JP6109993B2 - Manufacturing method of sliding bearing for variable light distribution type headlamp device - Google Patents

Manufacturing method of sliding bearing for variable light distribution type headlamp device Download PDF

Info

Publication number
JP6109993B2
JP6109993B2 JP2016090620A JP2016090620A JP6109993B2 JP 6109993 B2 JP6109993 B2 JP 6109993B2 JP 2016090620 A JP2016090620 A JP 2016090620A JP 2016090620 A JP2016090620 A JP 2016090620A JP 6109993 B2 JP6109993 B2 JP 6109993B2
Authority
JP
Japan
Prior art keywords
powder
raw material
light distribution
variable light
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016090620A
Other languages
Japanese (ja)
Other versions
JP2016186365A (en
Inventor
山下 智典
智典 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016090620A priority Critical patent/JP6109993B2/en
Publication of JP2016186365A publication Critical patent/JP2016186365A/en
Application granted granted Critical
Publication of JP6109993B2 publication Critical patent/JP6109993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、すべり軸受の製造方法に関し、特に自動車等の車両に装備される前照灯装置のうち、前照灯の配光角度を上下左右方向に可変とする配光可変型前照灯装置に好適に組み込み得るすべり軸受の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a sliding bearing, and in particular, among headlamps installed in a vehicle such as an automobile, the light distribution variable type headlamp device that makes the light distribution angle of the headlamp variable vertically and horizontally. The present invention relates to a method of manufacturing a plain bearing that can be suitably incorporated in the invention .

自動車等の車両には、通常、車両の進行方向前方側を照らす前照灯装置が装備されており、従前の前照灯装置としては、前照灯の配光角度(光軸)を上下方向でのみ変化させることができるもの(ロービームとハイビームの相互切り替えのみが可能なもの)が一般的であった。しかしながら、このような前照灯装置では、車両の旋回時等に運転者が最も視認すべき方向である旋回方向前方側を十分に照らすことができない。   Vehicles such as automobiles are usually equipped with a headlight device that illuminates the front side of the vehicle in the traveling direction. As a conventional headlight device, the light distribution angle (optical axis) of the headlamp is set in the vertical direction. In general, those that can be changed only by (which can only switch between a low beam and a high beam) are common. However, such a headlamp device cannot sufficiently illuminate the front side in the turning direction, which is the direction most visible to the driver when the vehicle turns.

そこで、配光可変型前照灯装置(「AFS」とも略称される。なお「AFS」とは、Adaptive Front−lighting Systemの頭文字の組み合わせである)が開発され、各種車両に実装されるに至っている。この配光可変型前照灯装置は、ステアリングの操舵角等に応じて、前照灯の配光角度を上下方向のみならず左右方向にも変化させ得るように構成されており、車両の旋回時等には、旋回方向前方側に配光が自動的に振り向けられることから、特に夜間走行時の安全性向上に寄与することができる。配光可変型前照灯装置は、例えば下記の特許文献1に記載されているように、光源およびリフレクタを有し、光ビームを照射する光学システムと、ステアリングの操舵角等に応じてリフレクタを上下左右方向に回動させる配光可変手段と、リフレクタの回動軸を回転自在に支持する軸受とを主要な構成として備える。   Therefore, a variable light distribution headlamp device (abbreviated as “AFS”. “AFS” is a combination of an acronym of Adaptive Front-lighting System) has been developed and mounted on various vehicles. Has reached. This variable light distribution type headlamp device is configured to change the light distribution angle of the headlamp not only in the vertical direction but also in the horizontal direction in accordance with the steering angle of the steering wheel. At times, the light distribution is automatically directed to the front side in the turning direction, which can contribute to the improvement of safety particularly during night driving. The variable light distribution type headlamp device has a light source and a reflector as described in, for example, Patent Document 1 below, and includes an optical system that irradiates a light beam, a reflector according to a steering angle of a steering wheel, and the like. A light distribution variable means that rotates in the vertical and horizontal directions and a bearing that rotatably supports the rotating shaft of the reflector are provided as main components.

特開2005−125851号公報JP 2005-125851 A

上記のとおり、配光可変型前照灯装置は、夜間走行時等の安全性を向上し、交通事故の発生確率を低減し得るものとして有益であるが、前照灯の配光角度を上下方向でのみ変化させ得る従前の前照灯装置と比較すると、構造(機構)が複雑化する分どうしても高価となる。そのため、配光可変型前照灯装置は一部の高級車にしか装備されておらず、広く普及しているとは言い難いのが実情である。従って、配光可変型前照灯装置の普及を促進させるためにも、そのコスト低減を図ることが急務となっている。   As described above, the variable light distribution headlight device is useful as it can improve safety during night driving and reduce the probability of traffic accidents. Compared with the conventional headlamp device that can be changed only in the direction, the structure (mechanism) becomes complicated and expensive. For this reason, the variable light distribution type headlamp device is only installed in some high-end cars, and it is difficult to say that it is widely used. Therefore, in order to promote the spread of the variable light distribution type headlamp device, it is urgent to reduce the cost.

そこで、本願発明者は、配光可変型前照灯装置の構成部品のうち、リフレクタ等の回動軸を支持する軸受を、内輪、外輪、保持器および転動体などの複数部材から構成される転がり軸受から、単一の筒状部材で構成されるすべり軸受に置換することを検討した。すべり軸受は、中実の金属材料(溶製材)の削り出し品であっても構わないが、転がり軸受をすべり軸受に置換することによるコスト低減効果を有効に享受すべく、樹脂製のすべり軸受を採用することを積極的に検討した。   Therefore, the inventor of the present application, among the components of the variable light distribution type headlamp device, includes a plurality of members such as an inner ring, an outer ring, a cage, and a rolling element as a bearing that supports a rotating shaft such as a reflector. We considered replacing the rolling bearing with a plain bearing composed of a single cylindrical member. A plain bearing may be a solid metal material (melted material), but it is made of a plastic bearing in order to effectively enjoy the cost reduction effect of replacing a rolling bearing with a sliding bearing. We actively considered the adoption.

ところが、前照灯装置内は光源点灯時に高温となることから、樹脂軸受では、いかに耐熱性に優れる樹脂を用いたとしても軸受面が熱変形するおそれがある。また、樹脂軸受では、走行時の振動の影響等を受けて軸受面が変形・破損等するおそれもある。従って、前照灯装置の構成部品の回転支持用途に樹脂軸受を使用した場合、所望の支持能力を安定的に維持することが難しく、前照灯装置の作動性が低下し易くなる。   However, since the inside of the headlamp device becomes hot when the light source is turned on, the resin bearing may be thermally deformed no matter how much resin having excellent heat resistance is used. Further, in the case of a resin bearing, the bearing surface may be deformed / damaged due to the influence of vibration during traveling. Therefore, when a resin bearing is used for rotating support of the components of the headlamp device, it is difficult to stably maintain a desired support capability, and the operability of the headlamp device is likely to be lowered.

このような実情に鑑み、本発明の課題は、配光可変型前照灯装置の作動性をはじめとした基本的性能を低下させることなく、そのコスト低減に寄与し得るすべり軸受を提供することにある。   In view of such circumstances, an object of the present invention is to provide a plain bearing that can contribute to cost reduction without deteriorating basic performance including operability of a variable light distribution type headlamp device. It is in.

上記の課題を解決するため、本発明では、前照灯の配光角度を上下左右方向に可変とする配光可変型前照灯装置に装備され、支持すべき軸を非含油状態で回転自在に支持する配光可変型前照灯装置用すべり軸受の製造方法であって、主原料としてのCu粉末と、充填材としてのSn粉末、C粉末およびNi粉末とを含み、Fe粉末を含まない原料粉末であって、C粉末を、原料粉末に占める配合割合が3〜7wt%となるように配合したものを製作する原料粉末製作工程と、原料粉末を圧縮成形することにより圧粉体を得る圧縮成形工程と、圧粉体を700〜800℃の温度範囲内で加熱することにより焼結体を得る焼結工程と、を備え、C粉末は、その全量に対し、平均粒径が60〜110μmのものを30wt%含むことを特徴とする配光可変型前照灯装置用すべり軸受の製造方法を提供する。 In order to solve the above-described problems, the present invention is equipped with a variable light distribution type headlight device in which the light distribution angle of the headlight is variable in the vertical and horizontal directions, and the shaft to be supported is rotatable in an oil-free state. a method of manufacturing a light distribution variable headlamp apparatus for a sliding bearing you supported, comprising: a Cu powder as a main raw material, Sn powder as a filler, and a C powder and Ni powder, free of Fe powder A raw material powder manufacturing step for producing a raw material powder in which the C powder is blended so that the blending ratio in the raw material powder is 3 to 7 wt%, and the green compact is compressed by compressing the raw material powder. A compression molding step, and a sintering step of obtaining a sintered body by heating the green compact within a temperature range of 700 to 800 ° C., and the C powder has an average particle size of 60 with respect to the total amount. distribution, characterized in that it comprises 30 wt% those ~110μm To provide a method of manufacturing a sliding bearing for variable headlamp apparatus.

このように、金属粉末を主原料とした原料粉末の圧粉体を焼結した焼結体からなるすべり軸受(以下、「焼結軸受」ともいう)であれば、樹脂製のすべり軸受と同等のコストで量産できる一方で、樹脂製のすべり軸受に比べて耐熱性や機械的強度が高く、軸受面が熱変形、破損等し難い。そのため、配光可変型前照灯装置の構成部品の軸を精度良く支持することができ、当該前照灯装置の作動性を安定的に維持しつつ、そのコスト低減を図ることができる。 Thus, the metal powder sliding bearing made of a sintered body having a green compact and sintering the raw material powder as a main raw material (hereinafter, also referred to as "sintered bearing") If the sliding bearing made of resin While it can be mass-produced at the same cost, it has higher heat resistance and mechanical strength than resin-made plain bearings, and the bearing surface is less likely to be thermally deformed or damaged. Therefore, it is possible to accurately support the shafts of the components of the variable light distribution type headlamp apparatus, and it is possible to reduce the cost while stably maintaining the operability of the headlamp apparatus.

焼結軸受は多孔質組織を有するものであり、その内部気孔に潤滑油を含浸させた状態(含油状態)で使用するのが一般的である。しかし、焼結軸受の内部気孔に潤滑油を含浸させていても、前照灯装置内は光源点灯時に高温となることから、内部気孔に含浸させた潤滑油が蒸発等し易い。そして、前照灯装置内で潤滑油が蒸発すると、蒸発した潤滑油成分が前照灯装置のレンズ内面や光源表面に付着してその透明度が低下し、前照灯の照度が低下するという前照灯装置として致命的な問題を招来する可能性がある。このような問題は、フッ素系潤滑油等の耐熱性に富む潤滑油を使用することで解消し得るが、フッ素系潤滑油は非常に高価であることから、転がり軸受をすべり軸受に置換することによるコストメリットを十分に享受することができなくなる。この点、本発明にかかる焼結軸受は非含油の状態で使用されるので、前方側を明るく照らし出すという前照灯装置の基本的な機能が損なわれることがなくなる。   Sintered bearings have a porous structure, and are generally used in a state where the internal pores are impregnated with lubricating oil (oil-impregnated state). However, even if the internal pores of the sintered bearing are impregnated with the lubricating oil, the inside of the headlamp device becomes hot when the light source is turned on, so the lubricating oil impregnated in the internal pores is likely to evaporate. Then, when the lubricating oil evaporates in the headlamp device, the evaporated lubricating oil component adheres to the lens inner surface and the light source surface of the headlamp device, and its transparency decreases, and the illuminance of the headlamp decreases. There is a possibility of causing a fatal problem as a lighting device. These problems can be solved by using a heat-resistant lubricating oil such as fluorine-based lubricating oil. However, since fluorine-based lubricating oil is very expensive, replace the rolling bearing with a sliding bearing. You will not be able to fully enjoy the cost merit. In this respect, since the sintered bearing according to the present invention is used in a non-oil-containing state, the basic function of the headlamp device for brightly illuminating the front side is not impaired.

焼結軸受の原料粉末としては、鉄系の金属粉末を主原料としたものを使用することも可能ではあるが、鉄系の金属材料は高硬度であるが故に、非含油状態での使用を考慮すると、支持すべき軸を傷付けるおそれがあることから好ましくない。また、鉄系の金属材料は錆び易いことから、非含油状態での使用を考慮すると耐久寿命の点で難がある。さらに、鉄系の金属粉末は融点が高い分、これを含む原料粉末の圧粉体を焼結するときには、その加熱温度を十分に高める必要があるため、種々の特性を付与すべく原料粉末に通常配合される充填材の種類に制約が生じ易くなる。そこで、本発明に係る焼結軸受は、Cu粉末を主原料とし、Fe粉末を含まない原料粉末の圧粉体を焼結してなるものとした。このようにすれば、Fe粉末を用いる場合における上述の各種問題発生を可及的に回避することができる。   As raw material powder for sintered bearings, it is possible to use iron-based metal powder as the main raw material, but iron-based metal material has high hardness, so it should be used in a non-oil-impregnated state. Considering this, it is not preferable because the shaft to be supported may be damaged. Further, since iron-based metallic materials are easily rusted, there is a difficulty in terms of durability when considering use in a non-oil-impregnated state. Furthermore, since the iron-based metal powder has a high melting point, it is necessary to sufficiently increase the heating temperature when sintering the green compact of the raw material powder containing the iron-based metal powder. Restrictions tend to occur on the type of filler that is usually blended. Therefore, the sintered bearing according to the present invention is obtained by sintering a green compact of raw material powder containing Cu powder as a main raw material and not including Fe powder. In this way, it is possible to avoid as much as possible the various problems described above when using Fe powder.

上記構成において、原料粉末としては、Sn粉末、C粉末およびNi粉末を充填材として配合したものを使用することができる。Sn(錫)はCu(銅)に比べて相当に低融点である(Cuの融点:1080℃程度、Snの融点:230℃程度)ことから、これら充填材を含む原料粉末の圧粉体を、主原料であるCu粉末同士が焼結し得る温度で加熱すると、Sn粉末が溶融して母材(銅)中に拡散し、母材が合金(Cu−Sn合金)化してその硬度が高まる。これにより、焼結軸受の軸受面の耐摩耗性を高めることができる。なお、原料粉末(原料粉末全体)に占めるSn粉末の配合割合を7〜11wt%とすれば、銅を完全に合金化することができる。また、Ni粉末は、Cu粉末に比べて高硬度で高融点であることから、焼結軸受の軸受面にはNi粉末がその原形を留めたまま分散配置されるので、焼結軸受の軸受面の耐摩耗性を一層高めることができる。特に、原料粉末に占めるNi粉末の配合割合を4〜6wt%とすれば、支持すべき軸に対する攻撃性を高めることなく、耐摩耗性を効果的に高めることができる。   In the above configuration, as the raw material powder, a powder blended with Sn powder, C powder and Ni powder as a filler can be used. Since Sn (tin) has a considerably lower melting point than Cu (copper) (Cu melting point: about 1080 ° C., Sn melting point: about 230 ° C.), a green compact of raw material powder containing these fillers is used. When heated at a temperature at which the Cu powder as the main raw material can be sintered, the Sn powder melts and diffuses into the base material (copper), and the base material becomes an alloy (Cu-Sn alloy) to increase its hardness. . Thereby, the abrasion resistance of the bearing surface of a sintered bearing can be improved. In addition, if the mixing ratio of Sn powder in the raw material powder (whole raw material powder) is 7 to 11 wt%, copper can be completely alloyed. In addition, since Ni powder has higher hardness and higher melting point than Cu powder, Ni powder is distributed and arranged on the bearing surface of the sintered bearing while retaining its original shape. The wear resistance can be further improved. In particular, if the mixing ratio of the Ni powder in the raw material powder is 4 to 6 wt%, the wear resistance can be effectively increased without increasing the aggressiveness to the shaft to be supported.

加えて、原料粉末に、C粉末(黒鉛粉末)を配合したことから、焼結軸受の軸受面の摺動性を高めることが(軸受面の摩擦係数を低減して、耐焼き付き性を高めることが)できる。Cu粉末を主原料として用いる関係上、固体潤滑剤として機能するC粉末は、焼結後においても、原形を留めたまま残存して軸受面上に分散配置されるからである。ここで、C粉末の配合割合を高くするほど摺動性は高まるが、C粉末の配合割合をあまりに高くすると、原料粉末の流動性が低下して成形金型への原料粉末の充填性が低下する他、原料粉末の圧縮性に悪影響が及んで圧粉体を所定密度に成形することが難しくなり、所定精度および所定強度の圧粉体、ひいては焼結軸受を得ることが困難となる。従って、C粉末を配合することによるメリットとデメリットのバランスを考慮して、原料粉末に占めるC粉末の配合割合は3〜7wt%とするのが望ましい。   In addition, since C powder (graphite powder) is blended into the raw material powder, it is possible to improve the sliding performance of the bearing surface of the sintered bearing (to reduce the friction coefficient of the bearing surface and to improve the seizure resistance). Can) This is because the C powder functioning as a solid lubricant remains in its original form and is distributed on the bearing surface even after sintering because Cu powder is used as the main raw material. Here, the slidability increases as the blending ratio of the C powder is increased. However, if the blending ratio of the C powder is too high, the fluidity of the raw material powder is lowered and the filling property of the raw material powder into the molding die is lowered. In addition, the compressibility of the raw material powder is adversely affected, and it becomes difficult to form the green compact to a predetermined density, and it becomes difficult to obtain a green compact with a predetermined accuracy and a predetermined strength, and thus a sintered bearing. Therefore, in consideration of the balance between the merit and demerit of blending C powder, the blending ratio of C powder in the raw material powder is desirably 3 to 7 wt%.

上述したように、Sn粉末は、圧粉体を加熱して焼結体を得る段階で溶融して母材中に拡散することから、焼結軸受(焼結体)のうち、圧粉体の段階でSn粉末が分散していた部位には空孔が形成されることとなる。そのため、Sn粉末として、その粒径があまりに大きいものを使用すると、焼結軸受に不当に大きな空孔が形成されることとなって強度面で不利となる。従って、Sn粉末は、その平均粒径が45μm以下のものを使用するのが望ましい。   As described above, Sn powder melts and diffuses into the base material in the stage of obtaining a sintered body by heating the green compact. Holes will be formed at the site where Sn powder was dispersed in the stage. For this reason, if an Sn powder having an excessively large particle size is used, unreasonably large holes are formed in the sintered bearing, which is disadvantageous in terms of strength. Therefore, it is desirable to use Sn powder having an average particle size of 45 μm or less.

上記構成において、原料粉末に配合するNi粉末としては、その平均粒径が5μm以下のものを使用するのが望ましい。各種粉末を混合して原料粉末を生成する際に、原料粉末中へのNi粉末の分散性を向上させ、軸受面の耐摩耗性を満遍なく高めるためである。すなわち、平均粒径が5μmを超えるような大粒のNi粉末を使用すると、原料粉末中にNi粉末を万遍なく分散させることが難しくなり、軸受面の各部間で耐摩耗性にばらつきが生じる可能性がある。   In the above configuration, it is desirable to use Ni powder having an average particle diameter of 5 μm or less as the Ni powder to be blended with the raw material powder. This is because when the various powders are mixed to produce the raw material powder, the dispersibility of the Ni powder in the raw material powder is improved, and the wear resistance of the bearing surface is uniformly improved. That is, if a large Ni powder with an average particle size exceeding 5 μm is used, it will be difficult to uniformly disperse the Ni powder in the raw material powder, and the wear resistance may vary among the parts of the bearing surface. There is sex.

上記構成において、C粉末は、その全量に対し、平均粒径が60〜110μmのものを30wt%以上含むものとすることができる。C粉末の粒度分布は、特に原料粉末の流動性を左右する。従って、C粉末としてこのようなものを使用すれば、原料粉末の流動性を一層高めて、圧粉体、ひいては焼結軸受の一層の高精度化を達成することが可能となる。   In the above configuration, the C powder may contain 30 wt% or more of an average particle size of 60 to 110 μm with respect to the total amount. The particle size distribution of the C powder particularly affects the fluidity of the raw material powder. Therefore, if such a powder is used as the C powder, it is possible to further improve the fluidity of the raw material powder and achieve higher precision of the green compact and, consequently, the sintered bearing.

以上に示すように、本発明によれば、配光可変型前照灯装置の作動性をはじめとした基本的性能を低下させることなく、そのコスト低減に寄与することができる。   As described above, according to the present invention, it is possible to contribute to the cost reduction without degrading the basic performance including the operability of the variable light distribution type headlamp device.

本発明の実施形態に係る焼結軸受を組み込んだ配光可変型前照灯装置の一構成例の要部を模式的に示す図である。It is a figure which shows typically the principal part of one structural example of the variable light distribution type headlamp apparatus incorporating the sintered bearing which concerns on embodiment of this invention. 図1中のA−A線矢視断面図である。It is an AA arrow directional cross-sectional view in FIG. 焼結軸受の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of a sintered bearing. 耐摩耗性の確認試験に用いる試験装置の概略斜視図である。It is a schematic perspective view of the test apparatus used for a wear resistance confirmation test. 耐摩耗性の確認試験に用いた試料の組成を示す図である。It is a figure which shows the composition of the sample used for the confirmation test of abrasion resistance. 耐摩耗性の確認試験結果を示す図である。It is a figure which shows the confirmation test result of abrasion resistance.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の実施形態に係る焼結金属製のすべり軸受を備えた配光可変型前照灯装置1の一構成例の要部を模式的に示し、図2に、図1中のA−A線矢視断面図を示す。この配光可変型前照灯装置1は、リフレクタ2と、このリフレクタ2の略中央部に付設された光源3と、リフレクタ2および光源3を保持して左右方向に回転(回動)する第1回動部材4と、上下方向に回転(回動)する第2回動部材5と、ケーシング6と、第1および第2回動部材4,5を回動させるための図示外の駆動手段とを備える。ケーシング6には焼結金属製のすべり軸受(以下、焼結軸受という)10,10が取り付け固定されており、これら焼結軸受10,10で第2回動部材5の左右両側に突設された軸部5a,5aが回転自在に支持されている。また、第2回動部材5にも焼結軸受10が取り付け固定されており、この焼結軸受10で第1回動部材4に突設された軸部4aが回転自在に支持されている。   FIG. 1 schematically shows a main part of a configuration example of a variable light distribution headlamp device 1 including a sintered metal sliding bearing according to an embodiment of the present invention. The AA line arrow directional cross-sectional view is shown. The variable light distribution type headlamp device 1 includes a reflector 2, a light source 3 attached to a substantially central portion of the reflector 2, a reflector 2 and the light source 3 that hold the reflector 2 and the light source 3 and rotate (rotate) in the left-right direction. 1 rotation member 4, second rotation member 5 rotating (rotating) in the vertical direction, casing 6, drive means (not shown) for rotating the first and second rotation members 4, 5 With. Sintered metal slide bearings (hereinafter referred to as “sintered bearings”) 10 and 10 are fixedly attached to the casing 6, and these sintered bearings 10 and 10 project from the left and right sides of the second rotating member 5. The shaft portions 5a and 5a are rotatably supported. A sintered bearing 10 is also attached and fixed to the second rotating member 5, and a shaft portion 4 a protruding from the first rotating member 4 is rotatably supported by the sintered bearing 10.

焼結軸受10は、銅(Cu)を主成分とし、鉄(Fe)を含まない焼結金属の多孔質体で径一定の円筒状に形成されたものであり、内部気孔に潤滑油を含浸しない非含油状態でケーシング6および第2回動部材5にそれぞれ組み付けられている。この焼結軸受10は、図3に示すように、原料粉末製作工程P1、圧縮成形工程P2、焼結工程P3および矯正工程P4を順に経て製造される。以下、各工程について詳述する。   The sintered bearing 10 is formed of a sintered metal porous body that has copper (Cu) as a main component and does not contain iron (Fe), and is formed in a cylindrical shape having a constant diameter, and impregnated with lubricating oil in internal pores. It is assembled to the casing 6 and the second rotating member 5 in a non-oil-impregnated state. As shown in FIG. 3, the sintered bearing 10 is manufactured through a raw material powder production process P1, a compression molding process P2, a sintering process P3, and a correction process P4 in this order. Hereinafter, each process is explained in full detail.

(A)原料粉末製作工程
この原料粉末製作工程P1では、例えばV型混合機に、銅(Cu)粉末、錫(Sn)粉末、黒鉛(C)粉末およびニッケル(Ni)粉末をそれぞれ適量投入して混合し、焼結軸受10を製造するための原料粉末を製作する。この原料粉末には、Fe粉末は一切含まれない。ここでは、平均粒径が150μm以下のCu粉末を主原料とし、これに、充填剤としてのSn粉末、C粉末およびNi粉末を、原料粉末に占める配合割合が、それぞれ、7〜11wt%、3〜7wt%および4〜6wt%となるように配合する。なお、これら充填剤のうち、Ni粉末としては、原料粉末中へのNi粉末の分散性を向上するために、その平均粒径が5μm以下のものを使用する。すなわちNi粉末を原料粉末中に配合する理由は、焼結軸受10のうち、特に軸受面(内周面)の耐摩耗性向上を図るためであるが、Ni粉末の平均粒径が5μmを超えると原料粉末中での分散性が低下し、焼結軸受10の軸受面の耐摩耗性を均一に高めることが難しくなる(軸受面の各部で耐摩耗性にばらつきが生じ易くなる)からである。
(A) Raw material powder production process In this raw material powder production process P1, for example, appropriate amounts of copper (Cu) powder, tin (Sn) powder, graphite (C) powder and nickel (Ni) powder are respectively charged into a V-type mixer. The raw material powder for manufacturing the sintered bearing 10 is manufactured. This raw material powder does not contain any Fe powder. Here, Cu powder having an average particle size of 150 μm or less is used as a main raw material, and the mixing ratio of Sn powder, C powder and Ni powder as fillers to the raw material powder is 7 to 11 wt%, 3%, respectively. It mix | blends so that it may become -7 wt% and 4-6 wt%. Of these fillers, those having an average particle diameter of 5 μm or less are used as the Ni powder in order to improve the dispersibility of the Ni powder in the raw material powder. That is, the reason why the Ni powder is blended in the raw material powder is to improve the wear resistance of the bearing surface (inner peripheral surface) among the sintered bearings 10, but the average particle diameter of the Ni powder exceeds 5 μm. This is because the dispersibility in the raw material powder decreases and it becomes difficult to uniformly increase the wear resistance of the bearing surface of the sintered bearing 10 (the wear resistance tends to vary in each part of the bearing surface). .

(B)圧縮成形工程P2
この圧縮成形工程P2では、上記の原料粉末製作工程P1で製作した原料粉末を図示しない成形金型のキャビティに投入して圧縮成形し、完成品としての焼結軸受10に近似した円筒形状の圧粉体を得る。
(B) Compression molding process P2
In this compression molding step P2, the raw material powder produced in the raw material powder production step P1 is put into a cavity of a molding die (not shown) and compression-molded, and a cylindrical pressure approximating the sintered bearing 10 as a finished product. Obtain powder.

ところで、上述のとおり、原料粉末にはC粉末が配合されている。C粉末は固体潤滑剤として機能するものであり、これを配合しておけば、圧粉体の離型性を向上することが可能となる。また、Cu粉末を主原料として用いる関係上、C粉末は、後述する焼結工程P3を経た後でも、原形を留めたまま残存して軸受面上に分散配置されることから、焼結軸受10の軸受面の摺動性を有効に高める(軸受面の摩擦係数を低減し、耐焼き付き性を高める)ことができる。このような利点を考慮すれば、C粉末の配合量をできるだけ多くする(原料粉末に占めるC粉末の配合割合をできるだけ高くする)のが望ましいが、黒鉛は、銅、錫およびニッケルよりも比重が小さい(C粉末は、Cu粉末、Sn粉末およびNi粉末よりも低密度である)ために、C粉末の配合割合を高めれば高めるほど、原料粉末の流動性(圧縮成形工程P2で使用する成形金型への充填性)や圧縮成形性が低下し、所定形状および所定密度の圧粉体を得ることが難しくなる。   By the way, as mentioned above, C powder is mix | blended with the raw material powder. The C powder functions as a solid lubricant, and if it is blended, the mold releasability of the green compact can be improved. Further, since the Cu powder is used as the main raw material, the C powder remains in its original form and is dispersedly arranged on the bearing surface even after the sintering process P3 described later. It is possible to effectively increase the slidability of the bearing surface (reducing the friction coefficient of the bearing surface and increasing the seizure resistance). Considering such advantages, it is desirable to increase the blending amount of C powder as much as possible (the blending ratio of C powder in the raw material powder is as high as possible), but graphite has a specific gravity higher than that of copper, tin and nickel. Since it is small (C powder is lower in density than Cu powder, Sn powder, and Ni powder), the higher the blending ratio of C powder, the higher the fluidity of the raw material powder (the molding metal used in the compression molding process P2) Mold filling property) and compression moldability are lowered, and it becomes difficult to obtain a green compact having a predetermined shape and a predetermined density.

そこで、焼結軸受10の軸受面の摺動性向上等のメリットを有効に享受しつつ、圧粉体の成形精度低下というデメリットを最小限に抑えるため、C粉末を、原料粉末に占める配合割合が3〜7wt%となるように配合し、かつC粉末としては、その全量に対し、平均粒径が60〜110μmのものを30wt%以上含むものを使用することとした。すなわち、C粉末の配合割合を上記範囲に設定することにより、圧縮成形性が低下するのを可及的に防止することができ、また、C粉末として上記の粒度分布を具備するものを使用することにより、流動性が向上する。   Therefore, in order to effectively enjoy the merits of improving the sliding performance of the bearing surface of the sintered bearing 10 and to minimize the demerit of lowering the compacting accuracy of the green compact, the mixing ratio of C powder to the raw material powder In addition, as the C powder, a powder containing an average particle size of 60 to 110 μm in an amount of 30 wt% or more is used as the C powder. That is, by setting the blending ratio of the C powder in the above range, it is possible to prevent the compression moldability from being lowered as much as possible, and the C powder having the above particle size distribution is used. This improves the fluidity.

原料粉末には、固体潤滑剤として機能するC粉末が含まれることから、上記したとおり、圧粉体を成形金型から離型する際には圧粉体をスムーズに離型することができる。そのため、離型に伴って圧粉体が部分的に欠損等するのを可及的に防止し、高精度の圧粉体を得ることができる。   Since the raw material powder includes C powder that functions as a solid lubricant, as described above, when the green compact is released from the molding die, the green compact can be released smoothly. For this reason, it is possible to prevent the green compact from being partially lost as the mold is released, and to obtain a high-precision green compact.

(C)焼結工程P3
焼結工程P3では、圧縮成形工程P2で得られた圧粉体を700〜800℃の温度範囲内で所定時間加熱することにより、Cu粉末同士が焼結結合してなる焼結体を得る。ここで、圧粉体(原料粉末)にはCuに比べて低融点のSnの粉末が含まれている(Cuの融点:約1080℃、Snの融点:約230℃)ことから、圧粉体を上記の温度範囲内で加熱すると、Cu粉末同士が焼結結合するのと同時に、Sn粉末が溶融して母材(Cu)中に拡散し、母材(Cu)が合金(Cu−Sn合金)化してその硬度が高まる。
(C) Sintering process P3
In the sintering process P3, the green compact obtained in the compression molding process P2 is heated within a temperature range of 700 to 800 ° C. for a predetermined time to obtain a sintered body formed by sintering and bonding Cu powders. Here, the green compact (raw material powder) contains Sn powder having a melting point lower than that of Cu (Cu melting point: about 1080 ° C., Sn melting point: about 230 ° C.). Is heated within the above temperature range, the Cu powders are sintered and bonded simultaneously, and at the same time, the Sn powder is melted and diffused into the base material (Cu), so that the base material (Cu) becomes an alloy (Cu-Sn alloy). ) To increase its hardness.

(D)矯正工程P4
この矯正工程P4では、焼結工程P3を経て得られた焼結体に矯正加工(サイジング加工)を施す。これにより、焼結体の形状や各部寸法が所定精度に仕上げられ、完成品としての焼結軸受10が得られる。
(D) Correction process P4
In this correction process P4, the sintered body obtained through the sintering process P3 is subjected to correction processing (sizing processing). Thereby, the shape and each part dimension of a sintered compact are finished with predetermined precision, and the sintered bearing 10 as a finished product is obtained.

以上で示したように、焼結軸受10であれば、樹脂製のすべり軸受と同等のコストで量産できる一方で、樹脂製のすべり軸受に比べて耐熱性や機械的強度が高く、軸受面が熱変形、破損等し難い。そのため、配光可変型前照灯装置1の構成部品の軸を精度良く支持することができ、当該前照灯装置1の作動性を安定的に維持しつつ、そのコスト低減を図ることができる。また、本発明に係る焼結軸受10は、非含油の状態で使用されるので、前照灯装置1の最も基本的でかつ最大の機能、すなわち前方側を明るく照らし出すという機能が損なわれることがなくなる。   As described above, the sintered bearing 10 can be mass-produced at the same cost as a resin sliding bearing, but has higher heat resistance and mechanical strength than a resin sliding bearing, and has a bearing surface. Hard to be thermally deformed or damaged. Therefore, the shafts of the components of the variable light distribution type headlamp device 1 can be supported with high accuracy, and the cost can be reduced while the operability of the headlamp device 1 is stably maintained. . Further, since the sintered bearing 10 according to the present invention is used in an oil-free state, the most basic and maximum function of the headlamp device 1, that is, the function of brightly illuminating the front side is impaired. Disappears.

焼結軸受10の原料粉末としては、鉄系の金属粉末を主原料としたもの、あるいは適量含むものを使用することも可能ではあるが、鉄系の金属材料は高硬度であるが故に、非含油状態での使用を考慮すると支持すべき軸(軸部4a,5a)を傷付けるおそれがあることから好ましくない。また、本発明に係る焼結軸受10は、Cu粉末を主原料とし、Fe粉末を含まない原料粉末を圧粉・焼結することで得られたものであることから、Fe粉末を用いる場合における各種の問題発生を可及的に回避することができる。   As a raw material powder of the sintered bearing 10, it is possible to use a material containing an iron-based metal powder as a main raw material or a material containing an appropriate amount. However, since an iron-based metal material has high hardness, Considering the use in an oil-impregnated state, it is not preferable because the shafts (shaft portions 4a and 5a) to be supported may be damaged. The sintered bearing 10 according to the present invention is obtained by compacting and sintering a raw material powder containing Cu powder as a main raw material and not containing an Fe powder. Various problems can be avoided as much as possible.

また、Sn粉末およびNi粉末を含む原料粉末を用いて焼結軸受10を製作したことにより、焼結軸受10(の軸受面)の耐摩耗性を高めることができる。すなわち、上記したとおり、SnはCuに比べて融点が低いことから、Sn粉末を含む圧粉体を、主原料であるCu粉末同士が焼結結合し得るような温度範囲で加熱すると、Sn粉末が溶融して母材(銅)中に拡散し、母材が合金(Cu−Sn合金)化してその硬度、ひいては耐摩耗性が高まるからである。また、NiはCuに比べて高硬度で高融点であることから、原料粉末に配合したNi粉末は溶融することなく焼結軸受10の各部に分散配置されることとなり、焼結軸受10の軸受面の耐摩耗性向上に有効に寄与する。従って、Cu単体では確保することが難しい焼結軸受10の軸受面に必要とされる耐摩耗性を、有効に確保することができる。   Moreover, since the sintered bearing 10 is manufactured using the raw material powder containing Sn powder and Ni powder, the wear resistance of the sintered bearing 10 (the bearing surface thereof) can be improved. That is, as described above, since Sn has a lower melting point than Cu, when a green compact containing Sn powder is heated in a temperature range in which the main raw material Cu powder can be sintered and bonded, Sn powder This is because the metal melts and diffuses into the base material (copper), and the base material is alloyed (Cu—Sn alloy) to increase its hardness and eventually wear resistance. Further, since Ni has higher hardness and higher melting point than Cu, Ni powder blended in the raw material powder is dispersedly arranged in each part of the sintered bearing 10 without melting, and the bearing of the sintered bearing 10 Contributes effectively to improved surface wear resistance. Therefore, it is possible to effectively ensure the wear resistance required for the bearing surface of the sintered bearing 10 which is difficult to ensure with Cu alone.

但し、原料粉末に占めるSn粉末の配合割合が7wt%を下回ると、Cuを完全に合金化することが難しくなる。一方、同配合割合が11wt%を超えると、合金化に寄与しない余剰のSnが存在することとなって非効率である。従って、原料粉末に占めるSn粉末の配合割合は、上述のとおり7〜11wt%の範囲とするのが望ましい。なお、上記のとおり、Sn粉末は焼結体を得る過程で溶融・消失することから、焼結体(焼結軸受10)のうち、圧粉体の段階でSn粉末が分散(存在)していた部位には空孔が形成されることとなる。そのため、Sn粉末として、その粒径があまりに大きいものを使用すると、焼結軸受10中に不当に大きな空孔が形成されることとなって強度面で不利となる。従って、原料粉末に配合するSn粉末は、その平均粒径が45μm以下のものとするのが望ましい。   However, if the proportion of Sn powder in the raw material powder is less than 7 wt%, it becomes difficult to completely alloy Cu. On the other hand, if the blending ratio exceeds 11 wt%, there is an excess of Sn that does not contribute to alloying, which is inefficient. Therefore, it is desirable that the blending ratio of the Sn powder in the raw material powder is in the range of 7 to 11 wt% as described above. As described above, since Sn powder melts and disappears in the process of obtaining a sintered body, Sn powder is dispersed (existing) in the green compact stage of the sintered body (sintered bearing 10). Holes will be formed at the sites. Therefore, if Sn powder having an excessively large particle size is used, unreasonably large holes are formed in the sintered bearing 10, which is disadvantageous in terms of strength. Therefore, it is desirable that the Sn powder blended in the raw material powder has an average particle size of 45 μm or less.

また、Ni粉末は焼結軸受10の耐摩耗性を向上するものとして有益であるが、原料粉末に占めるNi粉末の配合割合が6wt%を超えると、支持すべき軸(軸部4a,5a)を傷付ける可能性が高まる。一方、同配合割合が4wt%を下回ると、焼結軸受10の軸受面の耐摩耗性向上効果を十分に享受することができなくなる。従って、原料粉末に占めるNi粉末の配合割合は、4〜6wt%の範囲内とするのが望ましい。これにより、支持すべき軸に対する攻撃性を高めることなく、耐摩耗性の向上効果を得ることができる。   Ni powder is useful for improving the wear resistance of the sintered bearing 10, but when the proportion of Ni powder in the raw material powder exceeds 6 wt%, the shaft to be supported (shaft portions 4a and 5a). The possibility of hurting is increased. On the other hand, if the blending ratio is less than 4 wt%, the effect of improving the wear resistance of the bearing surface of the sintered bearing 10 cannot be fully enjoyed. Therefore, the mixing ratio of Ni powder in the raw material powder is desirably in the range of 4 to 6 wt%. Thereby, the improvement effect of abrasion resistance can be acquired, without improving the aggressiveness with respect to the shaft which should be supported.

以上、本発明の一実施形態について説明を行ったが、焼結軸受10は、本発明の要旨を逸脱しない範囲で種々の変形を施すことが可能である。例えば、以上で説明した実施形態では、焼結軸受10を径一定の円筒状に形成しているが、焼結軸受10の外周面は、当該焼結軸受10が取り付けられる部材(図1および図2に示す例では、第2回動部材5およびケーシング6)の取り付け部形状に応じて変更することが可能である。また、本発明に係る焼結軸受10が装着される配光可変型前照灯装置1の形態も、図1および図2に示すものに限定されるわけではない。   As mentioned above, although one Embodiment of this invention was described, the sintered bearing 10 can give a various deformation | transformation in the range which does not deviate from the summary of this invention. For example, in the embodiment described above, the sintered bearing 10 is formed in a cylindrical shape with a constant diameter, but the outer peripheral surface of the sintered bearing 10 is a member to which the sintered bearing 10 is attached (FIGS. 1 and In the example shown in FIG. 2, it can be changed according to the shape of the mounting portion of the second rotating member 5 and the casing 6). Moreover, the form of the variable light distribution type headlamp device 1 to which the sintered bearing 10 according to the present invention is attached is not limited to that shown in FIGS. 1 and 2.

本発明の有用性を実証すべく、本発明の構成を具備する原料粉末を用いて焼結軸受10を形成した場合(実施例)と、本発明の構成を具備しない原料粉末を用いて焼結軸受10を形成した場合(比較例)とで摩耗量にどの程度差が生じるのかを、図4に示す試験機20を用いて比較検証した。図4に示す試験機20は、軸部22およびその外周に離間して設けられた一対のリング部23,23を有するバーベル21と、バーベル21を載置した平板状のプレート24とを備えたいわゆるバーベルプレート試験機である。この試験機20では、バーベル21に下向きの荷重をかけ、リング部23,23の外周面をプレート24の上面に押し付けた状態で、バーベル21とプレート24とを所定速度で相対回転させ(本試験ではバーベル21を静止させた状態でプレート24を回転させる)、所定時間経過後におけるプレート24の摩耗量を測定する。   In order to demonstrate the usefulness of the present invention, the sintered bearing 10 is formed using the raw material powder having the configuration of the present invention (Example) and sintered using the raw material powder not having the configuration of the present invention. To what extent the amount of wear is different from the case where the bearing 10 is formed (comparative example) was compared and verified using the testing machine 20 shown in FIG. The testing machine 20 shown in FIG. 4 includes a barbell 21 having a shaft portion 22 and a pair of ring portions 23, 23 provided on the outer periphery thereof, and a flat plate 24 on which the barbell 21 is placed. This is a so-called barbell plate testing machine. In the testing machine 20, a downward load is applied to the barbell 21, and the barbell 21 and the plate 24 are relatively rotated at a predetermined speed with the outer peripheral surfaces of the ring portions 23 and 23 pressed against the upper surface of the plate 24 (this test). Then, the plate 24 is rotated while the barbell 21 is stationary), and the amount of wear of the plate 24 after a predetermined time has elapsed is measured.

当該確認試験では、配光可変型前照灯装置1の軸に対応する材料(例えばステンレス鋼)でバーベル21(軸部22および一対のリング部23,23)を製作し、実施例に係る原料粉末(実施例1,2)および比較例に係る原料粉末(比較例1〜4)でプレート24をそれぞれ製作した。なお、実施例1,2、および比較例1〜4に係るプレート24の材料組成は図5に示す。   In the confirmation test, the barbell 21 (the shaft portion 22 and the pair of ring portions 23, 23) is manufactured from a material (for example, stainless steel) corresponding to the shaft of the variable light distribution headlamp device 1, and the raw material according to the example is produced. Plates 24 were respectively made of the powder (Examples 1 and 2) and the raw material powders (Comparative Examples 1 to 4) according to the comparative example. In addition, the material composition of the plate 24 which concerns on Examples 1, 2 and Comparative Examples 1-4 is shown in FIG.

また、摩耗試験の主だった試験条件は以下の(1)〜(4)に示すとおりであり、本発明に係る焼結軸受10の実際の使用条件・使用環境を考慮して、バーベル21のリング部23とプレート24との間に潤滑油等の潤滑剤は一切介在させないこととした。
(1)荷重:20Nと50Nを1分毎に切り替え
(2)試験時間:60分
(3)回転速度:2.7m/s
(4)雰囲気:常温常湿
Further, the main test conditions of the wear test are as shown in the following (1) to (4), and the actual use conditions and use environment of the sintered bearing 10 according to the present invention are taken into consideration. No lubricant such as lubricating oil is interposed between the ring portion 23 and the plate 24.
(1) Load: 20N and 50N are switched every minute (2) Test time: 60 minutes (3) Rotational speed: 2.7 m / s
(4) Atmosphere: normal temperature and humidity

摩耗試験の試験結果を図6に示す。図6に示す試験結果からも明らかなように、本発明の構成を具備する原料粉末を用いた実施例1および実施例2では、Cu粉末およびFe粉末を主原料とした原料粉末を用いた比較例(特に比較例1および比較例2)よりも、摩耗量が著しく少なくなった。また、実施例1と実施例2との比較、および比較例1〜3相互間の比較からは、原料粉末に占めるC粉末の配合割合を高めるほど摩耗量が少なくなり、C粉末の配合割合を高めることが耐摩耗性向上に有効であることが理解される。なお、実施例1と比較例3とを比較すると、摩耗量に大差がなく、同等の耐摩耗性を確保し得るものと考えられるが、比較例3に係る試料はFe粉末を含む原料粉末から製造されたものであることから、支持すべき軸に相当するバーベル21(リング部23)に多くの傷が形成されてしまった。従って、比較例3の構成を具備した焼結軸受は、非含油状態での軸支持用途には不適当である。また、比較例4は、実施例1の構成からNi粉末を省略し、その省略分だけSn粉末の配合割合を高めたものであるが、Ni粉末を配合した実施例1に比べ、摩耗量が増大する結果となっている。   The test result of the wear test is shown in FIG. As is clear from the test results shown in FIG. 6, in Example 1 and Example 2 using the raw material powder having the configuration of the present invention, comparison was made using the raw material powder mainly composed of Cu powder and Fe powder. The amount of wear was significantly less than in the examples (particularly Comparative Example 1 and Comparative Example 2). Moreover, from the comparison between Example 1 and Example 2 and the comparison between Comparative Examples 1 to 3, the wear amount decreases as the blending ratio of C powder in the raw material powder is increased, and the blending ratio of C powder is It is understood that the increase is effective for improving the wear resistance. In addition, when Example 1 and Comparative Example 3 are compared, it is considered that there is no great difference in the amount of wear, and equivalent wear resistance can be ensured, but the sample according to Comparative Example 3 is made from a raw material powder containing Fe powder. Since it was manufactured, many scratches were formed on the barbell 21 (ring portion 23) corresponding to the shaft to be supported. Therefore, the sintered bearing having the configuration of Comparative Example 3 is not suitable for a shaft support application in an oil-free state. In Comparative Example 4, Ni powder was omitted from the configuration of Example 1, and the blending ratio of Sn powder was increased by the omission, but compared with Example 1 in which Ni powder was blended, the amount of wear was lower. The result is increasing.

以上の試験結果から、本発明の有用性が実証される。すなわち、本発明に係る焼結軸受10であれば、その軸受面に高い耐摩耗性および摺動性を確保することができるので、非含油の状態で配光可変型前照灯装置1に組み込んで使用した場合にも、前照灯装置1の構成部品の回転軸を長期間に亘って精度良く支持することができる。これにより、配光可変型前照灯装置1の作動性をはじめとした基本的な性能・機能を損なうことなく、そのコスト低減に寄与することができる。   The above test results demonstrate the usefulness of the present invention. That is, with the sintered bearing 10 according to the present invention, high wear resistance and slidability can be ensured on the bearing surface, so that it is incorporated into the variable light distribution type headlamp device 1 in an oil-free state. Even when used in the above, the rotating shafts of the components of the headlamp device 1 can be accurately supported over a long period of time. Thereby, it can contribute to the cost reduction, without impairing basic performance and functions including the operability of the variable light distribution headlamp device 1.

1 配光可変型前照灯装置
2 リフレクタ
3 光源
4a 軸部(支持すべき軸)
5a 軸部(支持すべき軸)
10 焼結軸受(すべり軸受)
20 試験機
21 バーベル
24 プレート
DESCRIPTION OF SYMBOLS 1 Light distribution variable type headlamp apparatus 2 Reflector 3 Light source 4a Shaft part (shaft which should be supported)
5a Shaft (shaft to be supported)
10 Sintered bearing (slide bearing)
20 Testing machine 21 Barbell 24 Plate

Claims (4)

前照灯の配光角度を上下左右方向に可変とする配光可変型前照灯装置に装備され、支持すべき軸を非含油状態で回転自在に支持する配光可変型前照灯装置用すべり軸受の製造方法であって、
主原料としてのCu粉末と、充填材としてのSn粉末、C粉末およびNi粉末とを含み、Fe粉末を含まない原料粉末であって、前記C粉末を、前記原料粉末に占める配合割合が3〜7wt%となるように配合したものを製作する原料粉末製作工程と、
前記原料粉末を圧縮成形することにより圧粉体を得る圧縮成形工程と、
前記圧粉体を700〜800℃の温度範囲内で加熱することにより焼結体を得る焼結工程と、を備え、
前記C粉末は、その全量に対し、平均粒径が60〜110μmのものを30wt%含むことを特徴とする配光可変型前照灯装置用すべり軸受の製造方法
For a variable light distribution headlight device that is mounted on a variable light distribution headlight device that can change the light distribution angle of the headlight in the vertical and horizontal directions, and that supports the shaft to be supported in an oil-free state so that it can rotate freely . A manufacturing method of a sliding bearing,
Cu powder as a main raw material, Sn powder, C powder and Ni powder as fillers, and a raw material powder not containing Fe powder , wherein the C powder is mixed in a proportion of 3 to 3 Raw material powder production process for producing a blended so as to be 7 wt%,
A compression molding step of obtaining a green compact by compression molding the raw material powder;
A sintering step of obtaining a sintered body by heating the green compact within a temperature range of 700 to 800 ° C.,
The method for producing a sliding bearing for a variable light distribution headlamp device , wherein the C powder contains 30 wt% of an average particle size of 60 to 110 μm with respect to the total amount .
前記Sn粉末は、その平均粒径が45μm以下である請求項1に記載の配光可変型前照灯装置用すべり軸受の製造方法 The method for producing a sliding bearing for a variable light distribution headlamp device according to claim 1, wherein the Sn powder has an average particle size of 45 μm or less . 前記原料粉末に占める前記Ni粉末の配合割合を4〜6wt%とした請求項1又は2に記載の配光可変型前照灯装置用すべり軸受の製造方法 The manufacturing method of the sliding bearing for variable light distribution type headlamp apparatuses of Claim 1 or 2 which made the compounding ratio of the said Ni powder to the said raw material powder 4 to 6 wt% . 前記Ni粉末は、その平均粒径が5μm以下である請求項1〜3の何れか一項に記載の配光可変型前照灯装置用すべり軸受の製造方法The method for manufacturing a sliding bearing for a variable light distribution headlamp device according to any one of claims 1 to 3, wherein the Ni powder has an average particle size of 5 µm or less.
JP2016090620A 2016-04-28 2016-04-28 Manufacturing method of sliding bearing for variable light distribution type headlamp device Active JP6109993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090620A JP6109993B2 (en) 2016-04-28 2016-04-28 Manufacturing method of sliding bearing for variable light distribution type headlamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090620A JP6109993B2 (en) 2016-04-28 2016-04-28 Manufacturing method of sliding bearing for variable light distribution type headlamp device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011195994A Division JP5932270B2 (en) 2011-09-08 2011-09-08 Slide bearings for variable light distribution headlamps

Publications (2)

Publication Number Publication Date
JP2016186365A JP2016186365A (en) 2016-10-27
JP6109993B2 true JP6109993B2 (en) 2017-04-05

Family

ID=57203105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090620A Active JP6109993B2 (en) 2016-04-28 2016-04-28 Manufacturing method of sliding bearing for variable light distribution type headlamp device

Country Status (1)

Country Link
JP (1) JP6109993B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453606A (en) * 1977-10-06 1979-04-27 Toyo Bearing Mfg Co Method of making copperrbase oillcontaining sintered bearing
JP2977941B2 (en) * 1991-05-20 1999-11-15 日立粉末冶金株式会社 Manufacturing method of low friction coefficient sintered bearing
JP4178808B2 (en) * 2002-02-19 2008-11-12 市光工業株式会社 Rotating body support structure
JP2004270013A (en) * 2003-03-11 2004-09-30 Mitsubishi Materials Corp SINTERED Cu-BASED ALLOY, METHOD FOR PRODUCING THE SAME, AND BEARING USED IN MOTOR FOR DEIONIZED WATER
JP2008007795A (en) * 2006-06-27 2008-01-17 Mitsubishi Materials Pmg Corp Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY FOR BEARING HAVING EXCELLENT CORROSION RESISTANCE, FRICTION-WEAR RESISTANCE AND SEIZURE RESISTANCE
JP4749260B2 (en) * 2006-07-12 2011-08-17 日立粉末冶金株式会社 Sintered oil-impregnated bearing
JP5684977B2 (en) * 2009-08-31 2015-03-18 株式会社ダイヤメット Cu-based sintered sliding member

Also Published As

Publication number Publication date
JP2016186365A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
JP6741730B2 (en) Sintered bearing and manufacturing method thereof
US20190249716A1 (en) Slide member and method for producing same
WO2014065316A1 (en) Sintered bearing
CN103201397B (en) Cu-based oil-containing sintered bearing
WO2015037509A1 (en) Sliding member and method for producing same
WO2014156856A1 (en) Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
JP6816079B2 (en) Vibration motor
JP2011094167A (en) Iron-copper based sintered sliding member, and method for producing the same
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6302259B2 (en) Manufacturing method of sintered bearing
JP6109993B2 (en) Manufacturing method of sliding bearing for variable light distribution type headlamp device
JP6165906B2 (en) Manufacturing method of sliding bearing for variable light distribution type headlamp device
JP5973005B2 (en) Variable light distribution headlamp
JP5932270B2 (en) Slide bearings for variable light distribution headlamps
WO2019223077A1 (en) Method for manufacturing oil-retaining bearing applied to automobile lamp motor
KR20110074003A (en) Sintered friction material and manufacturing method of the same
CN108883472B (en) Cu-based sintered sliding material and method for producing same
JP6548952B2 (en) Sintered bearing and method of manufacturing the same
KR102331498B1 (en) Sintered bearing and its manufacturing method
JP6625333B2 (en) Manufacturing method of sintered bearing and sintered bearing
JP6571230B2 (en) Sintered bearing
JP5214555B2 (en) Sintered oil-impregnated bearing
JP6550224B2 (en) Sliding member and method of manufacturing the same
WO2016043284A1 (en) Slide member and method for producing same
WO2016114065A1 (en) Bearing base material and method for manufacturing same, and slide bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250