JP6114960B2 - Temperature measurement method and apparatus using temperature-sensitive liquid crystal - Google Patents

Temperature measurement method and apparatus using temperature-sensitive liquid crystal Download PDF

Info

Publication number
JP6114960B2
JP6114960B2 JP2013029052A JP2013029052A JP6114960B2 JP 6114960 B2 JP6114960 B2 JP 6114960B2 JP 2013029052 A JP2013029052 A JP 2013029052A JP 2013029052 A JP2013029052 A JP 2013029052A JP 6114960 B2 JP6114960 B2 JP 6114960B2
Authority
JP
Japan
Prior art keywords
temperature
liquid crystal
sensitive liquid
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013029052A
Other languages
Japanese (ja)
Other versions
JP2014157115A (en
Inventor
孝司 鳥山
孝司 鳥山
義貴 井上
義貴 井上
浩一 一宮
浩一 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2013029052A priority Critical patent/JP6114960B2/en
Publication of JP2014157115A publication Critical patent/JP2014157115A/en
Application granted granted Critical
Publication of JP6114960B2 publication Critical patent/JP6114960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、非接触の温度計測法に関する。   The present invention relates to a non-contact temperature measurement method.

非接触で、かつ簡便な温度(分布)の計測法は、温度制御・管理といった分野で必要になってきている。これらのニーズに対応する製品としては、赤外線カメラや放射温度計といったものがあり、製造の現場などでは既に広く利用されてきている。しかしながら、赤外線カメラは高価であるが、数℃程度の測定誤差があり、あまり精度が高いとは言えない。また、放射温度計についても計測対象の表面形状や色等の放射率の相違により測定精度が低いという問題がある。これらの問題点が解決されれば、より精度の高い合理的な温度制御を行えるようになると共に、今まで利用されていないような分野にも非接触温度計測が使用されるようになると考えられる。   A non-contact and simple temperature (distribution) measuring method is required in the field of temperature control and management. Products that meet these needs include infrared cameras and radiation thermometers, which have already been widely used at manufacturing sites. However, although an infrared camera is expensive, there is a measurement error of about several degrees Celsius and it cannot be said that the accuracy is very high. Further, the radiation thermometer also has a problem that the measurement accuracy is low due to the difference in emissivity such as the surface shape and color of the measurement object. If these problems are solved, it will be possible to perform more accurate and rational temperature control, and non-contact temperature measurement will be used in fields that have not been used so far. .

そこで、温度計測幅は狭まるという問題点があるが精度がよい温度計測法である感温液晶をもちいる手法に着目する。なお感温液晶は、温度に対応して散乱光が変化する特性を持っている。この方法では、CCDカメラにて光の3原色の輝度として計測し、その輝度と温度との相関式を用いて温度計測を行う。光の3原色をどのように用いるかによって手法は異なり、光の3原色の輝度を引数とする多項式により温度を検定するRGB法(特許文献1)や、光の3原色の輝度をHSI色空間に変換し、そのHue値と温度との関係を用いて温度を検定するHSIスプライン検定法(非特許文献1)がこれまでに報告されている。   Therefore, attention is paid to a technique using a temperature-sensitive liquid crystal, which is a temperature measuring method with a high accuracy, although there is a problem that the temperature measurement width is narrowed. The temperature-sensitive liquid crystal has a characteristic that the scattered light changes according to the temperature. In this method, the brightness of the three primary colors of light is measured by a CCD camera, and the temperature is measured using a correlation equation between the brightness and temperature. The method differs depending on how the three primary colors of light are used. The RGB method (Patent Document 1) that tests the temperature using a polynomial with the luminance of the three primary colors of light as an argument, and the luminance of the three primary colors of light in the HSI color space An HSI spline test method (Non-Patent Document 1) has been reported so far in which temperature is verified using the relationship between the Hue value and temperature.

しかし、これらの計測法には、光の3原色全てを含む光源と、光の3原色の輝度を取得可能なCCDカメラが必要になる。光源は、光の3原色に固定しているため、青色として捉えられる波長よりも短い波長の変動が捉えられず、感温液晶の呈色範囲(色の変わる温度範囲)の高温側の温度計測が難しくなり、測定できる範囲が狭まるという問題点を有している。実際、感温液晶の呈色範囲となる温度差は、感温液晶の精製の仕方にもよるが、通常10℃という温度幅を有している。しかしながら、前述の計測法では、その10℃程度の温度幅を有する感温液晶でも7℃程度の範囲しか計測できないのという問題点を有している。また、製品化するうえで、カラーのCCDカメラは、計測系のサイズや価格を下げにくいという要因にもなっている。
本発明は、光の3原色以外の波長域にも目を向け、温度との関係性の高い波長を見つけ、より簡易的に、より測定範囲の広い温度計測原理を見いだすことを目的とした。そのため、感温液晶の散乱光を分光器にて各波長の強度を測定し、波長強度と温度の関係を明らかにした。
However, these measurement methods require a light source that includes all three primary colors of light and a CCD camera that can acquire the luminance of the three primary colors of light. Since the light source is fixed to the three primary colors of light, fluctuations in the wavelength shorter than the wavelength that can be captured as blue are not captured, and temperature measurement on the high temperature side of the temperature-sensitive liquid crystal color range (temperature range in which the color changes) Has a problem that the range that can be measured is narrowed. Actually, the temperature difference that is the coloration range of the temperature-sensitive liquid crystal usually has a temperature range of 10 ° C., although it depends on the purification method of the temperature-sensitive liquid crystal. However, the above-described measurement method has a problem that even a temperature-sensitive liquid crystal having a temperature range of about 10 ° C. can measure only a range of about 7 ° C. In addition, the color CCD camera is a factor that makes it difficult to reduce the size and price of the measurement system.
An object of the present invention is to look at wavelength ranges other than the three primary colors of light, find wavelengths having a high relationship with temperature, and more easily find a temperature measurement principle with a wider measurement range. Therefore, the intensity of each wavelength of the scattered light of the temperature-sensitive liquid crystal was measured with a spectrometer, and the relationship between the wavelength intensity and temperature was clarified.

特開2003-337070公報JP2003-337070

感温液晶による温度測定に関する研究(第1報、分光・色彩特性),日本機械学会論文集B編,Vol.63,No.611,pp.2473-2479,1997.Study on temperature measurement with thermosensitive liquid crystal (1st report, Spectral and color characteristics), Transactions of the Japan Society of Mechanical Engineers, B, Vol.63, No.611, pp.2473-2479,1997.

本発明は、光の3原色以外の波長域にも目を向け、温度との関係性の高い波長を見つけ、より簡易的に、より測定範囲の広い温度計測原理を見いだすことを目的とした。そのため、感温液晶の散乱光を分光器にて各波長の強度を測定し、波長強度と温度の関係を明らかにした。   An object of the present invention is to look at wavelength regions other than the three primary colors of light, find a wavelength having a high relationship with temperature, and more easily find a temperature measurement principle with a wider measurement range. Therefore, the intensity of each wavelength of the scattered light of the temperature-sensitive liquid crystal was measured with a spectrometer, and the relationship between the wavelength intensity and temperature was clarified.

上記目的を達成するために、以下の本発明の構成によって達成することができる。   To achieve the above object, the present invention can be achieved by the following configurations of the present invention.

本発明の計測方法は、感温液晶を用いた温度計測方法において、可視光の青色部分に相当する波長域(490nm未満)のうち、輝度と温度との関係が単調増加にある領域を用いて、温度を測定することを特徴とした温度計測方法である。   The measurement method of the present invention is a temperature measurement method using a temperature-sensitive liquid crystal, and uses a region in which the relationship between luminance and temperature is monotonously increasing in a wavelength region (less than 490 nm) corresponding to a blue portion of visible light. A temperature measurement method characterized by measuring temperature.

本発明を実施するための装置として、粉体または液体またはシート状に固定された感温液晶と、短波長のうち一つ以上の波長を発光することができる光源と、反射された輝度を計測できるフォトダイオードからなる温度計測装置である。   As an apparatus for carrying out the present invention, a temperature-sensitive liquid crystal fixed in powder, liquid, or sheet form, a light source capable of emitting one or more wavelengths among short wavelengths, and reflected luminance are measured. This is a temperature measuring device composed of a photodiode that can be used.

次に、本発明の実施形態について説明する。本発明は、粉体または液体またはシート状に固定された感温液晶と、短波長のうち一つ以上の波長を発光することができる光源と、反射された輝度を計測できるフォトダイオードを備えればよい。実験装置の概略を図1に示す。   Next, an embodiment of the present invention will be described. The present invention includes a temperature-sensitive liquid crystal fixed in powder, liquid, or sheet form, a light source capable of emitting one or more wavelengths among short wavelengths, and a photodiode capable of measuring reflected luminance. That's fine. An outline of the experimental apparatus is shown in FIG.

本発明の装置の概略を示す。The outline of the device of the present invention is shown. 実験装置の写真を示す。A photograph of the experimental apparatus is shown. 代表的な温度における分光器から得られた全ての波長域の輝度に相当する信号強度の関係を示す。The relationship of the signal intensity corresponding to the brightness | luminance of all the wavelength ranges obtained from the spectrometer in typical temperature is shown. 白板を用いて正規化した信号強度比の計測結果を示す。The measurement result of the signal intensity ratio normalized using the white board is shown. 感温液晶の呈色範囲(28.8〜35.5℃)よりも、やや広い温度範囲(25〜40℃)にわたる計測結果を示す。The measurement results over a slightly wider temperature range (25 to 40 ° C) than the color range (28.8 to 35.5 ° C) of the temperature-sensitive liquid crystal are shown. 470、480、490nmの信号強度比と温度の関係を示す。The relationship between the signal intensity ratio at 470, 480 and 490 nm and the temperature is shown.

実験装置の写真を図2に示す。予備実験から、ハロゲン光源を照射し続けると感温液晶の温度が上昇してしまうことが明らかになったので、電動の移動ステージを用いてセンサ部を等速速度で移動させる構造にした。これにより長時間にかけて同一個所にハロゲン光を照射しなくなるため、ハロゲン光の影響を極力小さくすることが可能になる。本実験では、電動の移動ステージにより移動させながら計測を行うため、温度分布の変化率は小さい程、精度のよい計測が可能になるため、実験装置のサイズの都合も考え、A4サイズのシートの縦方向をセンサの移動方向になるようにした。そのため、縦230mm、横370mmの伝熱板を製作し、伝熱板の両端には恒温水を循環させ、温度分布を形成した。センサは感温液晶に対して垂直に当て、散乱光を得るためのハロゲン光は45°の角度から照射した。分光器と電動の移動ステージの同期ができなかったため、実験の実施に対しては手動で同期させる必要があった。これを遂行するために、図1に示すようなスタートライン及びスタートチェックラインを2cm間隔に凧糸で伝熱面上に設置した。分光器の計測間隔の最短時間が1秒、電動の移動ステージの最低移動速度が1cm/sであるので、スタートラインとスタートチェックラインの間隔を1cmの倍数で設置する必要がある。本発明では、設置の容易さなどの関係から2cmとした。感温液晶の温度は、2cmの等間隔に設置したT型熱電対(計14点)とその間を補間により得た23点の温度を使用した。   A photograph of the experimental apparatus is shown in FIG. Preliminary experiments revealed that the temperature of the temperature-sensitive liquid crystal would rise if irradiation with a halogen light source was continued. Therefore, the sensor unit was moved at a constant speed using an electric moving stage. As a result, the halogen light is not irradiated to the same portion over a long period of time, so that the influence of the halogen light can be minimized. In this experiment, measurement is performed while being moved by an electric moving stage. Therefore, the smaller the rate of change in temperature distribution, the more accurate measurement is possible. The vertical direction is the direction of sensor movement. Therefore, a heat transfer plate with a length of 230 mm and a width of 370 mm was manufactured, and constant temperature water was circulated at both ends of the heat transfer plate to form a temperature distribution. The sensor was placed perpendicular to the temperature-sensitive liquid crystal, and halogen light for obtaining scattered light was applied from an angle of 45 °. Since the spectroscope and the electric moving stage could not be synchronized, it was necessary to manually synchronize the experiment. In order to accomplish this, a start line and a start check line as shown in FIG. 1 were installed on the heat transfer surface with a kite string at intervals of 2 cm. Since the shortest measurement interval of the spectrometer is 1 second and the minimum moving speed of the electric moving stage is 1 cm / s, it is necessary to set the interval between the start line and the start check line in multiples of 1 cm. In the present invention, the distance is set to 2 cm for ease of installation. As the temperature of the temperature-sensitive liquid crystal, a T-type thermocouple (14 points in total) installed at equal intervals of 2 cm and a temperature of 23 points obtained by interpolation between them were used.

本実験における恒温水の設定温度と実験時の室温を表1に示す。本実験では、感温液晶の呈色範囲外での散乱光についても測定するが、1回の実験で幅広い温度範囲を計測できる温度設定を行うとデータの温度幅が大きくなりすぎるため、実験の精度に大きく影響を与えることになる。従って、測定は温度範囲を変えて3種類行うこととした。なお、室温は一様な温度分布の形成に対して悪影響を与えないように、伝熱板の両端に流す恒温水の中間付近の温度になるように室温を調節している。
本実験で使用する感温液晶はシート状になっているものであり、呈色範囲は28.8〜35.5℃である。ハロゲン光が当たる面を表面として、伝熱板と接する面を裏面として表したときのシートの構造を表2にまとめる。シート1が通常市販されている感温液晶で、入射させるハロゲン光の反射の影響を軽減することを目的に、シートの構造が異なる5種類を準備した。なお、シートに使用されている各材料の詳細は表3の通りである。
Table 1 shows the set temperature of the constant temperature water in this experiment and the room temperature during the experiment. In this experiment, scattered light outside the color range of the temperature-sensitive liquid crystal is also measured.However, if the temperature is set so that a wide temperature range can be measured in one experiment, the temperature range of the data becomes too large. The accuracy will be greatly affected. Therefore, three types of measurements were performed by changing the temperature range. Note that the room temperature is adjusted so that the room temperature is in the vicinity of the middle of the constant temperature water flowing through both ends of the heat transfer plate so as not to adversely affect the formation of a uniform temperature distribution.
The temperature-sensitive liquid crystal used in this experiment is in the form of a sheet, and the color range is 28.8-35.5 ° C. Table 2 summarizes the sheet structure when the surface that is exposed to halogen light is the front surface and the surface that contacts the heat transfer plate is the back surface. The sheet 1 is a commercially available temperature-sensitive liquid crystal, and five types with different sheet structures were prepared for the purpose of reducing the influence of reflection of incident halogen light. Details of each material used for the sheet are shown in Table 3.

Figure 0006114960
Figure 0006114960

Figure 0006114960
Figure 0006114960

Figure 0006114960
Figure 0006114960

実験方法
最初に、室温を恒温水槽の高温側と低温側の中間付近の温度に設定する。また、伝熱板の恒温水を流している部分の高温側には室温による冷却、低温側には加熱の影響を受ける。そのため、恒温水槽の設定温度を実際に測定したい温度よりもそれぞれ高め及び低めに調整し、任意の温度分布が形成させるようにした。
Experimental Method First, the room temperature is set to a temperature near the middle between the high temperature side and the low temperature side of the thermostatic water bath. Further, the high temperature side of the heat transfer plate where constant temperature water is flowing is affected by cooling at room temperature, and the low temperature side is affected by heating. Therefore, the set temperature of the thermostatic water tank is adjusted to be higher and lower than the actual temperature to be measured so that an arbitrary temperature distribution is formed.

伝熱板に設定した熱電対により温度を計測し、ある一定時間変動せず、温度分布も位置に対してほぼ一定になっているのを確認できたところで温度設定の完了となる。この温度設定をしている間に、電動の移動ステージと分光器の設定を行う。ここでは、電動の移動ステージを等速で1cm/sの速さで移動できるようにし、分光器は1秒毎に計23回計測するように設定を行った。温度設定の完了後、スタートラインより前から電動の移動ステージの等速移動をスタートさせ、センサがスタートラインを通過すると同時に分光器での計測を手動で開始させ、散乱光の計測を行う。正しく計測できていれば分光器で計測されている2番目のデータは、凧糸の値を計測し、残りのデータは全て熱電対の設置されている個所を計測することになる。なお、凧糸の色は白色であるため、分光器で計測される値は幅広い波長域で大きな値が計測されることになるので容易に確認が可能である。
The temperature setting is completed when it is confirmed that the temperature is measured by a thermocouple set on the heat transfer plate, does not vary for a certain period of time, and the temperature distribution is substantially constant with respect to the position. While the temperature is set, the electric moving stage and the spectroscope are set. Here, the electric moving stage was moved at a constant speed of 1 cm / s, and the spectroscope was set to measure a total of 23 times per second. After the temperature setting is completed, the constant speed movement of the electric moving stage is started from before the start line, and at the same time as the sensor passes the start line, the measurement with the spectroscope is started manually to measure the scattered light. If measured correctly, the second data measured by the spectrometer will measure the value of the kite string, and the remaining data will all be measured at the location where the thermocouple is installed. In addition, since the color of the kite string is white, the value measured by the spectroscope can be easily confirmed because a large value is measured in a wide wavelength range.

実験結果及び考察
ハロゲン光源を使用して予備実験を行った結果、シート4以外の感温液晶では表面材による反射の影響が大きく計測することができなかった。なお、十分な増幅率を有するフォトダイオードとLED光源を用いた任意波長の反射率を測定できる計測器にて計測したところ、全てのシートにおいて照射するLED光源の波長に応じた波長の強度の計測が可能であることを確認できている。従って、一般的に用いられるような表面がPETで覆われている感温液晶においても計測機側の改善により適用できると考えられる。
本発明では、分光器により様々な波長域に対して温度との関係を検討することを目的としているため、以後の結果及び結論はシート4に関して、ハロゲン光による実験を行い評価した結果を示す。
Experimental Results and Discussion As a result of a preliminary experiment using a halogen light source, the temperature-sensitive liquid crystal other than the sheet 4 was not able to measure greatly the influence of reflection by the surface material. In addition, when measuring with a measuring instrument that can measure the reflectance of any wavelength using a photodiode and LED light source with sufficient amplification factor, measurement of the intensity of the wavelength according to the wavelength of the LED light source irradiated on all sheets Is confirmed to be possible. Therefore, it is considered that the thermosensitive liquid crystal whose surface is generally covered with PET can be applied by improving the measuring instrument side.
The purpose of the present invention is to examine the relationship with temperature for various wavelength ranges using a spectroscope, so the following results and conclusions show the results of an experiment conducted with halogen light on the sheet 4 and evaluation.

光源の特性
図3に、代表的な温度における分光器から得られた全ての波長域の輝度に相当する信号強度の関係を示す。なお、横軸が波長で、縦軸が信号強度である。この信号強度は波打っている様子が分かる。これは、用いた分光器の出力が、校正されたデータを出力するタイプではなく、得られたデータを後から校正する仕組みであることによる。校正をするためには、白板と呼ばれる校正用の板の散乱光のデータを用いる。なお、この校正は分光器の製造業者のみができるものであり、その都度容易に行うことができないという欠点がある。そこで本発明では、この白板の散乱光を分母にして計測された信号強度を正規化し、信号強度比として評価を行うこととした。
Characteristics of Light Source FIG. 3 shows the relationship between signal intensities corresponding to the luminance in all wavelength regions obtained from a spectroscope at typical temperatures. The horizontal axis is the wavelength and the vertical axis is the signal intensity. It can be seen that this signal intensity is undulating. This is because the output of the spectrometer used is not a type that outputs calibrated data, but a mechanism that calibrates the obtained data later. In order to perform calibration, scattered light data of a calibration plate called a white plate is used. This calibration can be performed only by the spectroscope manufacturer, and has a drawback that it cannot be easily performed each time. Therefore, in the present invention, the signal intensity measured using the scattered light of the white plate as a denominator is normalized and evaluated as a signal intensity ratio.

図4に、白板を用いて正規化した信号強度比の計測結果を示す。なお、横軸は波長で、縦軸は信号強度比である。このように正規化を行うと、図3にみられたような波打ちは観測されなくなる。
FIG. 4 shows the measurement result of the signal intensity ratio normalized using the white plate. The horizontal axis is the wavelength, and the vertical axis is the signal intensity ratio. When normalization is performed in this manner, the undulation as seen in FIG. 3 is not observed.

任意の波長での波長強度比と温度との関係
図5に感温液晶の呈色範囲(28.8〜35.5℃)よりも、やや広い温度範囲(25〜40℃)にわたる計測結果を示す。なお、横軸が波長で、縦軸が信号強度比である。呈色範囲を外れた温度範囲では肉眼で差異を確認することはできないが、信号強度比には呈色範囲外でも違いが生じている様子が分かる。ここで、500nm未満に注目すると、温度上昇に伴い信号強度比が大きくなる傾向があるように見受けられる。そこで、代表的に470、480、490nmの信号強度比と温度の関係を図6に示す。特に、480nmでは呈色範囲を上回る温度範囲で、この関係が維持されていることが分かる。すなわち、単波長(480nm)の信号強度比を用いることにより、12.4℃範囲(25〜37.4℃)の温度が検定でき、さらに単波長強度1つのみになるので計測装置の簡略化ができる可能性が示されたと言える。
FIG. 5 shows the measurement results over a temperature range (25 to 40 ° C.) that is slightly wider than the color range (28.8 to 35.5 ° C.) of the temperature-sensitive liquid crystal. The horizontal axis is the wavelength, and the vertical axis is the signal intensity ratio. Although the difference cannot be confirmed with the naked eye in the temperature range outside the coloration range, it can be seen that the signal intensity ratio is different even outside the coloration range. Here, when attention is paid to less than 500 nm, it seems that the signal intensity ratio tends to increase as the temperature rises. Therefore, the relationship between the signal intensity ratio of 470, 480 and 490 nm and the temperature is shown in FIG. In particular, it can be seen that at 480 nm, this relationship is maintained in a temperature range exceeding the coloration range. In other words, by using a signal intensity ratio of a single wavelength (480 nm), the temperature in the 12.4 ° C range (25-37.4 ° C) can be verified, and the measurement device can be simplified because there is only one single wavelength intensity. It can be said that was shown.

Claims (2)

感温液晶を用いた温度計測方法において、可視光の青色部分に相当する波長域(490nm未満)のうち、輝度と温度との関係が単調増加にある領域を用いて、前記感温液晶の測定された輝度から前記感温液晶の温度値を求めることを特徴とした温度計測方法 In the temperature measurement method using a temperature-sensitive liquid crystal, the temperature- sensitive liquid crystal is measured using a region in which the relationship between luminance and temperature is monotonically increasing in a wavelength region (less than 490 nm) corresponding to a blue portion of visible light. A temperature measurement method for obtaining a temperature value of the temperature-sensitive liquid crystal from the measured luminance 粉体または液体またはシート状に固定された感温液晶と、
短波長のうち一つ以上の波長を発光することができる光源と、
反射された輝度を計測できるフォトダイオードからなり、計測された前記輝度から前記感温液晶の温度を求める温度計測装置
Temperature sensitive liquid crystal fixed in powder, liquid or sheet form;
A light source capable of emitting one or more wavelengths of short wavelengths;
A temperature measuring device comprising a photodiode capable of measuring the reflected luminance and obtaining the temperature of the temperature-sensitive liquid crystal from the measured luminance
JP2013029052A 2013-02-18 2013-02-18 Temperature measurement method and apparatus using temperature-sensitive liquid crystal Active JP6114960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029052A JP6114960B2 (en) 2013-02-18 2013-02-18 Temperature measurement method and apparatus using temperature-sensitive liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029052A JP6114960B2 (en) 2013-02-18 2013-02-18 Temperature measurement method and apparatus using temperature-sensitive liquid crystal

Publications (2)

Publication Number Publication Date
JP2014157115A JP2014157115A (en) 2014-08-28
JP6114960B2 true JP6114960B2 (en) 2017-04-19

Family

ID=51578056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029052A Active JP6114960B2 (en) 2013-02-18 2013-02-18 Temperature measurement method and apparatus using temperature-sensitive liquid crystal

Country Status (1)

Country Link
JP (1) JP6114960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673482B (en) * 2016-05-24 2019-10-01 美商應用材料股份有限公司 System, processing chamber, and method for non-contact temperature measurement by dual-wavelength shift in brewster's angle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105940U (en) * 1980-12-22 1982-06-30
JPH01237424A (en) * 1988-03-17 1989-09-21 Matsushita Electric Ind Co Ltd Optical temperature sensor

Also Published As

Publication number Publication date
JP2014157115A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
Ma et al. Intensity-ratio and color-ratio thin-filament pyrometry: Uncertainties and accuracy
CN103063312B (en) Measuring system and method for measuring object emissivity
CN104697639B (en) A kind of MOCVD device real-time temperature measurement system self-calibrating device and method
WO2012081512A1 (en) Method and system for measuring surface temperature
Fischer et al. Uncertainty budgets for realization of ITS‐90 by radiation thermometry
Piasecka Determination of the temperature field using liquid crystal thermography and analysis of two-phase flow structures in research on boiling heat transfer in a minichannel
JP6090787B2 (en) Optical sensor calibration method
JP6114960B2 (en) Temperature measurement method and apparatus using temperature-sensitive liquid crystal
Toriyama et al. A new method of temperature measurement using thermochromic liquid crystals (extension of measurable range based on spectral intensity in the narrow-band wavelength)
RU2577389C1 (en) Method of calibrating thermoelectric heat flux sensors
Fu et al. The set-up of a vision pyrometer
Araújo et al. Monte Carlo uncertainty simulation of surface emissivity at ambient temperature obtained by dual spectral infrared radiometry
US7306367B2 (en) Emissivity-independent silicon surface temperature measurement
RU2549331C1 (en) Infrared collimator complex
RU2610115C1 (en) Device for determining gas temperature in hollow high-temperature elements of gas turbine engines
JP2004045306A (en) Method and instrument for measuring emissivity distribution
JP5626679B2 (en) Method and system for measuring surface temperature
CN104697666B (en) A kind of MOCVD reaction chambers temp measuring method
RU2466362C2 (en) Method of measuring spatial distribution gas temperature
CN104697637B (en) A kind of real time temperature measurement method of film growth
CN104697638B (en) A kind of MOCVD device real-time temperature measurement system method for self-calibrating
RO131286B1 (en) Process for measuring emissivity specific to infrared camera
Zhang et al. Overview of radiation thermometry
JP6292609B2 (en) Non-contact temperature measuring method and measuring apparatus
CN104180905A (en) Infrared temperature measurement method and device for MOCVD process growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6114960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250