JP6111779B2 - Control device for each wheel independent drive cart - Google Patents
Control device for each wheel independent drive cart Download PDFInfo
- Publication number
- JP6111779B2 JP6111779B2 JP2013063642A JP2013063642A JP6111779B2 JP 6111779 B2 JP6111779 B2 JP 6111779B2 JP 2013063642 A JP2013063642 A JP 2013063642A JP 2013063642 A JP2013063642 A JP 2013063642A JP 6111779 B2 JP6111779 B2 JP 6111779B2
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- torque
- idling
- sliding
- wheels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、車輪(4輪ないし複数輪)の各輪が独立して回転する各輪独立駆動台車に係り、特に、車輪を再粘着させる制御と複数車輪の回転角速度を協調させる制御を併用した制御方式に関する。 The present invention relates to a wheel independent drive cart in which each wheel (four wheels or a plurality of wheels) rotates independently, and particularly uses a control for re-adhering the wheel and a control for coordinating the rotational angular velocities of the plurality of wheels. It relates to the control method.
近年、電動台車等の電気車においては低床化が求められており、この低床化を実現させるために輪軸を省いた各輪独立駆動台車が採用され始めている。前記各輪独立駆動台車は、それぞれの車輪(4輪ないし複数輪)に、電動機,インバータが設けられており、各車輪を独立して回転駆動制御するものである。各輪独立駆動台車は左右の車輪が輪軸で結ばれていないため、左右の車輪を別々に駆動することが可能である。 In recent years, electric vehicles such as electric trolleys have been required to have a lower floor, and in order to realize this lower floor, independent driving carts for each wheel that omits the wheel shaft have begun to be adopted. Each wheel independent drive carriage is provided with an electric motor and an inverter on each wheel (four wheels or a plurality of wheels), and independently controls the rotation of each wheel. In each wheel independent drive cart, the left and right wheels are not connected by a wheel shaft, so the left and right wheels can be driven separately.
電動台車等の電気車において、車輪/レールにおける摩擦係数(粘着係数ともいう)が低下、もしくは、車輪/レールの摩擦係数に対して車輪の駆動力または制動力が大きい場合には、各車輪が空転または滑走を引き起こす場合がある。この空転または滑走は、車輪やレールを磨耗させるだけでなく、期待する加減速度が得られなくなることに起因して、ダイヤの乱れなどに繋がるため問題である。そこで、車輪を空転・滑走状態から復帰させるために、モータ駆動トルクを絞る制御(以下、再粘着制御と称する)が行われる。 In an electric vehicle such as an electric carriage, if the friction coefficient (also referred to as the adhesion coefficient) at the wheel / rail is reduced, or if the wheel driving force or braking force is greater than the wheel / rail friction coefficient, May cause idling or gliding. This idling or sliding is a problem because it not only wears out the wheels and rails but also leads to diamond disturbance due to failure to obtain the expected acceleration / deceleration. Therefore, in order to return the wheel from the idling / sliding state, control for reducing the motor driving torque (hereinafter referred to as re-adhesion control) is performed.
一方で、前記各輪独立駆動台車は、各輪のモータを協調して制御しなければ車両の走行安定性を損なう危険もあり、その制御手法が重要な課題となる。特許文献1,特許文献2では各輪の回転角速度を検出し、前輪左右と後輪左右のそれぞれで左右輪の回転角速度差を求め、その左右輪の回転角速度差が任意の値となるように制御する各輪協調制御を提案している。
On the other hand, each wheel independent drive cart has a risk of impairing the running stability of the vehicle unless the motor of each wheel is controlled in a coordinated manner, and its control method becomes an important issue. In Patent Document 1 and
また、各輪協調制御として、左右輪の平均回転角速度を目標値とし、その目標値と左右輪それぞれの回転角速度検出値との偏差を0にする方式も知られている。 In addition, as a coordinated control for each wheel, a method is also known in which the average rotational angular velocity of the left and right wheels is a target value, and the deviation between the target value and the detected rotational angular velocity value of each of the left and right wheels is zero.
再粘着制御方式と協調制御方式の両方を併用して車両制御を行う場合、再粘着制御中に協調制御を行うことにより、予期せぬ加減速度が生じる可能性がある。そこで、本願発明者は、その解決策として、空転・滑走を検知した際に、左右輪の回転角速度を制御するための協調制御トルクを0とする方法を案出している。この方法により、車両の予期せぬ加減速度の発生を抑制することができる。 When vehicle control is performed using both the re-adhesion control method and the cooperative control method, an unexpected acceleration / deceleration may occur by performing the cooperative control during the re-adhesion control. Therefore, the inventor of the present application has devised a method for reducing the coordinated control torque for controlling the rotational angular velocities of the left and right wheels to zero when detecting idling / sliding. By this method, the occurrence of unexpected acceleration / deceleration of the vehicle can be suppressed.
前記の方法を適用した各輪独立駆動台車の制御装置1の構成図を図6に示す。 FIG. 6 shows a configuration diagram of the control device 1 for each wheel independent drive carriage to which the above method is applied.
前記制御装置1は、車輪回転角速度検出値ωFL_det,ωFR_detを検出する回転角速度検出器2と、負荷トルク推定値Tobs_FL,Tobs_FRを出力する負荷トルク推定部3と、空転・滑走検知フラグslip_L,slip_Rを出力する空転・滑走検知部4と、左右対の車輪が平均回転角速度となるように、車輪回転角速度を制御する協調制御トルクTLR_FL,TLR_FRを出力する各輪協調制御部5と、を備えている。
The control device 1 includes a rotational
そして、再粘着制御部6では、負荷トルク推定値Tobs_FL,Tobs_FR,空転・滑走検知フラグslip_L,slip_R,各輪協調制御トルクTLR_FL,TLR_FRにノッチトルク指令Tnotchを加算した信号が入力され、モータ駆動トルクTm_FL,Tm_FRを出力する。
Then, the
なお、各輪協調制御部5は、空転・滑走検知フラグslip_L,slip_Rが空転・滑走状態を示す値になった場合、協調制御トルクTLR_FL,TLR_FRが0となるような構成となっている。
Note that each wheel
前記空転・滑走検知部4は、空転・滑走を各輪でそれぞれ検知できる構成であれば適用可能である。その一例として、回転角加速度による検知方法が一般的に知られている。回転角加速度による検知方法では、車輪回転角速度検出値ωdetを微分して回転角加速度に変換し、その回転角加速度の絶対値と予め定めた閾値とを比較することにより、空転・滑走を検知している。
The idling /
空転・滑走時には、車輪回転角速度が一気に上昇し、そのまま車輪回転角速度が上がり続ける。回転角加速度による検知方法では、回転角加速度の変化を空転・滑走の検知に用いるため、回転角速度による検知方法よりも早く空転・滑走の検知が可能となる。 During idling / sliding, the wheel rotation angular velocity increases rapidly, and the wheel rotation angular velocity continues to increase. In the detection method based on the rotational angular acceleration, since the change in the rotational angular acceleration is used for detection of idling / sliding, it is possible to detect idling / sliding earlier than the detection method based on the rotational angular velocity.
しかしながら、各輪協調制御と再粘着制御を併用する際に、回転角加速度を用いると、協調制御トルクTLR_FL,TLR_FRの入力による回転角加速度の変化を空転・滑走と誤検知してしまうことがあった。 However, when rotational angular acceleration is used when both wheel cooperative control and re-adhesion control are used together, a change in rotational angular acceleration caused by input of cooperative control torques TLR_FL and TLR_FR may be erroneously detected as idling / sliding. was there.
具体例を図7,8のグラフに基づいて説明する。 A specific example will be described based on the graphs of FIGS.
図7,8は、直線軌道を走行中に曲線軌道へと侵入する場合の、車輪回転角速度検出値ωFL_det,ωFR_det,モータ駆動トルクTm_FL,Tm_FR,車輪回転角加速度αdet,空転・滑走検知フラグslip_L,slip_Rを示している。なお、図7は協調制御を適用しない場合、図8は各輪協調制御を適用した場合を示す。また、この時の路面摩擦係数は一定である。 FIGS. 7 and 8 show wheel rotation angular velocity detection values ω FL_det , ω FR_det , motor drive torques T m_FL , T m_FR , wheel rotation angular acceleration α det , idling / The sliding detection flags slip_L and slip_R are shown. 7 shows a case where cooperative control is not applied, and FIG. 8 shows a case where each wheel cooperative control is applied. Further, the road surface friction coefficient at this time is constant.
図7に示すように、各輪協調制御を適用しない場合は、曲線に進入した際、左右輪の車輪回転角速度検出値ωFL_det,ωFR_detのばらつきは生じるが、曲線進入時の左右輪の車輪回転角速度ωFL_det,ωFR_det,回転角加速度αdetの変化は協調制御をしている場合に比べて小さいため、空転・滑走の誤検知は生じない。 As shown in FIG. 7, when each wheel cooperative control is not applied, the left and right wheel rotation angular velocity detection values ω FL_det and ω FR_det vary when entering the curve, but the left and right wheel wheels when entering the curve Since changes in the rotational angular velocities ω FL_det , ω FR_det , and rotational angular acceleration α det are smaller than those in the case of cooperative control, false detection of idling / sliding does not occur.
一方、各輪協調制御を適用した場合は、図8に示すように、曲線に進入すると左右の車輪回転角速度検出値ωFL_det,ωFR_detにばらつきが生じる。そのため、各輪協調制御部5によって、ばらつきを補正するための協調制御トルクTLR_FL,TLR_FRが出力される。この協調制御トルクTLR_FL,TLR_FRにより、左右輪の回転角速度差を制御するが、この協調制御トルクTLR_FL,TLR_FRは曲線突入時に大きく出力される。その影響により回転角加速度αdetも一時的に空転滑走の閾値以上となり、空転・滑走を誤検知してしまう。なお、図8の例では、再粘着制御は働かないものとする。
On the other hand, when each wheel cooperative control is applied, as shown in FIG. 8, the left and right wheel rotational angular velocity detection values ω FL_det and ω FR_det vary when entering the curve. Therefore, each wheel
以上のように、曲線や軌道不整により車輪回転角速度にばらつきが生じる際、空転・滑走の誤検知を繰り返すとその度に各輪協調制御部5をオフにすることとなり、協調制御の効果が期待できなくなってしまう。
As described above, when the wheel rotation angular velocity varies due to a curve or a trajectory irregularity, repeated misdetection of idling / sliding turns off each wheel
なお、回転角加速度の閾値は任意に定めるため、閾値を大きくすれば空転・滑走の誤検知は抑制することができる。しかし、閾値を大きくすると空転・滑走検知が遅れてしまうため、空転滑走検知を回転角加速度で行う利点が失われてしまう。 In addition, since the threshold value of the rotational angular acceleration is arbitrarily determined, false detection of idling / sliding can be suppressed by increasing the threshold value. However, if the threshold value is increased, idling / sliding detection is delayed, so that the advantage of performing idling / sliding detection with rotational angular acceleration is lost.
また、回転角加速度αdetが閾値を超える時間が所定時間経過した場合に、空転・滑走を検知する時間閾値をとることにより、図8に示すように回転角加速度αdetが瞬間的に閾値を超える場合、空転・滑走として検知しないようにすることができる。しかしながら、時間閾値を設けた場合も空転・滑走検知が遅れてしまう。 Further, when a time when the rotational angular acceleration α det exceeds the threshold value has elapsed for a predetermined time, by taking a time threshold value for detecting idling / sliding, the rotational angular acceleration α det instantaneously reaches the threshold value as shown in FIG. If it exceeds, it is possible not to detect as idling / sliding. However, idling / sliding detection is delayed even when a time threshold is provided.
以上示したようなことから、各輪協調制御と再粘着制御を併用する各輪独立駆動台車において、空転・滑走の検知遅れを抑制すると共に、空転・滑走の誤検知を抑制することが課題となる。 As described above, in each wheel independent drive bogie that uses both wheel coordination control and re-adhesion control, it is an issue to suppress the detection delay of idling / sliding and to prevent false detection of idling / sliding. Become.
本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、各車輪をそれぞれ独立して駆動制御する各輪独立駆動台車の制御装置であって、車輪の空転・滑走を検知するための空転・滑走検知部と、各車輪の回転角速度検出値に基づいて、左右輪の回転角速度差を制御する協調制御トルクを算出する各輪協調制御部と、前記協調制御トルクを変化率制限した制限協調制御トルクを出力する変化率制限部と、左右一対の車輪が共に空転・滑走していない場合は、ノッチトルク指令に制限協調制御トルクを加算した値をモータ駆動トルクとして出力し、左右一対の車輪のうち少なくとも一方の車輪が空転・滑走した場合は、トルクを引き下げた再粘着制御トルクをモータ駆動トルクとして出力する再粘着制御部と、を備えたことを特徴とする。 The present invention has been devised in view of the above-described conventional problems. One aspect of the present invention is a control device for each wheel independent drive cart that independently drives and controls each wheel. An idling / sliding detecting unit for detecting the wheel, each wheel cooperative control unit for calculating a cooperative control torque for controlling the rotational angular velocity difference between the left and right wheels based on the detected rotational angular velocity value of each wheel, and the cooperative control torque When the change rate limiting unit that outputs the limited cooperative control torque with the limited change rate and the pair of left and right wheels are not idling or sliding, the value obtained by adding the limited cooperative control torque to the notch torque command is output as the motor drive torque. A re-adhesion control unit that outputs a re-adhesion control torque with reduced torque as a motor drive torque when at least one of the pair of left and right wheels idles and slides. To.
また、その他の態様として、前記空転・滑走検知部は、車輪の回転角速度検出値を微分して回転角加速度に変換し、前記回転角加速度の絶対値が予め設定された閾値よりも大きい場合に空転・滑走を検知し、前記変化率制限部は、曲線進入時の回転角加速度が空転・滑走の閾値を越えないように協調制御トルクに変化率制限をすることを特徴とする。 Further, as another aspect, the idling / sliding detection unit differentiates the rotation angular velocity detection value of the wheel and converts it into rotation angular acceleration, and the absolute value of the rotation angular acceleration is greater than a preset threshold value. The idling / sliding is detected, and the change rate limiting unit limits the rate of change to the cooperative control torque so that the rotational angular acceleration when entering the curve does not exceed the idling / sliding threshold.
また、前記再粘着制御部は、左右一対の車輪のうち一方の車輪が空転・滑走した場合は、空転・滑走状態の車輪と共に、粘着状態の車輪のモータ駆動トルクにも再粘着制御トルクを出力することを特徴とする。 Further, the re-adhesion control unit outputs the re-adhesion control torque to the motor driving torque of the adhered wheels together with the idle / sliding wheels when one of the pair of left and right wheels idles and slides. It is characterized by doing.
また、別の態様として、前記再粘着制御部は、左右一対の車輪のうち一方の車輪が空転・滑走した場合、空転・滑走状態の車輪には再粘着制御トルクをモータ駆動トルクとして出力し、粘着状態の車輪にはノッチトルク指令に制限協調制御トルクを加算した値をモータ駆動トルクとして出力することを特徴とする。 As another aspect, the re-adhesion control unit outputs a re-adhesion control torque as a motor drive torque to a wheel in the idling / sliding state when one of the pair of left and right wheels is idling / sliding, A value obtained by adding the limited cooperative control torque to the notch torque command is output as a motor driving torque to the wheel in the sticking state.
本発明によれば、各輪協調制御と再粘着制御を併用する各輪独立駆動台車において、空転・滑走の検知遅れを抑制すると共に、空転・滑走の誤検知を抑制することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, in each wheel independent drive trolley | bogie which uses each wheel cooperative control and re-adhesion control together, it becomes possible to suppress the detection delay of idling / sliding and to suppress false detection of idling / sliding.
[実施形態]
本実施形態における各輪独立駆動台車の制御装置1Aの構成を図1に示す。なお、図1では、一対の左右輪に対する制御装置1Aの構成のみを示しているが、4輪,6輪,…となった場合でも同様である。
[Embodiment]
FIG. 1 shows the configuration of a
本実施形態における各輪独立駆動台車の制御装置1Aは、回転角速度検出器2と、負荷トルク推定部3と、空転・滑走検知部4と、各輪協調制御部5と、再粘着制御部6と、変化率制限部7と、加算部8と、を備えている。
The
前記回転角速度検出器(例えば、レゾルバ・エンコーダ等)2は、各車輪のモータの回転角速度ωFL,ωFRを検出し、車輪回転角速度検出値ωFL_det,ωFR_detとして出力する。ここで、車軸取付の場合は検出したモータの回転角速度ωFL,ωFRをそのまま車輪回転角速度検出値ωFL_det,ωFR_detとして出力、モータ取付の場合は、モータの回転角速度ωFL,ωFRからギア比を考慮して車輪回転角速度検出値ωFL_det,ωFR_detを算出する。 The rotational angular velocity detector (for example, resolver / encoder or the like) 2 detects the rotational angular velocities ω FL and ω FR of the motors of the respective wheels, and outputs them as detected wheel rotational angular velocity values ω FL_det and ω FR_det . Here, in the case of axle mounting, the detected motor rotation angular velocities ω FL , ω FR are directly output as wheel rotation angular velocity detection values ω FL_det , ω FR_det , and in the case of motor mounting, from the motor rotation angular velocities ω FL , ω FR The wheel rotation angular velocity detection values ω FL_det and ω FR_det are calculated in consideration of the gear ratio.
前記負荷トルク推定値部3は、モータ駆動トルクTm_FL,Tm_FRおよび車輪回転角速度検出値ωFL_det,ωFR_detから負荷トルク推定値Tobs_FL,Tobs_FRを推定する。負荷トルク推定値Tobs_FL,Tobs_FRを算出する方法としては、例えば、車輪の回転角速度検出値ωFL_det,ωFR_detに車輪+モータ回転子の慣性モーメントを乗算して擬似微分し、モータ駆動トルクTm_FL,Tm_FRから擬似微分した値を減算する方法等が挙げられる。 The load torque estimated value unit 3, the motor drive torque T m_FL, T m_FR and wheel rotational angular velocity detected value ω FL_det, ω FR_det from the load torque estimated value T Obs_FL, estimates the T obs_FR. As a method of calculating the estimated load torque values T obs_FL and T obs_FR , for example, the wheel rotational angular velocity detection values ω FL_det and ω FR_det are multiplied by the inertia moment of the wheel + motor rotor to perform pseudo differentiation, and the motor drive torque T For example , a method of subtracting a pseudo-differentiated value from m_FL and T m_FR can be used.
前記空転・滑走検知部4は、 図2に示すように、車輪回転角速度ωFL_det,ωFR_detを入力し、擬似微分部41により微分を行って回転角加速度αdetへと変換する。この回転角加速度αdetは、絶対値変換部42により絶対値に変換され、その回転角加速度αdetの絶対値が予め定めた閾値を超えているか否かを比較器43で比較し、空転・滑走検知フラグslip_L,slip_Rを出力する。なお、空転・滑走検知フラグslip_L,slip_Rは、粘着状態で「0」、空転・滑走状態で「1」を出力する論理信号である。また、空転・滑走検知部4は、空転・滑走を各輪で検知できる構成であれば上記以外の構成でも適用可能であり、その他の構成についての説明は省略する。
As shown in FIG. 2, the idling / sliding
前記各輪協調制御部5では、各輪の車輪回転角速度検出値ωFL_det,ωFR_detに基づき、前輪左右と後輪左右のそれぞれで左右輪の回転角速度差を求め、その左右輪の回転角速度差が任意の値となるように回転角速度差を制御する協調制御トルクTLR_FL,TLR_FRを出力する。
Each wheel
本実施形態では、左右輪の回転角速度差がゼロとなるように協調制御トルクTLR_FL,TLR_FRを出力し、従来の結合軸がある構成と同様に左右輪の回転角速度を一致させ、走行の安定性を向上させている。 In this embodiment, the cooperative control torques T LR_FL and T LR_FR are output so that the difference between the rotational angular velocities of the left and right wheels becomes zero, and the rotational angular velocities of the left and right wheels are made to coincide with each other in the same manner as in the configuration with the conventional coupling shaft. Stability is improved.
変化率制限部7は、曲線進入時の回転角加速度αdetが空転・滑走の閾値を超えないように協調制御トルクTLR_FL,TLR_FRの変化率を制限する。本実施形態では、協調制御トルクTLR_FL,TLR_FRの変化率制限を、回転角加速度αdetが空転・滑走の閾値を越えない値として定めるものとする。以降、変化率制限部7から出力される信号を制限協調制御トルクTLR_FL´,TLR_FR´と称する。 The rate-of-change limiting unit 7 limits the rate of change of the cooperative control torques T LR_FL and T LR_FR so that the rotational angular acceleration α det when entering the curve does not exceed the idling / sliding threshold. In the present embodiment, the change rate limitation of the cooperative control torques T LR_FL and T LR_FR is determined as a value at which the rotational angular acceleration α det does not exceed the idling / sliding threshold. Hereinafter, signals output from the change rate limiting unit 7 are referred to as limited cooperative control torques T LR_FL ′, T LR_FR ′.
加算部8は、前記制限協調制御トルクTLR_FL´,TLR_FR´と、ノッチトルク指令Tnotchとを加算し、再粘着制御部6へ出力する。
The adding
再粘着制御部6は、ノッチトルク指令Tnotch+制限協調制御トルクTLR_FL´,ノッチトルク指令Tnotch+制限協調制御トルクTLR_FR´,負荷トルク推定値Tobs_FL,Tobs_FR,空転・滑走検知フラグslip_L,slip_Rに基づき、モータ駆動トルクTm_FL,Tm_FRを算出する。
The
次に、図3のフローチャートに基づき、本実施形態1における再粘着制御部6の動作を説明する。
Next, the operation of the
(S1)再粘着制御部6において、ノッチトルク指令Tnotch+制限協調制御トルクTLR_FL´,ノッチトルク指令Tnotch+制限協調制御トルクTLR_FR´,負荷トルク推定値Tobs_FL,Tobs_FR,空転・滑走検知フラグslip_L,slip_Rを読み込む。
(S1) In the
(S2)空転・滑走検知フラグslip_L,slip_Rに基づいて、空転・滑走状態か否かを判定する。空転・滑走検知フラグslip_L,slip_Rのうち少なくとも一方が「1」(空転・滑走状態)であればYESとしてS4へ移行し、空転・滑走検知フラグslip_L,slip_Rの両方が「0」(粘着状態)であればNoとしてS3へ移行する。 (S2) idling-skid detection flag slip _L, based on the slip _R, determines whether idling-planing state. Slipping-skid detection flag slip _L, at least one of "1" of the slip _R proceeds to S4 as YES if (slipping-sliding state) is, idling-skid detection flag slip _L, both slip _R "0" If it is (adhesion state), it will transfer to S3 as No.
(S3)空転・滑走検知フラグslip_L,slip_Rが両方とも「0」(粘着状態)の場合は、下記(1),(2)式を左右輪のモータ駆動トルクTm_FL,Tm_FRとして出力する。 (S3) idling-skid detection flag slip _L, when both slip _R both "0" (tacky), the following (1), (2) the motor drive torque T M_FL of the left and right wheels, output as T M_FR To do.
すなわち、両車輪とも粘着状態の場合は、ノッチトルク指令Tnotchに制限協調制御トルクTLR_FL´,TLR_FR´を加算した値をモータ駆動トルクTm_FL,Tm_FRとして出力する。 That is, when both wheels are in an adhesive state, values obtained by adding the limited cooperative control torques T LR_FL ′, T LR_FR ′ to the notch torque command T notch are output as motor driving torques T m_FL , T m_FR .
(S4)空転・滑走検知フラグslip_L,slip_Rのうち少なくとも一方が「1」の場合は、空転・滑走検知時における負荷トルク推定値Tobs_FL,Tobs_FRのうち絶対値の最小値(滑走時には最大値)を保持トルクTLatchとして、次回の空転検知時まで保持する。 (S4) idling-skid detection flag slip _L, if at least one of the slip _R is "1", the load torque estimated value T Obs_FL during idling-skid sensing, the minimum value of the absolute value of T obs_FR (when sliding the The maximum value) is held as the holding torque T Latch until the next idling is detected.
(S5)下記(3),(4)式を、左右輪のモータ駆動トルクTm_FL,Tm_FRとして出力する。なお、下記(3),(4)式の再粘着制御トルクTre-adaheison_FL,Tre-adhesion_FRは、同一の保持トルクTLatchに基づいて算出されるため、左右輪のモータ駆動トルクTm_FL,Tm_FRは同一の値となる。 (S5) The following equations (3) and (4) are output as motor drive torques Tm_FL and Tm_FR for the left and right wheels. Since the re- adhesion control torques T re-adaheison_FL and T re-adhesion_FR in the following equations (3) and (4) are calculated based on the same holding torque T Latch , the motor drive torques T m_FL , T m_FR has the same value.
次に、再粘着制御トルクTre-adhesion_FL,Tre-adhesion_FRの一例について説明する。図4は、ノッチトルク指令Tnotch上昇中(加速トルク入力中)に空転状態を検知した場合の再粘着制御トルクTre-adhensionの一例を示す図である。 Next, an example of the re-adhesion control torques T re-adhesion_FL and T re-adhesion_FR will be described. FIG. 4 is a diagram illustrating an example of the re- adhesion control torque T re-adhension when the idling state is detected while the notch torque command T notch is increasing (acceleration torque is being input).
空転検知時には、負荷トルク推定値Tobs_FL,Tobs_FRの絶対値のうち最小値(滑走時には最大値)を保持トルクTLatchとして、次回の空転検知時まで保持する。そして、空転検知時には、再粘着制御トルクTre-adhensionを、負荷トルク推定値Tobsのy1[%]まで引き下げ空転復帰時間x1の間、保持する。この空転復帰時間x1経過後、再粘着制御トルクをy2[%]を目標値として引き上げ、その後、保持トルクTLatchのy2[%]を空転復帰時間x2の間、保持する。この空転復帰時間x2は、車輪が再粘着した後すぐにトルクを引き上げて再度空転・滑走することを抑制し、より確実に再粘着を図るための時間である。空転復帰時間x2後は、ノッチトルク指令Tnotch+制限協調制御トルクTLR_FL,TLR_FRを目標値として再粘着制御トルクTre-adhensionを引き上げていく。なお、前記空転復帰時間x1,x2およびy1[%],y2[%]は予め設定された値とする。 At the time of slipping detection, the minimum value (maximum value at the time of sliding) of the absolute values of the load torque estimated values T obs_FL and T obs_FR is held as the holding torque T Latch and held until the next slipping detection. At the time of slipping detection, the re-adhesion control torque T re-adhension is reduced to y1 [%] of the load torque estimated value T obs and held for the slipping return time x1. After the idling return time x1 has elapsed, the re-adhesion control torque is raised with y2 [%] as a target value, and then y2 [%] of the holding torque T Latch is held for the idling return time x2. The idling return time x2 is a time for increasing the torque immediately after the wheel is re-adhered and suppressing idling / sliding again, thereby more reliably re-adhering. After the idling return time x2, the re- adhesion control torque T re-adhension is raised with the notch torque command T notch + the limit cooperative control torques T LR_FL and T LR_FR as target values. The idling return times x1, x2 and y1 [%], y2 [%] are set to preset values.
図5は、直線軌道を走行中に曲線軌道へと侵入する場合の、車輪回転角速度検出値ωFL_det,ωFR_det,モータ駆動トルクTm_FL,Tm_FR,回転角加速度αdet,空転・滑走検知フラグslip_L,slip_Rを示している。これは、図7で示した条件と同一であり、路面摩擦係数は一定である。 FIG. 5 shows detected wheel rotational angular velocity values ω FL_det , ω FR_det , motor drive torques T m_FL , T m_FR , rotational angular acceleration α det , idling / sliding detection flag when entering a curved track while traveling on a straight track. Slip_L and slip_R are shown. This is the same as the condition shown in FIG. 7, and the road surface friction coefficient is constant.
曲線に進入すると左右輪の回転角速度検出値ωFL_det,ωFR_detにばらつきが生じ、そのばらつきを補正するために、協調制御トルクTLR_FL,TLR_FRが出力される。この協調制御トルクTLR_FL,TLR_FRは、変化率制限部7において、変化率制限が行われるため、曲線進入時にノッチトルク指令Tnotchに加算される制限協調制御トルクTLR_FL´,TLR_FR´は大きく出力されず、モータ駆動トルクTm_FL,Tm_FRが大きく変動しない。ここで、協調制御トルクTLR_FL,TLR_FRの変化率の制限は、車輪の回転角加速度αdetの閾値を超えない値として定めているため、回転角加速度αdetが空転・滑走検知フラグslip_L,slip_Rの閾値以上となり空転滑走の誤検知を抑制することが可能となる。その結果、協調制御トルクTLR_FL,TLR_FRに起因して、空転・滑走を誤検知することを抑制し、レールの最大摩擦係数の低下時にのみ車輪が空転・滑走することを検出することが可能となる。 When entering the curve, the rotational angular velocity detection values ω FL_det and ω FR_det of the left and right wheels are varied, and cooperative control torques T LR_FL and T LR_FR are output to correct the variations. The cooperative control torques T LR_FL , T LR_FR are limited by the change rate limiting unit 7, so that the limited cooperative control torques T LR_FL ′, T LR_FR ′ added to the notch torque command T notch when entering the curve are large. The motor drive torques T m_FL and T m_FR do not vary greatly. Here, since the limitation on the rate of change of the cooperative control torques T LR_FL and T LR_FR is determined as a value that does not exceed the threshold value of the wheel rotation angular acceleration α det , the rotation angular acceleration α det is the idling / sliding detection flag slip_L. , Slip_R or more, it becomes possible to suppress false detection of idling. As a result, erroneous detection of idling / sliding due to the cooperative control torques TLR_FL and TLR_FR is suppressed, and it is possible to detect idling / sliding of the wheel only when the maximum friction coefficient of the rail is reduced. It becomes.
また、本実施形態における各輪独立駆動台車の制御装置1では、協調制御トルクTLR_FL,TLR_FRを0とするわけではないため、曲線進入後も協調制御トルクTLR_FL,TLR_FRは出力されている。その結果、各輪協調制御部6における協調制御の効果は残っており、左右輪の回転角速度差がゼロとなるように制御することにより、従来の結合軸がある構成と同様に左右輪の回転角速度を一致させ、走行の安定性を向上させている。
Further, in the control device 1 for each wheel independent drive carriage in the present embodiment, the cooperative control torques T LR_FL and T LR_FR are not set to 0, so that the cooperative control torques T LR_FL and T LR_FR are output even after entering the curve. Yes. As a result, the effect of the cooperative control in each wheel
以上示したように、本実施形態における各輪独立駆動台車によれば、各輪協調制御と再粘着制御を、空転滑走の誤検知なく併用することが可能となる。 As described above, according to each wheel independent drive carriage in the present embodiment, it is possible to use each wheel cooperative control and re-adhesion control together without erroneous detection of idling.
また、空転・滑走状態の車輪と共に、粘着状態の車輪にも再粘着制御トルクTre-adhesionをモータ駆動トルクTm_FL,Tm_FRとして出力することにより、左右輪のモータ駆動トルクTm_FL,Tm_FRが同一となりヨーイングトルクを抑制することが可能となる。 Further, the wheels slipping, sliding state, the wheel also readhesion control torque T re-adhesion of the motor drive torque T M_FL adhesive state, by outputting as T M_FR, left and right wheels of the motor drive torque T m_FL, T m_FR And the yawing torque can be suppressed.
前記協調制御トルクTLR_FL,TLR_FRは、車輪回転角速度検出値ωFL_det,ωFR_detから左右対の車輪の回転角速度の偏差を算出し、この偏差を0とするための値としても良い。また、空転・滑走検知時は、協調制御トルクTLR_FL,TLR_FRを0としても良い。 The cooperative control torques T LR_FL and T LR_FR may be values for calculating the deviation of the rotational angular velocities of the pair of left and right wheels from the wheel rotational angular velocity detection values ω FL_det and ω FR_det and setting this deviation to zero. In addition, when idling / sliding is detected, the cooperative control torques TLR_FL and TLR_FR may be set to zero.
さらに、前記各輪協調制御部5は、直線通過時は左右輪の回転角速度差がゼロとなるように制御して従来の結合軸がある構成と同様に左右輪の回転角速度を一致させ、曲線通過時は曲率半径に応じて左右輪が任意の回転角速度差を持つように回転角速度制御を行っても良い。
Furthermore, each wheel
また、本実施形態では、左右の車輪のうち一方が空転滑走状態の場合、再粘着制御トルクTre-adhesionを空転状態の車輪と共に粘着状態の車輪にも出力したが、粘着状態の車輪にはノッチトルク指令Tnotchに制限協調制御トルクTLR_FL´,TLR_FR´を加算した値をモータ駆動トルクTm_FL,Tm_FRとして出力しても良い。 Further, in this embodiment, when one of the left and right wheels is in the idling state, the re-adhesion control torque T re-adhesion is output to the adhered wheel together with the idle wheel. A value obtained by adding the limited cooperative control torques TLR_FL ′ and TLR_FR ′ to the notch torque command Tnotch may be output as the motor driving torques Tm_FL and Tm_FR .
さらに、実施形態では、特定の再粘着制御の方法についてのみ詳細に説明したが、トルクを絞る方法であれば、その他の再粘着制御の方法でも適用可能である。 Furthermore, in the embodiment, only the specific re-adhesion control method has been described in detail. However, any other re-adhesion control method can be applied as long as the torque is reduced.
1,1A…制御装置
2…回転角速度検出器
3…負荷トルク推定部
4…空転・滑走検知部
5…各輪協調制御部
6…再粘着制御部
7…変化率制限部
Tm_FL,Tm_FR…モータ駆動トルク
Tnotch…ノッチトルク指令
Tre-adhesion…再粘着制御トルク
TLR_FL,TLR_FR…協調制御トルク
TLR_FL´,TLR_FR´…制限協調制御トルク
ωFL_det,ωFR_det…車輪回転角速度検出値
DESCRIPTION OF SYMBOLS 1,1A ...
Claims (3)
車輪の空転・滑走を検知する空転・滑走検知部と、
各車輪の回転角速度検出値に基づいて、左右輪の回転角速度差を制御するための協調制御トルクを算出する各輪協調制御部と、
前記協調制御トルクを変化率制限した制限協調制御トルクを出力する変化率制限部と、
左右一対の車輪が共に空転・滑走していない場合は、ノッチトルク指令に制限協調制御トルクを加算した値をモータ駆動トルクとして出力し、左右一対の車輪のうち少なくとも一方の車輪が空転・滑走した場合は、トルクを引き下げた再粘着制御トルクをモータ駆動トルクとして出力する再粘着制御部と、
を備え、
前記空転・滑走検知部は、
車輪の回転角速度検出値を微分して回転角加速度に変換し、前記回転角加速度の絶対値が予め設定された閾値よりも大きい場合に空転・滑走を検知し、
前記変化率制限部は、
曲線進入時の回転角加速度が空転・滑走の閾値を越えないように協調制御トルクに変化率制限をすることを特徴とする各輪独立駆動台車の制御装置。 It is a control device for each wheel independent drive cart that independently controls each wheel,
An idling / sliding detection unit for detecting idling / sliding of a wheel;
Each wheel cooperative control unit that calculates a cooperative control torque for controlling the rotational angular velocity difference between the left and right wheels based on the detected rotational angular velocity value of each wheel;
A rate-of-change limiting unit that outputs a limit cooperative control torque that limits the rate of change of the cooperative control torque; and
When the pair of left and right wheels are not idling / sliding, the value obtained by adding the limit cooperative control torque to the notch torque command is output as the motor drive torque, and at least one of the pair of left and right wheels idling / sliding A re-adhesion control unit that outputs a re-adhesion control torque with reduced torque as a motor drive torque;
With
The idling / sliding detector is
The wheel angular velocity detection value is differentiated and converted into rotation angular acceleration, and when the absolute value of the rotation angular acceleration is larger than a preset threshold value, idling / sliding is detected,
The change rate limiting unit is
A control device for independent driving carts for each wheel, characterized in that the rate of change of the cooperative control torque is limited so that the rotational angular acceleration when entering a curve does not exceed the idling / sliding threshold.
左右一対の車輪のうち一方の車輪が空転・滑走した場合は、空転・滑走状態の車輪と共に、粘着状態の車輪のモータ駆動トルクにも再粘着制御トルクを出力することを特徴とする請求項1記載の各輪独立駆動台車の制御装置。 The re-adhesion control unit is
If one of the wheels of the pair of right and left wheels is slipping, sliding, claim 1, characterized with a wheel of the idling-sliding state, to output the re-adhesion control torque to the motor drive torque of wheels tacky The control apparatus of each wheel independent drive trolley of description .
左右一対の車輪のうち一方の車輪が空転・滑走した場合、空転・滑走状態の車輪には再粘着制御トルクをモータ駆動トルクとして出力し、粘着状態の車輪にはノッチトルク指令に制限協調制御トルクを加算した値をモータ駆動トルクとして出力することを特徴とする請求項1記載の各輪独立駆動台車の制御装置。 The re-adhesion control unit is
When one of the pair of left and right wheels idles and slides, the re-adhesion control torque is output as the motor drive torque to the idle and sliding wheels, and the limited cooperative control torque is applied to the notch torque command for the adhered wheels. 2. The control device for each wheel independent drive carriage according to claim 1 , wherein the added value is output as a motor drive torque.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063642A JP6111779B2 (en) | 2013-03-26 | 2013-03-26 | Control device for each wheel independent drive cart |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063642A JP6111779B2 (en) | 2013-03-26 | 2013-03-26 | Control device for each wheel independent drive cart |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014192924A JP2014192924A (en) | 2014-10-06 |
JP6111779B2 true JP6111779B2 (en) | 2017-04-12 |
Family
ID=51838768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013063642A Active JP6111779B2 (en) | 2013-03-26 | 2013-03-26 | Control device for each wheel independent drive cart |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6111779B2 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3934125A (en) * | 1973-09-28 | 1976-01-20 | General Signal Corporation | Automatic vehicle operation system |
JPS61285002A (en) * | 1985-06-10 | 1986-12-15 | Toshiba Corp | Controlling method for electric railcar |
JPH08242506A (en) * | 1995-03-02 | 1996-09-17 | Toshiba Corp | Control device for left and right wheel independent drive system vehicle |
JP3438796B2 (en) * | 1995-07-07 | 2003-08-18 | 富士電機株式会社 | DC electric vehicle drive control method |
JP3499403B2 (en) * | 1997-06-16 | 2004-02-23 | 財団法人鉄道総合技術研究所 | Control method of right and left independent wheel electric bogie for railway vehicles |
JP3651223B2 (en) * | 1998-01-19 | 2005-05-25 | 富士電機システムズ株式会社 | Electric vehicle control device |
JP3798685B2 (en) * | 2001-11-27 | 2006-07-19 | 株式会社東芝 | Electric vehicle control device |
JP2006166572A (en) * | 2004-12-06 | 2006-06-22 | Mitsubishi Heavy Ind Ltd | Vehicle controller and electric vehicle |
JP4685655B2 (en) * | 2006-02-15 | 2011-05-18 | トヨタ自動車株式会社 | Control device for electric vehicle |
JP4765877B2 (en) * | 2006-10-03 | 2011-09-07 | 日産自動車株式会社 | Vehicle motor traction control device |
JP4969411B2 (en) * | 2007-10-31 | 2012-07-04 | 東洋電機製造株式会社 | Electric vehicle control device |
-
2013
- 2013-03-26 JP JP2013063642A patent/JP6111779B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014192924A (en) | 2014-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101165554B1 (en) | Controller for electric vehicle | |
JP5673938B2 (en) | Electric vehicle control device | |
JP6589492B2 (en) | Inverter control device | |
JP4850870B2 (en) | Electric vehicle control method and electric vehicle control device | |
JP2011114907A (en) | Method and apparatus for controlling electric motor | |
WO2014196406A1 (en) | Slip control device for electric vehicle | |
JP5643271B2 (en) | Method for detecting occurrence of idling and motor control device | |
JP6048264B2 (en) | Control device for each wheel independent drive cart | |
JP5994703B2 (en) | Electric vehicle control device | |
WO2015141519A1 (en) | Slip control device of electric automobile | |
JP2008148445A (en) | Drive control device for railway vehicle | |
JP5063274B2 (en) | Electric vehicle control device | |
JP7326960B2 (en) | Electric vehicle control method and electric vehicle control device | |
JP6586158B2 (en) | Railway vehicle brake control system | |
JP6111779B2 (en) | Control device for each wheel independent drive cart | |
JP6202278B2 (en) | Electric vehicle slip ratio control device | |
JP6017842B2 (en) | Re-adhesion control method and motor control device | |
JP5828452B2 (en) | Electric vehicle control device | |
JP6107294B2 (en) | Control device for each wheel independent drive cart | |
JP2016092954A (en) | Electric vehicle control apparatus and power conversion control apparatus | |
JP6730057B2 (en) | Electric vehicle control device | |
JP5994704B2 (en) | Control device for each wheel independent drive cart | |
JP6166211B2 (en) | Return control method, electric motor control device, and mechanical brake control device | |
JP6107295B2 (en) | Control device for each wheel independent drive cart | |
JP2014192931A (en) | Racing/slipping controlling device and vehicle comprising racing/slipping controlling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6111779 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |