is positioned on the one end wall side. In order to form, it comprises a diaphragm formed of a fluororesin having a predetermined heat resistance performance together with the housing and the valve body,
The one channel can communicate with the fourth chamber through the annular valve seat at the inner end opening, while the other channel has the inner end opening. And communicates with the fourth chamber.
The pressure that causes the air flow from the outside to flow into the first chamber portion through the cylindrical peripheral wall and act on the piston body is defined as a control pressure Pa, and the area of the piston body on the first chamber portion side is defined as a pressure receiving area Sp. The urging force that the urging means acts on the piston main body in the second chamber portion is set as a urging load W, and an air flow flows from the outside through the cylindrical peripheral wall and the partition wall into the third chamber portion. When the pressure acting on the diaphragm is the diaphragm air pressure Pc, and the area of the diaphragm on the third chamber side is the pressure receiving area Sd ,
In a state where front Symbol diaphragm air pressure Pc acts on the diaphragm in the third chamber section, during closing of said valve means, before Symbol hot flow path of the liquid is the one and the annular valve The pressure that acts on the valve body when it passes through the seat and reaches the valve body is a valve body fluid pressure P1, the area of the portion of the valve body facing the annular valve seat is the pressure receiving area Ss, and the liquid is in the fourth chamber When the pressure that flows into the part and acts on the diaphragm is the diaphragm hydraulic pressure P2,
The following unequal equation 3:
Pa * Sp + Pc * Sd> W + P1 * Ss + P2 * Sd ... 3
As but satisfied, controls the pressure Pa is applied to the piston body by said first chamber portion, said piston, said biasing load acting on said piston body in said second chamber portion heavy W, the valve and anti at the valve body fluid pressure P1及 beauty the fourth chamber portion acting on the body in the diaphragm pressure P2 acting on the diaphragm, the diaphragm acting on the diaphragm by the control pressure and the third chamber portion By sliding to the second chamber side according to the air pressure, the valve means sits on the annular valve seat with the valve body and closes, and the liquid from the one flow path of the liquid Block the flow into the four chambers,
In addition, when the valve means is opened, the inflowing chemical liquid flowing into the one flow path passes through the annular valve seat and flows into the fourth chamber portion to apply the hydraulic pressure to the diaphragm. Flows into the other flow path from the chamber,
The following unequal equation 4:
W + P1 * Ss + P2 * Sd> Pc * Sd ... 4
So that the operation of the control pressure Pa in the first chamber portion with respect to the piston body is stopped, and the piston resists the diaphragm air pressure acting on the diaphragm in the third chamber portion. In accordance with the biasing load acting on the piston body in the second chamber, the valve fluid pressure acting on the valve body, and the diaphragm fluid pressure acting on the diaphragm in the fourth chamber, A diaphragm type valve device configured to flow into the fourth chamber through the annular valve seat by sliding toward the first chamber.
筒状周壁と、当該筒状周壁の軸方向両端部を閉塞する両端壁とを備え、当該両端壁のうちの一方の端壁に一側流路を形成するとともに前記筒状周壁のうちの前記一方の端壁の近傍部位に他側流路を形成して、高温の液体を前記一側及び他側の流路のうちの一方の流路から流入させて他方の流路内に流動させるようになっているハウジングと、
前記筒状周壁の軸方向中間部位内に嵌装される隔壁と、
前記筒状周壁内にて前記両端壁のうちの他方の端壁と前記隔壁との間に軸方向に摺動可能に嵌装されて前記筒状周壁を通して外部に連通する第1室部及び前記筒状周壁を通して外部に連通する第2室部をそれぞれ前記他方の端壁側及び前記隔壁側に位置するように区画形成するピストン本体と、当該ピストン本体から前記隔壁を通り前記一方の端壁に形成してなる環状弁座に向けて軸方向に摺動可能に延出するピストンロッドとを有するピストンと、
前記第1室部内に設けられて前記ピストン本体を前記第2室部側へ付勢する付勢手段と、
前記ピストンロッドの延出端部に前記環状弁座に対向するように設けられて当該環状弁座と共に弁手段を構成する弁体と、
前記筒状周壁内の前記隔壁と前記一方の端壁との間において軸方向に湾曲変位可能となるように前記筒状周壁の内周部と前記弁体の外周部との間に設けられて前記隔壁を通り前記第2室部内に連通する第3室部を前記隔壁側に位置するように形成するとともに前記弁体を内包する第4室部を前記一方の端壁側に位置するように形成すべく、前記ハウジング及び前記弁体と共に所定の耐熱性能を有するフッ素樹脂でもって形成してなるダイヤフラムとを備えており、
前記一方の流路は、その内端開孔部にて、前記環状弁座を通り前記第4室部内に連通可能となっており、一方、前記他方の流路は、その内端開孔部にて、前記第4室部内に連通しており、
空気流が外部から前記筒状周壁を通し前記第2室部内に流入して前記ピストン本体に作用させる圧力を制御圧Paとし、前記ピストン本体の前記第2室部側の面積を受圧面積Spとし、前記付勢手段が前記第1室部内にて前記ピストン本体に作用させる付勢力を付勢荷重Wとし、空気流が前記第2室部から前記隔壁を通り前記第3室部内に流入して前記ダイヤフラムに作用させる圧力をダイヤフラム空圧Pcとし、かつ、前記ダイヤフラムの前記第3室部側の面積を受圧面積Sdとしたとき
記ダイヤフラム空圧Pcが前記第3室部内にて前記ダイヤフラムに作用している状態において、前記弁手段の開弁の際には、前記高温の液体が前記一方の流路及び前記環状弁座を通り前記弁体に達したとき当該弁体に作用させる圧力を弁体液圧P1とし、前記弁体の前記環状弁座に対する対向部位の面積を受圧面積Ssとし、前記液体が前記第4室部内に流入して前記ダイヤフラムに作用させる圧力をダイヤフラム液圧P2としたとき、
次の不等式5:
P1×Ss+P2×Sd+Pa×Sp>W+Pc×Sd…5
が成立するように、制御圧Paを前記第2室部内にて前記ピストン本体に作用させ、前記弁体液圧P1を前記弁体に作用させ、かつダイヤフラム液圧P2を前記第4室部内にて前記ダイヤフラムに作用させるに伴い、前記ピストンが、前記付勢手段による付勢荷重W及び前記第3室部内の前記ダイヤフラム空圧Pcに抗して、前記第1室部内の空気を、前記筒状周壁を通して外部に排出しながら前記第1室部側へ摺動することで、前記弁手段が前記弁体にて前記環状弁座から解離して開弁し前記液体を、前記第4室部を通して前記他方の流路内に流動させ、
また、前記弁手段の閉弁の際には、
次の不等式6:
W+Pc×Sd>P1×Ss+P2×Sd…6
が成立するように、前記第2室部内における前記ピストン本体への前記制御圧Paの作用を停止し、前記ピストンが、前記第4室部内にて前記ダイヤフラムに作用する前記ダイヤフラム液圧P2及び前記弁体に作用する前記弁体液圧P1に抗して、前記付勢手段による付勢荷重W及び前記第3室部内の前記ダイヤフラム空圧に応じて前記第2室部側へ摺動することで、前記弁手段が前記弁体にて前記環状弁座に着座して閉弁し、前記一方の流路から前記第4室部内への前記液体の流動を遮断するようにしたダイヤフラム式弁装置。
A cylindrical peripheral wall, and both end walls closing both axial ends of the cylindrical peripheral wall, and forming a one-side flow channel in one end wall of the both end walls and the cylindrical peripheral wall The other side flow path is formed in the vicinity of one end wall so that the high temperature liquid flows from one of the one side and the other side flow paths and flows into the other flow path. A housing that is
A partition wall fitted in the axially intermediate portion of the cylindrical peripheral wall;
A first chamber portion that is slidably fitted in an axial direction between the other end wall of the both end walls and the partition wall in the cylindrical peripheral wall and communicates with the outside through the cylindrical peripheral wall; A piston main body that partitions the second chamber portion communicating with the outside through the cylindrical peripheral wall so as to be positioned on the other end wall side and the partition wall side, and from the piston body to the one end wall through the partition wall. A piston having a piston rod extending slidably in an axial direction toward the formed annular valve seat;
A biasing means provided in the first chamber and biasing the piston body toward the second chamber;
A valve body that is provided at the extended end of the piston rod so as to face the annular valve seat and constitutes valve means together with the annular valve seat;
Provided between the inner peripheral portion of the cylindrical peripheral wall and the outer peripheral portion of the valve body so as to be able to be bent and displaced in the axial direction between the partition wall in the cylindrical peripheral wall and the one end wall. A third chamber communicating with the second chamber through the partition is formed to be positioned on the partition, and a fourth chamber containing the valve body is positioned on the one end wall. In order to form, it comprises a diaphragm formed of a fluororesin having a predetermined heat resistance performance together with the housing and the valve body,
The one channel can communicate with the fourth chamber through the annular valve seat at the inner end opening, while the other channel has the inner end opening. And communicates with the fourth chamber.
The pressure that causes the air flow from the outside to flow into the second chamber through the cylindrical peripheral wall and act on the piston body is defined as the control pressure Pa, and the area of the piston body on the second chamber side is defined as the pressure receiving area Sp. The biasing force applied to the piston body in the first chamber by the biasing means is a bias load W, and an air flow flows from the second chamber through the partition into the third chamber. When the pressure acting on the diaphragm is the diaphragm air pressure Pc, and the area of the diaphragm on the third chamber side is the pressure receiving area Sd ,
In a state where front Symbol diaphragm air pressure Pc acts on the diaphragm in the third chamber section, upon opening of the valve means, before Symbol hot flow path of the liquid is the one and the annular valve The pressure that acts on the valve body when it passes through the seat and reaches the valve body is a valve body fluid pressure P1, the area of the portion of the valve body facing the annular valve seat is the pressure receiving area Ss, and the liquid is in the fourth chamber. When the pressure that flows into the part and acts on the diaphragm is the diaphragm hydraulic pressure P2,
The following unequal equation 5:
P1 * Ss + P2 * Sd + Pa * Sp> W + Pc * Sd ... 5
So that the control pressure Pa is applied to the piston body in the second chamber, the valve fluid pressure P1 is applied to the valve body, and the diaphragm fluid pressure P2 is applied in the fourth chamber. Along with to act on the diaphragm, the piston, and anti to the diaphragm pneumatic Pc of the biasing means urging the load weight W及 beauty said third chamber section by the air in said first chamber portion, said By sliding to the first chamber portion side while discharging to the outside through the cylindrical peripheral wall, the valve means is disengaged from the annular valve seat by the valve body to open the liquid, and the fourth chamber Flow into the other channel through the section,
When the valve means is closed,
The following unequal equation 6:
W + Pc × Sd> P1 × Ss + P2 × Sd ... 6
As but satisfied, the action of the control pressure Pa to the piston body in the second chamber portion stops, the piston, the diaphragm pressure P2及 beauty acting on the diaphragm at the fourth chamber portion and anti to the valve body fluid pressure P1 acting on the valve body, sliding into said second chamber portion in response to said diaphragm pneumatic biasing load heavy W及 beauty said third chamber portion by said biasing means Thus, the valve means is seated on the annular valve seat with the valve body and is closed, and the diaphragm type is configured to block the flow of the liquid from the one flow path into the fourth chamber portion. Valve device.
前記第3室部は、前記隔壁内に形成してなる連通路部を通り、前記筒状周壁を介して外部に連通しており、
前記連通路部は、その通路方向中間部位にて、前記隔壁内に形成してなる分岐路部を通して前記第2室部内に連通することを特徴とする請求項1に記載のダイヤフラム式弁装置。
The third chamber portion passes through a communication passage formed in the partition wall and communicates with the outside through the cylindrical peripheral wall.
The communicating passage portion, at its passage direction intermediate portion, diaphragm valve according to claim 1, wherein the communicating child in the second chamber section through the bulkhead to the obtained by forming the branch passage portion .
前記ダイヤフラムの両面のうち前記第3室部内側面に沿い設けてなる断熱層を備えることを特徴とする請求項1〜4のいずれか1つに記載のダイヤフラム式弁装置。 Diaphragm valve according to any one of claims 1-4, characterized in that it comprises a pre-Symbol insulation layer formed by providing along the third chamber portion side of both sides of the diaphragm.
JP2012269634A 2012-12-10 2012-12-10 Diaphragm valve device Expired - Fee Related JP6118092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269634A JP6118092B2 (en) 2012-12-10 2012-12-10 Diaphragm valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269634A JP6118092B2 (en) 2012-12-10 2012-12-10 Diaphragm valve device

Publications (2)

Publication Number Publication Date
JP2014114888A JP2014114888A (en) 2014-06-26
JP6118092B2 true JP6118092B2 (en) 2017-04-19

Family

ID=51171114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269634A Expired - Fee Related JP6118092B2 (en) 2012-12-10 2012-12-10 Diaphragm valve device

Country Status (1)

Country Link
JP (1) JP6118092B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178757A (en) * 2018-03-30 2019-10-17 株式会社アツデン Diaphragm flow control valve
JP7061794B2 (en) * 2018-08-10 2022-05-02 アドバンス電気工業株式会社 Diaphragm member
JP7217501B2 (en) * 2018-10-17 2023-02-03 アドバンス電気工業株式会社 diaphragm valve
JP2022136512A (en) 2021-03-08 2022-09-21 アドバンス電気工業株式会社 diaphragm valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517884A (en) * 2002-02-15 2005-06-16 東京エレクトロン株式会社 Pressure-enhanced diaphragm valve
JP2004019792A (en) * 2002-06-17 2004-01-22 Advance Denki Kogyo Kk Transmission gas discharge structure of diaphragm valve
JP2007078145A (en) * 2005-09-16 2007-03-29 Kushida Kogyo Kk Chemical control valve
JP5048710B2 (en) * 2009-04-08 2012-10-17 Ckd株式会社 Fluid control valve
JP5753352B2 (en) * 2010-07-20 2015-07-22 株式会社Screenホールディングス Diaphragm valve and substrate processing apparatus provided with the same
WO2013018539A1 (en) * 2011-07-29 2013-02-07 Ckd株式会社 Fluid control valve

Also Published As

Publication number Publication date
JP2014114888A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6118092B2 (en) Diaphragm valve device
TWI537696B (en) Pressure flow control device and its flow control at the beginning of the over-prevention method
JP3924386B2 (en) Flow control system
JP2009230259A (en) Flow controller
An et al. A monolithic high-flow Knudsen pump using vertical Al 2 O 3 channels in SOI
JP2009068568A (en) Suck-back valve
JP2017083981A (en) Self-operated adjustment valve
JP2005141734A (en) Modulator
JP2008014492A (en) Cartridge valve assembly
JP6002789B2 (en) Vacuum pressure proportional control valve
KR101491713B1 (en) Method for controlling flow rate of liquid or gas
JP2007058339A (en) Fluid control device
JP5791915B2 (en) Pilot steam trap
JP5643570B2 (en) Thermally responsive steam trap
US9435441B2 (en) Anti-cavitation throttle valve and method of operating the same
JP4833091B2 (en) Thermally responsive steam trap
JP2002110659A (en) Vaporizer provided with degassing function
JP5269738B2 (en) Thermally responsive steam trap
JP5254089B2 (en) Thermally responsive steam trap
JP4763936B2 (en) Gas purging method and structure in valve
JP2008202622A (en) Heat responding steam trap
JP2013065078A (en) Mass flow controller and flow control method for mass flow controller
JP6320793B2 (en) Temperature control valve
JP2015078645A (en) Heat transition flow pump system
JP2011064230A (en) Pilot type steam trap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees