JP6107142B2 - POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM - Google Patents

POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM Download PDF

Info

Publication number
JP6107142B2
JP6107142B2 JP2013001091A JP2013001091A JP6107142B2 JP 6107142 B2 JP6107142 B2 JP 6107142B2 JP 2013001091 A JP2013001091 A JP 2013001091A JP 2013001091 A JP2013001091 A JP 2013001091A JP 6107142 B2 JP6107142 B2 JP 6107142B2
Authority
JP
Japan
Prior art keywords
battery
open
voltage
open end
end voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013001091A
Other languages
Japanese (ja)
Other versions
JP2014134391A (en
Inventor
暁 梅本
暁 梅本
和也 加藤
和也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013001091A priority Critical patent/JP6107142B2/en
Publication of JP2014134391A publication Critical patent/JP2014134391A/en
Application granted granted Critical
Publication of JP6107142B2 publication Critical patent/JP6107142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、乗用車、トラック、バス等の低圧側のバッテリに適用して好適な電源制御装置、電源モデル更新方法、プログラム、媒体に関する。   The present invention relates to a power supply control device, a power supply model updating method, a program, and a medium that are suitable for use in low-voltage side batteries such as passenger cars, trucks, and buses.

電気自動車、プラグインタイプのハイブリッド車、ハイブリッド車、通常のガソリン車には低圧用のバッテリが搭載され、主に制御用の電源として用いられている。このバッテリの劣化を検出する技術として例えば特許文献1に記載されるように、OCV−SOC特性マップを記憶しておき、測定したOCV(Open Circuit Voltage)を用いてSOC(State Of Charge:充電率)を推定して、満充電容量を推定することが開示されている。   Electric vehicles, plug-in type hybrid vehicles, hybrid vehicles, and ordinary gasoline vehicles are equipped with a low-voltage battery and are mainly used as a power source for control. As a technique for detecting the deterioration of the battery, for example, as described in Patent Document 1, an OCV-SOC characteristic map is stored, and the measured OCV (Open Circuit Voltage) is used to determine the SOC (State Of Charge). ) To estimate the full charge capacity.

特開2010−19664号公報JP 2010-19664 A

しかしながら上述した従来技術においては、バッテリの交換がされた場合や劣化が生じた場合に、特性変化後のバッテリの特性が未知であるため、SOCを推定することができないという問題が生じる。つまり、バッテリの特性変化があった後の充電率を適切に検出することができないという問題があった。   However, in the above-described prior art, when the battery is replaced or deteriorated, the characteristic of the battery after the characteristic change is unknown, so that the SOC cannot be estimated. That is, there has been a problem that it is not possible to appropriately detect the charge rate after the battery characteristic has changed.

本発明は、上記問題に鑑み、バッテリの特性変化があった後の充電率を適切に検出することができる電源制御装置、電源モデル更新方法、プログラム、媒体を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a power supply control device, a power supply model update method, a program, and a medium that can appropriately detect a charge rate after a change in battery characteristics.

上記の問題を解決するため、本発明に係る電源制御装置は、車両のバッテリの開放端電圧を測定する測定手段と、前記開放端電圧と充電率との関係を示すマップを記憶する記憶手段と、前記バッテリの特性変化要因が発生したか否かを判定する判定手段と、前記バッテリへの充電を制御する制御手段と、を含み、前記判定手段が肯定と判定する場合に、前記制御手段が前記車両の駐車時に前記バッテリの充電を行って、前記測定手段が前記バッテリの前記充電率が満充電である場合の前記開放端電圧である第一開放端電圧を測定又は推定し、当該第一開放端電圧を用いて前記マップを補正する補正手段を含むことを特徴とする。ここで、前記制御手段が前記バッテリを前記充電率が満充電である場合から所定量だけ放電し、放電後の前記開放端電圧である第二開放端電圧を前記測定手段が測定し、当該第二開放端電圧を用いて前記補正手段が前記マップを補正することとしてもよい。   In order to solve the above-described problem, a power supply control device according to the present invention includes a measurement unit that measures an open-end voltage of a vehicle battery, and a storage unit that stores a map indicating a relationship between the open-end voltage and the charging rate. A determination unit that determines whether or not a characteristic change factor of the battery has occurred, and a control unit that controls charging of the battery. When the determination unit determines affirmative, The battery is charged when the vehicle is parked, and the measuring means measures or estimates a first open-end voltage that is the open-end voltage when the charge rate of the battery is fully charged, and the first And a correction unit that corrects the map using an open-circuit voltage. Here, the control means discharges the battery by a predetermined amount from when the charging rate is fully charged, and the measurement means measures the second open-end voltage that is the open-end voltage after the discharge, and the measurement means The correction unit may correct the map using two open-ended voltages.

また、本発明に係る電源モデル更新方法は、車両のバッテリの開放端電圧を測定する測定ステップと、前記開放端電圧と充電率との関係を示すマップを記憶する記憶ステップと、前記バッテリの特性変化要因が発生したか否かを判定する判定ステップと、前記バッテリへの充電を制御する制御ステップと、を含み、前記判定ステップにおいて肯定と判定された場合に、前記制御ステップにおいて前記車両の駐車時に前記バッテリの充電を行って、前記測定ステップにおいて前記バッテリの前記充電率が満充電である場合の前記開放端電圧である第一開放端電圧を測定又は推定し、当該第一開放端電圧を用いて前記マップを補正する補正ステップを含むことを特徴とする。また本発明に係るプログラムは前記電源モデル更新方法をコンピュータに実行させるプログラムであり、本発明に係る記録媒体は前記プログラムを記録したコンピュータ読み取り可能な記録媒体である。 The power model update method according to the present invention includes a measurement step of measuring an open-end voltage of a battery of a vehicle, a storage step of storing a map indicating a relationship between the open-end voltage and a charging rate, and characteristics of the battery A determination step for determining whether or not a change factor has occurred; and a control step for controlling charging of the battery. When the determination step determines affirmative, the vehicle is parked in the control step. Sometimes the battery is charged, and in the measurement step, the first open-end voltage that is the open-end voltage when the charge rate of the battery is fully charged is measured or estimated, and the first open-end voltage is And a correction step of correcting the map. The program according to the present invention is a program Ru to execute the power model updating method in a computer, a recording medium according to the present invention is a computer-readable recording medium recording the program.

本発明の電源制御装置、電源モデル更新方法によれば、バッテリの特性変化要因(バッテリクリアつまり交換、所定期間経過による劣化など)があった場合には、駐車中に充電して変更後のバッテリの特性を第一開放端電圧として検出して、バッテリのマップを更新することができる。つまり更新後のマップを用いてより適切に開放端電圧から充電率を検出できる。   According to the power supply control device and the power supply model update method of the present invention, when there is a battery characteristic change factor (battery clearing or replacement, deterioration due to elapse of a predetermined period, etc.) Is detected as the first open-circuit voltage, and the battery map can be updated. That is, the charging rate can be detected from the open-end voltage more appropriately using the updated map.

本発明に係る実施例1の電源制御装置1の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the power supply control apparatus 1 of Example 1 which concerns on this invention. 実施例1の電源制御装置1の制御内容を示すフローチャートである。3 is a flowchart illustrating control contents of the power supply control device 1 according to the first embodiment. 実施例1の電源制御装置1におけるバッテリのマップの第一の更新態様を示す模式図である。It is a schematic diagram which shows the 1st update aspect of the map of the battery in the power supply control apparatus 1 of Example 1. FIG. 本発明に係る実施例2の電源制御装置1の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the power supply control apparatus 1 of Example 2 which concerns on this invention. 実施例2の電源制御装置1の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the power supply control apparatus 1 of Example 2. FIG. 実施例2の電源制御装置1におけるバッテリのマップの第二の更新態様を示す模式図である。It is a schematic diagram which shows the 2nd update aspect of the map of the battery in the power supply control apparatus 1 of Example 2. FIG.

以下、本発明を実施するための形態について、添付図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

図1に示すように、本実施例の電源制御装置1は、バッテリ2と、バッテリセンサ3と、ECU4(Electronic Control Unit)と、充電装置5を備えて構成される。バッテリ2の発生する制御電源は図1中実線で示すように、走行用IGSW6を介して一以上の車両電気機器7に供給されるとともに駐車中用電源SW8を介してECU4にも供給される。同様に、走行用IGSW6及び駐車中用電源SW8を統括的に制御する電源SW制御ECU9と充電装置5にも制御電源は供給されている。   As shown in FIG. 1, the power supply control device 1 of this embodiment includes a battery 2, a battery sensor 3, an ECU 4 (Electronic Control Unit), and a charging device 5. As shown by the solid line in FIG. 1, the control power generated by the battery 2 is supplied to one or more vehicle electrical devices 7 via the traveling IGSW 6 and also to the ECU 4 via the parking power SW 8. Similarly, control power is also supplied to the power supply SW control ECU 9 and the charging device 5 that collectively control the traveling IGSW 6 and the parking power supply SW8.

ECU4と電源SW制御ECU9は図1中破線で示すように例えばCAN(Controller Area Network)等の通信規格の車内LANにより相互に接続されている。バッテリセンサ3とECU4はLIN(Local Interconnect Network)等の通信規格により相互に接続されている。   The ECU 4 and the power supply SW control ECU 9 are connected to each other by an in-vehicle LAN of a communication standard such as CAN (Controller Area Network) as indicated by a broken line in FIG. The battery sensor 3 and the ECU 4 are connected to each other according to a communication standard such as LIN (Local Interconnect Network).

バッテリ2は例えば鉛蓄電池等の低圧の二次電池である。バッテリセンサ3は図示しないマイクロコンピュータを内蔵しており、このマイクロコンピュータはバッテリ2の開放端電圧OCVと電流Aを測定する測定手段3aを構成し、開放端電圧OCVと充電率SOC(State Of Charge)との関係を示すマップを記憶する記憶手段3bを構成している。   The battery 2 is a low-voltage secondary battery such as a lead storage battery. The battery sensor 3 incorporates a microcomputer (not shown), and this microcomputer constitutes a measuring means 3a for measuring the open end voltage OCV and current A of the battery 2, and the open end voltage OCV and the charge rate SOC (State Of Charge). The storage means 3b for storing a map indicating the relationship with () is configured.

ECU4は、例えばCPU、ROM、RAMおよびそれらを相互に接続するデータバス、及び入出力インターフェースを含んで構成され、ROMに格納されたプログラムに従い、以下に述べるそれぞれの制御を行って、判定手段4a、制御手段4b、補正手段4cを構成する。   The ECU 4 includes, for example, a CPU, a ROM, a RAM, a data bus that connects them to each other, and an input / output interface. The ECU 4 performs each control described below in accordance with a program stored in the ROM, and determines the determination means 4a. The control means 4b and the correction means 4c are configured.

充電装置5は、図示しない高圧側のバッテリの電力を変換して低圧用のバッテリ2を充電する例えばDC/DCコンバータである。電源制御SW制御ECU8も、例えばCPU、ROM、RAMおよびそれらを相互に接続するデータバス、及び入出力インターフェースを含んで構成され、ROMに格納されたプログラムに従い、以下に述べるそれぞれの制御を行って、IGONの場合には走行用IGSW6をオンとし、IGOFFの場合には駐車中用電源SW8をオンとする。   The charging device 5 is, for example, a DC / DC converter that converts the power of a high-voltage side battery (not shown) to charge the low-voltage battery 2. The power control SW control ECU 8 is also configured to include, for example, a CPU, a ROM, a RAM, a data bus that interconnects them, and an input / output interface, and performs each control described below in accordance with a program stored in the ROM. In the case of IGON, the traveling IGSW 6 is turned on, and in the case of IGOFF, the parking power supply SW8 is turned on.

ECU4の判定手段4aは、バッテリ2の特性変化要因が発生したか否かを判定する。本実施例1では、判定手段4aは、バッテリセンサ3から取得される開放端電圧OCVの時間変化率が例えばある閾値を超えてある継続時間以上低下する条件(バッテリクリアすなわちバッテリ2の取外や交換が発生したとみなせる条件)と、バッテリ2の交換後、劣化が見込まれる所定期間が経過した条件のいずれかに該当する場合に、特性変化要因が発生したか否かについて肯定と判定する。   The determination unit 4a of the ECU 4 determines whether a characteristic change factor of the battery 2 has occurred. In the first embodiment, the determination unit 4a is configured such that the time change rate of the open-circuit voltage OCV acquired from the battery sensor 3 exceeds, for example, a certain threshold and decreases for a certain duration (battery clear, that is, removal of the battery 2 It is determined as affirmative as to whether or not a characteristic change factor has occurred when the battery 2 is replaced with a condition that can be regarded as having occurred and a condition in which a predetermined period for which deterioration is expected has elapsed after the battery 2 has been replaced.

ECU4の制御手段4bは、充電装置5を駆動させてバッテリ2への充電を制御する。制御手段4bは、判定手段4aが肯定と判定する場合に、車両の駐車時に充電装置5を用いてバッテリ2の充電を行って、測定手段3aがバッテリ2の充電率SOCが満充電である場合の開放端電圧OCVである第一開放端電圧OCVaを推定する。なお、推定手法は適宜の手法を用いることができ、例えば充電に伴う充電率SOCの上昇が開放端電圧OCV又は充電時間に対して線形であるものとみなして、充電開始後ある時間を経過した時点で、満充電時の開放端電圧OCVaを推定するものとしている。   The control means 4b of the ECU 4 controls the charging of the battery 2 by driving the charging device 5. When the determination means 4a determines that the determination means 4a is affirmative, the control means 4b charges the battery 2 using the charging device 5 when the vehicle is parked, and the measurement means 3a has a fully charged SOC 2 of the battery 2. The first open-end voltage OCVa that is the open-end voltage OCV is estimated. An appropriate method can be used as the estimation method. For example, it is assumed that the increase in the charging rate SOC accompanying charging is linear with respect to the open-circuit voltage OCV or the charging time, and a certain time has elapsed after the start of charging. At the time, the open end voltage OCVa at the time of full charge is estimated.

ECU4の補正手段4cは、第一開放端電圧OCVaを用いてバッテリセンサ3内の記憶手段3bが記憶しているマップを補正する第一補正を含む第一補正指令を記憶手段3bに対して出力する。記憶手段3bは第一補正指令を受信すると、図3に示すように第一開放端電圧OCVaを満充電時の充電率SOCに対応させるようにマップをOCVを示すY軸方向にオフセットさせて補正する。   The correction means 4c of the ECU 4 outputs a first correction command including a first correction for correcting the map stored in the storage means 3b in the battery sensor 3 to the storage means 3b using the first open-circuit voltage OCVa. To do. When the storage means 3b receives the first correction command, as shown in FIG. 3, the map is offset by offsetting the map in the Y-axis direction indicating OCV so that the first open-ended voltage OCVa corresponds to the charging rate SOC at the time of full charge. To do.

以下本実施例1の電源制御装置1の制御内容を、図2のフローチャートを用いて説明する。ステップS1に示すように、バッテリセンサ3の測定手段3aは開放端電圧OCVと電流Aを検出しながらステップS2にすすみ、ステップS2において、判定手段4aは特性変化要因が発生したか否かの判定を行う。ステップS2において肯定である場合には、ステップS3にすすみ、否定である場合にはENDの手前にすすむ。   Hereinafter, the control content of the power supply control device 1 according to the first embodiment will be described with reference to the flowchart of FIG. As shown in step S1, the measurement unit 3a of the battery sensor 3 proceeds to step S2 while detecting the open-circuit voltage OCV and the current A, and in step S2, the determination unit 4a determines whether or not a characteristic change factor has occurred. I do. If the result is affirmative in step S2, the process proceeds to step S3. If the result is negative, the process proceeds to END.

ステップS3において、判定手段4aは車両のイグニッションキーの状態がIGOFFであって駐車中であるか否かを判定し、肯定であればステップS4にすすみ、否定である場合にはENDの手前にすすむ。   In step S3, the determination means 4a determines whether or not the ignition key of the vehicle is IGOFF and the vehicle is parked. If the result is affirmative, the process proceeds to step S4. If the result is negative, the process proceeds to END. .

ステップS4において、判定手段4aは充電開始トリガがオンであるか否か(本実施例ではIGOFFから所定時間が経過してバッテリ2が充電に適した状態となっているか否か)を判定し、肯定であればステップS5にすすみ、否定である場合にはENDの手前にすすむ。   In step S4, the determination means 4a determines whether or not the charging start trigger is on (in this embodiment, whether or not the battery 2 is in a state suitable for charging after a predetermined time has elapsed since IGOFF), If the result is affirmative, the process proceeds to step S5. If the result is negative, the process proceeds to END.

ステップS5において、制御手段4bは充電装置5を駆動させてバッテリ2を充電し、上述した適宜の推定手法にて、満充電時の開放端電圧OCVaを測定手段3aが推定する。   In step S5, the control unit 4b drives the charging device 5 to charge the battery 2, and the measuring unit 3a estimates the open-end voltage OCVa at the time of full charge by the above-described appropriate estimation method.

ステップS6においてはステップS5で推定された開放端電圧OCVaに基づいた第一補正指令を補正手段4cは記憶手段3bに出力し、記憶手段3bはマップを第一補正指令に基づいて補正する。   In step S6, the correction unit 4c outputs a first correction command based on the open-circuit voltage OCVa estimated in step S5 to the storage unit 3b, and the storage unit 3b corrects the map based on the first correction command.

以上述べた本実施例1の電源制御装置1及び電源モデル更新方法によれば以下のような作用効果を得ることができる。すなわち、バッテリ2の特性変化要因が発生する度に、推定された開放端電圧OCVaに基づいてバッテリセンサ3内の記憶手段3bが記憶しているマップを適宜更新することができる。   According to the power supply control device 1 and the power supply model update method of the first embodiment described above, the following operational effects can be obtained. That is, each time a characteristic change factor of the battery 2 occurs, the map stored in the storage unit 3b in the battery sensor 3 can be updated as appropriate based on the estimated open-circuit voltage OCVa.

このためバッテリ2において特性変化要因の発生がある場合には、変更後の特性に合わせてマップを更新することができるので、開放端電圧OCVと充電率SOCの関係を示す上述したマップを用いての充電率SOCの検出精度を高めることができる。   For this reason, when the characteristic change factor occurs in the battery 2, the map can be updated according to the changed characteristic. Therefore, the above-described map showing the relationship between the open-end voltage OCV and the charging rate SOC is used. The detection accuracy of the charging rate SOC can be improved.

また図2のステップS6においては、バッテリ2の充電開始後、線形補正により満充電時の開放端電圧OCVaを推定するものとしているので、実際に満充電となるまでの経過時間を待つことなくバッテリクリアの条件成立後より速やかにマップの補正を行うことができる。   Further, in step S6 of FIG. 2, since the open end voltage OCVa at the time of full charge is estimated by linear correction after the start of charging of the battery 2, the battery does not have to wait for the elapsed time until the battery is actually fully charged. The map can be corrected promptly after the clear condition is satisfied.

実施例1で示した第一補正ではマップの特性を満充電時の開放端電圧OCVaに基づいて図3中OCVを示すY軸方向にオフセットさせる補正を行うが、より正確なマップの補正のため、以下に示す実施例2のように満充電時以外の開放端電圧OCVに基づいた第二補正も併せて実行するものとすることができる。   In the first correction shown in the first embodiment, the map characteristics are corrected to be offset in the Y-axis direction indicating OCV in FIG. 3 based on the open-circuit voltage OCVa at the time of full charge, but for more accurate map correction. The second correction based on the open end voltage OCV other than at the time of full charge as in Example 2 shown below can also be executed.

図4に示すように、本実施例2ではECU4はCAN又はLINにより車両電気機器に接続されており、制御手段4bは車両電気機器9を制御することによりバッテリ2の放電も制御する。   As shown in FIG. 4, in the second embodiment, the ECU 4 is connected to the vehicle electrical device by CAN or LIN, and the control unit 4 b controls the discharge of the battery 2 by controlling the vehicle electrical device 9.

すなわち、本実施例2においては、ECU4の制御手段4bは、バッテリ2を充電率SOCが満充電である場合から低電流低電圧にて所定量だけ放電し、放電後の開放端電圧OCVである第二開放端電圧OCVbを測定手段3aが測定し、第二開放端電圧OCVbを用いて補正手段4cは、記憶手段3bが記憶しているマップを補正する第二補正を含む第二補正指令を記憶手段3bに対して出力する。記憶手段3bは第二補正指令を受信すると第一開放端電圧OCVaを満充電時の充電率SOCに対応させかつ第二開放端電圧OCVbを所定量放電後の充電率SOCに対応させるようにマップを補正する。   That is, in the second embodiment, the control means 4b of the ECU 4 discharges the battery 2 by a predetermined amount at a low current and low voltage from when the charging rate SOC is fully charged, and is the open-circuit voltage OCV after discharging. The measuring means 3a measures the second open-ended voltage OCVb, and the correcting means 4c uses the second open-ended voltage OCVb to give a second correction command including a second correction for correcting the map stored in the storing means 3b. Output to the storage means 3b. When the storage means 3b receives the second correction command, the storage means 3b maps the first open end voltage OCVa to correspond to the charge rate SOC at the time of full charge and the second open end voltage OCVb to correspond to the charge rate SOC after discharging a predetermined amount. Correct.

以下本実施例2の電源制御装置1の制御内容を、図5のフローチャートを用いて説明する。図5中においてステップS1からステップS7までの処理内容は図2に示したものと同様であり、相違点を主に説明する。   Hereinafter, the control content of the power supply control device 1 according to the second embodiment will be described with reference to the flowchart of FIG. In FIG. 5, the processing contents from step S1 to step S7 are the same as those shown in FIG. 2, and the differences will be mainly described.

図5のステップS8に示すように、ステップS7の第一補正によるマップ更新の後、制御手段4bはさらにバッテリ2への充電を行い、バッテリ2が実際に満充電完了となるステップS9の肯定条件が成立するまで、この充電を継続する。ステップS9において満充電完了となったか否かを判定手段4aは判定し、肯定であればステップS10にすすみ、否定であればステップS8の手前に戻る。なお、ステップS6において測定手段3aが第一開放端電圧OCVaを推定ではなく測定する場合には、ステップS5の充電においてバッテリ2は満充電とされることから、ステップS8とステップS9の処理は省略することとなる。   As shown in step S8 of FIG. 5, after the map update by the first correction in step S7, the control means 4b further charges the battery 2, and the positive condition of step S9 in which the battery 2 is actually fully charged. This charging is continued until is established. In step S9, the determination unit 4a determines whether or not the full charge is completed. If the determination is affirmative, the process proceeds to step S10. If the determination is negative, the process returns to step S8. If the measuring means 3a measures the first open-circuit voltage OCVa instead of estimation in step S6, the battery 2 is fully charged in the charging in step S5, and therefore the processing in steps S8 and S9 is omitted. Will be.

ステップS10において、制御手段4bはバッテリ2を車両電気機器9の消費電力を高めることにより放電させる。なお、この放電については駐車中ではない走行中に行う。ステップS11において、判定手段4aは、所定量の放電が完了したか否かを判定し、肯定である場合には、ステップS12にすすみ、否定である場合にはステップS10の手前に戻る。   In step S <b> 10, the control unit 4 b discharges the battery 2 by increasing the power consumption of the vehicle electrical device 9. This discharge is performed while the vehicle is not parked. In step S11, the determination unit 4a determines whether or not a predetermined amount of discharge has been completed. If the determination is affirmative, the process proceeds to step S12. If the determination is negative, the determination unit 4a returns to the position before step S10.

ステップS12において、測定手段3aは放電後の開放端電圧OCVbを推定又は測定し、補正手段4cは、図6に示すように、満充電時の開放端電圧OCVaと放電後の開放端電圧OCVbに特性曲線を合致させるようにマップを補正する第二補正指令を記憶手段3bに出力し、記憶手段3bは第二補正指令を受信してマップを再度補正する。   In step S12, the measuring unit 3a estimates or measures the open-circuit voltage OCVb after discharge, and the correction unit 4c sets the open-circuit voltage OCVa at full charge and the open-circuit voltage OCVb after discharge as shown in FIG. A second correction command for correcting the map so as to match the characteristic curve is output to the storage unit 3b, and the storage unit 3b receives the second correction command and corrects the map again.

以上述べた本実施例2の充電通信システムS及び電源制御装置1及び電源モデル更新方法によれば以下のような作用効果を得ることができる。すなわち、推定された開放端電圧OCVaと開放端電圧OCVbに基づいてバッテリセンサ3内の記憶手段3bが記憶しているマップをより正確に更新することができる。   According to the charging communication system S, the power supply control device 1 and the power supply model update method of the second embodiment described above, the following operational effects can be obtained. That is, the map stored in the storage unit 3b in the battery sensor 3 can be updated more accurately based on the estimated open-end voltage OCVa and open-circuit voltage OCVb.

つまりバッテリ2において特性変化要因の発生がある場合には、変更後の特性に合わせてマップを更新することができるので、開放端電圧OCVと充電率SOCの関係を示す上述したマップを用いての充電率SOCの検出精度を高めることができる。特に図6に示すように、放電後の開放端電圧OCVbと満充電時の開放端電圧OCVaとの差分に基づく傾きが補正前の特性曲線を下回る(相違する)場合には、補正後の特性曲線は傾きも変更されることとなり、より正確なマップを行って、充電率SOCの検出精度を高めることができる。   That is, when the characteristic change factor is generated in the battery 2, the map can be updated in accordance with the changed characteristic. Therefore, the above-described map showing the relationship between the open-end voltage OCV and the charging rate SOC is used. The detection accuracy of the charging rate SOC can be increased. In particular, as shown in FIG. 6, when the slope based on the difference between the open-circuit voltage OCVb after discharge and the open-circuit voltage OCVa at the time of full charge is below (different from) the characteristic curve before correction, the corrected characteristic is obtained. The slope of the curve is also changed, and a more accurate map can be performed to increase the detection accuracy of the charging rate SOC.

以上本発明の好ましい実施例について詳細に説明したが、本発明は上述した実施例に制限されることなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形および置換を加えることができる。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions are made to the above-described embodiments without departing from the scope of the present invention. be able to.

例えば充電装置5についてはハイブリッド車に対応する高圧側のバッテリの電力を低圧用に変換するDC/DCコンバータの換わりに、プラグインハイブリッド車に対応するプラグイン充電器とDC/DCコンバータの組合せに置換することもでき、ソーラ発電機能を有する車両であればソーラ発電装置とDC/DCコンバータとの組合せに置換することもできる。なお、置換した場合の充電開始トリガはプラグインハイブリッド車ではプラグインがされたことであり、ソーラ発電機能を有する車両ではユーザがその機能を選択したことである。   For example, the charging device 5 is a combination of a plug-in charger and a DC / DC converter corresponding to a plug-in hybrid vehicle, instead of a DC / DC converter that converts the high-voltage battery power corresponding to the hybrid vehicle to a low voltage. If the vehicle has a solar power generation function, it can be replaced with a combination of a solar power generation device and a DC / DC converter. The charging start trigger in the case of replacement is that the plug-in hybrid vehicle has been plugged in, and that in the vehicle having the solar power generation function, the user has selected that function.

また、判定手段4aがバッテリ2の特性変化要因が発生したか否かを判定する手法も上述した実施例に示した形態に限られるものではなく、その他のパラメータにより判定することももちろん可能である。   Further, the method for determining whether or not the characteristic change factor of the battery 2 has occurred is not limited to the mode shown in the above-described embodiment, and the determination unit 4a can also be determined based on other parameters. .

加えて、バッテリセンサ3が測定手段3a、記憶手段3bの機能を具備することに換えて、測定手段と記憶手段の機能をECU4が具備することとしてももちろんよい。また、バッテリセンサ3又はバッテリ2がECUを具備する場合には、測定手段、記憶手段、判定手段、制御手段、補正手段の全てをバッテリ側のECUが機能負担することとしてもよい。   In addition, instead of the battery sensor 3 having the functions of the measurement unit 3a and the storage unit 3b, the ECU 4 may of course have the functions of the measurement unit and the storage unit. Further, when the battery sensor 3 or the battery 2 includes an ECU, the battery-side ECU may have all of the measurement unit, the storage unit, the determination unit, the control unit, and the correction unit as a functional burden.

またECU4への制御電源の供給形態は駐車中においてバッテリ2への充電が可能となるものであれば上述した実施例の形態に限られるものではなく、例えば、駐車中用電源SW8を介さないでかつ走行用IGSW6の接地側でない箇所において制御電源に接続されるものであってもよい。   Further, the control power supply mode to the ECU 4 is not limited to the above-described embodiment as long as the battery 2 can be charged during parking. For example, the control power supply mode is not limited to the parking power source SW8. In addition, it may be connected to the control power source at a location other than the ground side of the traveling IGSW 6.

さらに車内LANについては上述したCANやそれより低速のLINの組合せに限られず、CAN単独、LIN単独であってもよく、MOST(Media Oriented Systems Transport)に代表されるマルチメディア系通信プロトコル、FlexRay等のその他の適切な通信プロトコルを用いてもよい。   Further, the in-vehicle LAN is not limited to the above-mentioned combination of CAN and lower-speed LIN, but may be CAN alone or LIN alone, multimedia communication protocol represented by MOST (Media Oriented Systems Transport), FlexRay, etc. Other suitable communication protocols may be used.

本発明は、電源制御装置、電源モデル更新方法、プログラム、媒体に関するものであり、低圧用のバッテリの特性変化要因が生じても、特性変化に合わせて開放端電圧と充電率の関係を示すマップを補正して更新することができる。   The present invention relates to a power supply control device, a power supply model update method, a program, and a medium, and even if a characteristic change factor of a low-voltage battery occurs, a map showing a relationship between an open-ended voltage and a charging rate in accordance with the characteristic change Can be corrected and updated.

このため、本発明では開放端電圧から更新後のマップを用いてより正確に充電率を求めることができるので低圧用のバッテリを有する乗用車、トラック、バス等の様々な車両に適用して有益なものである。特に高圧側のバッテリと降圧装置を有するハイブリッド車両、プラグインハイブリッド車両やソーラ充電機能を有する車両においては低圧側のバッテリの充電をより容易に行うことができるので、本発明の適用対象としてこれらの車両はより適切である。   For this reason, in the present invention, the charging rate can be obtained more accurately from the open-ended voltage using the updated map. Therefore, the present invention is useful when applied to various vehicles such as passenger cars, trucks, and buses having a low-voltage battery. Is. In particular, in a hybrid vehicle having a high voltage side battery and a step-down device, a plug-in hybrid vehicle or a vehicle having a solar charging function, the low voltage side battery can be more easily charged. The vehicle is more appropriate.

1 電源制御装置
2 バッテリ
3 バッテリセンサ
3a 測定手段
3b 記憶手段
4 ECU
4a 判定手段
4b 制御手段
4c 補正手段
5 充電装置
6 走行用IGSW
7 車両電気機器
8 駐車中用電源SW
9 電源SW制御ECU
DESCRIPTION OF SYMBOLS 1 Power supply control apparatus 2 Battery 3 Battery sensor 3a Measuring means 3b Memory | storage means 4 ECU
4a determination means 4b control means 4c correction means 5 charging device 6 IGSW for traveling
7 Vehicle electrical equipment 8 Parking power supply SW
9 Power SW control ECU

Claims (5)

車両のバッテリの開放端電圧を測定する測定手段と、前記開放端電圧と充電率との関係を示すマップを記憶する記憶手段と、前記バッテリの特性変化要因が発生したか否かを判定する判定手段と、前記バッテリへの充電を制御する制御手段と、を含み、前記判定手段が肯定と判定する場合に、前記制御手段が前記車両の駐車時に前記バッテリの充電を行って、前記測定手段が前記バッテリの前記充電率が満充電である場合の前記開放端電圧である第一開放端電圧を測定又は推定し、当該第一開放端電圧を用いて前記マップを補正する補正手段を含むことを特徴とする電源制御装置。   Measuring means for measuring the open-ended voltage of the battery of the vehicle, storage means for storing a map indicating the relationship between the open-ended voltage and the charging rate, and determination for determining whether or not a characteristic change factor of the battery has occurred And a control means for controlling charging of the battery. When the determination means determines affirmative, the control means charges the battery when the vehicle is parked, and the measurement means Measuring or estimating a first open end voltage that is the open end voltage when the charging rate of the battery is fully charged, and including correction means for correcting the map using the first open end voltage. A power supply control device. 前記制御手段が前記バッテリを前記充電率が満充電である場合から所定量だけ放電し、放電後の前記開放端電圧である第二開放端電圧を前記測定手段が測定し、当該第二開放端電圧を用いて前記補正手段が前記マップを補正することを特徴とする請求項1に記載の電源制御装置。   The control means discharges the battery by a predetermined amount from when the charging rate is fully charged, and the measurement means measures the second open end voltage that is the open end voltage after the discharge, and the second open end The power supply control apparatus according to claim 1, wherein the correction unit corrects the map using a voltage. 車両のバッテリの開放端電圧を測定する測定ステップと、前記開放端電圧と充電率との関係を示すマップを記憶する記憶ステップと、前記バッテリの特性変化要因が発生したか否かを判定する判定ステップと、前記バッテリへの充電を制御する制御ステップと、を含み、前記判定ステップにおいて肯定と判定された場合に、前記制御ステップにおいて前記車両の駐車時に前記バッテリの充電を行って、前記測定ステップにおいて前記バッテリの前記充電率が満充電である場合の前記開放端電圧である第一開放端電圧を測定又は推定し、当該第一開放端電圧を用いて前記マップを補正する補正ステップを含むことを特徴とする電源モデル更新方法。   A measurement step for measuring the open-circuit voltage of the battery of the vehicle, a storage step for storing a map indicating a relationship between the open-circuit voltage and the charging rate, and a determination for determining whether or not a characteristic change factor of the battery has occurred And a control step for controlling the charging of the battery, and when the determination in the determination step is affirmative, the measurement step includes charging the battery when the vehicle is parked in the control step. Measuring or estimating a first open end voltage that is the open end voltage when the charge rate of the battery is fully charged, and correcting the map using the first open end voltage. Power supply model update method characterized by 請求項3に記載の電源モデル更新方法をコンピュータに実行させるプログラム。 Program Ru to execute the power model update method according to the computer to claim 3. 請求項4に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
The computer-readable recording medium which recorded the program of Claim 4.
JP2013001091A 2013-01-08 2013-01-08 POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM Active JP6107142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001091A JP6107142B2 (en) 2013-01-08 2013-01-08 POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001091A JP6107142B2 (en) 2013-01-08 2013-01-08 POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM

Publications (2)

Publication Number Publication Date
JP2014134391A JP2014134391A (en) 2014-07-24
JP6107142B2 true JP6107142B2 (en) 2017-04-05

Family

ID=51412795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001091A Active JP6107142B2 (en) 2013-01-08 2013-01-08 POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM

Country Status (1)

Country Link
JP (1) JP6107142B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490414B2 (en) 2014-12-05 2019-03-27 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
JP5948518B1 (en) * 2016-02-04 2016-07-06 本田技研工業株式会社 Power storage device, transport device having the power storage device, failure determination method, and failure determination program
US9960625B2 (en) * 2016-03-31 2018-05-01 Robert Bosch Gmbh Battery management system with multiple observers
JP6326452B2 (en) * 2016-06-15 2018-05-16 本田技研工業株式会社 Battery state estimation device and battery state estimation method
US20220003822A1 (en) * 2018-10-26 2022-01-06 Vehicle Energy Japan Inc. Battery control device
CN109901083B (en) * 2019-04-01 2020-05-22 北京理工大学 Online reconstruction method for OCV curve of power battery
JP7014829B2 (en) * 2020-02-04 2022-02-01 シナノケンシ株式会社 How to display the remaining amount of secondary batteries in electronic devices and electronic devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242193A (en) * 1993-02-23 1994-09-02 Toyota Motor Corp Remaining capacity meter
EP1160953B1 (en) * 2000-05-29 2009-12-02 Panasonic Corporation Method for charging battery
JP2001351698A (en) * 2000-06-05 2001-12-21 Matsushita Electric Ind Co Ltd Charged state detecting method for lead storage battery and deterioration judging method for the same
JP4449240B2 (en) * 2001-03-26 2010-04-14 トヨタ自動車株式会社 Battery capacity judgment device
JP4457781B2 (en) * 2004-07-02 2010-04-28 新神戸電機株式会社 Deterioration degree estimation method and deterioration degree estimation apparatus
JP2010019664A (en) * 2008-07-10 2010-01-28 Nippon Soken Inc Battery deterioration detection device and method
JP5624333B2 (en) * 2009-03-31 2014-11-12 プライムアースEvエナジー株式会社 Secondary battery control device and map correction method
JP5601214B2 (en) * 2011-01-18 2014-10-08 ミツミ電機株式会社 Battery capacity correction device and battery capacity correction method
US9885757B2 (en) * 2011-04-01 2018-02-06 Atieva, Inc. Method and apparatus for determining the state-of-charge of a battery
US9680315B2 (en) * 2012-12-27 2017-06-13 Toyota Jidosha Kabushiki Kaisha On-board control apparatus

Also Published As

Publication number Publication date
JP2014134391A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6107142B2 (en) POWER CONTROL DEVICE, POWER MODEL UPDATE METHOD, PROGRAM, AND MEDIUM
JP6160473B2 (en) Power storage system
WO2014083856A1 (en) Battery management device, power supply, and soc estimation method
JP5783122B2 (en) Battery state estimation device
JP3960241B2 (en) Secondary battery remaining capacity estimation device, secondary battery remaining capacity estimation method, and computer-readable recording medium storing a program for causing a computer to execute processing by the secondary battery remaining capacity estimation method
JP5710217B2 (en) Deterioration degree estimating apparatus and method for vehicle battery
US9864013B2 (en) Deterioration detecting apparatus and deterioration detecting method
JP5287089B2 (en) Battery control method and apparatus for automobile
JP6088355B2 (en) Battery status judgment device
JP2009071986A (en) Calculation device for deterioration degree of in-vehicle battery
JP6439352B2 (en) Secondary battery deterioration state estimation device
US20160252559A1 (en) Deterioration detecting apparatus and deterioration detecting method
US20160252556A1 (en) Deterioration detecting apparatus and deterioration detecting method
JP2016161354A (en) Deterioration detector and method for detecting deterioration
JP4983513B2 (en) Vehicle battery management device
JP6413763B2 (en) Charge state detection device, charge state detection method, mobile object
JP4866156B2 (en) Secondary battery charge state estimation device, charge state estimation method, and program
JP6428545B2 (en) Electric vehicle
JP6606153B2 (en) Battery state estimation method and battery state estimation device
JP2017020923A (en) Battery deterioration state estimation device
JP2004325263A (en) Self-discharge amount detection device of battery
JP2016161352A (en) Deterioration detector and method for detecting deterioration
JP6607161B2 (en) In-vehicle battery system control method
JP2016038240A (en) Deterioration state estimation device of battery
JP5975925B2 (en) Battery control device, power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151