JP2009235547A - Oxygen supplying equipment - Google Patents

Oxygen supplying equipment Download PDF

Info

Publication number
JP2009235547A
JP2009235547A JP2008085980A JP2008085980A JP2009235547A JP 2009235547 A JP2009235547 A JP 2009235547A JP 2008085980 A JP2008085980 A JP 2008085980A JP 2008085980 A JP2008085980 A JP 2008085980A JP 2009235547 A JP2009235547 A JP 2009235547A
Authority
JP
Japan
Prior art keywords
oxygen
pressure
converter
pressure oxygen
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085980A
Other languages
Japanese (ja)
Inventor
Satoshi Manabe
聡 真鍋
Masanobu Hashimoto
正信 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008085980A priority Critical patent/JP2009235547A/en
Publication of JP2009235547A publication Critical patent/JP2009235547A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide oxygen supplying equipment which operates in a more energy-saved manner when low pressure oxygen produced by an oxygen plant is compressed by an oxygen compressor and the obtained high pressure oxygen is supplied into a flash smelting furnace and a converter in a smelting method using the flash furnace and the converter as a smelting furnace, and using oxygen-enriched air as gas for combustion of the furnace and converter. <P>SOLUTION: The oxygen supplying equipment is provided with: the oxygen plant 1 for producing at least low pressure oxygen; two sets of the oxygen compressors 8, 9 with pressure regulating valves, for compressing the low pressure oxygen to obtain the high pressure oxygen; and an oxygen holder 18 for storing the high pressure oxygen, and the oxygen supplying equipment supplies high pressure oxygen into the flash smelting furnace 22 and the converter 23. In the oxygen supplying equipment, outlet piping 10 in one of the oxygen compressors 8 is connected with high pressure oxygen supplying piping 19 into the flash smelting furnace 22, and outlet piping 13 in the other of the oxygen compressors 9 is connected with a receiving nozzle of the oxygen holder 18, and further the outlet piping 20 of the oxygen holder 18 is connected with high pressure oxygen supplying piping 20 into the converter 23. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸素供給設備に関し、さらに詳しくは、製錬炉として自熔炉と転炉とを使用し、かつそれらの燃焼用気体として酸素富化空気を用いる製錬方法において、高圧酸素を自熔炉と転炉へ供給する際に、より一層省エネルギー化した運転が行なえる酸素供給設備に関する。   The present invention relates to an oxygen supply facility, and more specifically, in a smelting method using a self-smelting furnace and a converter as a smelting furnace and using oxygen-enriched air as a combustion gas thereof, high-pressure oxygen is converted into a self-smelting furnace. The present invention relates to an oxygen supply facility that can perform more energy-saving operation when supplying to a converter.

銅製錬方法として、製錬炉として自熔炉と転炉とを使用し、粗銅を製造する方法が広く行なわれている。この方法では、まず、銅硫化精鉱、珪酸鉱、石灰石などの溶剤、粉コークス、煙灰、工程間の繰り返し原料等を混合し、続いて乾燥して得た乾燥物を、燃焼用気体とともに、自熔炉内に吹込む。前記自熔炉内では、前記乾燥物中の鉄及びイオウを酸化燃焼させて高温熔融反応を進め、最終的に銅品位が60質量%程度のマットと、鉄及び珪酸を主成分とするスラグとを製造する。その後、転炉では、前記マット中に燃焼用気体を吹き込み、必要に応じて冷剤を炉内に投入し、最終的に転炉スラグと粗銅とを製造する。通常、得られた粗銅は、さらに精製炉で吹錬された後、鋳造される。得られた精製アノードは、電解精製工程に送られ、ここで電気銅が製造される。   As a copper smelting method, a method of producing crude copper using a self-melting furnace and a converter as a smelting furnace is widely performed. In this method, first, a solvent such as copper sulfide concentrate, silicate ore, limestone, etc., powder coke, smoke ash, repetitive raw materials between processes, etc. are mixed, and then dried, together with combustion gas, Inject into the self-melting furnace. In the auto-smelting furnace, iron and sulfur in the dried product are oxidized and burned to advance a high-temperature melting reaction, and finally a mat having a copper grade of about 60% by mass and slag mainly composed of iron and silicic acid are included. To manufacture. Thereafter, in the converter, a combustion gas is blown into the mat, and a cooling agent is introduced into the furnace as necessary to finally produce converter slag and crude copper. Usually, the obtained crude copper is cast after being blown in a refining furnace. The obtained purified anode is sent to an electrolytic purification process, where electrolytic copper is produced.

上記燃焼用気体としては、当初、予熱した空気が用いられており、この際、自熔炉及び転炉での生産量を増大するためには、予熱空気の吹込み量を増加することが必要であった。しかしながら、予熱空気の吹込み量の増加は、製錬炉に付帯する排ガス処理設備の増強を必要とするため、新規プラント建設の場合を除けば、その実施は実質的に困難であった。
この解決策として、燃焼用気体として、空気から分離された酸素濃度80質量%以上の酸素を混合し、空気中の酸素濃度を高めた酸素富化空気を用いることにより、生産量の増大が図られてきた。このため、上記の銅製錬方法を採用している製錬所では、内部に酸素プラントを備えており、ここで製造された酸素を酸素供給設備によって製錬炉に供給している。ところが、空気から酸素富化空気に用いる酸素を得るためには、例えば、自熔炉の生産能力を75t/hから90t/hへ1.2倍に高める際、酸素プラントのコストは1.47倍となる(例えば、非特許文献1参照。)と云われているなど、使用電力の大きな増加に繋がる。
As the combustion gas, preheated air is initially used. At this time, it is necessary to increase the amount of preheated air blown in order to increase the production amount in the self-melting furnace and the converter. there were. However, since the increase in the amount of preheated air injection requires enhancement of the exhaust gas treatment equipment attached to the smelting furnace, it has been substantially difficult to implement except in the case of new plant construction.
As a solution to this problem, the production volume is increased by using oxygen-enriched air in which oxygen having an oxygen concentration of 80% by mass or more separated from air is mixed and the oxygen concentration in the air is increased. Has been. For this reason, in the smelter which employ | adopts said copper smelting method, the oxygen plant is provided in the inside and the oxygen manufactured here is supplied to the smelting furnace by oxygen supply equipment. However, in order to obtain oxygen used for oxygen-enriched air from air, for example, when the production capacity of a flash furnace is increased 1.2 times from 75 t / h to 90 t / h, the cost of the oxygen plant is 1.47 times. (For example, refer to Non-Patent Document 1), which leads to a large increase in power consumption.

ところで、自熔炉を用いる銅製錬法は、本来、銅硫化精鉱中の鉄及びイオウの酸化燃焼により高温反応が進行するものであり、特別に燃料を必要としない省エネルギー型の製錬法である。しかしながら、このような自熔炉を用いる銅製錬法でも、単位炉当たりの生産量の増大にともない、酸素富化空気に用いる酸素の供給のための電力コストが上昇し、省エネルギー型製錬法とは必ずしも云えなくなりつつある。   By the way, the copper smelting method using a self-smelting furnace is an energy-saving smelting method in which a high-temperature reaction proceeds due to oxidation combustion of iron and sulfur in copper sulfide concentrate, and no fuel is required. . However, even in such a copper smelting method using a self-smelting furnace, with an increase in production per unit furnace, the power cost for supplying oxygen used for oxygen-enriched air increases, and what is an energy-saving smelting method? It's not always possible.

この解決策として、銅硫化精鉱の一部を酸化焙焼し、得られた酸化焙焼鉱及び/又は該酸化焙焼鉱から硫酸水溶液を用いて銅を浸出した後の残滓を、銅硫化精鉱とともに、自熔炉などの製錬炉で熔錬する方法(例えば、特許文献1参照。)が提案されている。この方法によれば、自熔炉などの製錬炉で、酸化焙焼鉱中の銅及び鉄と反応している酸素を有効に利用することができるので、高価な酸素を使用しなくとも銅硫化精鉱の処理量を増加させ、銅生産性が増大するとしている。しかも、硫化銅鉱の焙焼は自燃焙焼となるので焙焼工程が追加されることによる燃料コストの増加はほとんど問題にならない程度であるとしている。   As a solution, a part of copper sulfide concentrate is oxidized and roasted, and the resulting oxidized roasted ore and / or the residue after leaching copper from the oxidized roasted ore using a sulfuric acid aqueous solution is converted into copper sulfide. A method of smelting in a smelting furnace such as a self-smelting furnace together with concentrate (for example, see Patent Document 1) has been proposed. According to this method, since oxygen reacting with copper and iron in oxidation roasting ore can be effectively used in a smelting furnace such as a flash smelting furnace, copper sulfide can be used without using expensive oxygen. It is said that the throughput of concentrate will increase and copper productivity will increase. Moreover, since roasting copper sulfide ore is self-combustion roasting, an increase in fuel cost due to the addition of a roasting step is said to be of little concern.

しかしながら、この方法では、酸化焙焼により発生した排ガス中の二酸化イオウを、例えば硫酸として回収するため、酸化焙焼炉の排ガスを排ガス処理設備で処理することが不可欠である。したがって、この方法を採用しても、排ガス処理設備の増強が必要であり、単位炉当たりの生産性を高める上での本来的な問題点を解決することができない。
このような状況から、酸素富化空気に用いる酸素の供給のために要する電力コストの削減について、別の視点からの解決策が求められている。
However, in this method, in order to recover sulfur dioxide in the exhaust gas generated by oxidation roasting as, for example, sulfuric acid, it is essential to treat the exhaust gas of the oxidation roasting furnace with an exhaust gas treatment facility. Therefore, even if this method is adopted, it is necessary to reinforce the exhaust gas treatment facility, and it is impossible to solve the original problem in increasing the productivity per unit furnace.
Under such circumstances, there is a demand for a solution from another viewpoint for reducing the power cost required for supplying oxygen used for oxygen-enriched air.

ここで、従来の酸素供給設備とその運転方法を図面を参照して説明する。
上記の銅製錬方法を採用している製錬所に設置されている酸素プラントから製錬炉に酸素を供給するシステムとしては、図1に例示したような酸素供給設備を用いるのが一般的である。図1は、従来の酸素供給設備の設備構成図である。ここで、酸素供給設備から酸素富化空気に用いる高圧酸素が供給される自熔炉と転炉も記載している。
Here, a conventional oxygen supply facility and its operation method will be described with reference to the drawings.
As a system for supplying oxygen to an smelting furnace from an oxygen plant installed in a smelter adopting the above copper smelting method, it is common to use an oxygen supply facility as illustrated in FIG. is there. FIG. 1 is an equipment configuration diagram of a conventional oxygen supply equipment. Here, a flash furnace and a converter to which high-pressure oxygen used for oxygen-enriched air is supplied from an oxygen supply facility are also described.

図1において、酸素プラント1で製造された低圧酸素は、低圧酸素配管バルブ(1)2を経由する配管を経て、その後分岐された低圧酸素配管バルブ(2)5を経由する配管系統と低圧酸素配管バルブ(3)6を経由する配管系統とで、それぞれ酸素圧縮機(1)8と酸素圧縮機(2)9の2台の酸素圧縮機へ供給される。この低圧酸素配管バルブ(1)2を経由する配管には、放風弁3と低圧酸素流量計(1)4を、また低圧酸素配管バルブ(2)5を経由する配管系統には、低圧酸素流量計(2)7を設けている。   In FIG. 1, the low-pressure oxygen produced in the oxygen plant 1 passes through the low-pressure oxygen piping valve (1) 2 and then the branched low-pressure oxygen piping valve (2) 5 and the low-pressure oxygen piping. With the piping system which passes through piping valve (3) 6, it supplies to two oxygen compressors, oxygen compressor (1) 8 and oxygen compressor (2) 9, respectively. The low-pressure oxygen piping valve (1) 2 is connected to the piping through the discharge valve 3 and the low-pressure oxygen flow meter (1) 4, and the low-pressure oxygen piping valve (2) 5 is connected to the low-pressure oxygen piping valve (1) 2 A flow meter (2) 7 is provided.

前記酸素圧縮機(1)8と酸素圧縮機(2)9とでは、低圧酸素を圧縮して高圧酸素を得る。前記酸素圧縮機8、9で得られた高圧酸素は、それぞれ高圧酸素配管バルブ(1)16を経由する配管と高圧酸素配管バルブ(2)17を経由する配管とで酸素ホルダー18へ供給され、蓄えられる。前記高圧酸素配管バルブ(1)16を経由する配管と高圧酸素配管バルブ(2)17を経由する配管には、それぞれに設けたバルブの高圧酸素の供給側に高圧酸素圧力計(1)10と高圧酸素圧力計(2)13を設けている。   The oxygen compressor (1) 8 and the oxygen compressor (2) 9 compress high-pressure oxygen by compressing low-pressure oxygen. The high pressure oxygen obtained by the oxygen compressors 8 and 9 is supplied to the oxygen holder 18 through a pipe passing through the high pressure oxygen pipe valve (1) 16 and a pipe passing through the high pressure oxygen pipe valve (2) 17, respectively. Stored. The piping passing through the high-pressure oxygen piping valve (1) 16 and the piping passing through the high-pressure oxygen piping valve (2) 17 include a high-pressure oxygen pressure gauge (1) 10 and a high-pressure oxygen pressure gauge (1) 10 on the high-pressure oxygen supply side of the valves provided respectively. A high pressure oxygen pressure gauge (2) 13 is provided.

また、前記高圧酸素配管バルブ(1)16を経由する配管と高圧酸素配管バルブ(2)17を経由する配管には、それぞれ低圧酸素配管バルブ(2)5を経由する配管に結合する酸素圧縮機バイパス配管(1)12と、低圧酸素配管バルブ(3)6を経由する配管に結合する酸素圧縮機バイパス配管(2)15とを設けている。さらに、前記酸素圧縮機バイパス配管12、15には、それぞれ圧力調節弁(1)11と圧力調節弁(2)14を設けている。
前記酸素ホルダー18に蓄えられた高圧酸素は、自熔炉行き高圧酸素配管19と転炉行き高圧酸素配管20を経由して、酸素富化空気を用いる自熔炉22と転炉23へ供給される。
In addition, the pipe passing through the high-pressure oxygen pipe valve (1) 16 and the pipe passing through the high-pressure oxygen pipe valve (2) 17 are respectively connected to the pipe passing through the low-pressure oxygen pipe valve (2) 5. A bypass pipe (1) 12 and an oxygen compressor bypass pipe (2) 15 coupled to the pipe passing through the low-pressure oxygen pipe valve (3) 6 are provided. Further, the oxygen compressor bypass pipes 12, 15 are provided with a pressure control valve (1) 11 and a pressure control valve (2) 14, respectively.
The high-pressure oxygen stored in the oxygen holder 18 is supplied to the self-melting furnace 22 and the converter 23 using oxygen-enriched air via the high-pressure oxygen pipe 19 for the self-melting furnace and the high-pressure oxygen pipe 20 for the converter.

上記酸素供給設備の運転方法において、酸素ホルダー18の圧力が、自熔炉22と転炉23のいずれかのより高圧を必要とする方の圧力に対応するように、2台の酸素圧縮機8、9の運転が設定され、圧力が調整される。具体的には、図1の酸素圧縮機(1)8と酸素圧縮機(2)9との2系統に設置した高圧酸素圧力計(1)10と高圧酸素圧力計(2)13とにより測定されたそれぞれの出口圧力を、自熔炉22と転炉23のいずれかのより高圧を必要とする方の圧力になるように、圧力調節弁(1)11と圧力調節弁(2)14とで制御する圧力制御(PIC)を行ないながら、酸素ホルダー18に高圧酸素を供給する。   In the above operation method of the oxygen supply equipment, the two oxygen compressors 8, so that the pressure of the oxygen holder 18 corresponds to the pressure that requires a higher pressure than either the auto-smelting furnace 22 or the converter 23, 9 operation is set and the pressure is adjusted. Specifically, it is measured by a high pressure oxygen pressure gauge (1) 10 and a high pressure oxygen pressure gauge (2) 13 installed in two systems of the oxygen compressor (1) 8 and the oxygen compressor (2) 9 in FIG. The pressure regulating valve (1) 11 and the pressure regulating valve (2) 14 are set so that the respective outlet pressures thus made become pressures that require a higher pressure than either the self-melting furnace 22 or the converter 23. High-pressure oxygen is supplied to the oxygen holder 18 while performing pressure control (PIC) to be controlled.

ところで、自熔炉の操業は連続操業であり、一方転炉の操業は間欠操業である。すなわち、自熔炉で使用する高圧酸素の流量はほぼ一定であるのに対し、転炉で使用する高圧酸素の流量は間欠的である。そのため、定常操業時において、転炉でのピーク使用時が過ぎて酸素ホルダーの圧力が設定値になったときには、酸素圧縮機(1)8の運転は、吐出側の高圧酸素を酸素圧縮機バイパス配管(1)12経由で吸入側に戻すバイパス運転に切り替え、一方酸素圧縮機(2)9の運転を停止させる手順をとり、省エネギー対策としている。
なお、酸素プラントは、2台の酸素圧縮機を定格運転する時にも供給できる低圧酸素量を確保しておく必要があるため、連続運転する。
By the way, the operation of the flash furnace is a continuous operation, while the operation of the converter is an intermittent operation. That is, the flow rate of high-pressure oxygen used in the flash furnace is substantially constant, whereas the flow rate of high-pressure oxygen used in the converter is intermittent. For this reason, during the steady operation, when the peak use time in the converter has passed and the pressure of the oxygen holder reaches the set value, the operation of the oxygen compressor (1) 8 causes the high-pressure oxygen on the discharge side to bypass the oxygen compressor. The procedure is switched to the bypass operation that returns to the suction side via the pipe (1) 12, while the procedure for stopping the operation of the oxygen compressor (2) 9 is taken to save energy.
In addition, since it is necessary to ensure the amount of low-pressure oxygen that can be supplied even when two oxygen compressors are rated for operation, the oxygen plant is operated continuously.

上記運転方法における酸素プラント1の放風弁3からの酸素放風量を、図を用いて説明する。図2は、従来の酸素供給設備の運転結果(酸素ホルダー圧力と酸素プラント放風量)を示す。
図2より、2台の酸素圧縮機を定格運転する時にも供給できる低圧酸素量を確保しておく必要があるため、転炉の停止期間(図中で、転炉用酸素流量が底値を示す。)には、余剰酸素(図中で、酸素プラント放風量の変動巾にあたる。)が発生し、酸素プラントからの低圧酸素に余剰が生じて、放風弁による放風量が多くなり損失となっていた。
The oxygen discharge amount from the discharge valve 3 of the oxygen plant 1 in the above operation method will be described with reference to the drawings. FIG. 2 shows the operation results (oxygen holder pressure and oxygen plant discharge rate) of a conventional oxygen supply facility.
From FIG. 2, it is necessary to secure a low-pressure oxygen amount that can be supplied even when two oxygen compressors are rated, so the converter shutdown period (the converter oxygen flow rate shows the bottom value in the figure). )), Surplus oxygen (corresponding to the fluctuation range of the oxygen plant discharge rate in the figure) is generated, and surplus occurs in the low-pressure oxygen from the oxygen plant. It was.

特開平08−218128号公報(第1頁、第2頁)Japanese Patent Application Laid-Open No. 08-218128 (first page, second page) 資源と素材、資源素材学会、1993年、「非鉄製錬号」、p.973Resources and Materials, Society of Resource Materials, 1993, “Nonferrous Metals”, p. 973

本発明の目的は、上記の従来技術の問題点に鑑み、製錬炉として自熔炉と転炉とを使用し、かつそれらの燃焼用気体として酸素富化空気を用いる製錬方法において、酸素プラントで製造した低圧酸素を、酸素圧縮機で圧縮し、得られた高圧酸素を自熔炉と転炉へ供給する際に、より一層省エネルギー化した運転が行なえる酸素供給設備を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to use an autoclave and a converter as a smelting furnace and to use an oxygen-enriched air as a combustion gas for the oxygen plant. It is an object of the present invention to provide an oxygen supply facility that can perform a more energy-saving operation when the low-pressure oxygen produced in step 1 is compressed by an oxygen compressor and the obtained high-pressure oxygen is supplied to a self-melting furnace and a converter.

本発明者らは、上記目的を達成するために、低圧酸素を製造する酸素プラントと、低圧酸素を圧縮し高圧酸素を得る2台の圧力調節弁付き酸素圧縮機と、高圧酸素を蓄える酸素ホルダーとを有し、該高圧酸素を自熔炉と転炉へ供給する酸素供給設備において、その運転時の省エネルギー化について、鋭意研究を重ねた結果、一方の酸素圧縮機は、その出口配管を前記自熔炉への高圧酸素供給配管に結合して自熔炉専用として用いること、及び他方の酸素圧縮機は、その出口配管を前記酸素ホルダーの受入ノズルに結合し、さらに該酸素ホルダーの出口配管を前記転炉への高圧酸素供給配管と結合して用いることを実施したところ、より一層省エネルギー化した運転が行なえることを見出し、本発明を完成した。   In order to achieve the above object, the inventors of the present invention provide an oxygen plant that produces low-pressure oxygen, two oxygen compressors with pressure control valves that compress low-pressure oxygen to obtain high-pressure oxygen, and an oxygen holder that stores high-pressure oxygen. In an oxygen supply facility that supplies the high-pressure oxygen to the self-melting furnace and the converter, as a result of earnest research on energy saving during operation, one oxygen compressor has its outlet pipe connected to the self-heating furnace. Combined with a high-pressure oxygen supply pipe to the melting furnace and used exclusively for the auto-melting furnace, and the other oxygen compressor has its outlet pipe connected to the receiving nozzle of the oxygen holder, and further the outlet pipe of the oxygen holder is connected to the converter. When it was used in combination with a high-pressure oxygen supply pipe to the furnace, it was found that an operation with further energy saving was possible, and the present invention was completed.

すなわち、本発明の第1の発明によれば、少なくとも低圧酸素を製造する酸素プラントと、低圧酸素を圧縮し高圧酸素を得る2台の圧力調節弁付き酸素圧縮機と、高圧酸素を蓄える酸素ホルダーとを有し、該高圧酸素を自熔炉と転炉へ供給する酸素供給設備であって、
一方の酸素圧縮機の出口配管を前記自熔炉への高圧酸素供給配管に結合し、他方の酸素圧縮機の出口配管を前記酸素ホルダーの受入ノズルに結合し、さらに該酸素ホルダーの出口配管を前記転炉への高圧酸素供給配管に結合することを特徴とする酸素供給設備が提供される。
That is, according to the first invention of the present invention, an oxygen plant that produces at least low-pressure oxygen, two oxygen compressors with pressure control valves that compress low-pressure oxygen to obtain high-pressure oxygen, and an oxygen holder that stores high-pressure oxygen An oxygen supply facility for supplying the high-pressure oxygen to the self-melting furnace and the converter,
The outlet pipe of one oxygen compressor is connected to the high pressure oxygen supply pipe to the self-melting furnace, the outlet pipe of the other oxygen compressor is connected to the receiving nozzle of the oxygen holder, and the outlet pipe of the oxygen holder is further connected to the oxygen pipe. An oxygen supply facility is provided that is coupled to a high-pressure oxygen supply pipe to a converter.

また、本発明の第2の発明によれば、第1の発明において、前記酸素圧縮機は、供給される低圧酸素を流量制御する手段を有することを特徴とする酸素供給設備が提供される。   According to a second aspect of the present invention, there is provided the oxygen supply facility according to the first aspect, wherein the oxygen compressor has means for controlling a flow rate of the low-pressure oxygen to be supplied.

本発明の酸素供給設備は、自熔炉と転炉に必要な高圧酸素を確保しながら、酸素プラントからの放風量を低減することができ、しかもこれにより得られる低圧酸素の余剰分を自熔炉に使用することができるので、使用電力の削減、自熔炉での銅硫化精鉱の増処理などにおいて、その工業的価値は極めて大きい。   The oxygen supply equipment of the present invention can reduce the amount of air discharged from the oxygen plant while securing the high-pressure oxygen necessary for the auto-smelting furnace and converter, and the excess low-pressure oxygen obtained thereby is used in the auto-smelting furnace. Since it can be used, its industrial value is extremely great in reducing power consumption and increasing the processing of copper sulfide concentrate in a self-melting furnace.

本発明の酸素供給設備は、少なくとも低圧酸素を製造する酸素プラントと、低圧酸素を圧縮し高圧酸素を得る2台の圧力調節弁付き酸素圧縮機と、高圧酸素を蓄える酸素ホルダーとを有し、該高圧酸素を自熔炉と転炉へ供給する酸素供給設備であって、
一方の酸素圧縮機の出口配管を前記自熔炉への高圧酸素供給配管に結合し、他方の酸素圧縮機の出口配管を前記酸素ホルダーの受入ノズルに結合し、さらに該酸素ホルダーの出口配管を前記転炉への高圧酸素供給配管に結合することを特徴とする。
さらに、前記圧力調節弁付き酸素圧縮機は、それぞれ供給される低圧酸素を流量制御する手段を有することができる。
The oxygen supply facility of the present invention has an oxygen plant that produces at least low-pressure oxygen, two oxygen compressors with pressure control valves that compress low-pressure oxygen to obtain high-pressure oxygen, and an oxygen holder that stores high-pressure oxygen, An oxygen supply facility for supplying the high-pressure oxygen to the self-melting furnace and the converter,
The outlet pipe of one oxygen compressor is connected to the high pressure oxygen supply pipe to the self-melting furnace, the outlet pipe of the other oxygen compressor is connected to the receiving nozzle of the oxygen holder, and the outlet pipe of the oxygen holder is further connected to the oxygen pipe. It is characterized by being connected to a high-pressure oxygen supply pipe to the converter.
Further, the oxygen compressor with a pressure control valve may have means for controlling the flow rate of the low-pressure oxygen supplied.

本発明において、2台を備える酸素圧縮機の一方を、その出口配管を自熔炉への高圧酸素供給配管と結合して自熔炉専用とし、他方を、その出口配管を酸素ホルダーの受入ノズルに結合し、酸素ホルダーを介し、転炉に高圧酸素を供給することに用いることが重要である。すなわち、このことは、自熔炉の操業が連続操業であり、一方転炉の操業が間欠操業であるという、製錬炉として自熔炉と転炉を用いる銅製錬方法の操業形態に適応させたものである。   In the present invention, one of the two oxygen compressors is connected to a high pressure oxygen supply pipe to the self-melting furnace for exclusive use of the self-melting furnace, and the other is connected to the receiving nozzle of the oxygen holder. However, it is important to use it for supplying high pressure oxygen to the converter through an oxygen holder. That is, this is adapted to the operation mode of the copper smelting method using a self-smelting furnace and a converter as a smelting furnace, in which the operation of the auto-smelting furnace is continuous operation, while the operation of the converter is intermittent operation. It is.

以下に、図面を参照して本発明の酸素供給設備の実施の一形態について説明するが、本発明は、これらの実施の形態によってなんら限定されるものではない。
図3は、本発明の酸素供給設備の設備構成図を例示する。ここで、酸素供給設備から酸素富化空気に用いる高圧酸素が供給される自熔炉と転炉も記載している。
本発明の酸素供給設備は、従来の、図1に例示した酸素供給設備に対し、主として、一方の酸素圧縮機から自熔炉へ高圧酸素を供給する配管と、両方の酸素圧縮機へ供給する低圧酸素の制御手段とにおいて、改造を施したものである。
Hereinafter, embodiments of the oxygen supply facility of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.
FIG. 3 illustrates an equipment configuration diagram of the oxygen supply equipment of the present invention. Here, a flash furnace and a converter to which high-pressure oxygen used for oxygen-enriched air is supplied from an oxygen supply facility are also described.
The oxygen supply facility of the present invention is mainly composed of a pipe for supplying high-pressure oxygen from one oxygen compressor to a self-melting furnace and a low-pressure to be supplied to both oxygen compressors with respect to the conventional oxygen supply facility illustrated in FIG. The oxygen control means has been modified.

図3において、酸素プラント1で製造された低圧酸素は、低圧酸素配管バルブ(1)2を経由する配管を経て、その後分岐された低圧酸素配管バルブ(2)5を経由する配管系統と低圧酸素配管バルブ(3)6を経由する配管系統とで、それぞれ酸素圧縮機(1)8と酸素圧縮機(2)9の2台の酸素圧縮機へ供給される。この低圧酸素配管バルブ(1)2を経由する配管には、放風弁3と低圧酸素流量計(1)4を、また低圧酸素配管バルブ(2)5を経由する配管系統には、低圧酸素流量計(2)7を設けている。   In FIG. 3, the low-pressure oxygen produced in the oxygen plant 1 passes through the low-pressure oxygen pipe valve (1) 2 and then the branched low-pressure oxygen pipe valve (2) 5 and the low-pressure oxygen pipe. With the piping system which passes through piping valve (3) 6, it supplies to two oxygen compressors, oxygen compressor (1) 8 and oxygen compressor (2) 9, respectively. The low-pressure oxygen piping valve (1) 2 is connected to the piping through the discharge valve 3 and the low-pressure oxygen flow meter (1) 4, and the low-pressure oxygen piping valve (2) 5 is connected to the low-pressure oxygen piping valve (1) 2 A flow meter (2) 7 is provided.

前記酸素圧縮機(1)8と酸素圧縮機(2)9とでは、それぞれ低圧酸素を圧縮して高圧酸素を得る。
ここで、前記酸素圧縮機8で得られた高圧酸素は、酸素ホルダー18を介さずに、新設の自熔炉行き高圧酸素バイパス配管21を経由して、自熔炉行き高圧酸素配管19から自熔炉22へ供給される。なお、自熔炉行き高圧酸素バイパス配管21は、高圧酸素配管バルブ(1)16を経由する配管と自熔炉行き高圧酸素配管19とのバイパスを形成するため、両配管とそれぞれ結合するものである。ここで、高圧酸素配管バルブ(1)16を経由する配管は、バルブを閉じることにより休止される。また、自熔炉行き高圧酸素配管19の酸素ホルダー18の出口側は、バルブ(図示していない。)を閉じることにより休止される。一方、前記酸素圧縮機9で得られた高圧酸素は、高圧酸素配管バルブ(2)17を経由する配管で酸素ホルダー18へ供給され蓄えられる。前記酸素ホルダー18に蓄えられた高圧酸素は、転炉行き高圧酸素配管20を経由して、酸素富化空気を用いる転炉23へ供給される。
The oxygen compressor (1) 8 and the oxygen compressor (2) 9 compress high-pressure oxygen by compressing low-pressure oxygen, respectively.
Here, the high-pressure oxygen obtained by the oxygen compressor 8 does not go through the oxygen holder 18, but passes through the newly installed high-pressure oxygen bypass pipe 21 for the self-melting furnace to the self-melting furnace 22 from the high-pressure oxygen pipe 19 for the self-melting furnace. Supplied to. Note that the high-pressure oxygen bypass pipe 21 for the self-melting furnace is connected to both pipes in order to form a bypass between the high-pressure oxygen pipe valve (1) 16 and the high-pressure oxygen pipe 19 for the self-melting furnace. Here, the piping through the high-pressure oxygen piping valve (1) 16 is stopped by closing the valve. Further, the outlet side of the oxygen holder 18 of the high-pressure oxygen pipe 19 for the auto-smelting furnace is stopped by closing a valve (not shown). On the other hand, high-pressure oxygen obtained by the oxygen compressor 9 is supplied to and stored in the oxygen holder 18 through a pipe passing through the high-pressure oxygen pipe valve (2) 17. The high-pressure oxygen stored in the oxygen holder 18 is supplied to the converter 23 using oxygen-enriched air via the high-pressure oxygen pipe 20 for the converter.

前記自熔炉行き高圧酸素バイパス配管21と高圧酸素配管バルブ(2)17を経由する配管には、それぞれのバルブの高圧酸素の供給側に高圧酸素圧力計(1)10と高圧酸素圧力計(2)13を設けている。
また、前記自熔炉行き高圧酸素バイパス配管21と高圧酸素配管バルブ(2)17を経由する配管には、それぞれ低圧酸素配管バルブ(2)5を経由する配管に結合する酸素圧縮機バイパス配管(1)12と、低圧酸素配管バルブ(3)6を経由する配管に結合する酸素圧縮機バイパス配管(2)15とを設けている。さらに、前記酸素圧縮機バイパス配管12、15には、それぞれ圧力調節弁(1)11と圧力調節弁(2)14を設けている。
The high-pressure oxygen pressure gauge (1) 10 and the high-pressure oxygen pressure gauge (2) are connected to the high-pressure oxygen supply side of each valve on the high-pressure oxygen bypass pipe 21 and the high-pressure oxygen pipe valve (2) 17 respectively. ) 13 is provided.
In addition, each of the pipes passing through the high-pressure oxygen bypass pipe 21 and the high-pressure oxygen pipe valve (2) 17 is connected to a pipe passing through the low-pressure oxygen pipe valve (2) 5, respectively. ) 12 and an oxygen compressor bypass pipe (2) 15 coupled to the pipe passing through the low-pressure oxygen pipe valve (3) 6. Further, the oxygen compressor bypass pipes 12, 15 are provided with a pressure control valve (1) 11 and a pressure control valve (2) 14, respectively.

上記酸素供給設備の運転方法において、酸素圧縮機8と酸素圧縮機9へ供給される低圧酸素は、それぞれこれを流量制御する手段を用いて制御される。すなわち、酸素圧縮機8は、自熔炉専用として稼動し、低圧酸素流量計(2)7の流量値をほぼ一定に保つように圧力調節弁(1)11を用いて流量制御(FIC)を行う。一方、酸素圧縮機9は、転炉専用として稼動し、低圧酸素配管バルブ(3)6を経由する配管を通過する低圧酸素の流量をほぼ一定に保つように圧力調節弁(2)14を用いて流量制御(FIC)を行う。
上記酸素供給設備では、従来の酸素供給設備では、転炉の停止期間に放出していた余剰の低圧酸素を自熔炉22で使用することができるため、酸素プラント1から放風弁3で放出していた低圧酸素放風量を低減することができる。
In the above operation method of the oxygen supply equipment, the low pressure oxygen supplied to the oxygen compressor 8 and the oxygen compressor 9 is controlled by means for controlling the flow rate of each. That is, the oxygen compressor 8 is operated exclusively for the self-melting furnace, and performs flow rate control (FIC) using the pressure control valve (1) 11 so as to keep the flow rate value of the low-pressure oxygen flow meter (2) 7 almost constant. . On the other hand, the oxygen compressor 9 operates exclusively for the converter and uses the pressure control valve (2) 14 so as to keep the flow rate of the low-pressure oxygen passing through the pipe passing through the low-pressure oxygen pipe valve (3) 6 almost constant. To control the flow rate (FIC).
In the oxygen supply facility, surplus low-pressure oxygen that was released during the converter shutdown period in the conventional oxygen supply facility can be used in the self-melting furnace 22, so that it is discharged from the oxygen plant 1 through the discharge valve 3. The amount of low-pressure oxygen that has been discharged can be reduced.

上記運転方法における酸素プラント1の放風弁3からの酸素放風量について、図を用いて説明する。図4は、本発明の酸素供給設備の運転結果(酸素ホルダー圧力と酸素プラント放風量)を示す。
図4より、1台の酸素圧縮機を自熔炉専用に一定流量で運転しても、他の1台の酸素圧縮機で、転炉に必要な下限以上の圧力に酸素ホルダー圧力を保持することができること、及び本発明の酸素供給設備を用いた場合の酸素プラント放風量が、従来の酸素供給設備の場合と比較して小さいこと、が分かる。この酸素プラント放風量の違い(図中の酸素プラント放風量と従来運転における酸素プラント平均放風量の差にあたる。)は、この分の低圧酸素を自熔炉で使用することができたことによるものである。
したがって、本発明の酸素供給設備を用いれば、低圧酸素の放風量を最低限にまで抑制し、使用電力を削減し、また自熔炉で銅硫化精鉱を増処理することが達成される。
The oxygen discharge rate from the discharge valve 3 of the oxygen plant 1 in the above operation method will be described with reference to the drawings. FIG. 4 shows the operation results (oxygen holder pressure and oxygen plant discharge rate) of the oxygen supply facility of the present invention.
As shown in Fig. 4, even if one oxygen compressor is operated at a constant flow rate for exclusive use of the self-melting furnace, the oxygen holder pressure is maintained at a pressure higher than the lower limit required for the converter with the other oxygen compressor. It can be seen that the oxygen plant discharge rate when the oxygen supply facility of the present invention is used is smaller than that of the conventional oxygen supply facility. This difference in the oxygen plant discharge rate (the difference between the oxygen plant discharge rate in the figure and the average oxygen plant discharge rate in the conventional operation) is due to the fact that this low pressure oxygen could be used in the flash furnace. is there.
Therefore, if the oxygen supply equipment of the present invention is used, it is possible to suppress the amount of low-pressure oxygen discharged to a minimum, reduce the electric power used, and increase the copper sulfide concentrate in the flash furnace.

以上より明らかなように、本発明の酸素供給設備は、製錬炉として自熔炉と転炉とを使用し、かつそれらの燃焼用気体として酸素富化空気を用いる製錬方法において、より一層省エネルギー化した運転が行なえるものであるので、銅硫化精鉱の製錬分野で利用される酸素供給設備として好適である。   As is clear from the above, the oxygen supply facility of the present invention uses a self-smelting furnace and a converter as smelting furnaces, and further saves energy in a smelting method using oxygen-enriched air as a combustion gas thereof. Therefore, it is suitable as an oxygen supply facility used in the field of copper sulfide concentrate smelting.

従来の酸素供給設備の設備構成図である。It is an equipment block diagram of the conventional oxygen supply equipment. 従来の酸素供給設備の運転結果(酸素ホルダー圧力と酸素プラント放風量)を示す図である。It is a figure which shows the driving | running result (oxygen holder pressure and oxygen plant discharge amount) of the conventional oxygen supply equipment. 本発明の酸素供給設備の設備構成図である。It is an equipment block diagram of the oxygen supply equipment of the present invention. 本発明の酸素供給設備の運転結果(酸素ホルダー圧力と酸素プラント放風量)を示す図である。It is a figure which shows the driving | running result (oxygen holder pressure and oxygen plant air discharge amount) of the oxygen supply equipment of this invention.

符号の説明Explanation of symbols

1 酸素プラント
2 低圧酸素配管バルブ(1)
3 放風弁
4 低圧酸素流量計(1)
5 低圧酸素配管バルブ(2)
6 低圧酸素配管バルブ(3)
7 低圧酸素流量計(2)
8 酸素圧縮機(1)
9 酸素圧縮機(2)
10 高圧酸素圧力計(1)
11 圧力調節弁(1)
12 酸素圧縮機バイパス配管(1)
13 高圧酸素圧力計(2)
14 圧力調節弁(1)
15 酸素圧縮機バイパス配管(2)
16 高圧酸素配管バルブ(1)
17 高圧酸素配管バルブ(2)
18 酸素ホルダー
19 自熔炉行き高圧酸素配管
20 転炉行き高圧酸素配管
21 自熔炉行き高圧酸素バイパス配管
22 自熔炉
23 転炉
1 Oxygen plant 2 Low pressure oxygen piping valve (1)
3 Ventilation valve 4 Low pressure oxygen flow meter (1)
5 Low pressure oxygen piping valve (2)
6 Low pressure oxygen piping valve (3)
7 Low pressure oxygen flow meter (2)
8 Oxygen compressor (1)
9 Oxygen compressor (2)
10 High pressure oxygen pressure gauge (1)
11 Pressure control valve (1)
12 Oxygen compressor bypass piping (1)
13 High pressure oxygen pressure gauge (2)
14 Pressure control valve (1)
15 Oxygen compressor bypass piping (2)
16 High pressure oxygen piping valve (1)
17 High pressure oxygen piping valve (2)
18 Oxygen Holder 19 High-Pressure Oxygen Pipe for the Smelting Furnace 20 High-Pressure Oxygen Pipe for the Converter 21 High-Pressure Oxygen Bypass Pipe for the Smelting Furnace 22

Claims (2)

少なくとも低圧酸素を製造する酸素プラントと、低圧酸素を圧縮し高圧酸素を得る2台の圧力調節弁付き酸素圧縮機と、高圧酸素を蓄える酸素ホルダーとを有し、該高圧酸素を自熔炉と転炉へ供給する酸素供給設備であって、
一方の酸素圧縮機の出口配管を前記自熔炉への高圧酸素供給配管に結合し、他方の酸素圧縮機の出口配管を前記酸素ホルダーの受入ノズルに結合し、さらに該酸素ホルダーの出口配管を前記転炉への高圧酸素供給配管に結合することを特徴とする酸素供給設備。
An oxygen plant that produces at least low-pressure oxygen, two oxygen compressors with pressure control valves that compress low-pressure oxygen to obtain high-pressure oxygen, and an oxygen holder that stores high-pressure oxygen. An oxygen supply facility for supplying to the furnace,
The outlet pipe of one oxygen compressor is connected to the high pressure oxygen supply pipe to the self-melting furnace, the outlet pipe of the other oxygen compressor is connected to the receiving nozzle of the oxygen holder, and the outlet pipe of the oxygen holder is further connected to the oxygen pipe. An oxygen supply facility that is connected to a high-pressure oxygen supply pipe to a converter.
前記酸素圧縮機は、供給される低圧酸素を流量制御する手段を有することを特徴とする請求項1に記載の酸素供給設備。   2. The oxygen supply equipment according to claim 1, wherein the oxygen compressor has means for controlling a flow rate of low-pressure oxygen to be supplied.
JP2008085980A 2008-03-28 2008-03-28 Oxygen supplying equipment Pending JP2009235547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085980A JP2009235547A (en) 2008-03-28 2008-03-28 Oxygen supplying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085980A JP2009235547A (en) 2008-03-28 2008-03-28 Oxygen supplying equipment

Publications (1)

Publication Number Publication Date
JP2009235547A true JP2009235547A (en) 2009-10-15

Family

ID=41249853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085980A Pending JP2009235547A (en) 2008-03-28 2008-03-28 Oxygen supplying equipment

Country Status (1)

Country Link
JP (1) JP2009235547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177685A (en) * 2013-03-15 2014-09-25 Sumitomo Metal Mining Co Ltd Method for measuring switching flow of oxygen compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177685A (en) * 2013-03-15 2014-09-25 Sumitomo Metal Mining Co Ltd Method for measuring switching flow of oxygen compressor

Similar Documents

Publication Publication Date Title
US11377700B2 (en) Method for operating an iron- or steelmaking- plant
CN113874486B (en) Direct reduction process using hydrogen
JP5467142B2 (en) Method for producing crude copper directly from copper concentrate
CN102417979B (en) Processing method of zinc sulfide concentrate
WO2015105107A1 (en) Method for operating blast furnace
US9534264B2 (en) System for energy optimization in a plant for producing direct-reduced metal ores
CN109055643A (en) A kind of coal gas shaft furnace system and iron smelting method based on induction supplementary heating structure
CN109913606A (en) A kind of coal hydrogen shaft furnace ironmaking system and technique based on induction heating
CN101603109B (en) Process for treating top gas of reduction shaft furnace
CN104232923A (en) Method of reducing SO3 production in copper smelting process
JP2009235547A (en) Oxygen supplying equipment
KR101696112B1 (en) Method for manufacturing molten steel inhibiting reducing degradation
KR20110120330A (en) Method and plant for the production of substitute gas
CN106702065A (en) Novel system and novel method for preparing sponge iron through gas-based shaft kiln
CA3222487A1 (en) Hydrogen gas recycling in a direct reduction process
CN102676804A (en) Method for treating zinc sulfide concentrate powder
CN211695930U (en) Flue gas circulation emission reduction system of sintering machine
CN103547863A (en) Method for treating a carbon dioxide-containing waste gas
CN205368422U (en) Steel smelting stove based on electromagnetic induction heating technique
CN205328610U (en) Be used for waste acid recycling processing apparatus
Kuz’menko et al. Prospects for Consteel technology in Russia
EP4359571A1 (en) A process and a system for the production of sponge iron from iron ore
JP2012193405A (en) Method for operating melting reduction furnace
JP2024524019A (en) Recycling of hydrogen gas in direct reduction processes
Nikitin et al. Rational structure of column of charge materials in blast furnace.