JP6115887B2 - Oxygen compressor switching flow rate measurement method - Google Patents

Oxygen compressor switching flow rate measurement method Download PDF

Info

Publication number
JP6115887B2
JP6115887B2 JP2013053374A JP2013053374A JP6115887B2 JP 6115887 B2 JP6115887 B2 JP 6115887B2 JP 2013053374 A JP2013053374 A JP 2013053374A JP 2013053374 A JP2013053374 A JP 2013053374A JP 6115887 B2 JP6115887 B2 JP 6115887B2
Authority
JP
Japan
Prior art keywords
oxygen
low
pressure
pressure oxygen
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013053374A
Other languages
Japanese (ja)
Other versions
JP2014177685A (en
Inventor
聡 真鍋
聡 真鍋
正史 中村
正史 中村
俊介 竹村
俊介 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013053374A priority Critical patent/JP6115887B2/en
Publication of JP2014177685A publication Critical patent/JP2014177685A/en
Application granted granted Critical
Publication of JP6115887B2 publication Critical patent/JP6115887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

この発明は、併設された吐出圧力の異なる2つの酸素プラントから低圧酸素を製造し、さらには2台の圧縮機を用いて高圧酸素を製造する過程において、各々の酸素プラントの酸素使用量を監視する酸素の流量測定方法に関するものである。   This invention monitors the oxygen usage of each oxygen plant in the process of producing low-pressure oxygen from two oxygen plants with different discharge pressures and also producing high-pressure oxygen using two compressors. The present invention relates to a method for measuring the flow rate of oxygen.

銅乾式製錬における自熔炉と転炉では、熔体を酸化するために高圧酸素や低圧酸素、及び空気の吹き込みが行われている。その使用量は、自熔炉と転炉の操業計画、操業状況によって変動し、特に高圧酸素或いは低圧酸素を用いる場合、それらの酸素を供給する側の酸素プラントでは、その送給量を調整する必要がある。
現状では、低圧酸素を製造する吐出圧力の異なる2つの酸素プラントと、低圧酸素を高圧酸素へと圧縮する2台の酸素圧縮機から成る酸素製造設備を使用し、低圧酸素、高圧酸素を自熔炉と転炉に送っている。
In a self-melting furnace and a converter in copper dry smelting, high pressure oxygen, low pressure oxygen, and air are blown in order to oxidize a melt. The amount used varies depending on the operation plan and operation status of the auto-smelting furnace and converter. Especially when high-pressure oxygen or low-pressure oxygen is used, it is necessary to adjust the supply amount in the oxygen plant that supplies those oxygen. There is.
Currently, it uses two oxygen plants that produce low-pressure oxygen with different discharge pressures and two oxygen compressors that compress low-pressure oxygen into high-pressure oxygen. And sent to the converter.

図1は、従来の酸素製造設備構成図である。
通常、酸素プラント3から自熔炉系低圧酸素ライン1、自熔炉行き高圧酸素ライン12、転炉行き高圧酸素ライン13へ酸素が供給されている。
自熔炉用酸素圧縮機10、転炉用酸素圧縮機11への酸素供給量監視は、流量計16と流量計17を用い、自熔炉用酸素圧縮機10への供給量は流量計17の測定値、転炉用酸素圧縮機11の供給量は流量計16と流量計17の差分量として監視している。
FIG. 1 is a configuration diagram of a conventional oxygen production facility.
Usually, oxygen is supplied from the oxygen plant 3 to the self-melting furnace low-pressure oxygen line 1, the high-pressure oxygen line 12 for the self-melting furnace, and the high-pressure oxygen line 13 for the converter.
The oxygen supply amount monitoring to the oxygen compressor 10 for the self-melting furnace and the oxygen compressor 11 for the converter uses the flow meter 16 and the flow meter 17, and the supply amount to the oxygen compressor 10 for the self-melting furnace is measured by the flow meter 17. The value and the supply amount of the converter oxygen compressor 11 are monitored as the difference between the flow meter 16 and the flow meter 17.

酸素プラント4は、自熔炉系低圧酸素ライン2へ酸素を供給しており、自熔炉用酸素圧縮機10、転炉用酸素圧縮機11への供給は、酸素供給切替ON−OFF弁8を閉として行わず、酸素プラント3のバックアップ用としている。
なお、図1において、5、6は放風弁、7、9は酸素供給切替ON−OFF弁、14、15は流量計である。
The oxygen plant 4 supplies oxygen to the self-melting furnace low-pressure oxygen line 2, and the oxygen supply switching ON-OFF valve 8 is closed for supply to the oxygen compressor 10 for the self-melting furnace and the oxygen compressor 11 for the converter. Is not used as a backup for the oxygen plant 3.
In FIG. 1, 5 and 6 are air discharge valves, 7 and 9 are oxygen supply switching ON-OFF valves, and 14 and 15 are flow meters.

図2は、従来の高圧系酸素供給パターンと各酸素プラントからの酸素使用量監視フローチャート図で、表1のパターンリストに示すパターンに則って、酸素供給切替ON−OFF弁7、及び酸素供給切替ON−OFF弁8を操作して酸素の供給が行われる。
自熔炉系低圧酸素ライン1の酸素使用量が増加した場合は、酸素供給切替ON−OFF弁8を開とし、高圧酸素ラインの供給不足分を補充する必要があり、酸素プラント3と酸素プラント4の2基の酸素プラントより高圧酸素の供給を行う供給パターンIIIの状況となる。しかしパターンIIIの場合、各酸素プラントからの酸素使用量は高圧酸素ライン分が不明瞭となるだけでなく、吐出圧力の違いにより事実上、パターンIIIでの酸素供給をする事が困難である。
FIG. 2 is a conventional high-pressure oxygen supply pattern and a flow chart for monitoring oxygen usage from each oxygen plant. In accordance with the patterns shown in the pattern list of Table 1, the oxygen supply switching ON-OFF valve 7 and the oxygen supply switching Oxygen is supplied by operating the ON-OFF valve 8.
When the amount of oxygen used in the self-melting furnace low-pressure oxygen line 1 increases, it is necessary to open the oxygen supply switching ON-OFF valve 8 and replenish the supply shortage of the high-pressure oxygen line. It becomes the situation of supply pattern III which supplies high pressure oxygen from these two oxygen plants. However, in the case of Pattern III, the amount of oxygen used from each oxygen plant is not only unclear for the high pressure oxygen line, but it is practically difficult to supply oxygen in Pattern III due to the difference in discharge pressure.

よって、自熔炉系低圧酸素ライン1の酸素使用量増加に対応する為には、自熔炉系低圧酸素ライン2の酸素供給量を大きく減少させて、パターンIIでの運転方法を採用しなければならなくなっている。   Therefore, in order to cope with the increase in oxygen usage in the autoclave system low pressure oxygen line 1, the oxygen supply amount in the autoclave system low pressure oxygen line 2 must be greatly reduced and the operation method in Pattern II must be adopted. It is gone.

Figure 0006115887
Figure 0006115887


特開平10−220961号公報Japanese Patent Laid-Open No. 10-220961

本発明は、このような状況を解決するためになされたものであり、自熔炉・転炉での酸素使用量によって生じる酸素プラントの高圧系酸素供給パターン切替において、圧力の異なる酸素を供給可能にする、酸素プラントの酸素使用量監視による酸素プラント切替方法、および酸素プラント切替の為の流量測定方法を提供するものである。   The present invention has been made in order to solve such a situation, and enables oxygen having different pressures to be supplied in high-pressure oxygen supply pattern switching of an oxygen plant caused by the amount of oxygen used in the auto-smelting furnace / converter. An oxygen plant switching method based on oxygen usage monitoring of an oxygen plant and a flow rate measuring method for oxygen plant switching are provided.

本発明は、上記課題を解決する為に、2系統への高圧系酸素供給が吐出圧力の異なる2基の酸素プラントにて行われる時に限っては、酸素プラント3を自熔炉専用、酸素プラント4を転炉専用として切替が可能となれば、同時に圧力の異なる酸素の供給を行え、かつ各酸素プラントの高圧酸素ライン分の流量測定ができることを見出し、本発明の完成に至ったものである。   In order to solve the above-mentioned problems, the present invention provides an oxygen plant 3 exclusively for a self-smelting furnace and an oxygen plant 4 only when high-pressure oxygen supply to the two systems is performed in two oxygen plants having different discharge pressures. As a result, the present inventors have found that the oxygen can be supplied at different pressures simultaneously and that the flow rate for the high-pressure oxygen line of each oxygen plant can be measured.

本発明の第1の発明は、銅製錬工程で用いる吐出圧力の異なる2基の酸素プラントを低圧酸素の供給元として備え、それらの酸素プラントの各々から供給された低圧酸素を集合し、集合した低圧酸素の量を流量計で測定した後、集合した低圧酸素を、自熔炉行き高圧酸素ラインに接続された自熔炉用酸素圧縮機設備向けと、転炉行き高圧酸素ラインに接続された転炉用酸素圧縮機設備向けとに分岐後、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給された低圧酸素の量を流量計で測定し、酸素プラントの各々から流量計を介して自熔炉に低圧酸素を供給する、それぞれの自熔炉低圧酸素ラインを有し、その自熔炉低圧酸素ラインに供給される低圧酸素量を流量計により測定する酸素製造設備において、各圧縮機設備に低圧酸素を供給して高圧酸素を生成する際に、それら2基の酸素プラントの各々から供給される低圧酸素の使用量を監視することによる自熔炉用及び転炉用酸素圧縮機設備への低圧酸素の供給元である酸素プラントの切換方法であって、それら2基の酸素プラントの各々が、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備への低圧酸素の専属供給元となるように、2基の酸素プラントのいずれかと自熔炉用酸素圧縮機又は転炉用酸素圧縮機設備を直結する流量計を備えた高圧酸素バイパス配管を、低圧酸素の集合前に分岐し、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給される低圧酸素の量を測定する流量計下流側の位置で接続するように設けることによって、銅製錬工程における自熔炉の低圧酸素使用量の増大に応じて低圧酸素を供給する酸素プラントの切替を行うことを特徴とする各酸素プラントの使用量監視による酸素プラント切替方法である。 The first invention of the present invention comprises two oxygen plants with different discharge pressures used in a copper smelting process as a supply source of low-pressure oxygen, and collects and aggregates low-pressure oxygen supplied from each of these oxygen plants. After measuring the amount of low-pressure oxygen with a flow meter, the collected low-pressure oxygen is used for the oxygen compressor equipment for the self-melting furnace connected to the high-pressure oxygen line for the self-melting furnace and the converter connected to the high-pressure oxygen line for the converter After branching to the oxygen compressor facility, the amount of low-pressure oxygen supplied to either the oxygen compressor facility for the self-melting furnace or the oxygen compressor facility for the converter was measured with a flow meter, and the flow rate from each oxygen plant In each oxygen production facility that has a low pressure oxygen line for supplying low pressure oxygen to the flash furnace via a meter, and that measures the amount of low pressure oxygen supplied to the low pressure oxygen line of the self melt furnace using a flow meter Machine equipment low When oxygen is supplied to produce high-pressure oxygen, low-pressure oxygen is supplied to the oxygen compressor equipment for auto-smelting furnace and converter by monitoring the amount of low-pressure oxygen supplied from each of these two oxygen plants. The oxygen plant switching method is to supply each of the two oxygen plants as an exclusive supply source of low-pressure oxygen to the oxygen compressor equipment for the self-melting furnace or the oxygen compressor equipment for the converter In addition, a high-pressure oxygen bypass pipe equipped with a flow meter that directly connects one of the two oxygen plants to the oxygen compressor for the self-melting furnace or the oxygen compressor for the converter is branched before the assembly of the low-pressure oxygen. Low pressure oxygen in the flash smelting process in the copper smelting process by connecting the oxygen compressor equipment or the oxygen compressor equipment for the converter to be connected at a position downstream of the flow meter that measures the amount of low pressure oxygen supplied to the converter. To increase usage Flip and an oxygen plant switching method according to usage monitoring the oxygen plant, characterized in that to switch oxygen plant supplying the low-pressure oxygen.

本発明の第2の発明は、銅製錬工程で用いる吐出圧力の異なる2基の酸素プラントを低圧酸素の供給元として備え、それらの酸素プラントの各々から供給された低圧酸素を集合し、集合した低圧酸素の量を流量計で測定した後、集合した低圧酸素を、自熔炉行き高圧酸素ラインに接続された自熔炉用酸素圧縮機設備向けと、転炉行き高圧酸素ラインに接続された転炉用酸素圧縮機設備向けとに分岐後、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給された低圧酸素の量を、その流量計で測定し、酸素プラントの各々から流量計を介して自熔炉に低圧酸素を供給する、それぞれの自熔炉低圧酸素ラインを有し、その自熔炉低圧酸素ラインに供給される低圧酸素量を流量計により測定する酸素製造設備において、各圧縮機設備に低圧酸素を供給して高圧酸素を生成する際に、それら2基の酸素プラントの各々から供給される低圧酸素の使用量を監視することによる自熔炉用及び転炉用酸素圧縮機設備への低圧酸素の供給元である酸素プラントの切換のための流量測定方法であって、それら2基の酸素プラントの各々が、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備への低圧酸素の専属供給元となるように、それら2基の酸素プラントのいずれかと自熔炉用酸素圧縮機又は転炉用酸素圧縮機設備を直結する流量計を備えた高圧酸素バイパス配管を、低圧酸素の集合前に分岐し、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給される低圧酸素の量を測定する流量計下流側の位置で接続するように設け、そのバイパス配管を流れる低圧酸素量と、自熔炉低圧酸素ラインを流れる低圧酸素量と、集合した低圧酸素量と、分岐後の低圧酸素量を測定することで、銅製錬工程の自熔炉及び転炉への低圧酸素の供給における各酸素プラントの低圧酸素の使用量を求めることを特徴とする酸素プラントの使用量監視による酸素プラントの切替のための流量測定方法である。 The second invention of the present invention comprises two oxygen plants with different discharge pressures used in the copper smelting process as a supply source of low-pressure oxygen, and collects and aggregates the low-pressure oxygen supplied from each of these oxygen plants After measuring the amount of low-pressure oxygen with a flow meter, the collected low-pressure oxygen is used for the oxygen compressor equipment for the self-melting furnace connected to the high-pressure oxygen line for the self-melting furnace and the converter connected to the high-pressure oxygen line for the converter After branching to the oxygen compressor facility, the amount of low-pressure oxygen supplied to either the oxygen compressor facility for the self-melting furnace or the oxygen compressor facility for the converter was measured with the flow meter, and each oxygen plant was In an oxygen production facility that has a low pressure oxygen line for supplying low pressure oxygen to a self melting furnace through a flow meter, and that measures the amount of low pressure oxygen supplied to the low pressure oxygen line of the self melting furnace with a flow meter, Each compressor When generating low-pressure oxygen by supplying low-pressure oxygen to the oxygen compressor equipment for auto-smelting furnace and converter by monitoring the amount of low-pressure oxygen supplied from each of these two oxygen plants A flow measurement method for switching an oxygen plant that is a supply source of low-pressure oxygen, wherein each of the two oxygen plants is supplied with low-pressure oxygen to a self-melting furnace oxygen compressor facility or a converter oxygen compressor facility. A high-pressure oxygen bypass pipe equipped with a flow meter that directly connects one of these two oxygen plants to the oxygen compressor for the self-melting furnace or the oxygen compressor for the converter, A bypass pipe that branches before and is connected to a downstream position of the flowmeter that measures the amount of low-pressure oxygen supplied to either the oxygen compressor facility for the flash furnace or the oxygen compressor facility for the converter Low pressure oxygen flowing through By measuring the amount of low-pressure oxygen flowing in the auto-smelting furnace low-pressure oxygen line, the amount of low-pressure oxygen collected, and the amount of low-pressure oxygen after branching, each oxygen in the supply of low-pressure oxygen to the auto-smelting furnace and converter in the copper smelting process A flow rate measuring method for switching an oxygen plant by monitoring the usage amount of an oxygen plant, characterized in that the usage amount of low-pressure oxygen in the plant is obtained.

本発明により吐出圧力の異なる2基の酸素プラントより2系統を持つ高圧酸素ラインへ酸素供給する場合、系統毎に酸素供給が出来、他方の酸素プラント側の低圧酸素ライン供給量を大きく減少させる必要が無く、高圧側へ酸素供給が出来る。
また流量測定方法を切替る事で、各酸素プラントからの酸素使用量の監視が明確に行える為、適切な酸素プラントの運転ができる。
以上より、酸素供給パターンI〜IIIでの高圧酸素供給が可能となり、酸素使用量に応じた各酸素プラントの効率的な運転方法を選択出来、その工業上顕著な効果を奏するものである。
When oxygen is supplied to two high pressure oxygen lines from two oxygen plants having different discharge pressures according to the present invention, oxygen supply can be performed for each system, and the amount of low pressure oxygen line supplied to the other oxygen plant must be greatly reduced. Without oxygen, oxygen can be supplied to the high pressure side.
In addition, by switching the flow rate measurement method, it is possible to clearly monitor the amount of oxygen used from each oxygen plant, so that an appropriate oxygen plant can be operated.
As described above, high-pressure oxygen supply in oxygen supply patterns I to III is possible, and an efficient operation method for each oxygen plant can be selected according to the amount of oxygen used.

従来の酸素製造設備の構成図である。It is a block diagram of the conventional oxygen production equipment. 従来の高圧系酸素供給パターンと酸素プラント使用量監視フローチャート図である。It is a conventional high-pressure oxygen supply pattern and oxygen plant usage monitoring flowchart. 本発明の酸素製造設備の構成図である。It is a block diagram of the oxygen production equipment of this invention. 本発明の高圧系酸素供給パターンと酸素プラント使用量監視フローチャート図である。It is a high-pressure system oxygen supply pattern and oxygen plant usage amount monitoring flowchart of the present invention.

以下、本発明での高圧酸素ラインへの供給に対し、酸素プラント切替時の流量測定方法を詳細に説明する。
図3は、本発明の酸素製造設備構成図で、自熔炉、転炉用高圧酸素供給を各酸素プラント専属で供給できるよう図1の従来設備に、高圧酸素バイパス配管18、酸素供給切替ON−OFF弁19、高圧酸素バイパス配管流量計20を追加設置したものである。
なお、図3において、符号は図1と同じものを示している。
Hereinafter, the flow rate measuring method at the time of switching the oxygen plant will be described in detail with respect to the supply to the high pressure oxygen line in the present invention.
FIG. 3 is a block diagram of an oxygen production facility according to the present invention. The high pressure oxygen bypass pipe 18 and the oxygen supply switching ON- An OFF valve 19 and a high-pressure oxygen bypass pipe flow meter 20 are additionally installed.
In FIG. 3, the reference numerals indicate the same as those in FIG.

図4は、本発明の高圧系酸素供給パターンと酸素プラント使用量監視フローチャート図で、表2のパターンリストに示すパターンに則って、酸素供給切替ON−OFF弁7〜10を操作して酸素の供給が行われ、吐出圧力の異なる2つの酸素プラントより高圧酸素ラインへ酸素供給を行うパターンIIIの状況においても、各酸素プラントからの酸素使用量を明確に知ることができる。   FIG. 4 is a high-pressure system oxygen supply pattern and oxygen plant usage monitoring flowchart according to the present invention. According to the patterns shown in the pattern list of Table 2, the oxygen supply switching ON-OFF valves 7 to 10 are operated to Even in the situation of Pattern III where oxygen is supplied from two oxygen plants having different discharge pressures to the high pressure oxygen line, the amount of oxygen used from each oxygen plant can be clearly known.

この図4に示すように、パターンIでは酸素プラント3のみからの供給であり、自熔炉に対しては流量計20を用い、転炉に対しては流量計16を用いて測定する。
低圧酸素の使用量を含めた各酸素プラントからの酸素使用量は、酸素プラント3において流量計14、16、20の合算値、酸素プラント4において流量計15の測定値となる。
As shown in FIG. 4, in pattern I, the supply is made only from the oxygen plant 3, and the flowmeter 20 is used for the self-melting furnace and the flowmeter 16 is used for the converter.
The amount of oxygen used from each oxygen plant including the amount of low-pressure oxygen used is the sum of the flow meters 14, 16, and 20 in the oxygen plant 3 and the measured value of the flow meter 15 in the oxygen plant 4.

パターンIIでは酸素プラント4のみからの供給であり、自熔炉に対しては流量計17、転炉に対しては流量計16、17を用いて差分値として測定する。
低圧酸素の使用量を含めた各酸素プラントからの酸素使用量は、酸素プラント3において流量計14の測定値、酸素プラント4において流量計15、16の合算値となる。
In the pattern II, the supply is made only from the oxygen plant 4 and is measured as a difference value using the flow meter 17 for the self-melting furnace and the flow meters 16 and 17 for the converter.
The oxygen usage amount from each oxygen plant including the usage amount of low-pressure oxygen is a measurement value of the flow meter 14 in the oxygen plant 3 and a combined value of the flow meters 15 and 16 in the oxygen plant 4.

パターンIIIでは酸素プラント3、4の両設備からの供給となるが、高圧酸素バイパス配管18を利用して自熔炉用は流量計20、転炉用は流量計16を用いて測定する。
低圧酸素の使用量を含めた各酸素プラントからの酸素使用量は、酸素プラント3において流量計14、20の合算値、酸素プラント4においては流量計15、16の合算値となる。
In Pattern III, supply is performed from both facilities of the oxygen plants 3 and 4, and the high pressure oxygen bypass pipe 18 is used to measure using the flow meter 20 for the self-melting furnace and the flow meter 16 for the converter.
The amount of oxygen used from each oxygen plant including the amount of low-pressure oxygen used is the sum of the flow meters 14 and 20 in the oxygen plant 3 and the sum of the flow meters 15 and 16 in the oxygen plant 4.

以上により、吐出圧力の異なる2基の酸素プラントより高圧酸素ラインへ酸素供給を行うパターンIIIの状況においても、従来不明瞭な測定値であった各酸素プラントからの酸素使用量を明確に知ることができ、自熔炉行き低圧酸素ライン1の酸素使用量増加に対応したパターンIIIでの酸素供給が可能である。   From the above, even in the situation of Pattern III where oxygen is supplied from two oxygen plants with different discharge pressures to the high-pressure oxygen line, the amount of oxygen used from each oxygen plant, which has previously been an unclear measurement value, should be clearly known. Therefore, it is possible to supply oxygen in the pattern III corresponding to the increase in the amount of oxygen used in the low pressure oxygen line 1 for the flash furnace.

Figure 0006115887
Figure 0006115887

吐出圧力20[kPa]の酸素プラント3と、吐出圧力40[kPa]の酸素プラント4を用い、本発明の測定方法により各酸素プラントの使用量測定を実施した。
従来の設備構成では、吐出圧力が大きく違い、酸素供給パターンIIIでの酸素供給が実際に不可能な状態であったが、本発明の高圧酸素バイパス配管18を利用する事で自熔炉用酸素圧縮機へは20[kPa]の酸素を、転炉用酸素圧縮機へは40[kPa]の酸素を専属で供給する事が出来た。
Using the oxygen plant 3 having a discharge pressure of 20 [kPa] and the oxygen plant 4 having a discharge pressure of 40 [kPa], the usage amount of each oxygen plant was measured by the measurement method of the present invention.
In the conventional equipment configuration, the discharge pressure was greatly different and oxygen supply in the oxygen supply pattern III was actually impossible. However, by using the high-pressure oxygen bypass pipe 18 of the present invention, oxygen compression for the self-melting furnace Oxygen of 20 [kPa] was supplied to the machine and 40 [kPa] of oxygen was exclusively supplied to the converter oxygen compressor.

さらに、酸素供給パターンの切替時には、酸素供給切替ON−OFF弁7、8、9、19に付属している開閉確認用リミットスイッチにて、各弁の開閉状態を取込み、図4に示すような制御フローチャートに基づき各流量計14、15、16、17、20からの測定値を演算し、自熔炉用、転炉用各高圧酸素ラインの流量及び各酸素プラントの酸素使用量を監視する事が出来た。   Further, at the time of switching the oxygen supply pattern, the open / close state of each valve is taken in by an open / close confirmation limit switch attached to the oxygen supply switching ON-OFF valves 7, 8, 9, 19 as shown in FIG. Based on the control flow chart, the measured values from each flow meter 14, 15, 16, 17, 20 can be calculated to monitor the flow rate of each high-pressure oxygen line for the self-melting furnace and the converter and the oxygen usage of each oxygen plant. done.

1 自熔炉系低圧酸素ライン
2 自熔炉系低圧酸素ライン
3 酸素プラント
4 酸素プラント
5 放風弁
6 放風弁
7 酸素供給切替ON−OFF弁
8 酸素供給切替ON−OFF弁
9 酸素供給切替ON−OFF弁
10 自熔炉用酸素圧縮機
11 転炉用酸素圧縮機
12 自熔炉行き高圧酸素ライン
13 転炉行き高圧酸素ライン
14 流量計
15 流量計
16 流量計
17 流量計
18 自熔炉行き高圧酸素バイパス配管
19 酸素供給切替ON−OFF弁
20 流量計
DESCRIPTION OF SYMBOLS 1 Self-melting furnace type | system | group low pressure oxygen line 2 Self-melting furnace type | system | group low pressure oxygen line 3 Oxygen plant 4 Oxygen plant 5 Air discharge valve 6 Air discharge valve 7 Oxygen supply switching ON-OFF valve 8 Oxygen supply switching ON-OFF valve 9 Oxygen supply switching ON- OFF valve 10 Oxygen compressor for self-melting furnace 11 Oxygen compressor for converter 12 High-pressure oxygen line for the self-melting furnace 13 High-pressure oxygen line for the converter 14 Flow meter 15 Flow meter 16 Flow meter 17 Flow meter 18 High-pressure oxygen bypass piping for the self-melting furnace 19 Oxygen supply switching ON-OFF valve 20 Flow meter

Claims (2)

銅製錬工程で用いる吐出圧力の異なる2基の酸素プラントを低圧酸素の供給元として備え、
前記酸素プラントの各々から供給された低圧酸素を集合し、集合した低圧酸素の量を流量計で測定した後、
集合した低圧酸素を、自熔炉行き高圧酸素ラインに接続された自熔炉用酸素圧縮機設備向けと、転炉行き高圧酸素ラインに接続された転炉用酸素圧縮機設備向けとに分岐後、
前記自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給された低圧酸素の量を流量計で測定し、
前記酸素プラントの各々から流量計を介して前記自熔炉に低圧酸素を供給するそれぞれの自熔炉低圧酸素ラインを有し、前記自熔炉低圧酸素ラインに供給される低圧酸素量を前記流量計により測定する酸素製造設備において、
前記各圧縮機設備に低圧酸素を供給して高圧酸素を生成する際に、前記2基の酸素プラントの各々から供給される低圧酸素の使用量を監視することによる前記自熔炉用及び転炉用酸素圧縮機設備への低圧酸素の供給元である酸素プラントの切換方法であって、
前記2基の酸素プラントの各々が、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備への低圧酸素の専属供給元となるように、前記2基の酸素プラントのいずれかと前記自熔炉用酸素圧縮機又は転炉用酸素圧縮機設備を直結する流量計を備えた高圧酸素バイパス配管を、前記低圧酸素の集合前に分岐し、前記自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給される低圧酸素の量を測定する流量計下流側の位置で接続するように設けることによって、銅製錬工程における自熔炉の低圧酸素使用量の増大に応じて低圧酸素を供給する酸素プラントの切替を行うことを特徴とする各酸素プラントの使用量監視による酸素プラント切替方法。
Includes oxygen plant 2 groups of different discharge pressures used in copper smelting process as a low pressure oxygen supply source,
After collecting the low-pressure oxygen supplied from each of the oxygen plants, and measuring the amount of the collected low-pressure oxygen with a flow meter,
After branching the gathered low-pressure oxygen to the oxygen compressor equipment for the self-melting furnace connected to the high-pressure oxygen line for the self-melting furnace and the oxygen compressor equipment for the converter connected to the high-pressure oxygen line for the converter,
Measure the amount of low-pressure oxygen supplied to either the oxygen compressor equipment for the self-melting furnace or the oxygen compressor equipment for the converter with a flow meter,
Each oxygen plant has a respective low-pressure oxygen line for supplying low-pressure oxygen to the flash furnace via a flow meter, and the amount of low-pressure oxygen supplied to the low-pressure oxygen line is measured by the flow meter. In the oxygen production facility
When generating a high-pressure oxygen is supplied to the low pressure oxygen to the each compressor facilities, the self for Yoro and for converter by monitoring the amount of low-pressure oxygen supplied from each of the oxygen plant of the 2 groups A method for switching an oxygen plant that is a supply source of low-pressure oxygen to an oxygen compressor facility ,
Either of the two oxygen plants and the flash furnace so that each of the two oxygen plants becomes an exclusive supply source of low-pressure oxygen to an oxygen compressor facility for a flash furnace or an oxygen compressor facility for a converter A high pressure oxygen bypass pipe equipped with a flow meter directly connecting an oxygen compressor for converter or an oxygen compressor facility for converter is branched before the assembly of the low pressure oxygen, and the oxygen compressor facility for flash furnace or oxygen compressor for converter By connecting to a position downstream of the flow meter that measures the amount of low-pressure oxygen supplied to one of the equipment, low-pressure oxygen is reduced according to the increase in low-pressure oxygen usage of the auto- smelting furnace in the copper smelting process . A method for switching an oxygen plant by monitoring a usage amount of each oxygen plant, wherein the oxygen plant to be supplied is switched.
銅製錬工程で用いる吐出圧力の異なる2基の酸素プラントを低圧酸素の供給元として備え、
前記酸素プラントの各々から供給された低圧酸素を集合し、集合した低圧酸素の量を流量計で測定した後、
集合した低圧酸素を、自熔炉行き高圧酸素ラインに接続された自熔炉用酸素圧縮機設備向けと、転炉行き高圧酸素ラインに接続された転炉用酸素圧縮機設備向けとに分岐後、
前記自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給された低圧酸素の量を流量計で測定し、
前記酸素プラントの各々から流量計を介して前記自熔炉に低圧酸素を供給するそれぞれの自熔炉低圧酸素ラインを有し、前記自熔炉低圧酸素ラインに供給される低圧酸素量を前記流量計により測定する酸素製造設備において、
前記各圧縮機設備に低圧酸素を供給して高圧酸素を生成する際に、前記2基の酸素プラントの各々から供給される低圧酸素の使用量監視することによる前記自熔炉用及び転炉用酸素圧縮機設備への低圧酸素の供給元である酸素プラントの切換のための流量測定方法であって、
前記2基の酸素プラントの各々が、自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備への低圧酸素の専属供給元となるように、前記2基の酸素プラントのいずれかと前記自熔炉用酸素圧縮機又は転炉用酸素圧縮機設備を直結する流量計を備えた高圧酸素バイパス配管を、前記低圧酸素の集合前に分岐し、前記自熔炉用酸素圧縮機設備又は転炉用酸素圧縮機設備のいずれかに供給される低圧酸素の量を測定する流量計下流側の位置で接続するように設け、
前記バイパス配管を流れる低圧酸素量と、
前記自熔炉低圧酸素ラインを流れる低圧酸素量と、
前記集合した低圧酸素量と、
前記分岐後の低圧酸素量を測定することで、銅製錬工程の自熔炉及び転炉への低圧酸素の供給における各酸素プラントの低圧酸素の使用量を求めることを特徴とする酸素プラントの使用量監視による酸素プラントの切替のための流量測定方法。
Includes oxygen plant 2 groups of different discharge pressures used in copper smelting process as a low pressure oxygen supply source,
After collecting the low-pressure oxygen supplied from each of the oxygen plants, and measuring the amount of the collected low-pressure oxygen with a flow meter,
After branching the gathered low-pressure oxygen to the oxygen compressor equipment for the self-melting furnace connected to the high-pressure oxygen line for the self-melting furnace and the oxygen compressor equipment for the converter connected to the high-pressure oxygen line for the converter,
Measure the amount of low-pressure oxygen supplied to either the oxygen compressor equipment for the self-melting furnace or the oxygen compressor equipment for the converter with a flow meter,
Each oxygen plant has a respective low-pressure oxygen line for supplying low-pressure oxygen to the flash furnace via a flow meter, and the amount of low-pressure oxygen supplied to the low-pressure oxygen line is measured by the flow meter. In the oxygen production facility
When generating a high-pressure oxygen is supplied to the low pressure oxygen to the each compressor facilities, the self for Yoro and for converter by monitoring the amount of low-pressure oxygen supplied from each of the oxygen plant of the 2 groups A flow measurement method for switching an oxygen plant that is a supply source of low-pressure oxygen to an oxygen compressor facility,
Either of the two oxygen plants and the flash furnace so that each of the two oxygen plants becomes an exclusive supply source of low-pressure oxygen to an oxygen compressor facility for a flash furnace or an oxygen compressor facility for a converter A high pressure oxygen bypass pipe equipped with a flow meter directly connecting an oxygen compressor for converter or an oxygen compressor facility for converter is branched before the assembly of the low pressure oxygen, and the oxygen compressor facility for flash furnace or oxygen compressor for converter Provided to be connected at a position downstream of the flow meter that measures the amount of low-pressure oxygen supplied to any of the equipment ,
The amount of low-pressure oxygen flowing through the bypass pipe ;
A low-pressure oxygen amount flowing through the auto-smelting furnace low-pressure oxygen line;
The amount of low-pressure oxygen collected;
The amount of low-pressure oxygen used in each oxygen plant in the supply of low-pressure oxygen to the auto-smelting furnace and converter in the copper smelting process is determined by measuring the amount of low-pressure oxygen after branching. Flow rate measurement method for oxygen plant switching by monitoring.
JP2013053374A 2013-03-15 2013-03-15 Oxygen compressor switching flow rate measurement method Active JP6115887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013053374A JP6115887B2 (en) 2013-03-15 2013-03-15 Oxygen compressor switching flow rate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013053374A JP6115887B2 (en) 2013-03-15 2013-03-15 Oxygen compressor switching flow rate measurement method

Publications (2)

Publication Number Publication Date
JP2014177685A JP2014177685A (en) 2014-09-25
JP6115887B2 true JP6115887B2 (en) 2017-04-19

Family

ID=51697929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053374A Active JP6115887B2 (en) 2013-03-15 2013-03-15 Oxygen compressor switching flow rate measurement method

Country Status (1)

Country Link
JP (1) JP6115887B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814178B1 (en) * 2000-09-18 2002-10-18 Air Liquide SUPPLY OF OXYGEN-ENRICHED AIR TO A NON-FERROUS METAL PRODUCTION UNIT
FR2862128B1 (en) * 2003-11-10 2006-01-06 Air Liquide PROCESS AND INSTALLATION FOR SUPPLYING HIGH-PURITY OXYGEN BY CRYOGENIC AIR DISTILLATION
JP2009235547A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Mining Co Ltd Oxygen supplying equipment

Also Published As

Publication number Publication date
JP2014177685A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
CN101907541B (en) Pipeline pressure testing device
WO2016147696A1 (en) Pipeline network diagnosing device
RU127809U1 (en) DISTRIBUTION AND DOSING SYSTEM FOR HYDRATE FORMATION INHIBITOR
CN107299657A (en) Public supply mains pressure controlling movable type system and the ductwork pressure regulation and control method realized using the system
CN110687839A (en) Wet spraying trolley communication interconnection control device and wet spraying trolley pumping system
JP6115887B2 (en) Oxygen compressor switching flow rate measurement method
CN106255661A (en) Filling head (monitoring of maintaining)
CN207865034U (en) A kind of gas pressure regulating system
CN205279347U (en) Can detect air conditioning system of trouble
JP2011220429A (en) Pipe abnormality detection method and pipe abnormality detection device for oil air lubrication system
CN202018498U (en) Air-pressure switch-detection testing device
CN205714703U (en) A kind of redundant measurement liquid-level type drainage pump full-automatic control system
CN102620145A (en) Automatic low-pressure protection system for coke oven gas pipeline
CN213457335U (en) Control panel for testing medical magnetic resonance imaging equipment
CN201944547U (en) System for compressed natural gas supply station
KR101199240B1 (en) System For Controlling Coating Thickness Using Air Or Nitrogen Gas
CN106706083A (en) Water flow sensor performance test bed system
CN102422109B (en) Gas treatment device
CN105127387A (en) Purging inspection device of continuous casting three-machine three-flow spraying system and purging inspection method
JP5314545B2 (en) Flow rate measurement unit and flow rate measurement system using the same
CN104384479A (en) Low-pressure liquid level pressurization control system
CN201293205Y (en) Automatic switchover busbar apparatus
CN201018359Y (en) Hydrogen gas controller
CN204240055U (en) Stokehold detection facility power gas feeding mechanism
CN206670858U (en) Manometer measures frock free of demolition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6115887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170312