JP6107130B2 - Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same - Google Patents

Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same Download PDF

Info

Publication number
JP6107130B2
JP6107130B2 JP2012285649A JP2012285649A JP6107130B2 JP 6107130 B2 JP6107130 B2 JP 6107130B2 JP 2012285649 A JP2012285649 A JP 2012285649A JP 2012285649 A JP2012285649 A JP 2012285649A JP 6107130 B2 JP6107130 B2 JP 6107130B2
Authority
JP
Japan
Prior art keywords
dna
seq
protein
steroid
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012285649A
Other languages
Japanese (ja)
Other versions
JP2014124179A (en
Inventor
順 小川
順 小川
隆利 木村
隆利 木村
尚文 依田
尚文 依田
恭士 山本
恭士 山本
阪本 剛
剛 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012285649A priority Critical patent/JP6107130B2/en
Publication of JP2014124179A publication Critical patent/JP2014124179A/en
Application granted granted Critical
Publication of JP6107130B2 publication Critical patent/JP6107130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は新規ステロイド11β水酸化酵素およびそれを用いたハイドロコルチゾン等の11βヒドロキシステロイドの製造法に関する。   The present invention relates to a novel steroid 11β hydroxylase and a method for producing 11β hydroxysteroid such as hydrocortisone using the same.

医薬として有用なハイドロコルチゾンやプレドニゾロンまたはそれらの置換誘導体の製造方法としては、17α,21−ジヒドロキシプレグネ−4−エン−3,20−ジオン(以下、「コンパウンドS」という)やその置換誘導体にカビなどの微生物を作用させ、その11β位を水酸化する方法(特許文献1)や、酵母などを宿主とし、ステロール7位還元酵素遺伝子、ステロール側鎖切断酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、ステロイド21位水酸化酵素遺伝子、および/または、ステロイド11β位水酸化酵素遺伝子を発現する組換え生物の培養において安価炭素源から当該有用物質を効率よく発酵生産する方法(特許文献2)が知られている。   Examples of a method for producing hydrocortisone or prednisolone useful as a pharmaceutical or a substituted derivative thereof include 17α, 21-dihydroxypregne-4-ene-3,20-dione (hereinafter referred to as “compound S”) and substituted derivatives thereof. A method of hydroxylating the 11β position of microorganisms such as fungi (Patent Document 1), a yeast or the like as a host, a sterol 7-position reductase gene, a sterol side chain cleaving enzyme gene, a steroid 3-position oxidase / isomerism The useful substance is efficiently obtained from an inexpensive carbon source in the culture of a recombinant organism that expresses a steroid enzyme gene, a steroid 17α-position hydroxylase gene, a steroid 21-position hydroxylase gene, and / or a steroid 11β-position hydroxylase gene. A method for fermentative production (Patent Document 2) is known.

これまでにステロイド11β水酸化反応(以下、単に「11β水酸化反応」と称することがある。)に関与している酵素の遺伝子配列を特許文献1記載のカビなどから取得することも試みられてきたが、当該蛋白質のアミノ酸配列解析が困難であり、さらに、当該蛋白質は哺乳類由来の11β水酸化酵素(CYP11B1)とはアミノ酸配列が大きく異なること
が予想され、その他の微生物では当該反応を触媒する酵素の遺伝子が取得されていないことから、11β水酸化反応に関与している酵素の遺伝子配列の取得は困難であった(非特許文献1、および非特許文献2参照)。
To date, attempts have been made to obtain the gene sequence of an enzyme involved in steroid 11β hydroxylation (hereinafter sometimes simply referred to as “11β hydroxylation”) from molds described in Patent Document 1. However, it is difficult to analyze the amino acid sequence of the protein. Furthermore, the protein is expected to have a greatly different amino acid sequence from mammalian-derived 11β hydroxylase (CYP11B1), and other microorganisms catalyze the reaction. Since the gene of the enzyme has not been acquired, it has been difficult to acquire the gene sequence of the enzyme involved in the 11β hydroxylation reaction (see Non-Patent Document 1 and Non-Patent Document 2).

特開昭62-118897号公報JP-A-62-118897 特表2004-528827号公報Special Table 2004-528827

Janig, R. G. et al. Steroid 11β-hydroxylation by a fungal microsomal cytochrome P450, J. Steroid Biochem. Mol. Biol. (1992) 43(8); pp.1117-1123Janig, R. G. et al. Steroid 11β-hydroxylation by a fungal microsomal cytochrome P450, J. Steroid Biochem. Mol. Biol. (1992) 43 (8); pp.1117-1123 Suzuki, K. et al. Purification of cytochrome P-450(P-450lun) catalyzing steroid 11β-hydroxylation in Curvularia lunata, Biochimica et Biophysica Acta (1993) 1203(2); pp.215-223Suzuki, K. et al. Purification of cytochrome P-450 (P-450lun) catalyzing steroid 11β-hydroxylation in Curvularia lunata, Biochimica et Biophysica Acta (1993) 1203 (2); pp.215-223

しかし、特許文献1に記載の方法では、当該カビが含有する他の酵素活性が基質に作用することで副産物が生じることにより、基質をコンパウンドSとする11β水酸化反応の収率が不十分(モル収率で86%)であり、精製工程の負荷がかかるという問題があった。
また、特許文献2に記載の方法では、11β水酸化酵素の活性が不十分であり、11β水酸化反応の基質となるコンパウンドS(文献中では11−デオキシコルチゾル)が副産物として残存するため、収率悪く、精製工程の負荷がかかるという問題があった。
そこで、本発明は、新規ステロイド11β水酸化酵素およびそれを用いたハイドロコルチゾン等の11βヒドロキシステロイドの製造法を提供することを課題とする。
However, in the method described in Patent Document 1, by-products are produced by the action of other enzyme activities contained in the mold on the substrate, and the yield of 11β hydroxylation reaction using the substrate as compound S is insufficient ( The molar yield was 86%), and there was a problem that the purification process was burdened.
In addition, in the method described in Patent Document 2, the activity of 11β hydroxylase is insufficient, and compound S (11-deoxycortisol in the document) remains as a byproduct as a substrate for 11β hydroxylation reaction. Inexpensive, there was a problem that the purification process was burdened.
Therefore, an object of the present invention is to provide a novel steroid 11β hydroxylase and a method for producing 11β hydroxysteroid such as hydrocortisone using the same.

本発明者らは上記課題を解決するために鋭意検討を行った。すなわち、ステロイド11β水酸化活性を有する微生物であるクルブラリア・ルナタ(Curvularia lunata(C. lunata))MCI-1688株の染色体DNAの配列を独自に解読し、その中から、他の微生物由来の、
ステロイド11β水酸化酵素とはタイプの異なる、ステロイド11α水酸化酵素遺伝子に相同性を示す配列について解析を行ない、候補配列を絞り込んだ。続いて、その中から11β水酸化活性が誘導される培養条件において転写量が増加している配列を取得したこと等により、新規な11β水酸化酵素の遺伝子配列を取得することに成功した。そして、当該遺伝子がコードする蛋白質の活性を確認し、この酵素がハイドロコルチゾンなどの11βヒドロキシステロイドの合成反応を効率よく触媒することを見出し、本発明を完成させるに至った。
The present inventors have intensively studied to solve the above problems. Specifically, the sequence of the chromosomal DNA of Curvularia lunata (C. lunata) MCI-1688 strain, which is a microorganism having steroid 11β hydroxylation activity, is uniquely decoded, and from that, it is derived from other microorganisms.
Analyzes were made on sequences that are different in type from steroid 11β hydroxylase and show homology to the steroid 11α hydroxylase gene, and candidate sequences were narrowed down. Subsequently, a novel 11β hydroxylase gene sequence was successfully obtained, for example, by obtaining a sequence in which the amount of transcription increased under culture conditions in which 11β hydroxylation activity was induced. And the activity of the protein which the said gene codes was confirmed, it discovered that this enzyme catalyzed the synthesis reaction of 11 (beta) hydroxy steroids, such as hydrocortisone, and came to complete this invention.

すなわち、本発明は以下のとおりである。
[1]以下の(a1)、(b1)または(c1)の蛋白質。
(a1)配列番号43のアミノ酸配列を含む蛋白質。
(b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。(c1)配列番号43のアミノ酸配列との配列一致性が90%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
[2][1]に記載の蛋白質をコードするDNA。
[3]以下の(a2)、(b2)、(c2)または(d2)のDNA。
(a2)配列番号42の塩基配列を含むDNA。
(b2)配列番号42の塩基配列において1または数個の塩基が欠失、置換または付加された塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(c2)配列番号42の塩基配列との配列一致性が90%以上の塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(d2)配列番号42の塩基配列からなるDNAと相補的なDNAと、ストリンジェントな条件下でハイブリダイズし、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
[4][2]または[3]に記載のDNAと、該DNAがコードする蛋白質が宿主生物または宿主細胞内で発現可能な発現制御領域とを含む組換えベクター。
[5][2]もしくは[3]に記載のDNA、または[4]に記載の組換えベクターを宿主生物または宿主細胞に導入した形質転換体。
[6][1]に記載の蛋白質、または[5]に記載の形質転換体もしくはその処理物に11−デオキシステロイド化合物を接触させることで11βヒドロキシステロイド化合物を生成させ、該11βヒドロキシステロイド化合物を回収することを特徴とする、11βヒドロキシステロイド化合物の製造方法。
That is, the present invention is as follows.
[1] The following protein (a1), (b1) or (c1).
(A1) A protein comprising the amino acid sequence of SEQ ID NO: 43.
(B1) A protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 43, and having steroid 11β hydroxylation activity. (C1) a protein comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence of SEQ ID NO: 43 and having steroid 11β hydroxylation activity.
[2] DNA encoding the protein according to [1].
[3] DNA of the following (a2), (b2), (c2) or (d2).
(A2) DNA comprising the nucleotide sequence of SEQ ID NO: 42.
(B2) DNA encoding a protein comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence of SEQ ID NO: 42 and having steroid 11β hydroxylation activity.
(C2) DNA encoding a protein comprising a nucleotide sequence having a sequence identity of 90% or more with the nucleotide sequence of SEQ ID NO: 42 and having steroid 11β hydroxylation activity.
(D2) A DNA that hybridizes with a DNA complementary to the DNA consisting of the nucleotide sequence of SEQ ID NO: 42 under a stringent condition and encodes a protein having steroid 11β hydroxylation activity.
[4] A recombinant vector comprising the DNA according to [2] or [3] and an expression control region in which a protein encoded by the DNA can be expressed in a host organism or host cell.
[5] A transformant in which the DNA according to [2] or [3] or the recombinant vector according to [4] is introduced into a host organism or host cell.
[6] An 11β-hydroxysteroid compound is produced by contacting an 11-deoxysteroid compound with the protein according to [1], or the transformant according to [5] or a processed product thereof, A method for producing an 11β-hydroxysteroid compound, which is recovered.

本発明によれば、新規な11β水酸化酵素の遺伝子配列を提供することができ、微生物等を宿主として11β水酸化酵素活性を有する遺伝子組換え体も提供することができる。また、当該遺伝子を有する遺伝子組換え微生物の培養菌体をコンパウンドSなどに作用させることで、その11β位が水酸化された反応物を効率よく生産することができる。   According to the present invention, a novel gene sequence of 11β hydroxylase can be provided, and a gene recombinant having 11β hydroxylase activity using a microorganism or the like as a host can also be provided. In addition, by reacting a cultured microorganism of a genetically modified microorganism having the gene with compound S or the like, a reaction product in which the 11β-position is hydroxylated can be efficiently produced.

各遺伝子の転写量推移;誘導剤添加区 ○、誘導剤非添加区 ●で示した。Cv値が低い方がmRNAレベルは高いと考える。The amount of transcription of each gene is shown in the group with an inducer added ○ and the group without an inducer ●. The lower the Cv value, the higher the mRNA level.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<本発明の蛋白質およびDNA>
本発明の蛋白質は、以下の(a1)、(b1)または(c1)の蛋白質である。
(a1)配列番号43のアミノ酸配列を含む蛋白質。
(b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。ここで、数個とは、具体的には20個以下、好ましくは10個以下、より好ましくは5個以下である。
(c1)配列番号43のアミノ酸配列との配列一致性(同一性)が90%以上、好ましくは95%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
<Protein and DNA of the Present Invention>
The protein of the present invention is the following protein (a1), (b1) or (c1).
(A1) A protein comprising the amino acid sequence of SEQ ID NO: 43.
(B1) A protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 43, and having steroid 11β hydroxylation activity. Here, the term “several” specifically means 20 or less, preferably 10 or less, more preferably 5 or less.
(C1) A protein having an amino acid sequence having a sequence identity (identity) of 90% or more, preferably 95% or more, and having steroid 11β hydroxylation activity with the amino acid sequence of SEQ ID NO: 43.

上述の本発明の蛋白質は、ステロイド11β水酸化活性を有する蛋白質であり、本発明の蛋白質をコンパウンドSなどに作用させることで、その11β位が水酸化された反応物を効率よく生産することができ、従来のカビ菌体を用いた同様の反応に比べ副産物の蓄積が大幅に削減され、反応収率も従来の酵素と比較して顕著に向上させることができる。ステロイド11β水酸化活性は、例えば、後述の実施例に記載したような、コンパウンドS
をハイドロコルチゾンへ変換する能力によって確認することができる。
The above-mentioned protein of the present invention is a protein having steroid 11β hydroxylation activity, and by reacting the protein of the present invention with compound S or the like, it is possible to efficiently produce a reaction product in which the 11β position is hydroxylated. The accumulation of by-products can be greatly reduced compared to a similar reaction using a conventional fungal cell, and the reaction yield can be significantly improved as compared with a conventional enzyme. The steroid 11β hydroxylation activity is measured by compound S, as described in the examples below.
Can be confirmed by the ability to convert to hydrocortisone.

また、本発明の蛋白質は、いずれも小胞体型P450に分類されるが、このタイプのP450が水酸化酵素としての機能を発現するには当該酵素への電子供与蛋白質であるNADPH:チトクロムP450還元酵素の存在も必要である。従って、通常であれば、P450遺伝子を酵母等で遺伝子組換えにより発現させる場合、同時に同種微生物由来のNADPH:チトクロム P450還元酵素などの当該P450へ電子伝達可能なNADPH
:チトクロム P450還元酵素をコードする遺伝子の遺伝子組換えも必要になると考え
られる。しかしながら、驚くべきことに、後述する本発明のDNAをサッカロミセス・セレビシエにおいて遺伝子組換えにより発現させる場合はその必要性が無く、本発明のDNAのみでも機能発現が可能である。これは、C.lunata由来のNADPH:Cytochrome P450酸化還元酵素遺伝子から予想されるアミノ酸配列がサッカロミセス・セ
レビシエの同酵素遺伝子配列から予想されるアミノ酸配列と配列一致性が高いことにより、サッカロミセス・セレビシエの当該蛋白質(NCP1p)がその機能を代替することによる
と考えられる。これにより、哺乳動物由来の11β水酸化酵素を用いる場合に比べて組換え操作を簡略化できるという効果も有する。
The proteins of the present invention are all classified into endoplasmic reticulum type P450, and in order for this type of P450 to express a function as a hydroxylase, NADPH: cytochrome P450 reduced as an electron donating protein to the enzyme. The presence of an enzyme is also necessary. Therefore, normally, when the P450 gene is expressed by genetic recombination in yeast or the like, NADPH derived from the same microorganism at the same time: NADPH capable of transferring electrons to the P450 such as cytochrome P450 reductase
: Cytochrome It is considered that genetic recombination of the gene encoding P450 reductase is also required. Surprisingly, however, there is no necessity when the DNA of the present invention described later is expressed by genetic recombination in Saccharomyces cerevisiae, and functional expression is possible only with the DNA of the present invention. This is because the amino acid sequence predicted from the NADPH: Cytochrome P450 oxidoreductase gene derived from C. lunata has a high sequence match with the amino acid sequence predicted from the same Saccharomyces cerevisiae enzyme sequence. It is thought that this protein (NCP1p) substitutes for its function. This also has an effect that the recombination operation can be simplified as compared with the case of using 11β-hydroxylase derived from a mammal.

本発明の蛋白質は、後述する本発明のDNAを適当な宿主において発現させ、菌体から精製することによって得ることができる。また、C. lunataなどの微生物から精製するこ
とによって得ることもできる。
The protein of the present invention can be obtained by expressing the DNA of the present invention described later in a suitable host and purifying it from the cells. It can also be obtained by purification from microorganisms such as C. lunata.

また、本発明のDNAは、上記蛋白質をコードするDNAであり、具体的には、以下の(a2)、(b2)、(c2)または(d2)のDNAである。
(a2)配列番号42の塩基配列を含むDNA。
(b2)配列番号42の塩基配列において1または数個の塩基が欠失、置換または付加された塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。ここで数個とは、具体的には60個以下、好ましくは30個以下、より好ましくは15個以下である。
(c2)配列番号42の塩基配列との配列一致性(同一性)が90%以上、好ましくは95%以上の塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(d2)配列番号42の塩基配列からなるDNAと相補的なDNAと、ストリンジェントな条件下でハイブリダイズし、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
The DNA of the present invention is a DNA encoding the above protein, and specifically, is the following DNA (a2), (b2), (c2) or (d2).
(A2) DNA comprising the nucleotide sequence of SEQ ID NO: 42.
(B2) DNA encoding a protein comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence of SEQ ID NO: 42 and having steroid 11β hydroxylation activity. Here, the term “several” means specifically 60 or less, preferably 30 or less, and more preferably 15 or less.
(C2) DNA encoding a protein comprising a nucleotide sequence having a sequence identity (identity) of 90% or more, preferably 95% or more with the nucleotide sequence of SEQ ID NO: 42, and having steroid 11β hydroxylation activity.
(D2) A DNA that hybridizes with a DNA complementary to the DNA consisting of the nucleotide sequence of SEQ ID NO: 42 under a stringent condition and encodes a protein having steroid 11β hydroxylation activity.

本発明の(b2)のDNAは、当業者であれば、配列番号42に記載のDNAに部位特異的変異導入法(Nucleic Acid Res.10,pp.6487(1982)、Methods in Enzymol.100,pp.448(1983)、Molecular Cloning 2ndEdt., Cold Spring Harbor Laboratory Press(1989)PCR A Practical Approach IRL Press pp.200(1991))等を用いて適宜置換、欠失、及
び/または付加変異を導入することにより得ることが可能である。
If the DNA of (b2) of this invention is those skilled in the art, the site-directed mutagenesis method (Nucleic Acid Res. 10, pp. 6487 (1982), Methods in Enzymol. pp. 448 (1983), Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989) PCR A Practical Approach IRL Press pp. 200 (1991)), etc. Can be obtained.

また、本発明の(d2)のDNAは、配列番号42の塩基配列からなるDNAと相補的な塩基配列を有するDNAまたはその一部をプローブとして用いて、ステロイド11β水酸化活性を有する微生物から調製したDNAに対し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等によりストリンジェントな条件下でハイブリダイゼーションを行い、ハイブリダイズするDNAを得ることによっても取得できる。本発明のポリペプチドをコードするDNAの「一部」とは、プローブとして用いるのに十分な長さのDNAのことであり、具体的には15bp以上、好ましくは50bp以上、より好ましくは100bp以上のものである。
本明細書において「ストリンジェントな条件下でハイブリダイズする塩基配列」とは、DNAをプローブとして使用し、ストリンジェントな条件下、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAの塩基配列を意味し、ストリンジェントな条件としては、例えば、0.1×SSC、0.1%SDS、65℃の条件下で洗浄する条件を挙げることができる。
The DNA of (d2) of the present invention is prepared from a microorganism having steroid 11β hydroxylation activity using a DNA having a base sequence complementary to the DNA consisting of the base sequence of SEQ ID NO: 42 or a part thereof as a probe. The obtained DNA can also be obtained by performing hybridization under stringent conditions by a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like to obtain a hybridized DNA. The “part” of the DNA encoding the polypeptide of the present invention is a DNA having a sufficient length to be used as a probe, specifically 15 bp or more, preferably 50 bp or more, more preferably 100 bp or more. belongs to.
In the present specification, “base sequence that hybridizes under stringent conditions” means using DNA as a probe, under stringent conditions, such as colony hybridization, plaque hybridization, or Southern blot hybridization. The stringent conditions include, for example, conditions of washing under conditions of 0.1 × SSC, 0.1% SDS, 65 ° C.

なお、本発明のDNAは、例えば、C. lunataなどの微生物のcDNAライブラリーを
鋳型としたPCR法やハイブリダイゼーション法によって単離することができる。また、本発明のDNAは、本発明者らによりその塩基配列が明らかになったため、配列番号42に基づく化学合成等によって得ることもできる。
The DNA of the present invention can be isolated by, for example, a PCR method or a hybridization method using a cDNA library of a microorganism such as C. lunata as a template. In addition, since the base sequence of the DNA of the present invention has been clarified by the present inventors, it can also be obtained by chemical synthesis based on SEQ ID NO: 42.

<本発明の組換えベクター>
本発明の蛋白質をコードするDNA(「本発明のDNA」と称する場合がある。「本発明のDNA」は、前記(a2)、(b2)、(c2)、及び(d2)を含むものである。)を後述する宿主生物または宿主細胞(以下、「宿主」と称する場合がある。)にて発現させるため本発明のDNAを発現ベクターに導入することにより、組換えベクターを作成し、当該ベクターで宿主を形質転換することでステロイド11β水酸化活性を宿主に付与することが可能である。ここで、組換えベクターは、本発明のDNAと、本発明のDNAがコードする蛋白質(本発明の蛋白質)が宿主内で発現可能となるような発現制御領域(例えば、プロモーター)とを含む組換えベクターを意味する。
本発明の組換えベクターは、通常、宿主に適したプロモーターの下流に本発明のDNAの5'末端側が連結されて挿入されたベクターである。また、本発明のDNAの3'末端側にターミネーター配列が付加されてもよい。
本発明の組換えベクター作製に用いる発現ベクターとしては、宿主細胞内で複製増殖可能であれば特に制限されるものではないが、プラスミドベクター、シャトルベクター、およびファージベクターなどが挙げられる。
<Recombinant vector of the present invention>
DNA encoding the protein of the present invention (sometimes referred to as “DNA of the present invention”. “DNA of the present invention” includes the above (a2), (b2), (c2), and (d2). ) Is expressed in a host organism or host cell (hereinafter sometimes referred to as “host”) to be described later, a recombinant vector is prepared by introducing the DNA of the present invention into the expression vector. By transforming the host, steroid 11β hydroxylation activity can be imparted to the host. Here, the recombinant vector includes a set comprising the DNA of the present invention and an expression control region (for example, a promoter) that allows the protein encoded by the DNA of the present invention (the protein of the present invention) to be expressed in the host. It means a replacement vector.
The recombinant vector of the present invention is usually a vector in which the 5 ′ terminal side of the DNA of the present invention is connected downstream of a promoter suitable for the host. A terminator sequence may be added to the 3 ′ end of the DNA of the present invention.
The expression vector used for preparing the recombinant vector of the present invention is not particularly limited as long as it can replicate and proliferate in the host cell, and examples thereof include a plasmid vector, a shuttle vector, and a phage vector.

発現ベクターやプロモーターの種類は後述する宿主に応じて適宜選択できる。以下、具
体的に、各宿主における好ましい発現ベクター、プロモーター、ターミネーターなどの例を挙げるが、本発明はこれらの例に限定されない。
The type of expression vector and promoter can be appropriately selected according to the host described later. Specific examples of preferable expression vectors, promoters, terminators and the like in each host are given below, but the present invention is not limited to these examples.

宿主をエシェリヒア属細菌とする場合、プラスミドベクターとしては、pBR322、pUC18
、pHSG298、pUC118、pSTV28、pTWV228、pHY300PLK(タカラバイオ)、pKK223-3が挙げら
れる。また、ファージベクターとしては、(λFixIIベクター(Stratagene社製等)等を
挙げることができる。
また、プロモーターとしては、lac(β-ガラクトシダーゼ)、trp(トリプトファンオペロン)、tac、 trc (lac、trpの融合)、λファージ pL、pRなどに由来するプロモーターなどが挙げられる。また、ターミネーターとしては、trpA由来、ファージ由来、rrnBリボソーマルRNA由来のターミネーターなどが挙げられる。
When the host is an Escherichia bacterium, plasmid vectors include pBR322, pUC18
, PHSG298, pUC118, pSTV28, pTWV228, pHY300PLK (Takara Bio), pKK223-3. Examples of phage vectors include (λFixII vector (manufactured by Stratagene, etc.)).
Examples of the promoter include promoters derived from lac (β-galactosidase), trp (tryptophan operon), tac, trc (fusion of lac, trp), λ phage pL, pR, and the like. Examples of the terminator include trpA-derived, phage-derived, and rrnB ribosomal RNA-derived terminators.

宿主をバチルス属細菌とする場合、ベクターとしては、pUB110系プラスミド、pC194系
プラスミドなどを挙げることができる。プロモーター及びターミネーターとしては、アルカリプロテアーゼ、中性プロテアーゼ、α−アミラーゼ等の酵素遺伝子のプロモーターやターミネーターなどが利用できる。
When the host is a bacterium belonging to the genus Bacillus, examples of the vector include a pUB110 plasmid and a pC194 plasmid. As the promoter and terminator, promoters and terminators of enzyme genes such as alkaline protease, neutral protease, α-amylase and the like can be used.

宿主をシュードモナス属細菌とする場合、ベクターとしては、シュードモナス属細菌で確立されている一般的な宿主ベクター系や、トルエン化合物の分解に関与するプラスミド、TOLプラスミドを基本にした広宿主域ベクター(RSF1010などに由来する自律的複製に必
要な遺伝子を含む)pKT240(Gene, 26, 273-82(1983))を挙げることができる。また、プロモーター及びターミネーターとしては、エシェリヒア属細菌で用いられるtacプロモータ
ーなど、及び、エシェリヒア属細菌由来5SリボゾーマルRNAターミネーターなどを挙げることができる。
When the host is a Pseudomonas bacterium, the vectors include general host vector systems established in Pseudomonas bacteria, plasmids involved in the degradation of toluene compounds, and wide host range vectors (RSF1010 based on the TOL plasmid). And pKT240 (Gene, 26, 273-82 (1983)). Examples of the promoter and terminator include a tac promoter used in Escherichia bacteria and a 5S ribosomal RNA terminator derived from Escherichia bacteria.

宿主をコリネ型細菌とする場合、ベクターとしては、pAJ43(Gene 39,281 (1985))、pCS11(特開昭57-183799号公報)、pCB101(Mol. Gen. Genet. 196, 175 (1984)などのプラスミドベクターを挙げることができる。また、エシェリヒア・コリ−コリネ型細菌のシャトルベクターとしては、例えば、pCRY30(特開平3-210184号公報)、pCRY21(特開平2276575号公報)、pCRY2KE、pCRY2KX、pCRY31、pCRY3KEおよびpCRY3KX、pCRY2およびpCRY3(特開平1-191686号公報)、pAM330(特開昭58-67679号公報)、 pHM1519(特開昭58-77895号公報)、pAJ655、pAJ611およびpAJ1844(特開昭58-192900号公報)、 pCG1(特開昭57-134500号公
報)、 pCG2(特開昭58-35197号公報)、 pCG4およびpCG11(特開昭57-183799号公報)等を挙げることができる。プロモーター及びターミネーターとしては、大腸菌(エシェリヒア・コリ)で使用されている各種プロモーター及びターミネーターが利用可能である。
When the host is a coryneform bacterium, vectors such as pAJ43 (Gene 39,281 (1985)), pCS11 (Japanese Patent Laid-Open No. 57-183799), pCB101 (Mol. Gen. Genet. 196, 175 (1984), etc. Examples of shuttle vectors for Escherichia coli-coryneform bacteria include, for example, pCRY30 (Japanese Patent Laid-Open No. 3-210184), pCRY21 (Japanese Patent Laid-Open No. 2276575), pCRY2KE, pCRY2KX, pCRY31 , PCRY3KE and pCRY3KX, pCRY2 and pCRY3 (JP 1-191686), pAM330 (JP 58-67679), pHM1519 (JP 58-77895), pAJ655, pAJ611 and pAJ1844 (JP No. 58-192900), pCG1 (Japanese Unexamined Patent Publication No. 57-134500), pCG2 (Japanese Unexamined Patent Publication No. 58-35197), pCG4 and pCG11 (Japanese Unexamined Patent Publication No. 57-183799), etc. As promoters and terminators, various promoters used in Escherichia coli Over and terminator are available.

宿主をサッカロミセス属酵母とする場合、ベクターとしては、YRp系、YEp系、YCp系、YIp系プラスミドやpESCベクター(STRATAGENE)およびpAURベクター(タカラバイオ)などが挙げられる。また、酵母で使用できるベクターは、Adv. Biochem. Eng. 43, 75-102 (1990)、Yeast 8,423-488(1992)などに詳細に記載されている。
プロモーターとしては、フォスフォグリセレートキナーゼをコードするPGK1遺伝子、アルコールデヒドロゲナーゼをコードするADH1遺伝子、あるいはジェネラルアミノ酸パーミアーゼをコードするGAP1遺伝子等の恒常的発現プロモーターを利用できるほか、GAL1/GAL10 (Johnston, M. et al., (1984) Mol. Cell. Biol. 4(8), 1440-1448)等の誘導型プロ
モーターを利用することもできる。グリセルアルデヒド−3−リン酸脱水素酵素、酸性フォスファターゼ、エノラーゼ、メタロチオネインなどのプロモーターも使用可能である。
When the host is Saccharomyces yeast, examples of the vector include YRp, YEp, YCp, YIp plasmids, pESC vectors (STRATAGENE), and pAUR vectors (Takara Bio). Further, vectors that can be used in yeast are described in detail in Adv. Biochem. Eng. 43, 75-102 (1990), Yeast 8, 423-488 (1992), and the like.
As the promoter, a PGK1 gene encoding phosphoglycerate kinase, an ADH1 gene encoding alcohol dehydrogenase, or a GAP1 gene encoding general amino acid permease can be used, as well as GAL1 / GAL10 (Johnston, M et al., (1984) Mol. Cell. Biol. 4 (8), 1440-1448) can also be used. Promoters such as glyceraldehyde-3-phosphate dehydrogenase, acid phosphatase, enolase, and metallothionein can also be used.

宿主をシゾサッカロミセス属酵母とする場合、ベクターとしては、サッカロミセス属酵母と同様にYRp系、YEp系、YCp系、YIp系プラスミドやpAUR224ベクター(タカラバイオ)などが挙げられる。プロモーターとしては、アルコールデヒドロゲナーゼをコードするAD
H1遺伝子、ウィルスのSV40プロモーター等の恒常的発現プロモーターを利用できるほか、インベルターゼをコードするinv1遺伝子プロモーター (グルコース存在下で抑制)や熱シ
ョック蛋白質をコードするhsp16遺伝子プロモーター等の誘導型プロモーターなどを利用
することもできる。このほか、nmt1プロモーター(チアミン存在下で抑制)やctr4プロモーター(銅存在下で抑制)なども使用可能である。
宿主をピキア属酵母とする場合、染色体挿入型のベクターが用いられ、例としてはpPICZベクターやpGAPZベクター(いずれもライフテクノロジーズジャパン)などが挙げられる。
プロモーターとしては、グリセルアルデヒド−3−リン酸脱水素酵素をコードするGAP
遺伝子等の恒常的発現プロモーターを利用できるほか、アルコールオキシダーゼをコードするAOX1遺伝子等の誘導型プロモーターなどを利用することもできる。
また、宿主をアスペルギルス属糸状菌とする場合、染色体挿入型のベクターを使用することが一般的であるが、AMA1配列を有するARp1などのように細胞内で自立複製可能なプラスミドベクターなども使用される。後者の例として、pPTRIIベクターやpAUR316(いずれ
もタカラバイオ)が挙げられる。プロモーターとしては、エノラーゼをコードするenoA遺伝子やペプチド鎖伸長因子をコードするtef1遺伝子等の恒常的発現プロモーターを利用できるほか、アルコール脱水素酵素をコードするalcA遺伝子のほか、α−アミラーゼをコードするamyB遺伝子等の誘導型プロモーターも利用できる。
さらに、宿主を植物細胞または植物体とする場合、染色体挿入型のベクターを使用することが一般的であるが、タバコモザイクウィルスなどのウィルスベクターも使用される。さらには、一過性発現を目的とする際は、当該植物細胞又は植物体内で複製する必要が無いため、植物細胞又は植物体にDNAを導入できればよく、植物細胞又は植物体で複製できなくても導入に用いるアグロバクテリウム属細菌において複製可能なプラスミドベクターも使用される。プロモーターとしてはカリフラワーモザイクウィルスの35Sプロモー
ターやユビキチンをコードするUbi遺伝子等の恒常的発現プロモーターなどを利用するこ
とができる。
When the host is a Schizosaccharomyces yeast, examples of the vector include YRp-based, YEp-based, YCp-based, YIp-based plasmids, pAUR224 vector (Takara Bio) and the like, as in the case of Saccharomyces genus yeast. As a promoter, AD encoding alcohol dehydrogenase
In addition to constitutive expression promoters such as the H1 gene and viral SV40 promoter, inducible promoters such as the inv1 gene promoter encoding invertase (suppressed in the presence of glucose) and the hsp16 gene promoter encoding heat shock protein, etc. You can also In addition, the nmt1 promoter (repressed in the presence of thiamine) or the ctr4 promoter (repressed in the presence of copper) can also be used.
When the host is Pichia yeast, a chromosome insertion type vector is used, and examples thereof include a pPICZ vector and a pGAPZ vector (both are Life Technologies Japan).
As a promoter, GAP encoding glyceraldehyde-3-phosphate dehydrogenase
In addition to a constitutive expression promoter such as a gene, an inducible promoter such as an AOX1 gene encoding alcohol oxidase can also be used.
In addition, when the host is an Aspergillus filamentous fungus, it is common to use a chromosome insertion type vector, but plasmid vectors that can replicate autonomously in cells such as ARp1 having an AMA1 sequence are also used. The Examples of the latter include pPTRII vector and pAUR316 (both Takara Bio). As the promoter, a constitutive expression promoter such as the enoA gene encoding enolase and the tef1 gene encoding peptide chain elongation factor can be used, and in addition to the alcA gene encoding alcohol dehydrogenase, amyB encoding α-amylase Inducible promoters such as genes can also be used.
Furthermore, when the host is a plant cell or plant, it is common to use a chromosome insertion type vector, but a viral vector such as tobacco mosaic virus is also used. Furthermore, when transient expression is intended, there is no need to replicate in the plant cell or plant body, so it is sufficient that DNA can be introduced into the plant cell or plant body. Also, a plasmid vector that can replicate in Agrobacterium used for introduction is also used. As the promoter, a cauliflower mosaic virus 35S promoter, a constant expression promoter such as Ubi gene encoding ubiquitin, and the like can be used.

上述したものの他に、プロモーターを連結した本発明の蛋白質をコードするDNAを含むDNAを、宿主の染色体中に直接導入する相同組換え技術(例えば、Bio/Technol. 9, 1382-1385(1991))や、トランスポゾンや挿入配列等を用いて導入する技術も用いるこ
とができ、これらの技術により遺伝子導入する際に用いる配列等も本発明の組換えベクターに含まれる。従って、本発明の組換えベクターは、宿主において、本発明の蛋白質を発現させ得るものであればよく、宿主への遺伝子の導入の方法は特に限定されない。
In addition to the above, homologous recombination techniques (for example, Bio / Technol. 9, 1382-1385 (1991)) that directly introduces a DNA containing a DNA encoding the protein of the present invention linked to a promoter into the host chromosome. ), Transposon, insertion techniques using insertion sequences, and the like can also be used, and sequences used for gene introduction by these techniques are also included in the recombinant vector of the present invention. Therefore, the recombinant vector of the present invention may be any vector as long as it can express the protein of the present invention in the host, and the method for introducing the gene into the host is not particularly limited.

<本発明の形質転換体>
本発明によれば、さらに、本発明のDNAまたは本発明の組換えベクターを宿主に導入した形質転換体が提供される。このような本発明の形質転換体もしくはその処理物を後述する本発明の製造方法に用いると、該形質転換体により、11βデオキシステロイド化合物を反応の原料として11βヒドロキシステロイド化合物を生産することが可能になる。
<Transformant of the present invention>
The present invention further provides a transformant obtained by introducing the DNA of the present invention or the recombinant vector of the present invention into a host. When such a transformant of the present invention or a processed product thereof is used in the production method of the present invention described later, it is possible to produce an 11β hydroxysteroid compound using the 11β deoxysteroid compound as a raw material for the reaction. become.

本発明のDNA又は本発明の組換えベクターを導入する宿主としては、以下のような生物または細胞が例示される。   Examples of the host into which the DNA of the present invention or the recombinant vector of the present invention is introduced include the following organisms or cells.

エシェリヒア・コリ(Escherichia coli)などのエシェリヒア(Escherichia)属細菌
;バチルス・サチリス(Bacillus subtilis)、バチルス・ブレビス(Bacillus brevis)、バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)などのバチルス
(Bacillus)属細菌;セラチア・マーセッセンス(Serratia marcescens)などのセラチ
ア(Serratia)属細菌;シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・アエルギノサ(Pseudomonas aeruginosa)などのシュードモナス(Pseudomonas)属
細菌;コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、ブレビバク
テリウム・フラバム(Brevibacterium flavum)、ブレビバクテリウム・ラクトファーメ
ンタム(Brevibacterium lactofermentum)などのコリネ型細菌;ロドコッカス・エリス
ロポリス(Rhodococcus erythropolis)などのロドコッカス(Rhodococcus)属細菌;ラ
クトバチルス・カゼイ(Lactobacillus casei)などのラクトバチルス(Lactobacillus)属細菌、ストレプトミセス・リビダンス(Streptomyces lividans)などのストレプトミ
セス(Streptomyces)属細菌;サーマス・サーモフィラス(Thermus thermophilus)などのサーマス(Thermus)属細菌;ストレプトコッカス・ラクティス(Streptococcus lactis)などのストレプトコッカス(Streptococcus)属細菌;放線菌(Actinomycetes)属細
菌。
Escherichia bacteria such as Escherichia coli; Bacillus genus such as Bacillus subtilis, Bacillus brevis, Bacillus stearothermophilus Bacteria; Serratia genus bacteria such as Serratia marcescens; Pseudomonas aeruginosa and other Pseudomonas genus bacteria; Corynebacterium or glutamicum ), Coryneform bacteria such as Brevibacterium flavum and Brevibacterium lactofermentum; Bacteria of the genus Rhodococcus; bacteria of the genus Lactobacillus such as Lactobacillus casei, bacteria of the genus Streptomyces such as Streptomyces lividans; Thermus thermophilus Thermus bacteria such as Streptococcus lactis, Streptococcus bacteria, Actinomycetes bacteria, and the like.

アスペルギルス・ニガー(Aspergillus nigar)、アスペルギルス・オリゼ(Aspergillus oryzae)などのアスペルギルス(Aspergillus)属カビ;モルティエレラ・ラマニアナ(Mortierella ramanniana)、モルティエレラ・バイニエリ(Mortierella bainieri)、モルティエレラ・アルピナ(Mortierella alpina)などのモルティエレラ(Mortierella
)属カビ;フザリウム・フジクロイ(Fusarium fujikuroi)などのフザリウム(Fusarium)属カビ;クルブラリア・ルナタ(Curvularia lunata)などのクルブラリア(Curvularia)属カビ。
アラビドシス・サリアナ(Arabidopsis thaliana)、グリシン・マックス(Glycine max)、ニコチアナ・ベンサミアナ(Nicotiana benthamiana)、ニコチアナ・タバカム(Nicotiana tabacum)、オリゼ・サティーバ(Oryzae sativa)、ソラナム・ツベロサム(Solanum tuberosum)、ソラナム・リコペルシカム(Solanum lycopersicum)、ジー・メイ
(Zea mays)などの植物または植物細胞。
Aspergillus fungi such as Aspergillus nigar, Aspergillus oryzae; Mortierella ramanniana, Mortierella bainieri, Mortierella alpina (M) Mortierella (Mortierella)
) Genus mold; Fusarium mold such as Fusarium fujikuroi; Curvularia mold such as Curvularia lunata.
Arabidopsis thaliana, Glycine max, Nicotiana benthamiana, Nicotiana tabacum, Oryzae sativa, Solanum tuberosum, Solanum tuberosum Plants or plant cells such as Solanum lycopersicum and Zea mays.

サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、サッカロミセス・バヤヌス(Saccharomyces bayanus)などのサッカロミセス(Saccharomyces)属酵母;ピキア・パストリス(Pichia pastoris)、ピキア・ファリノサ(Pichia farinosa)などのピキア(Pichia)属酵母;キャンディダ・グラブラータ(Candida glabrata)、キャンディダ・トロピカリス(Candida tropicalis)、キャンディダ・ユティリス(Candida utilis)、キャンディダ・ボイディニィ(Candida boidinii)などのキャンディダ(Candida)属酵
母;シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)などのシゾサッカロミ
セス(Schizosaccharomyces)属酵母;ヤロウィア・リポリティカ(Yarrowia lypolitica)などのヤロウィア(Yarrowia)属酵母;デバリオマイセス・ニルソニ(Debaryomyces nilssonii)などのデバリオマイセス属酵母;ロドトルラ・グルティニス(Rhodotorula glutinis)などのロドトルラ属酵母;リポマイセス・リポフェラス(Lipomyces lipoferus
)などのリポマイセス属酵母;クルイベロマイセス・ラクティス(Kluyveromyces lactis)などのクリイベロマイセス属酵母;ロドスポリジウム・トルロイディス(Rhodosporidium toruloides)などのロドスポリジウム属酵母;トルロプシス・コリキュロサ(Torulopsis colliculosa)などのトルロプシス属酵母。
Saccharomyces yeasts such as Saccharomyces cerevisiae and Saccharomyces bayanus; Pichia pastinis, Pichia farinosa and Pichia farinosa・ Candida genus yeasts such as Candida glabrata, Candida tropicalis, Candida utilis, Candida boidinii; Shizosaccharomyces pombe (Candida boidinii) Schizosaccharomyces pombe and other yeasts of the genus Schizosaccharomyces; Yarrowia lypolitica and other yeasts of the genus Yarrowia; Debaryomyces nilssonii and others ; Rhodotorula glutinis (Rhodotorula glutinis) Rhodotorula yeast and the like; Lipomyces-Ripoferasu (Lipomyces lipoferus
Lipomyces yeast such as Kluyveromyces lactis; Rhodosporidium yeast such as Rhodosporidium toruloides; Torulopsis colliculosa Toluropsis yeast such as.

これらの中では酵母が好ましく、代謝工学的手法が用いやすいことからサッカロミセス属酵母が特に好ましい。サッカロミセス属酵母の中でも、his3、leu2、trp1、ura3などの栄養要求性の遺伝型であることが望ましく、例えば、以下の株が例示される。
サッカロミセス・セレビジエYPH499株(MATa ura3 lys2 ade2 trp1 his3 leu2)(ATCC204679:American Type Culture CollectionまたはSTRATAGENEより入手できる)、サッカロミセス・セレビジエFY1679-6c株(MATα ura3 leu2 trp1 his3)(Euroscarf社から入手できる)、サッカロミセス・セレビジエX2181-1B株(MATalpha his2 gal1 trp1 ade1 MAL SUC)(ATCC204822:American Type Culture Collectionより入手できる)、サッカロミセス・セレビジエINVSc1株(MATa/MATα his3Δ1/his3Δ1 leu2/leu2 trp1-289/trp1-289 ura3-52/ura3-52)(ライフテクノロジーズジャパン社より入手できる)を用いることができる。あるいは、サッカロミセス・セレビシエKA311A株(MATa his3 leu2 trp1 ura3
)(Mol. Cell Biol. 13, 307-3083(1993))も用いることができ、KA311A株は、独立行政法人産業総合研究所特許生物寄託センターに受託番号:FERM P-19053として寄託されている。また、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)FY1679-28c株(JP2004-528827 A1)、FY1679-18b株(JP2004-528827 A1)、YPH500株(ATCC204680)も用いることができる。
Among these, yeast is preferred, and Saccharomyces yeast is particularly preferred because metabolic engineering techniques are easy to use. Among Saccharomyces yeasts, it is desirable to have an auxotrophic genotype such as his3, leu2, trp1, and ura3. For example, the following strains are exemplified.
Saccharomyces cerevisiae YPH499 strain (MATa ura3 lys2 ade2 trp1 his3 leu2) (ATCC204679: available from American Type Culture Collection or STRATAGENE), Saccharomyces cerevisiae FY1679-6c strain (available from MATα ura3 leu2 trp1 his3) (available from Euroscarf) Saccharomyces cerevisiae X2181-1B strain (MATalpha his2 gal1 trp1 ade1 MAL SUC) (ATCC204822: available from American Type Culture Collection), Saccharomyces cerevisiae INVSc1 strain (MATa / MATα his3Δ1 / his3Δ1 leu2 / leu2 trp1-289 / trp1-289 ura3-52 / ura3-52) (available from Life Technologies Japan) can be used. Alternatively, Saccharomyces cerevisiae KA311A strain (MATa his3 leu2 trp1 ura3
) (Mol. Cell Biol. 13, 307-3083 (1993)) can also be used, and the KA311A strain has been deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center under the accession number: FERM P-19053 . Also, Saccharomyces cerevisiae FY1679-28c strain (JP2004-528827 A1), FY1679-18b strain (JP2004-528827 A1), and YPH500 strain (ATCC204680) can be used.

また、本発明の形質転換体(好ましくは酵母)は、本発明のDNA、即ち、本発明の蛋白質である11β水酸化酵素をコードする遺伝子の導入に加えて、以下に説明する他の酵素をコードする遺伝子も同じ形質転換体(好ましくは酵母)に導入することで、グルコースやエタノールなどの安価な原料からハイドロコルチゾンのような有用な11βヒドロキシステロイド化合物を効率よく自律的に発酵生産するプロセスの構築が可能になる。   The transformant of the present invention (preferably yeast) contains other enzymes described below in addition to the introduction of the DNA of the present invention, that is, the gene encoding 11β hydroxylase which is the protein of the present invention. By introducing the encoded gene into the same transformant (preferably yeast), a process for efficiently and autonomously fermentatively producing a useful 11β-hydroxysteroid compound such as hydrocortisone from inexpensive raw materials such as glucose and ethanol. Construction becomes possible.

他の酵素としては、ステロール側鎖切断酵素遺伝子が導入されていることが好ましい。必要に応じて、さらに、ステロール7位還元酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、およびステロイド21位水酸化酵素遺伝子からなる群から選ばれる少なくとも一種が導入されていてもよい。   As another enzyme, a sterol side chain cleaving enzyme gene is preferably introduced. If necessary, at least one selected from the group consisting of a sterol 7-position reductase gene, a steroid 3-position oxidase / isomerase gene, a steroid 17α-position hydroxylase gene, and a steroid 21-position hydroxylase gene It may be introduced.

本発明の形質転換体において、これらの他の酵素の活性を得るためには、これらの他の酵素の遺伝子を<本発明の組換えベクター>の項で例示した発現ベクター等に挿入して、後述する方法にて宿主を形質転換すればよい。
本発明の蛋白質をコードする遺伝子と共に、導入することができる他の酵素の遺伝子を以下に例示する。
In the transformant of the present invention, in order to obtain the activities of these other enzymes, the genes of these other enzymes are inserted into the expression vector exemplified in the section <Recombinant vector of the present invention> What is necessary is just to transform a host by the method mentioned later.
Examples of genes of other enzymes that can be introduced together with the gene encoding the protein of the present invention are shown below.

ステロール7位還元酵素遺伝子は、Journal of Biological Chemistry 1996, 271, 10866-10873記載のシロイヌナズナ(Arabidopsis thaliana)由来のもの、あるいはApplied and Environmental Microbiology 2007, 73, 1736-1741記載のモルティエレラ(Mortierella)属カビ由来ものが用いられる。   The sterol 7-reductase gene is derived from Arabidopsis thaliana described in Journal of Biological Chemistry 1996, 271, 10866-10873, or Mortierella genus described in Applied and Environmental Microbiology 2007, 73, 1736-1741. Molds are used.

ステロール側鎖切断酵素遺伝子としては、ステロール側鎖の20位及び22位との結合を切断する活性を有する蛋白質をコードするDNAが挙げられ、例えば、WO2010/079594
国際公開パンフレットに記載の酵素蛋白質(CYP204A1やCYPSS204A)や、ウシ、ヤギ、ウ
マ、マウス、ラット、ニワトリ、ゼブラフィッシュ、あるいはヒトなど動物由来のCYP11A1蛋白質をコードするDNAなどが挙げられる。
Examples of the sterol side chain cleaving enzyme gene include DNA encoding a protein having an activity of cleaving the bond between positions 20 and 22 of the sterol side chain. For example, WO2010 / 079594
Examples thereof include enzyme proteins (CYP204A1 and CYPSS204A) described in international publication pamphlets, DNA encoding CYP11A1 protein derived from animals such as cows, goats, horses, mice, rats, chickens, zebrafish, and humans.

ステロール3位酸化酵素/異性化酵素遺伝子は、ウシ、マウス、ラット、ヒト、あるいは植物由来3β−ヒドロキシステロイド脱水素酵素(3βHSD)やストレプトミセス(Streptomyces)属細菌由来コレステロール酸化酵素が好ましい。   As the sterol 3-position oxidase / isomerase gene, bovine, mouse, rat, human, or plant-derived 3β-hydroxysteroid dehydrogenase (3βHSD) or Streptomyces bacteria-derived cholesterol oxidase is preferable.

ステロイド17α位水酸化酵素蛋白質、ステロイド21位水酸化酵素蛋白質、ステロイド3位酸化酵素/異性化酵素遺伝子は、例えば、Molecular and Cellular Endocrinology
1990, 73, 73-80に記載のものが用いられる。
Steroid 17α-position hydroxylase protein, steroid 21-position hydroxylase protein, steroid 3-position oxidase / isomerase gene are, for example, Molecular and Cellular Endocrinology
Those described in 1990, 73, 73-80 are used.

ステロイド17α位水酸化酵素遺伝子は、例えば、ウシ、マウス、ラット、あるいはヒト由来シトクロムP450c17が好ましい。   The steroid 17α hydroxylase gene is preferably, for example, bovine, mouse, rat, or human-derived cytochrome P450c17.

また、ステロイド21位水酸化酵素遺伝子は、ウシ、マウス、ラット、あるいはヒト由来シトクロムP450c21が好ましい。   The steroid 21-hydroxylase gene is preferably bovine, mouse, rat, or human-derived cytochrome P450c21.

また、必要に応じて、上述の他の酵素の活性に必要な電子伝達系を構成する蛋白質などの遺伝子も導入することがさらに好ましい。具体的には、本発明の蛋白質をコードする遺
伝子、あるいは、本発明の蛋白質をコードする遺伝子および上述の他の酵素に加えて、該酵素蛋白質への電子伝達活性を有するフェレドキシン蛋白質、および該フェレドキシン蛋白質への電子伝達活性を有するフェレドキシン還元酵素蛋白質のそれぞれをコードする遺伝子も同時に宿主微生物に導入すること、または、人工的にこれらの蛋白質を該酵素活性が維持されるよう遺伝子工学的に融合した蛋白質を創製し導入することが好ましい。
Moreover, it is more preferable to introduce a gene such as a protein constituting an electron transport system necessary for the activity of the other enzymes as necessary. Specifically, in addition to the gene encoding the protein of the present invention, or the gene encoding the protein of the present invention and the other enzymes described above, a ferredoxin protein having activity of transferring electrons to the enzyme protein, and the ferredoxin Genes encoding each of the ferredoxin reductase proteins that have electron transfer activity to the protein are introduced into the host microorganism at the same time, or these proteins are artificially fused to maintain the enzyme activity. It is preferable to create and introduce a protein.

ここで、電子伝達活性を有するフェレドキシン蛋白質、および該フェレドキシン蛋白質への電子伝達活性を有するフェレドキシン還元酵素蛋白質は両者の活性を有する1種の蛋
白質でもよい。例えば、Bacillus megateriumのP450-BM3遺伝子のP450還元酵素ドメイン
を酵素蛋白質(P450 2C11)に連結し、人工的に作製した融合蛋白質を利用できる(Helvig, C. and Capdevila, J. H., Biochemistry, (2000)39, 5196−5205)。
Here, the ferredoxin protein having electron transfer activity and the ferredoxin reductase protein having electron transfer activity to the ferredoxin protein may be one kind of protein having both activities. For example, an artificially produced fusion protein can be used by linking the P450 reductase domain of the P450-BM3 gene of Bacillus megaterium to an enzyme protein (P450 2C11) (Helvig, C. and Capdevila, JH, Biochemistry, (2000) 39, 5196-5205).

フェレドキシン還元酵素は、例えば以下の中から選択される。
ホウレン草由来のフェレドキシンレダクターゼ、
シュードモナス プチダ(Pseudomonas putida)由来プチダレドキシンレダクターゼ、
動物由来のアドレノドキシンレダクターゼ、
ノボスフィンゴビウム サブテラニウム(Novosphingobium subterraneum)由来フェレドキシンレダクターゼ、
ノボスフィンゴビウム アロマティシボランス(Novosphingobium aromaticivorans)由
来フェレドキシンレダクターゼ、
エシェリヒア コリ(Escherichia coli)由来フラボドキシンレダクターゼやフェレドキシンレダクターゼ、
アシネトバクター エスピー(Acinetobacter sp.) ADP1株由来 フェレドキシン
レダクターゼ、
サッカロミセス・セレビシエ(Saccharomyces cerevisiae)由来 アドレノドキシンレダクターゼ様蛋白質(arh1p)、
またはその他のフェレドキシンレダクターゼ。
Ferredoxin reductase is selected from among the following, for example.
Spinach-derived ferredoxin reductase,
Putidaredoxin reductase from Pseudomonas putida,
Animal-derived adrenodoxin reductase,
Ferredoxin reductase from Novosphingobium subterraneum,
Ferredoxin reductase from Novosphingobium aromaticivorans,
Flavodoxin reductase or ferredoxin reductase from Escherichia coli,
Acinetobacter sp. Ferredoxin reductase derived from ADP1 strain,
An adrenodoxin reductase-like protein (arh1p) from Saccharomyces cerevisiae,
Or other ferredoxin reductase.

フェレドキシンは、例えば以下の中から選択される;
ホウレン草由来のフェレドキシン、
シュードモナス プチダ(Pseudomonas putida)由来プチダレドキシン、
動物由来のアドレノドキシン、
ノボスフィンゴビウム サブテラニウム(Novosphingobium subterraneum)由来フェレドキシン、
ノボスフィンゴビウム アロマティシボランス(Novosphingobium aromaticivorans)由
来フェレドキシン、
エシェリヒア コリ(Escherichia coli)由来フラボドキシンやフェレドキシン、
アシネトバクター エスピー(Acinetobacter sp.) ADP1株由来 フェレドキシン

サッカロミセス・セレビシエ(Saccharomyces cerevisiae)由来 フェレドキシン様蛋白質(yah1p)、
またはその他のフェレドキシン型蛋白質。
Ferredoxin is selected, for example, from:
Ferredoxin from spinach,
Putidaredoxin from Pseudomonas putida,
Animal-derived adrenodoxin,
Ferredoxin from Novosphingobium subterraneum,
Ferredoxin from Novosphingobium aromaticivorans,
Flavodoxin and ferredoxin from Escherichia coli,
Acinetobacter sp. Ferredoxin derived from ADP1 strain,
Ferredoxin-like protein (yah1p) from Saccharomyces cerevisiae,
Or other ferredoxin-type protein.

さらに、ステロイド18位水酸化酵素としてはヒト由来シトクロムP45011B2などが挙げられ、3−オキソステロイド−Δ1−脱水素酵素としてはピメロバクター シンプレックス(Pimelobacter simplex)やロドコッカス エリスロポリス(Rhodococcus erythropolis)由来の3−オキソステロイド−Δ1−脱水素酵素などが利用可能である。   Further, examples of steroid 18-hydroxylase include human-derived cytochrome P45011B2, and examples of 3-oxosteroid-Δ1-dehydrogenase include 3-oxosteroids derived from Pimelobacter simplex and Rhodococcus erythropolis. Steroid-Δ1-dehydrogenase and the like can be used.

上述した酵素をコードする遺伝子、またはそれを含む組換えベクターによる上記宿主への形質転換法としては、コンピテントセル法[Journal of Molecular Biology, Vol.53,
p.159 (1970)]、酢酸リチウム法[Ito, H. et al. J. Bacteriol., Vol.153, p.163 (1983)]、スフェロプラスト法[Hinnen, A., et al. Proc. Natl. Acad. Sci. USA, Vol.75, p.1929 (1978)]、エレクトロポレーション法(Fromm ME,et al.,(1986) Nature 319(6056):791-793)等による形質転換法、ファージを用いた形質導入法[E. Ohtsubo, Genetics, Vol.64, p.189 (1970)]、接合伝達法[J. G. C. Ottow, Ann. Rev.Microbiol., Vol.29,
p.80 (1975)]、細胞融合法[M.H. Gabor, J. Bacteriol., Vol.137, p.1346 (1979)]
、アグロバクテリウム法[Luis, H-E., et al. Nature, Vol.303, p.209 (1983)], パーティクルボンバードメント法[Klein, T.M., et al. Nature, Vol.327, p.70 (1987)]等を用いることができる。これらの方法から、宿主生物に適した方法を適宜選択すればよい。
As a method for transforming the above-mentioned host with a gene encoding the above enzyme or a recombinant vector containing the same, a competent cell method [Journal of Molecular Biology, Vol. 53,
p.159 (1970)], lithium acetate method [Ito, H. et al. J. Bacteriol., Vol.153, p.163 (1983)], spheroplast method [Hinnen, A., et al. Proc Natl. Acad. Sci. USA, Vol.75, p.1929 (1978)], transformation by electroporation (Fromm ME, et al., (1986) Nature 319 (6056): 791-793), etc. Method, transduction method using phage [E. Ohtsubo, Genetics, Vol.64, p.189 (1970)], conjugation transfer method [JGC Ottow, Ann. Rev. Microbiol., Vol.29,
p.80 (1975)], cell fusion method [MH Gabor, J. Bacteriol., Vol.137, p.1346 (1979)]
, Agrobacterium method [Luis, HE., Et al. Nature, Vol.303, p.209 (1983)], particle bombardment method [Klein, TM, et al. Nature, Vol.327, p.70 ( 1987)] and the like can be used. From these methods, a method suitable for the host organism may be appropriately selected.

また、上述の酵素をコードする遺伝子に加えて、さらに11β水酸化反応により生じた11βヒドロキシステロイド化合物に作用する酵素をコードする遺伝子を導入すれば、誘導体化した11βヒドロキシステロイド化合物も製造することができる。したがって、上述の遺伝子に加えて、ステロイド18位水酸化酵素やステロイド1位酸化酵素などの遺伝子を導入してもよい。   In addition to the gene encoding the enzyme described above, a derivatized 11β-hydroxysteroid compound can also be produced by introducing a gene encoding an enzyme that acts on the 11β-hydroxysteroid compound generated by the 11β-hydroxylation reaction. it can. Therefore, in addition to the above-mentioned genes, genes such as steroid 18-hydroxylase and steroid 1-oxidase may be introduced.

なお、形質転換体の作製のための手順、宿主に適合した組換えベクターの構築および宿主の培養方法は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Sambrookら、モレキュラー・クローニング、Cold Spring Harbor Laboratories)。   The procedures for producing transformants, the construction of a recombinant vector suitable for the host, and the method for culturing the host should be performed in accordance with techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering. (Eg Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratories).

また、上述した本発明の形質転換体の培養は、炭素源、窒素源、無機塩、各種ビタミン等を含む通常の栄養培地で行うことができ、炭素源としては、例えばブドウ糖、ショ糖、果糖、麦芽糖等の糖類、エタノール、メタノール等のアルコール類、クエン酸、リンゴ酸、コハク酸、マレイン酸、フマル酸等の有機酸類、廃糖蜜等が用いられる。窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、尿素等がそれぞれ単独もしくは混合して用いられる。また、無機塩としては、例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム等が用いられる。この他にペプトン、肉エキス、酵母エキス、コーンステイープリカー、カザミノ酸、ビオチン等の各種ビタミン等の栄養素を培地に添加することができる。   In addition, the above-described transformant of the present invention can be cultured in a normal nutrient medium containing a carbon source, a nitrogen source, an inorganic salt, various vitamins, etc. Examples of the carbon source include glucose, sucrose, and fructose. Sugars such as maltose, alcohols such as ethanol and methanol, organic acids such as citric acid, malic acid, succinic acid, maleic acid and fumaric acid, and molasses are used. As the nitrogen source, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea or the like is used alone or in combination. Examples of inorganic salts that can be used include potassium monohydrogen phosphate, potassium dihydrogen phosphate, and magnesium sulfate. In addition, nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, and biotin can be added to the medium.

培養は用いる宿主の種類に応じて適当な方法を選択できるが、通常、通気撹拌、振とう等の好気条件下で行う。培養温度は、宿主の生育し得る温度であれば特に制限はなく、また、培養途中のpHについても宿主が生育し得るpHであれば特に制限はない。培養中のpH調整は、酸またはアルカリを添加して行うことができる。さらに、宿主を植物細胞とする場合は、種類によっては光を照射することが好ましい。
形質転換で得られた植物体を栽培する場合は、土壌に移植して栽培することも、窒素源、無機塩、各種ビタミン等を含む水溶液を用いた水耕栽培をすることもできる。窒素源としては各種硝酸塩やアンモニウム塩等が使用可能であり、無機塩として例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム等が用いられる。栽培においては、光の照射が必要だが、植物体の種類や生育状態に応じて光の波長、強度、周期を変えるとよい。温度についても植物が生育する範囲であれば特に制限無く、土壌または水耕栽培における水溶液のpHについても植物が生育する範囲であれば特に制限はない。水耕栽培における水溶液のpHについては酸またはアルカリを添加することで調節できる。
このようにして培養または栽培された本発明の形質転換体を、後述する11βヒドロキシステロイド化合物の製造方法に供することができる。あるいは、後述する製造方法において、11βヒドロキシステロイド化合物の製造と並行して、本発明の形質転換体の培養を行なうこともできる。
Cultivation can be carried out according to the type of host used, but is usually performed under aerobic conditions such as aeration and agitation and shaking. The culture temperature is not particularly limited as long as the host can grow, and the pH during the culture is not particularly limited as long as the host can grow. The pH adjustment during the culture can be performed by adding an acid or an alkali. Furthermore, when the host is a plant cell, it is preferable to irradiate light depending on the type.
When cultivating a plant obtained by transformation, it can be transplanted to soil or cultivated, or hydroponically cultivated using an aqueous solution containing a nitrogen source, inorganic salts, various vitamins and the like. As the nitrogen source, various nitrates, ammonium salts and the like can be used, and as inorganic salts, for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate and the like are used. In cultivation, light irradiation is required, but the wavelength, intensity, and cycle of light may be changed according to the type of plant body and the growth state. The temperature is not particularly limited as long as the plant grows, and the pH of the aqueous solution in soil or hydroponics is not particularly limited as long as the plant grows. The pH of the aqueous solution in hydroponics can be adjusted by adding acid or alkali.
The transformant of the present invention thus cultured or cultivated can be used for the method for producing an 11β hydroxysteroid compound described later. Alternatively, in the production method described later, the transformant of the present invention can be cultured in parallel with the production of the 11β hydroxysteroid compound.

<11βヒドロキシステロイド化合物の製造方法>
本発明の蛋白質(11β水酸化酵素)、または、上述の本発明の形質転換体もしくはその処理物を11−デオキシステロイド化合物に接触させ、11βヒドロキシステロイド化合物を生成させ、該11βヒドロキシステロイド化合物を回収することにより、11βヒドロキシステロイド化合物を製造することができる。
ここで、11−デオキシステロイド化合物としては、17α,21−ジヒドロキシプレグネ−4−エン−3,20−ジオン(コンパウンドS)、11−デオキシコルチコステロン、プロゲステロン、17α−ヒドロキシプロゲステロン、およびそれらの誘導体などが挙げられる。誘導体としては、17α,21−ジヒドロキシプレグネ−4−エン−3,20−ジオン 21−アセテート、または、17α,21−ジヒドロキシプレグナ−1,4−ジエン−3,20−ジオンなどが挙げられる。これらの中では、コンパウンドS、またはその誘導体が好ましい。
11βヒドロキシステロイド化合物としては、ハイドロコルチゾン、コルチコステロン、11β−ヒドロキシプロゲステロン、21−デオキシコルチゾルおよびそれらの誘導体などが挙げられる。誘導体としてはハイドロコルチゾン 21−アセテート、プレドニゾロンなどが挙げられる。これらの中では、ハイドロコルチゾン、またはその誘導体が好ましい。
<Method for producing 11β-hydroxysteroid compound>
The protein of the present invention (11β hydroxylase) or the above-described transformant of the present invention or a processed product thereof is contacted with an 11-deoxysteroid compound to produce an 11β hydroxysteroid compound, and the 11β hydroxysteroid compound is recovered. By doing so, an 11β hydroxysteroid compound can be produced.
Here, as the 11-deoxysteroid compound, 17α, 21-dihydroxypregne-4-ene-3,20-dione (compound S), 11-deoxycorticosterone, progesterone, 17α-hydroxyprogesterone, and their Derivatives and the like. Examples of the derivatives include 17α, 21-dihydroxypregne-4-ene-3,20-dione 21-acetate or 17α, 21-dihydroxypregna-1,4-diene-3,20-dione. . In these, the compound S or its derivative (s) is preferable.
Examples of the 11β-hydroxysteroid compound include hydrocortisone, corticosterone, 11β-hydroxyprogesterone, 21-deoxycortisol, and derivatives thereof. Derivatives include hydrocortisone 21-acetate, prednisolone, and the like. Among these, hydrocortisone or a derivative thereof is preferable.

一方、上述の11β水酸化酵素をコードする遺伝子の導入に加えて、他の酵素をコードする遺伝子も同じ形質転換体(好ましくは酵母)に導入することで、グルコースやエタノールなどの安価な原料からハイドロコルチゾンのような有用な11βヒドロキシステロイド化合物を効率よく自律的に発酵生産するプロセスを構築する場合において、ハイドロコルチゾンを製造するときは、本発明の11β水酸化酵素をコードする遺伝子のほかに、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、ステロイド3位酸化酵素/異性化酵素、ステロイド17α位水酸化酵素、およびステロイド21位水酸化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。   On the other hand, in addition to the introduction of the gene encoding 11β-hydroxylase described above, genes encoding other enzymes are also introduced into the same transformant (preferably yeast), so that inexpensive raw materials such as glucose and ethanol can be used. When constructing a process for efficiently and fermentatively producing a useful 11β-hydroxysteroid compound such as hydrocortisone efficiently, when producing hydrocortisone, in addition to the gene encoding 11β-hydroxylase of the present invention, Introduced at least genes encoding sterol side chain cleaving enzyme, ferredoxin, ferredoxin reductase, sterol 7-reductase, steroid 3-oxidase / isomerase, steroid 17α-hydroxylase, and steroid 21-hydroxylase It is preferable to produce using the prepared host.

コルチコステロンを製造するときは、本発明の11β水酸化酵素をコードする遺伝子のほかに、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、ステロイド3位酸化酵素/異性化酵素、およびステロイド21位水酸化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。   When producing corticosterone, in addition to the gene encoding 11β hydroxylase of the present invention, at least sterol side chain cleaving enzyme, ferredoxin, ferredoxin reductase, sterol 7-position reductase, steroid 3-position oxidase / isomerism It is preferable to produce using a host into which a gene encoding a oxidase and a steroid 21-hydroxylase gene has been introduced.

11β−ヒドロキシプロゲステロンを製造するときは、本発明の11β水酸化酵素をコードする遺伝子のほかに、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、およびステロイド3位酸化酵素/異性化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。   When producing 11β-hydroxyprogesterone, in addition to the gene encoding 11β-hydroxylase of the present invention, at least sterol side chain cleaving enzyme, ferredoxin, ferredoxin reductase, sterol 7-position reductase, and steroid 3-position oxidase / It is preferable to produce using a host into which a gene encoding an isomerase has been introduced.

21−デオキシコルチゾルを製造するときは、本発明の11β水酸化酵素をコードする遺伝子の他に、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、ステロイド3位酸化酵素/異性化酵素、およびステロイド17α位水酸化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。   When producing 21-deoxycortisol, in addition to the gene encoding 11β hydroxylase of the present invention, at least sterol side chain cleaving enzyme, ferredoxin, ferredoxin reductase, sterol 7-position reductase, steroid 3-position oxidase / It is preferable to produce using a host into which an isomerase and a gene encoding a steroid 17α-position hydroxylase have been introduced.

形質転換体の処理物としては、形質転換体である微生物菌体や植物細胞(以下、「微生物菌体等」という。)あるいは植物体を超音波、粉砕、圧擦等の手段で破砕して得られる破砕物、該破砕物を水等で抽出して得られる、本発明の蛋白質を含有する抽出物、該抽出物に更に硫安塩析、カラムクロマトグラフィー等の処理を行って得られる本発明の蛋白質を含む画分や、上記微生物菌体等を担体に固定化したものなどが挙げられる。   As a processed product of the transformant, microbial cells and plant cells (hereinafter referred to as “microorganism cells”) or plants which are transformants are crushed by means of ultrasonic waves, crushing, crushing or the like. The obtained crushed material, the extract containing the protein of the present invention obtained by extracting the crushed material with water, etc., and the present invention obtained by further subjecting the extract to treatment with ammonium sulfate salting out, column chromatography, etc. And a fraction containing the above-mentioned protein and those obtained by immobilizing the above microbial cells on a carrier.

形質転換体である微生物菌体等の固定化は、それ自体既知の通常用いられている方法に従い、アクリルアミドモノマー、アルギン酸、またはカラギーナン等の適当な担体に形質転換体である微生物菌体等を固定化させる方法により行うことができる。例えば、微生物菌体等を担体に固定化する場合には、培養物から回収されたまま、あるいは適当な緩衝液、例えば0.02〜0.2M程度のリン酸緩衝液(pH6〜10)等で洗浄された微生物菌体等を使用することができる。   For immobilization of microbial cells as transformants, the microbial cells as transformants are immobilized on an appropriate carrier such as acrylamide monomer, alginic acid, or carrageenan according to a commonly used method known per se. It can carry out by the method of making it. For example, when microbial cells or the like are immobilized on a carrier, it is recovered from the culture, or an appropriate buffer solution, for example, a phosphate buffer solution (pH 6 to 10) of about 0.02 to 0.2M. The microbial cells washed with can be used.

本発明の蛋白質(ステロイド11β水酸化酵素)、または本発明のDNAを含む組換えベクターで形質転換された形質転換体もしくはその処理物に接触させる際の条件については、目的とする11βヒドロキシステロイド化合物を得ることができれば特に制限はないが、以下のような条件とすることが好ましい。用いる本発明の形質転換体の宿主が微生物や細胞である場合は、上述の培養方法と同等に培地中で接触させることができる。基質である11−デオキシステロイド化合物の濃度は、0.01%〜10%が好ましく、0.1%〜2%がより好ましい。反応温度は15〜40℃が好ましく、25℃〜35℃がより好ましい。反応pHはpH4〜pH10が好ましく、pH5〜pH9がより好ましい。11β水酸化反応には酸素が必要であることから好気条件が好ましい。   Regarding the conditions for contacting the transformant transformed with the protein of the present invention (steroid 11β-hydroxylase) or the recombinant vector containing the DNA of the present invention or a processed product thereof, the target 11β-hydroxysteroid compound Is not particularly limited, but it is preferable to satisfy the following conditions. When the host of the transformant of the present invention to be used is a microorganism or a cell, it can be contacted in a medium in the same manner as in the above-described culture method. The concentration of the substrate 11-deoxysteroid compound is preferably 0.01% to 10%, more preferably 0.1% to 2%. The reaction temperature is preferably 15 to 40 ° C, more preferably 25 to 35 ° C. The reaction pH is preferably pH 4 to pH 10, and more preferably pH 5 to pH 9. Since 11β hydroxylation requires oxygen, aerobic conditions are preferred.

さらに、11β水酸化反応には還元力の供給が必要であるため、生物が生育状態にある条件が好ましく、宿主が微生物や植物細胞である場合には培養(即ち、生育)と並行して11β水酸化反応を進行させることも好ましい。この還元力とは、具体的には電子やエネルギーである。NADHやNADPH等の化合物で供給するためにグルコース脱水素酵素またはグルコース6リン酸脱水素酵素、および、グルコースなどを共存させてNADHやNADPHを再還元することで還元力である電子やエネルギーをステロイド11β水酸化反応に供給したり、電子メディエーター存在下で電力を供給することにより直接還元力である電子やエネルギーをステロイド11β水酸化反応に供給したりすることで、培養と並行して11β水酸化反応を進めることも好ましい。   Furthermore, since the 11β hydroxylation reaction requires the supply of reducing power, the conditions under which the organism is in the growing state are preferred. When the host is a microorganism or a plant cell, 11β in parallel with the culture (ie, growth). It is also preferred to allow the hydroxylation reaction to proceed. The reducing power is specifically electrons and energy. Reducing NADH or NADPH in the presence of glucose dehydrogenase or glucose 6-phosphate dehydrogenase and glucose in order to supply compounds such as NADH and NADPH, and reducing electrons and energy as steroids By supplying the 11β hydroxylation reaction, or by supplying electric power in the presence of an electron mediator to directly supply electrons or energy, which is a reducing power, to the steroid 11β hydroxylation reaction, It is also preferred to proceed the reaction.

培地中や植物体に蓄積したハイドロコルチゾンなどの11βヒドロキシステロイド化合物を回収する方法は特に限定されず、当業者に公知の分離または精製のための手法を用いることができる。例えば、溶媒抽出、晶析、樹脂吸着、カラムクロマトグラフィー等により行うことができる。
また、ここで、回収物としては、培地中や植物体に蓄積した11βヒドロキシステロイド化合物を単離、精製したものに限定されず、菌体を分離した培地や、目的とする11βヒドロキシステロイド化合物を含有する培地や植物体そのものも含まれる。
The method for recovering the 11β-hydroxysteroid compound such as hydrocortisone accumulated in the medium or in the plant is not particularly limited, and methods for separation or purification known to those skilled in the art can be used. For example, it can be performed by solvent extraction, crystallization, resin adsorption, column chromatography and the like.
Here, the recovered material is not limited to those obtained by isolating and purifying the 11β hydroxysteroid compound accumulated in the medium or in the plant body. The contained medium and the plant itself are also included.

また、回収されたハイドロコルチゾンなどの11βヒドロキシステロイド化合物からは、各種の誘導体を公知の方法で製造することができる。   Moreover, various derivatives can be produced by known methods from the recovered 11β-hydroxysteroid compound such as hydrocortisone.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these Examples.

(実施例1)
クルブラリア・ルナタ MCI1688株におけるステロイド11β位水酸化活性を誘導
する培養条件
クルブラリア・ルナタMCI1688をPDA寒天培地(ポテトデキストロース寒天培地(Difco))上に塗布し、28℃で9日間培養したのち、同寒天培地上に生育したクルブラリア・ルナタMCI1688株を2mLのGPCSL−II液体培地(10%(
w/v)グルコース、2%(w/v)ポリペプトン(日本製薬)、0.5%(w/v)コー
ンスティープリカー(シグマーアルドリッチ社))2本に植菌し、28℃で往復振盪培養
(300rpm)した。培養3日間経過したものを種培養液として、それぞれ全量を300mL容三角フラスコに仕込んだ50mLのGPCSL−II培地に植菌し、28℃、150rpmの旋回振盪で本培養を開始した。本培養24時間後、一方の培養液にのみ11β水酸化活性の誘導剤として20mgの20−ヒドロキシメチル−1,4−プレグナジエン−3−オン(ACROS社)粉末を加え(誘導剤添加区)、もう1本には何も加えず(
誘導剤非添加区)、28℃で150rpmの旋回振盪培養を継続した。その4時間後、各々の本培養液から2mLずつをそれぞれ2本の試験管に採取し、そこへ110μLの1.
7%(w/v) コンパウンドS(シグマーアルドリッチ社)のメタノール溶液を加え、さらに28℃にて300rpmで往復振盪することで培養を継続した。20時間後、各培養液に4mLの酢酸エチルを添加してよく混合し、2,000×g、30秒間、室温にて遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に1.5mLのメタノールを添加して残渣を溶解した。さらにこのメタノール溶液にメタノールを添加し、40倍に希釈しHPLC分析(分析条件A;以下記載)に供した。なお、同時にハイドロコルチゾン(シグマーアルドリッチ社)およびコンパウンドSの標品についても分析し、その溶出時間を確認した。
Example 1
Induction of hydroxylation activity of steroid 11β position in Culbraria lunata MCI1688 strain
The culture conditions Curvularia lunata MCI1688 which is coated on PDA agar medium (potato dextrose agar (Difco)), then cultured for 9 days at 28 ° C., a Curvularia lunata MCI1688 strain grown on the same agar medium 2 mL GPCSL -II liquid medium (10% (
w / v) glucose, 2% (w / v) polypeptone (Nippon Pharmaceutical), 0.5% (w / v) corn steep liquor (Sigma Aldrich)) (300 rpm). After 3 days of culturing, the seed culture was used as a seed culture solution, and the entire amount was inoculated into 50 mL of GPCSL-II medium charged in a 300 mL Erlenmeyer flask, and main culture was started by swirling shaking at 28 ° C. and 150 rpm. After 24 hours of main culture, 20 mg of 20-hydroxymethyl-1,4-pregnadien-3-one (ACROS) powder was added as an inducer of 11β hydroxylation activity to only one culture solution (induction agent addition section), Add nothing to the other (
Swirl shaking culture at 28 ° C. and 150 rpm was continued. Four hours later, 2 mL of each main culture was collected into two test tubes, and 110 μL of 1.
Cultivation was continued by adding a methanol solution of 7% (w / v) Compound S (Sigma Aldrich) and further shaking at 300 rpm at 28 ° C. After 20 hours, 4 mL of ethyl acetate was added to each culture and mixed well, followed by centrifugation at 2,000 × g for 30 seconds at room temperature. The upper layer was transferred to another container, and 1.5 mL of methanol was added to the solid content obtained by distilling off the solvent with a centrifugal concentrator to dissolve the residue. Further, methanol was added to the methanol solution, diluted 40 times, and subjected to HPLC analysis (analysis condition A; described below). At the same time, samples of hydrocortisone (Sigma Aldrich) and Compound S were also analyzed, and the elution time was confirmed.

分析条件A
カラム;COSMOSIL 5C18−AR−II φ4.6×150mm(ナカライテスク社)
カラム温度;40℃
検出方法;254nmの吸光度
試料注入量;5μl
溶離液;メタノール/水=50/50
溶離液流速;1mL/分
分析時間;25分.
Analysis condition A
Column: COSMOSIL 5C18-AR-II φ4.6 × 150 mm (Nacalai Tesque)
Column temperature: 40 ° C
Detection method: Absorbance at 254 nm Sample injection volume: 5 μl
Eluent: methanol / water = 50/50
Eluent flow rate; 1 mL / min Analysis time; 25 minutes.

当該分析の結果、ハイドロコルチゾン(10.8分)、及び、コンパウンドS(20.5分)と同じ溶出時間にピークを確認し、特にハイドロコルチゾンに該当するピークの面積値からハイドロコルチゾンの濃度を計算した(表1)。その結果、誘導剤添加区にてハイドロコルチゾン蓄積が増加し、当該菌株の11β水酸化活性が誘導することが確認された。   As a result of the analysis, a peak was confirmed at the same elution time as hydrocortisone (10.8 minutes) and compound S (20.5 minutes), and the concentration of hydrocortisone was determined from the area value of the peak corresponding to hydrocortisone. Calculated (Table 1). As a result, it was confirmed that hydrocortisone accumulation increased in the inducer-added section, and that 11β hydroxylation activity of the strain was induced.

Figure 0006107130
Figure 0006107130

(実施例2)
クルブラリア・ルナタ MCI1688株の染色体DNA配列における11β水酸化酵素遺伝子配列候補の絞込み
発明者らが独自で解読したクルブラリア・ルナタ MCI1688株の染色体DNA配列から推定される各種アミノ酸配列のうち、国際公開WO2002046386に配列番号2として記載されているアスペルギルス・オクラセウス ATCC18500株由来ステロイド11α水酸化酵素のアミノ酸配列と相同性の高いアミノ酸配列およびそのアミノ酸配列をコードする核酸配列をプログラムTBLASTN 2.2.19を用いて検索した。この相同性評価に用いた条件はプログラム付帯のデフォルト値を用いた。
(Example 2)
Selection of 11β-hydroxylase gene sequence candidates in the chromosomal DNA sequence of Culbularia lunata MCI1688 strain Among the various amino acid sequences deduced from the chromosomal DNA sequence of Culbularia lunata MCI1688 strain, which was independently decoded by the inventors, International Publication WO2002063866 Using the program TBLASTN 2.2.19, an amino acid sequence having high homology with the amino acid sequence of steroid 11α hydroxylase derived from Aspergillus ocraceus ATCC 18500 strain described as SEQ ID NO: 2 and a nucleic acid sequence encoding the amino acid sequence are searched. did. The conditions used for this homology evaluation were the default values attached to the program.

分析の結果、Expect valueが1.0e−10より低い合計5種類の推定アミノ酸配列(P450A1〜A5)が候補として挙がり、これらの配列についてさらなる絞込みを行った。これらの推定アミノ酸配列はそれぞれチトクロムP450蛋白質に特徴的な部分アミノ酸配列を有していることから、P450A1(配列番号1)、P450A2(配列番号2,3)、P450A3(配列番号4)、P450A4(配列番号5)、P450A5(配列番号6)とした。このうち、P450A2のアミノ酸配列についてはP450A2−1(配列番号2)およびP450A2−2(配列番号3)の2つのアミノ酸配列が同一蛋白質の異なる部分配列であると考えられる。その理由は、それぞれをコードする核酸配列が染色体上で極めて近接していること、転写における読み取り方向が同一であること、また、配列検索に用いたステロイド11α水酸化酵素アミノ酸配列の異なる部分に相同性を示すことからである。   As a result of the analysis, a total of five types of deduced amino acid sequences (P450A1 to A5) having an Expect value lower than 1.0e-10 were listed as candidates, and these sequences were further narrowed down. Since these deduced amino acid sequences have partial amino acid sequences characteristic of cytochrome P450 proteins, P450A1 (SEQ ID NO: 1), P450A2 (SEQ ID NO: 2, 3), P450A3 (SEQ ID NO: 4), P450A4 ( SEQ ID NO: 5) and P450A5 (SEQ ID NO: 6). Among these, regarding the amino acid sequence of P450A2, the two amino acid sequences of P450A2-1 (SEQ ID NO: 2) and P450A2-2 (SEQ ID NO: 3) are considered to be different partial sequences of the same protein. The reason is that the nucleic acid sequences encoding them are very close to each other on the chromosome, the reading direction in transcription is the same, and homologous to different parts of the steroid 11α hydroxylase amino acid sequence used for the sequence search. It is because it shows sex.

Figure 0006107130
Figure 0006107130

(実施例3)
染色体DNA配列における遺伝子領域の推定
クルブラリア・ルナタ MCI1688株の染色体DNA配列より、上記5種類の推定アミノ酸配列をコードする遺伝子領域を含むDNA配列をそれぞれ配列番号7〜11に記載した。
(Example 3)
Estimated gene regions in chromosomal DNA sequences From the chromosomal DNA sequences of Culbularia lunata MCI1688 strain, DNA sequences containing gene regions encoding the above five deduced amino acid sequences are shown in SEQ ID NOs: 7 to 11, respectively.

これらのDNA配列を検索配列としてBLASTX2,2,27プログラムを用いて公共の蛋白質データベースに対し、デフォルトの条件にて相同性高い蛋白質の検索を実施した。   Using these DNA sequences as search sequences, the BLASTX 2, 2, 27 program was used to search for proteins with high homology under the default conditions against public protein databases.

この検索により抽出された既知のアミノ酸配列は、クルブラリア・ルナタ MCI1688株の染色体DNA配列より見出された推定チトクロムP450蛋白質5種類それぞれと最も相同性が高い既知のアミノ酸配列と考えられるため、これら得られた配列との比較を参考に翻訳開始コドン及び終止コドンの染色体DNA配列上における位置をイントロンの存在可能性も考慮しながら推定した。配列によっては、開始コドンが明瞭でないもの、エキソンと思われる領域に終止コドンが見出されるものが含まれ、完全に予測することは
困難だったが、上記の推定アミノ酸配列から以下のP450A1〜A5の5種類のDNA配列を11β水酸化酵素のDNA配列候補とした(配列番号12〜16)。
The known amino acid sequences extracted by this search are considered to be known amino acid sequences having the highest homology with each of the five putative cytochrome P450 proteins found from the chromosomal DNA sequence of Curbularia lunata MCI1688. The position of the translation start codon and the stop codon on the chromosomal DNA sequence was estimated with reference to the comparison with the obtained sequence in consideration of the possibility of the presence of introns. Depending on the sequence, the start codon is not clear, and a stop codon is found in a region considered to be an exon, which was difficult to predict completely. Five types of DNA sequences were used as 11β hydroxylase DNA sequence candidates (SEQ ID NOs: 12 to 16).

(実施例4)
クルブラリア・ルナタ MCI1688株の染色体DNA配列における11β水酸化酵素DNA配列候補のさらなる絞込み
クルブラリア・ルナタMCI1688をPDA寒天培地上に塗布し、28℃で9日間培養したのち、同寒天培地上に生育したクルブラリア・ルナタMCI1688株を2mLのGPCSL−II液体培地(10%(w/v)グルコース、2%(w/v)ポリペプトン、0.5%(w/v)コーンスティープリカー)6本に植菌し、28℃で往復振盪培養(300rpm)した。培養3日間経過したものを種培養液として、それぞれ全量を300mL容三角フラスコに仕込んだ50mLのGPCSL−II培地(計6本)に植菌し、28℃、150rpmの旋回振盪で本培養を開始した。本培養24時間後、うち4本の培養液に11β水酸化活性の誘導剤として20mgの20−ヒドロキシメチル−1,4−プレグナジエン−3−オン粉末を加え(誘導剤添加区)、もう2本には何も加えず(誘導剤非添加区)、28℃で150rpmの旋回振盪培養を継続した。誘導剤添加した直後、誘導剤添加区と誘導剤非添加区のフラスコ1本ずつの振盪培養を停止し、氷上で15分冷却後、遠
心分離(2,000xg、4℃、10分)により、菌体画分を集めた。この画分を20mLの0.9%(w/v)NaCl水溶液に懸濁し、再度遠心分離により菌体画分を集め、−80℃で凍結保存した。誘導剤添加区については誘導剤添加後1.4時間及び2.7時間にそれぞれ1本のフラスコの培養を停止し、同様の処理により菌体画分−80℃で凍結保存した。さらに、誘導剤添加してから4時間後には残りの誘導剤添加区および非添加区のフラスコ1本ずつについても上記と同様に培養を停止して、菌体を−80℃で凍結保存した。
Example 4
Further narrowing down of 11β hydroxylase DNA sequence candidates in the chromosomal DNA sequence of Culbularia lunata MCI1688 strain Culbularia lunata MCI1688 was applied on PDA agar medium, cultured at 28 ° C. for 9 days, and then culbularia grown on the agar medium -Inoculate 6 LmLata MCI1688 strains into 2 mL of GPSL-II liquid medium (10% (w / v) glucose, 2% (w / v) polypeptone, 0.5% (w / v) corn steep liquor) And reciprocal shaking culture (300 rpm) at 28 ° C. Inoculated into 50 mL of GPCSL-II medium (total of 6 tubes) in a 300 mL Erlenmeyer flask, using 3 days after culture as seed culture solution, and started main culture by swirling at 28 ° C and 150 rpm did. After 24 hours of main culture, 20 mg of 20-hydroxymethyl-1,4-pregnadien-3-one powder as an inducer of 11β hydroxylation activity was added to 4 of the cultures (induction agent added section), and 2 more. Nothing was added to (induction agent-free group), and swirling shaking culture at 28 ° C. and 150 rpm was continued. Immediately after adding the inducer, the shaking culture of each flask in the inducer added group and in the non-inducer added group was stopped, cooled on ice for 15 minutes, and then centrifuged (2,000 × g, 4 ° C., 10 minutes), The bacterial cell fraction was collected. This fraction was suspended in 20 mL of 0.9% (w / v) NaCl aqueous solution, and the bacterial cell fraction was collected again by centrifugation and stored frozen at -80 ° C. In the inducer-added section, the culture of one flask was stopped at 1.4 hours and 2.7 hours after addition of the inducer, respectively, and the cell fraction was stored frozen at −80 ° C. by the same treatment. Further, 4 hours after the addition of the inducer, the culture was stopped in the same manner as above for each of the remaining flasks with and without the inducer, and the cells were stored frozen at -80 ° C.

凍結保存した菌体にメタルコーンを加えてビーズショッカー(安井器械社製)にて回転速度1700rpmで20秒間(4℃)の菌体破砕処理を行った。このあと、メタルコーンを取り除いた処理物について、ISOGENキット(ニッポンジーン社)を用いて、添付のマニュアルインストラクションに従い総RNAを抽出し、得られたRNA画分を100μLのDEPC処理水(ジエチルピロカーボネート処理水)に溶解した。このうち42.5μLを別に取り分け、これに5μLの10×DNaseI bufferと2.5μL
の5unit/μL DNaseI水溶液(タカラバイオ社)を添加し、混合後37℃で2時間インキュベートすることで染色体DNAの共存を排除した。DNaseI処理後、再度ISOGENキットを用いて総RNAを抽出し、最終的に0.5μg/μLとなるようDEPC処理水に溶解した。
Metal corn was added to the frozen cells, and the cells were crushed for 20 seconds (4 ° C.) at a rotation speed of 1700 rpm using a bead shocker (manufactured by Yasui Instruments Co., Ltd.). Then, total RNA was extracted from the treated product from which the metal corn had been removed using the ISOGEN kit (Nippon Gene) according to the attached manual instructions. The obtained RNA fraction was treated with 100 μL of DEPC-treated water (diethyl pyrocarbonate treated) Dissolved in water). Of these, 42.5 μL was separated, and 5 μL of 10 × DNaseI buffer and 2.5 μL
Of 5 unit / μL DNase I aqueous solution (Takara Bio Inc.) was added, and the mixture was incubated at 37 ° C. for 2 hours to eliminate the coexistence of chromosomal DNA. After DNase I treatment, total RNA was extracted again using the ISOGEN kit and dissolved in DEPC-treated water to a final concentration of 0.5 μg / μL.

6種類の0.5μg/μL RNA水溶液2μLをそれぞれ鋳型として、PrimeScript High Fidelity RT−PCR Kit(タカラバイオ社)により逆転写反応を行うことで、6種それぞれのcDNA水溶液を20μLずつ調製した。逆転写反応の条件はPrimeScript High Fidelity RT−PCR Kit(タカラバイオ社)添付のマニュアルインストラクションに従い、プライマーとして同キット付属のOligo dT primerを用いた。   By performing reverse transcription reaction with PrimeScript High Fidelity RT-PCR Kit (Takara Bio Inc.) using 6 μl of 0.5 μg / μL RNA aqueous solution as a template, 20 μL of each of 6 types of cDNA aqueous solution was prepared. The conditions for the reverse transcription reaction were according to the manual instructions attached to the PrimeScript High Fidelity RT-PCR Kit (Takara Bio Inc.), and Oligo dT primer attached to the kit was used as a primer.

誘導剤添加区の菌体から得られた4種類(誘導剤添加直後、1.4時間後、2.7時間後、4時間後)のcDNA調製液をそれぞれ8μLずつ混合した。このcDNA混合液1μLを鋳型として、それぞれP450A1からP450A5の推定N末端およびC末端部位をコードするDNA配列を基に作成したフォワードプライマーおよびリバースプライマーを5pmolesずつ、2倍濃度のPrimeSTAR Max Premixを12.5μL、およびこれらに水を加えて合計25μLとして、1サイクルが98℃ 10秒→50℃ 15秒→72℃ 90秒からなる反応を30サイクル実施した。   8 μL each of four kinds of cDNA preparations obtained from the cells in the inducer-added section (immediately after addition of the inducer, 1.4 hours later, 2.7 hours later, and 4 hours later) were mixed. Using 1 μL of this cDNA mixed solution as a template, 5 pmoles each of a forward primer and a reverse primer prepared based on DNA sequences encoding the putative N-terminal and C-terminal sites of P450A1 to P450A5, respectively, at a double concentration of PrimeSTAR Max Premix at 12. 5 μL, and water were added to make a total of 25 μL, and a cycle consisting of 98 ° C. 10 seconds → 50 ° C. 15 seconds → 72 ° C. 90 seconds was performed 30 cycles.

使用プライマー
P450A1
P450A1-F1: ATGGATACCCAGACTGTCGAGCTG(配列番号17)
P450A1-R1: CTACACTACTACTCTCTTGAAAGC(配列番号18)
P450A2
P450A2-F1: ATGATTATTGAGCTCTTCTCATC(配列番号19)
P450A2-R1: CTACACCAGTATACTCGGTTCTCC(配列番号20)
P450A3
P450A3-F1: ATGGCCGGAGACGAAGTGAG(配列番号21)
P450A3-R1: TCACCCATCACTAGACGTCCAC(配列番号22)
P450A4
P450A4-F1: ATGGGGATCCCTTATGTCTTGC(配列番号23)
P450A4-R1: TTACCATAGCACATCTTGCGTTG(配列番号24)
P450A5
P450A5-F1: ATGGGCAACTTTTTTGACAACTC(配列番号25)
P450A5-R1: TTAAATCTTTGGGTTTGCGAGGTC(配列番号26)
Primer used
P450A1
P450A1-F1: ATGGATACCCAGACTGTCGAGCTG (SEQ ID NO: 17)
P450A1-R1: CTACACTACTACTCTCTTGAAAGC (SEQ ID NO: 18)
P450A2
P450A2-F1: ATGATTATTGAGCTCTTCTCATC (SEQ ID NO: 19)
P450A2-R1: CTACACCAGTATACTCGGTTCTCC (SEQ ID NO: 20)
P450A3
P450A3-F1: ATGGCCGGAGACGAAGTGAG (SEQ ID NO: 21)
P450A3-R1: TCACCCATCACTAGACGTCCAC (SEQ ID NO: 22)
P450A4
P450A4-F1: ATGGGGATCCCTTATGTCTTGC (SEQ ID NO: 23)
P450A4-R1: TTACCATAGCACATCTTGCGTTG (SEQ ID NO: 24)
P450A5
P450A5-F1: ATGGGCAACTTTTTTGACAACTC (SEQ ID NO: 25)
P450A5-R1: TTAAATCTTTGGGTTTGCGAGGTC (SEQ ID NO: 26)

それぞれのPCR反応液についてアガロースゲル用いた電気泳動で分析したところ、P450A1およびP450A3のプライマーペアを添加したPCR反応液において約1.5kbp付近の移動度にDNAの増幅を確認した。その一方で、P450A2、P450A4、及び、P450A5のプライマーペアを用いたPCR反応液の電気泳動ではDNAの増幅を確認できなかった。上記得られた結果より、候補配列をさらにP450A1及びP450A3に絞り込んだ。   Each PCR reaction solution was analyzed by electrophoresis using an agarose gel. As a result, amplification of DNA was confirmed at a mobility of about 1.5 kbp in the PCR reaction solution to which a primer pair of P450A1 and P450A3 was added. On the other hand, DNA amplification could not be confirmed by electrophoresis of PCR reaction solution using P450A2, P450A4 and P450A5 primer pairs. From the results obtained above, candidate sequences were further narrowed down to P450A1 and P450A3.

(実施例5)
P450A1及びP450A3の転写レベル解析による誘導効果の確認
さらに、上記において調製したcDNA溶液それぞれ10μLに190μLのDEPC処理水を加えて20倍に希釈し、うち2μLをリアルタイムPCRの鋳型試料とした。これにそれぞれ5pmolesのP450A1、P450A3、アクチン、グリセルアルデヒド−3−リン酸脱水素酵素、及び、40SリボゾームRNA遺伝子特異的なプライマー(以下、それぞれP450A1−F4及びP450A1−R4、P450A3−F4及びP450A3−R4、actin−F2及びactin−R2、GAPDH−F1及びGAPDH−R1、そして、40S−F2及び40S−R2)、1μLのLight Cycler Fast Start DNA Master SYBR Green I(
ロシェ・ダイアグノスティクス社)、20nmolesの塩化マグネシウム水溶液、及び
、DEPC処理水を加えて液量10μLとして、Light Cycler(ロシェ・ダイアグノスティクス社)を用いてリアルタイムPCRによる発現レベルの解析を実施した。
(Example 5)
Confirmation of induction effect by transcription level analysis of P450A1 and P450A3 Further, 190 μL of DEPC-treated water was added to 10 μL of each of the cDNA solutions prepared above and diluted 20 times, and 2 μL was used as a template sample for real-time PCR. To this, 5 pmoles of P450A1, P450A3, actin, glyceraldehyde-3-phosphate dehydrogenase, and 40S ribosomal RNA gene-specific primers (hereinafter, P450A1-F4 and P450A1-R4, P450A3-F4 and P450A3, respectively) -R4, actin-F2 and actin-R2, GAPDH-F1 and GAPDH-R1, and 40S-F2 and 40S-R2), 1 μL of Light Cycler Fast Start DNA Master SYBR Green I (
Roche Diagnostics), 20 nmoles magnesium chloride aqueous solution, and DEPC-treated water were added to adjust the volume to 10 μL, and the expression level was analyzed by real-time PCR using Light Cycler (Roche Diagnostics). .

使用プライマー
P450A1
P450A1-F4: GTTTTGCGATTCACTGGACCTAC(配列番号27)
P450A1-R4: GAAGGGTAGAATGCGTTGTCTTG(配列番号28)
P450A3
P450A3-F4: CTATACCAGAAGGCATCCATTTCC(配列番号29)
P450A3-R4: GCCTCATACTCTTCTCTCGGTCTC(配列番号30)
アクチン
actin-F2: GACCGTATGCAGAAGGAAATCAC(配列番号31)
actin-R2: AAGGTGGAGAGCGAAGCAAG(配列番号32)
グリセルアルデヒド−3−リン酸脱水素酵素
GAPDH-F1: ATGCACGCGATTGACACGTCCTC(配列番号33)
GAPDH-R1: CTAAGCGTTGCCATCAATCTTG(配列番号34)
40SリボゾームRNA
40S-F2: ATCACGTTGACGCCTCTGG(配列番号35)
40S-R2: CTCGTCCTGCTCAAGAACACC(配列番号36)
Primer used
P450A1
P450A1-F4: GTTTTGCGATTCACTGGACCTAC (SEQ ID NO: 27)
P450A1-R4: GAAGGGTAGAATGCGTTGTCTTG (SEQ ID NO: 28)
P450A3
P450A3-F4: CTATACCAGAAGGCATCCATTTCC (SEQ ID NO: 29)
P450A3-R4: GCCTCATACTCTTCTCTCGGTCTC (SEQ ID NO: 30)
Actin
actin-F2: GACCGTATGCAGAAGGAAATCAC (SEQ ID NO: 31)
actin-R2: AAGGTGGAGAGCGAAGCAAG (SEQ ID NO: 32)
Glyceraldehyde-3-phosphate dehydrogenase
GAPDH-F1: ATGCACGCGATTGACACGTCCTC (SEQ ID NO: 33)
GAPDH-R1: CTAAGCGTTGCCATCAATCTTG (SEQ ID NO: 34)
40S ribosomal RNA
40S-F2: ATCACGTTGACGCCTCTGG (SEQ ID NO: 35)
40S-R2: CTCGTCCTGCTCAAGAACACC (SEQ ID NO: 36)

なお、PCRプログラムについては対象の遺伝子によって以下のとおりとし、転写量は2次微分最大法によりCv値を求めた。
95℃・10秒→57℃・10秒→72℃・6秒(P450A1、P450A3、及び、アクチン)
95℃・10秒→54℃・10秒→72℃・6秒(グリセルアルデヒド−3−リン酸脱水素酵素)
95℃・10秒→57℃・10秒→72℃・4秒(40SリボゾームRNA)
The PCR program was as follows depending on the gene of interest, and the Cv value was determined by the second derivative maximum method for the transcription amount.
95 ° C · 10 seconds → 57 ° C · 10 seconds → 72 ° C · 6 seconds (P450A1, P450A3 and actin)
95 ° C., 10 seconds → 54 ° C., 10 seconds → 72 ° C., 6 seconds (glyceraldehyde-3-phosphate dehydrogenase)
95 ° C · 10 seconds → 57 ° C · 10 seconds → 72 ° C · 4 seconds (40S ribosomal RNA)

Figure 0006107130
Figure 0006107130

アクチン、グリセルアルデヒド−3−リン酸脱水素酵素、及び、40SリボゾームRNA遺伝子の転写レベルは誘導剤非添加区試料において誘導剤添加区試料よりやや高い値となっているが、P450A1およびP450A3遺伝子の転写レベルは誘導剤添加直後に同等またはP450A1については高い転写レベルであった。この結果より、P450A1およびP450A3は誘導剤添加により転写が誘導されるが、その誘導効果はP450A1においてP450A3における効果より高いと示唆された。   The transcription levels of actin, glyceraldehyde-3-phosphate dehydrogenase, and 40S ribosomal RNA gene are slightly higher in the non-inducing agent group sample than in the inducing agent group sample, but the P450A1 and P450A3 genes The transcription level was equal to that immediately after the addition of the inducer or was high for P450A1. From these results, it was suggested that P450A1 and P450A3 were induced to be transcribed by addition of an inducer, but that the induction effect was higher in P450A1 than in P450A3.

(実施例6)
絞り込んだ配列候補遺伝子の取得
pUC118プラスミド(タカラバイオ社製)を制限酵素HincII(タカラバイオ社)で処理して得られたDNAをさらにBAPC75(タカラバイオ社製)による脱リン酸化処理を施した。これにより得られたDNAを含む水溶液とP450A1のPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>(タカラバイオ社)を加えて連結反応を行った。同様に、pMW119プラスミド(ニッポンジーン社製)を制限酵素SmaI(タカラバイオ社)で処理して得られたDNAについてさらにBAPC75により脱リン酸化処理を施したDNAを含む水溶液とP450A3のPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。それぞれ得られた反応液を用いて、E.coli DH5α(タカラバイオ社)を形質転換したのち、その形質転換溶液を50μg/mLのアンピシリン ナト
リウム塩(シグマーアルドリッチ社)を含有するLB寒天培地(1%Bactoトリプトン(Difco)、0.5% Bacto酵母エキス(Difco)、1% 塩化ナトリウム、2% 寒天)に塗布し、一晩37℃でインキュベートした。その結果、形質転換されたと思われるE.coliのコロニーがLB寒天培地上に出現していた。これらのコロニーについて、それぞれ5pmolesのDNAプライマーM13−F1及びM13−R1、2nmolesのdNTP、1μLの10倍濃縮Extaqバッファー(タカラバイオ社製)、0.05μLのExtaq水溶液(タカラバイオ社)、及び水を加えて合計10μLから成るPCR反応液を調製し、サーマルサイクラーを用いてコロニーPCRを実施した。
M13-F1: GGTTTTCCCAGTCACGAC(配列番号37)
M13-R1: CGGATAACAATTTCACACAGG(配列番号38)
(Example 6)
Acquisition of narrowed sequence candidate genes DNA obtained by treating pUC118 plasmid (Takara Bio Inc.) with restriction enzyme HincII (Takara Bio Inc.) was further subjected to dephosphorylation with BAPC75 (Takara Bio Inc.). The aqueous solution containing the DNA thus obtained and a PCR reaction solution of P450A1 were mixed, and DNA Ligation Kit <Mighty Mix> (Takara Bio Inc.) was added to carry out a ligation reaction. Similarly, an aqueous solution containing DNA obtained by further dephosphorylating the DNA obtained by treating pMW119 plasmid (manufactured by Nippon Gene) with restriction enzyme SmaI (Takara Bio) with BAPC75 and a PCR reaction solution of P450A3 are mixed. Then, DNA Ligation Kit <Mighty Mix> was added to perform a ligation reaction. Using each of the obtained reaction solutions, E.I. After transforming E. coli DH5α (Takara Bio), the transformation solution was treated with LB agar medium (1% Bactotryptone (Difco), 0.5% Bacto containing 50 μg / mL ampicillin sodium salt (Sigma Aldrich)). Yeast extract (Difco), 1% sodium chloride, 2% agar) and incubated overnight at 37 ° C. As a result, E. coli seems to have been transformed. E. coli colonies appeared on the LB agar medium. For these colonies, 5 pmoles of DNA primers M13-F1 and M13-R1, 2 nmoles of dNTP, 1 μL of 10-fold concentrated Extaq buffer (Takara Bio), 0.05 μL of Extaq aqueous solution (Takara Bio), and water Was added to prepare a PCR reaction solution consisting of a total of 10 μL, and colony PCR was performed using a thermal cycler.
M13-F1: GGTTTTCCCAGTCACGAC (SEQ ID NO: 37)
M13-R1: CGGATAACAATTTCACACAGG (SEQ ID NO: 38)

その反応における温度変化プログラムは、95℃、1分に引き続き、1サイクルが95℃、30秒→50℃、30秒→72℃、1.5分から成る反応を30サイクル、そして72℃、2分で終了するとした。このコロニーPCRの結果、それぞれの形質転換体コロニーについて、約1.5kbpのDNAが増幅されたことを確認したので、それぞれコロニーはpUC118−P450A1またはpMW119−P450A3というベクターを有すると考えられた。さらにこれらそれぞれのコロニーを2mLのLB液体培地(1% Bactoトリプトン(Difco)、0.5% Bacto酵母エキス(Difco)、1% 塩化ナトリウム)に植菌し、37℃、300rpm(往復振盪)で一晩培養し、生育した菌体を遠心分離により集め、QIAprep Spin Miniprep Kit(キアゲン社製)を用いて、プラスミドDNAを抽出した。これらのプラスミドDNAを鋳型として用いた、GenomeLab dye terminator cycle
sequencing with quick start kit(ベックマンコールター社製)によるPCR反応(96℃、30秒に引き続き、96℃、20秒→50℃、20秒→60℃、4分を30サイクル実施する温度プログラム用いた)を実施し、DNAシークエンサーCEQ8000によりDNA配列を解析した。なお、pUC118−P450A1のDNA配列解析に用いたプライマーは、M13−F1、M13−R1、及び、P450A1−F3であり、pMW119−P450A3のDNA配列解析に用いたプライマーは、M13−F1、M13−R1、P450A3−F3、及び、P450A3−R4であった。
P450A1-F3: AAGACGTATATGCCGCCATGTGAC(配列番号39)
P450A3-F3: TTCGACCAACCTGACAACGTTCTC(配列番号40)
P450A3-R4: GCCTCATACTCTTCTCTCGGTCTC(配列番号41)
The temperature change program in the reaction is 95 ° C., 1 minute, followed by 30 cycles of reaction consisting of 95 ° C., 30 seconds → 50 ° C., 30 seconds → 72 ° C., 1.5 minutes, and 72 ° C., 2 minutes It was supposed to end with. As a result of this colony PCR, it was confirmed that about 1.5 kbp of DNA was amplified for each of the transformant colonies. Therefore, each colony was considered to have the vector pUC118-P450A1 or pMW119-P450A3. Furthermore, each of these colonies was inoculated into 2 mL of LB liquid medium (1% Bactotryptone (Difco), 0.5% Bacto yeast extract (Difco), 1% sodium chloride), and 37 ° C., 300 rpm (reciprocal shaking). The cells were cultured overnight, and the grown cells were collected by centrifugation, and plasmid DNA was extracted using QIAprep Spin Miniprep Kit (manufactured by Qiagen). GenomeLab dye terminator cycle using these plasmid DNAs as templates
PCR reaction using sequencing with quick start kit (manufactured by Beckman Coulter) (96 ° C, 30 seconds followed by 96 ° C, 20 seconds → 50 ° C, 20 seconds → 60 ° C, 4 minutes using a temperature program for 4 cycles) The DNA sequence was analyzed with a DNA sequencer CEQ8000. The primers used for the DNA sequence analysis of pUC118-P450A1 are M13-F1, M13-R1, and P450A1-F3. The primers used for the DNA sequence analysis of pMW119-P450A3 are M13-F1, M13- R1, P450A3-F3, and P450A3-R4.
P450A1-F3: AAGACGTATATGCCGCCATGTGAC (SEQ ID NO: 39)
P450A3-F3: TTCGACCAACCTGACAACGTTCTC (SEQ ID NO: 40)
P450A3-R4: GCCTCATACTCTTCTCTCGGTCTC (SEQ ID NO: 41)

このDNA配列解析の結果、P450A1およびP450A3をコードするcDNA配列はそれぞれ、配列番号42,44と決められた。
さらに、上記cDNA配列より、P450A1およびP450A3の推定アミノ酸配列はそれぞれ、配列番号43,45と推定された。
As a result of this DNA sequence analysis, the cDNA sequences encoding P450A1 and P450A3 were determined as SEQ ID NOS: 42 and 44, respectively.
Furthermore, from the cDNA sequence, the deduced amino acid sequences of P450A1 and P450A3 were deduced as SEQ ID NOs: 43 and 45, respectively.

(実施例7)
P450A1及びP450A3の発現用ベクター調製
(1)pKIM−URA−NCP1の作成
サッカロミセス・セレビシエ S288c株のNCP1(NADP−チトクロムP450還元酵素)遺伝子を取得するために、以下の操作を行った。まず、サッカロミセス・セレビシエ S288c株をYPD寒天培地(1% Bacto酵母エキス、2% ペプトン、2% グルコース、2% 寒天)上に接種し、30℃で3日間生育させた。当該寒天培地上に生育したサッカロミセス・セレビシエ S288cを2mLのYPD液体培地(1% Bacto酵母エキス、2% ペプトン、2% グルコース)に接種し、30℃、180rpmで一晩旋回振盪培養した。培養後、5,000×g、3分、室温の遠心分離
で沈殿画分を取得し、この沈殿画分を懸濁緩衝液(0.1M 塩化ナトリウム、10mM
トリス−塩酸(pH7.5)、1mM エチレンジアミン四酢酸二ナトリウム、0.1% ドデシル硫酸ナトリウム)に懸濁したところにガラスビーズを加え、冷却しながら激しく振盪することにより菌体破砕を行った。そこへ10mM トリス−塩酸(pH8.0)で飽和したフェノール/クロロホルム/イソアミルアルコール(25/24/1)溶液を添加し、さらに振盪することで蛋白質を変性させた。これを18,000×g、5分、室温で遠心分離後、上層の液を別に移し、さらに等量のクロロホルムを添加した。振盪後、18,000×g、5分、室温で遠心分離し、上層の液をさらに別に移した。その液に3M酢酸ナトリウム水溶液、及び、エタノールを添加したのち、18,000×g、20分間、4℃で遠心分離することで核酸画分を沈殿させた。この沈殿に70%エタノール水溶液を添加し、再度振盪後、18,000×g、5分間、4℃で遠心分離し、上清を除いた。得られた沈殿を乾燥したのち、水を添加することでサッカロミセス・セレビシエ S288cの染色体DNA水溶液を調製した。このDNA5ngに、それぞれ10pmolesのプライマーNCP1−F1およびNCP1−R1、25μLのPrimeSTAR
Max Premix、及び、水を加えて合計50μLとすることでPCR反応液を調製し、98℃・10秒→50℃・15秒→72℃・10秒の30サイクルから成るPCR反応を行った。
NCP1-F1: GGGCCCAAAAAAATGCCGTTTGGAATAGAC(配列番号46)
NCP1-R1: AAGCTTACCAGACATCTTCTTGG(含HindIII) (配列番号47)
(Example 7)
Preparation of vector for expression of P450A1 and P450A3 (1) Preparation of pKIM-URA-NCP1 In order to obtain NCP1 (NADP-cytochrome P450 reductase) gene of Saccharomyces cerevisiae S288c strain, the following operation was performed. First, Saccharomyces cerevisiae S288c strain was inoculated on YPD agar medium (1% Bacto yeast extract, 2% peptone, 2% glucose, 2% agar) and grown at 30 ° C. for 3 days. Saccharomyces cerevisiae S288c grown on the agar medium was inoculated into 2 mL of YPD liquid medium (1% Bacto yeast extract, 2% peptone, 2% glucose), and cultured with shaking at 30 ° C. and 180 rpm overnight. After incubation, a precipitate fraction is obtained by centrifugation at 5,000 × g for 3 minutes at room temperature, and this precipitate fraction is suspended in a suspension buffer (0.1 M sodium chloride, 10 mM).
Glass beads were added to the suspension in Tris-hydrochloric acid (pH 7.5), 1 mM ethylenediaminetetraacetic acid disodium, 0.1% sodium dodecyl sulfate), and the cells were disrupted by vigorous shaking while cooling. A phenol / chloroform / isoamyl alcohol (25/24/1) solution saturated with 10 mM Tris-hydrochloric acid (pH 8.0) was added thereto, and the protein was denatured by shaking. After centrifuging this at 18,000 × g for 5 minutes at room temperature, the upper layer solution was transferred separately, and further an equal amount of chloroform was added. After shaking, the mixture was centrifuged at 18,000 × g for 5 minutes at room temperature, and the upper layer liquid was further transferred. After adding 3M sodium acetate aqueous solution and ethanol to the liquid, the nucleic acid fraction was precipitated by centrifugation at 18,000 × g for 20 minutes at 4 ° C. A 70% aqueous ethanol solution was added to the precipitate, shaken again, and centrifuged at 18,000 × g for 5 minutes at 4 ° C. to remove the supernatant. After the obtained precipitate was dried, an aqueous chromosomal DNA solution of Saccharomyces cerevisiae S288c was prepared by adding water. To 5 ng of this DNA, 10 pmoles of primers NCP1-F1 and NCP1-R1, respectively, 25 μL of PrimeSTAR
A PCR reaction solution was prepared by adding Max Premix and water to make a total of 50 μL, and a PCR reaction consisting of 30 cycles of 98 ° C., 10 seconds → 50 ° C., 15 seconds → 72 ° C., 10 seconds was performed.
NCP1-F1: GGGCCCAAAAAAATGCCGTTTGGAATAGAC (SEQ ID NO: 46)
NCP1-R1: AAGCTTACCAGACATCTTCTTGG (including HindIII) (SEQ ID NO: 47)

反応終了後の液をアガロース電気泳動で分析したところ、約2kbpのDNAが増幅していることを確認した。予め制限酵素HincIIで切断し、BAPC75を用いて脱リン酸化処理して調製したpUC118プラスミドベクター処理物にPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン
ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。このプラスミドを制限酵素SmaIおよびHindIIIで二重切断したところ、アガロース電気泳動で2.1kbpおよび3.2kbpのDNAを検出したことからpUC118−NCP1の作成を確認した。
When the liquid after the reaction was analyzed by agarose electrophoresis, it was confirmed that about 2 kbp of DNA was amplified. The PCR reaction solution was mixed with the pUC118 plasmid vector treatment product previously cleaved with the restriction enzyme HincII and dephosphorylated using BAPC75, and the DNA ligation kit <Mighty Mix> was added to perform the ligation reaction. . Thereafter, E. coli was used with the reaction solution. E. coli DH5α was transformed and spread on LB agar medium containing 50 μg / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight. QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When this plasmid was double-cut with restriction enzymes SmaI and HindIII, DNAs of 2.1 kbp and 3.2 kbp were detected by agarose electrophoresis, so that the production of pUC118-NCP1 was confirmed.

(2)pKIM−URAの作成
プラスミドベクターpMW119 DNA5ngを鋳型として、それぞれ10pmolesのプライマーpMW−F1及びpMW−R1、25μLのPrimeSTAR Max Premix、及び、水を加えて合計50μLとすることでPCR反応液を調製し、98℃・10秒→55℃・5秒→72℃・5秒が30サイクルから成るPCR反応を行った。
pMW-F1: CTACGGGGTCTGACGCTC(配列番号48)
pMW-R1: ACGTTTTCCAATGATGAGCAC(配列番号49)
(2) Preparation of pKIM-URA Using 5 ng of plasmid vector pMW119 DNA as a template, 10 pmoles primers pMW-F1 and pMW-R1, 25 μL PrimeSTAR Max Premix, and water to make a total of 50 μL The PCR reaction was carried out by preparing 30 cycles of 98 ° C., 10 seconds → 55 ° C., 5 seconds → 72 ° C., 5 seconds.
pMW-F1: CTACGGGGTCTGACGCTC (SEQ ID NO: 48)
pMW-R1: ACGTTTTCCAATGATGAGCAC (SEQ ID NO: 49)

これにより得られた0.8kbpのPCR反応産物を制限酵素FspI(New England Biolab社)で処理すると、0.45kbpおよび0.38kbpのDNAが得られるが、このうち、0.45kbpのDNA断片を取得した。プラスミドベクターpMW119 DNAを制限酵素FspIで処理して得られる2.9kbpと1.3kbpのDNAのうち、前者と上記0.45kbpのDNAを混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン
ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベ
ートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたプラスミドを制限酵素AatII及びScaIで二重処理したところ、予想通り2.9kbp及び0.4kbpのDNA断片が確認されたことから、pMW119よりマルチクローニングサイトを除去した形のプラスミドpMW119dを構築した。次に、このpMW119dを制限酵素AatII及びScaIで二重処理したのち、DNA Blunting Kit(タカラバイオ社)による末端平滑化を施して得られる2.9kbp及び0.4kbpのDNA断片のうち、2.9kbpのDNAを取得した。一方、pESC−LEU(アジレント社)を制限酵素MluI及びScaIによる処理後にDNA Blunting Kitを用いた末端平滑化処理して得られる6.2kbp及び1.6kbpのDNAのうち、6.2kbp断片を取得し、これに上記の2.9kbpDNAを混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたプラスミドDNAを制限酵素ScaI処理したところ、予想通り9.1kbpのDNA断片が得られたことから、pESC−URAのpUCoriをpMW119由来のpSC101oriに置き換えたプラスミドpESC−SC101−LEUを構築した。
1ngのpESC−URA(アジレント社)DNAを鋳型に、それぞれ10molesのプライマーESCURA−F1およびESCURA−R1に加え、25μLのPrimeSTAR Max Premix、及び、水を加えて合計50μLとすることでPCR反応液を調製し、98℃・10秒→55℃・5秒→72℃・6秒が30サイクルから成るPCR反応を行った。
ESCURA-F1: GGGCCACAGCTTTTCAATTCAATTCATC(配列番号50)
ESCURA-R1: GGGTAATAACTGATATAATTAAATTGAAGC(配列番号51)
When the PCR reaction product of 0.8 kbp thus obtained is treated with the restriction enzyme FspI (New England Biolab), DNA of 0.45 kbp and 0.38 kbp is obtained, of which a DNA fragment of 0.45 kbp is obtained. I got it. Among the 2.9 kbp and 1.3 kbp DNAs obtained by treating the plasmid vector pMW119 DNA with the restriction enzyme FspI, the former and the above 0.45 kbp DNA are mixed, and DNA Ligation Kit <Mighty Mix> is added, A ligation reaction was performed. Thereafter, E. coli was used with the reaction solution. E. coli DH5α was transformed and spread on LB agar medium containing 50 μg / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight. QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When the obtained plasmid was double-treated with restriction enzymes AatII and ScaI, DNA fragments of 2.9 kbp and 0.4 kbp were confirmed as expected. Thus, a plasmid pMW119d in which a multicloning site was removed from pMW119 was constructed. did. Next, this pMW119d is double-treated with restriction enzymes AatII and ScaI, and then subjected to end blunting with DNA Blunting Kit (Takara Bio Inc.). Among the 2.9 kbp and 0.4 kbp DNA fragments obtained, 2. 9 kbp DNA was obtained. On the other hand, a 6.2 kbp fragment was obtained from the 6.2 kbp and 1.6 kbp DNAs obtained by subjecting pESC-LEU (Agilent) to end blunting using DNA Blunting Kit after treatment with restriction enzymes MluI and ScaI. Then, the above-mentioned 2.9 kbp DNA was mixed, and DNA Ligation Kit <Mighty Mix> was added to carry out a ligation reaction. Thereafter, E. coli was used with the reaction solution. E. coli DH5α was transformed and spread on LB agar medium containing 50 μg / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight. QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When the obtained plasmid DNA was treated with the restriction enzyme ScaI, a DNA fragment of 9.1 kbp was obtained as expected, so that a plasmid pESC-SC101-LEU was constructed by replacing pUCori of pESC-URA with pSC101ori derived from pMW119. .
Using 1 ng of pESC-URA (Agilent) DNA as a template, 10 moles of primers ESCURA-F1 and ESCURA-R1, respectively, 25 μL PrimeSTAR Max Premix, and water to make a total of 50 μL. The PCR reaction was carried out by preparing 30 cycles of 98 ° C., 10 seconds → 55 ° C., 5 seconds → 72 ° C., 6 seconds.
ESCURA-F1: GGGCCACAGCTTTTCAATTCAATTCATC (SEQ ID NO: 50)
ESCURA-R1: GGGTAATAACTGATATAATTAAATTGAAGC (SEQ ID NO: 51)

これにより得られた1.1kbpのPCR反応産物を、別途pMW119を制限酵素SmaIで処理した後、BAPC75で脱リン酸化処理したDNA断片と混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたDNAを制限酵素SmaIで処理したところ、予想通り1.1kbp及び4.2kbpのDNAを確認し、pMW119−URA3を構築した。このpMW119−URA3を制限酵素SmaIで処理して得られる1.1kbp及び4.2kbpのDNAのうち、1.1kbpのDNAを、pESC−SC101−LEUを制限酵素NaeI及びPflFI(それぞれNew England Biolab社)による処理後にDNA Blunting Kitによる末端平滑化処理して得られる6.5kbpのDNAと混合しDNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミ
ドDNAを取得した。得られたDNAを制限酵素PstI(タカラバイオ社)で処理したところ、予想通り3.1kbp及び4.5kbpのDNAが生成を確認し、プラスミドベクターpKIM−URAを構築した。
The 1.1 kbp PCR reaction product thus obtained was separately treated with pMW119 with a restriction enzyme SmaI and then mixed with a DNA fragment dephosphorylated with BAPC75, and DNA Ligation Kit <Mighty Mix> was added, A ligation reaction was performed. Thereafter, E. coli was used with the reaction solution. E. coli DH5α was transformed and spread on LB agar medium containing 50 μg / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight. QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When the obtained DNA was treated with the restriction enzyme SmaI, 1.1 kbp and 4.2 kbp DNAs were confirmed as expected, and pMW119-URA3 was constructed. Among 1.1 kbp and 4.2 kbp DNAs obtained by treating this pMW119-URA3 with restriction enzyme SmaI, 1.1 kbp DNA was converted into pESC-SC101-LEU with restriction enzymes NaeI and PflFI (New England Biolab, respectively). The DNA ligation kit <Mighty Mix> was added after mixing with 6.5 kbp DNA obtained by end blunting treatment with DNA Blunting Kit after the treatment according to) to carry out a ligation reaction. Thereafter, E. coli was used with the reaction solution. E. coli DH5α was transformed and spread on LB agar medium containing 50 μg / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight. QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When the obtained DNA was treated with the restriction enzyme PstI (Takara Bio Inc.), the production of 3.1 kbp and 4.5 kbp DNA was confirmed as expected, and a plasmid vector pKIM-URA was constructed.

(3)pKIM−URA−NCP1の作成
pUC118−NCP1のDNAを制限酵素SmaIおよびHindIIIで処理して得られたDNA断片を、予め同制限酵素で処理し、抽出・精製されたp−KIM−URAプラスミド断片と混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地2mLに植菌し一晩37℃、300rpm(往復振盪)の培養を行い、QIAprep Spin Miniprep Kitにより、p−KIM−URA−NCP1のプラスミドDNAを取得した。
(3) Preparation of pKIM-URA-NCP1 p-KIM-URA was obtained by treating a DNA fragment of pUC118-NCP1 with restriction enzymes SmaI and HindIII, and treating with the same restriction enzymes in advance. The mixture was mixed with the plasmid fragment, and DNA Ligation Kit <Mighty Mix> was added to carry out a ligation reaction. Thereafter, E. coli was used with the reaction solution. E. coli DH5α was transformed and spread on LB agar medium containing 50 μg / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight are inoculated into 2 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and cultured overnight at 37 ° C. and 300 rpm (reciprocal shaking). Plasmid DNA of p-KIM-URA-NCP1 was obtained by Spin Miniprep Kit.

(4)pKIM−URA−NCP1への11β水酸化酵素遺伝子配列候補の挿入
1ng pUC118−P450A1を鋳型DNAとして、それぞれ10pmolesのプライマーp450A1−F6、及び、p450A1−R1、25μL PrimeSTAR Max Premix(タカラバイオ社製)、さらに、水を添加して、総量50μLのPCR反応液を調製し、1サイクルが98℃・10秒→52℃・5秒→72℃・8秒から成る温度プログラムを30サイクル運転した。
P450A1-F6: GCGGCCGCAAAAAAATGGATACCCAGACTGTCG(含NotI) (配列番号52)
(4) Insertion of 11β hydroxylase gene sequence candidate into pKIM-URA-NCP1 Using 1 ng pUC118-P450A1 as template DNA, 10 pmoles primers p450A1-F6 and p450A1-R1, 25 μL PrimeSTAR Max Premix (Takara Bio Inc.) Further, water was added to prepare a PCR reaction solution having a total amount of 50 μL, and a temperature program consisting of 98 ° C. · 10 seconds → 52 ° C. · 5 seconds → 72 ° C. · 8 seconds was operated for 30 cycles. .
P450A1-F6: GCGGCCGCAAAAAAATGGATACCCAGACTGTCG (including NotI) (SEQ ID NO: 52)

一方、pMW119プラスミド(ニッポンジーン社製)を制限酵素SmaI(タカラバイオ社)で処理して得られたDNAについてさらにBAPC75により脱リン酸化処理を施したDNAを含む水溶液と上記のPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を持ってE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートした。同寒天培地上に生育したコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出した。得られたプラスミドDNAをNotI(タカラバイオ社製)およびSacI(タカラバイオ社製)により同時処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り1.5kbpおよび4.2kbpのDNA断片の存在が確認できたことから、想定どおりのpMW119−P450A1プラスミドが作成された。さらに、pMW119−P450A1をNotIおよびSacIで制限酵素処理を施し、P450A1遺伝子断片を含む約1.5kbpのDNAを取得し、同様にNotIおよびSacIで制限処理を施したpKIM−URA−NCP1プラスミドのDNA断片と混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を持ってE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地2mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出することで、P450A1遺伝子がGal10プロモーターの下流に機能する形で挿入されたpKIM−URA−NCP1−P450A1プラスミドを取得した。   On the other hand, an aqueous solution containing DNA obtained by treating pMW119 plasmid (manufactured by Nippon Gene) with restriction enzyme SmaI (Takara Bio) and further dephosphorylating with BAPC75 is mixed with the above PCR reaction solution. DNA Ligation Kit <Mighty Mix> was added to perform a ligation reaction. Hold the reaction solution After transformation of E. coli DH5α, the cell suspension was spread on LB agar medium containing 50 μg / mL ampicillin sodium salt and incubated at 37 ° C. overnight. From the cells obtained by inoculating colonies grown on the same agar medium into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt and culturing overnight by reciprocal shaking culture at 37 ° C. and 300 rpm, QIAprep Spin Plasmid DNA was extracted using Miniprep Kit. The obtained plasmid DNA was simultaneously treated with NotI (manufactured by Takara Bio Inc.) and SacI (manufactured by Takara Bio Inc.), and then the reaction solution was analyzed by agarose gel electrophoresis. As a result, 1.5 kbp and 4.2 kbp were obtained. Since the presence of the DNA fragment was confirmed, the expected pMW119-P450A1 plasmid was prepared. Furthermore, pMW119-P450A1 was subjected to restriction enzyme treatment with NotI and SacI to obtain about 1.5 kbp DNA containing the P450A1 gene fragment, and similarly pKIM-URA-NCP1 plasmid DNA subjected to restriction treatment with NotI and SacI. Ligation Mix (DNA Ligation Kit <Mighty Mix>) was added to perform ligation reaction. After transformation of E. coli DH5α with the reaction mixture, the cell suspension was mixed with 50 μg / mL ampicillin. After coating on an LB agar medium containing sodium salt and incubating overnight at 37 ° C., colonies grown on the agar medium were obtained, and these colonies were added to 2 mL of LB medium containing 50 μg / mL ampicillin sodium salt. Inoculate, 37 ° C, 3 The plasmid DNA was extracted from the cells obtained by overnight culture by reciprocal shaking culture at 0 rpm using QIAprep Spin Miniprep Kit, so that the P450A1 gene was functionally inserted downstream of the Gal10 promoter. The pKIM-URA-NCP1-P450A1 plasmid was obtained.

また、1ng pMW119−P450A3を鋳型DNAとして、それぞれ10pmolesのプライマーp450A3−F7、及び、p450A3−R1、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液を調製し、1サイクルが98℃・10秒→55℃・15秒→72℃・8秒から成る温度プログラムを30サイクル運転した。
P450A3-F7: GCGGCCGCAAAAAAATGGCCGGAGACGAAG(含NotI) (配列番号53)
Also, using 1 ng pMW119-P450A3 as template DNA, 10 pmoles primer p450A3-F7 and p450A3-R1, 25 μL PrimeSTAR Max Premix, and water were further added to prepare a PCR reaction solution with a total amount of 50 μL. The temperature program consisting of 98 ° C. · 10 seconds → 55 ° C. · 15 seconds → 72 ° C. · 8 seconds was operated for 30 cycles.
P450A3-F7: GCGGCCGCAAAAAAATGGCCGGAGACGAAG (including NotI) (SEQ ID NO: 53)

一方、pMW119プラスミド(ニッポンジーン社製)を制限酵素SmaI(タカラバイオ社)で処理して得られたDNAについてさらにBAPC75により脱リン酸化処理を施したDNAを含む水溶液と上記のPCR反応液を混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートした。同寒天培地上に生育したコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出した。得られたプラスミドDNAをNotIおよびSacIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り1.6kbpおよび4.2kbpのDNA断片の存在が確認できたことから、想定どおりのpMW119−P450A3(F7)プラスミドが作成されたと考えた。pMW119−P450A3(F7)をNotIおよびSacIで制限酵素処理を施し、P450A3遺伝子断片を含む約1.6kbpのDNAを取得し、同様にNotIおよびSacIで制限処理を施したpKIM−URA−NCP1プラスミドのDNA断片と混合し、Ligation Mix(DNA Ligation Kit<Mighty
Mix>を加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地2mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出することで、P450A3遺伝子がGal10プロモーターの下流に機能する形で挿入されたpKIM−URA−NCP1−P450A3プラスミドを取得した。
On the other hand, an aqueous solution containing DNA obtained by treating pMW119 plasmid (manufactured by Nippon Gene) with restriction enzyme SmaI (Takara Bio) and further dephosphorylating with BAPC75 is mixed with the above PCR reaction solution. Ligation Mix (DNA Ligation Kit <Mighty Mix> was added to perform a ligation reaction. After transformation of E. coli DH5α using the reaction solution, the cell suspension contains 50 μg / mL ampicillin sodium salt. The cells were spread on LB agar medium and incubated overnight at 37 ° C. Colonies grown on the agar medium were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and reciprocal shaking culture at 37 ° C. and 300 rpm. From the bacterial cells obtained by overnight culture in Plasmid DNA was extracted using Appre Spin Miniprep Kit, and the resulting plasmid DNA was simultaneously treated with NotI and SacI, and then analyzed by agarose gel electrophoresis. Since the presence of the 2 kbp DNA fragment was confirmed, it was considered that the expected pMW119-P450A3 (F7) plasmid was prepared, pMW119-P450A3 (F7) was subjected to restriction enzyme treatment with NotI and SacI, and the P450A3 gene fragment About 1.6 kbp of DNA, and mixed with the DNA fragment of pKIM-URA-NCP1 plasmid similarly treated with NotI and SacI, and Ligation Mix (DNA Ligation Kit <Mig ty
Mix> was added to perform the ligation reaction. Using the reaction solution, E. coli. After transformation of E. coli DH5α, the cell suspension was spread on an LB agar medium containing 50 μg / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained. . These colonies were inoculated into 2 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and cultured overnight at 37 ° C. and 300 rpm reciprocal shaking culture, and then the QIAprep Spin Miniprep Kit was used. By extracting the plasmid DNA, the pKIM-URA-NCP1-P450A3 plasmid in which the P450A3 gene was inserted in a form that functions downstream of the Gal10 promoter was obtained.

(実施例8)
11β水酸化活性による遺伝子の確認
サッカロミセス・セレビシエINVSc1株(ライフテクノロジーズジャパン社製)を、pKIM−URA−NCP1−P450A1、または、pKIM−URA−NCP1−P450A3を用いて酢酸リチウム法により形質転換し、SD−U寒天培地上に塗布し、30℃で2日間インキュベートしたところ、コロニーの生育が見られた。なお、SD−U寒天培地の組成は以下のとおり。
2% グルコース
0.67% 酵母ニトロゲンベース(アミノ酸不含)(Difco)
0.01% L−アルギニン
0.01% L−システイン
0.01% L−スレオニン
0.01% L−グルタミン酸
0.01% L−リジン
0.01% L−ロイシン
0.01% L−トリプトファン
0.005% L−ヒスチジン
0.005% L−アスパラギン酸
0.005% L−イソロイシン
0.005% L−メチオニン
0.005% L−フェニルアラニン
0.005% L−プロリン
0.005% L−セリン
0.005% L−チロシン
0.005% L−バリン
1.5% 寒天
(Example 8)
Confirmation of gene by 11β hydroxylation activity Saccharomyces cerevisiae INVSc1 strain (manufactured by Life Technologies Japan) was transformed by the lithium acetate method using pKIM-URA-NCP1-P450A1 or pKIM-URA-NCP1-P450A3, When it was applied on an SD-U agar medium and incubated at 30 ° C. for 2 days, colony growth was observed. The composition of the SD-U agar medium is as follows.
2% glucose 0.67% yeast nitrogen base (without amino acids) (Difco)
0.01% L-arginine 0.01% L-cysteine 0.01% L-threonine 0.01% L-glutamic acid 0.01% L-lysine 0.01% L-leucine 0.01% L-tryptophan 0 0.005% L-histidine 0.005% L-aspartic acid 0.005% L-isoleucine 0.005% L-methionine 0.005% L-phenylalanine 0.005% L-proline 0.005% L-serine 0 0.005% L-tyrosine 0.005% L-valine 1.5% Agar

サッカロミセス・セレビシエINVSc1(P450A1)株、および、同INVSc1(P450A3)株をそれぞれ100mL三角フラスコに仕込んだ10mLのSD0.25−U培地(上記SD0.25−U寒天培地組成において寒天を除いた液体培地)に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、1.1mLの20% ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、15mL容コニカルチューブ(日本ベクトン・ディッキンソン社)に培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた後、1mLの水を添加し懸濁後、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を1mLのSG溶液(SD0.25−U培地の0.25% グルコースを2% ガラクトースに置き換えたもの)で懸濁し、さらに2μLの1.7%
コンパウンドSのメタノール溶液を加え、28℃、280rpmの往復振盪で反応させた。24時間後、反応液に2mLの酢酸エチルを加えてよく混合し、2,000×g、室温で30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に0.5mLのメタノールを添加して溶解した。さらにこのメタノール溶液にメタノールを添加し、40倍に希釈しHPLC分析(分析条件A)に供したところ、サッカロミセス・セレビシエINVSc1(P450A1)株を用いた反応ではハイドロコルチゾン(シグマーアルドリッチ社)と保持時間の一致する吸光度ピークが確認されたが、同INVSc1(P450A3)株では確認できなかった。
Saccharomyces cerevisiae INVSc1 (P450A1) strain and INVSc1 (P450A3) strain in a 100 mL Erlenmeyer flask, respectively, 10 mL of SD0.25-U medium (liquid medium excluding agar in the above SD0.25-U agar medium composition) ), And cultured overnight at 30 ° C. with 180 rpm swirl shaking. Thereafter, 1.1 mL of a 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours at 30 ° C. with 180 rpm swirling. After completion of the culture, transfer the entire culture solution to a 15 mL conical tube (Nippon Becton Dickinson), centrifuge at 2,000 × g for 3 minutes at room temperature, remove the supernatant, and then add 1 mL of water. After the suspension, the cells were washed again by centrifugation at 2,000 × g for 3 minutes at room temperature. Subsequently, the bacterial cells were suspended in 1 mL of SG solution (SD0.25-U medium in which 0.25% glucose was replaced with 2% galactose), and further 2 μL of 1.7%.
A methanol solution of Compound S was added and reacted by reciprocal shaking at 28 ° C. and 280 rpm. After 24 hours, 2 mL of ethyl acetate was added to the reaction mixture and mixed well, followed by centrifugation at 2,000 × g and room temperature for 30 seconds. The upper layer was transferred to another container, and 0.5 mL of methanol was added to dissolve the solid content obtained by distilling off the solvent with a centrifugal concentrator. Further, methanol was added to this methanol solution, diluted 40 times, and subjected to HPLC analysis (analysis condition A). In the reaction using Saccharomyces cerevisiae INVSc1 (P450A1) strain, the retention time was hydrocortisone (Sigma Aldrich). Absorbance peaks that coincided with each other were confirmed, but could not be confirmed with the same INVSc1 (P450A3) strain.

サッカロミセス・セレビシエINVSc1(P450A1)株をそれぞれ2本の300mL容三角フラスコに仕込んだ50mLのSD0.25−U培地(上記SD0.25−U寒天培地組成において寒天を除いた液体培地)に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、5.5mLの20% ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、50mL容コニカルチューブ(日本ベクトン・ディッキンソン社)に培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた。それぞれ菌体に10mLの水を添加して懸濁後、2本を合一し、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を20mLのSG溶液(SD0.25−U培地の0.25% グルコースを2% ガラクトースに置き換えたもの)で懸濁した。予め50μLの1.7%コ
ンパウンドSのメタノール溶液を加えておいた20本の15mL容コニカルチューブにその酵母懸濁液をそれぞれ1mL加え、28℃、280rpmの往復振盪で反応させた。24時間後、反応液に2mLの酢酸エチルを加えてよく混合し、2,000×g、室温にて30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に1.0mLのメタノールを添加して溶解し、HPLC分析(分析条件Aの試料注入量を20μLに置き換えたもの)に42回供し、ハイドロコルチゾンと同じ保持時間の溶出液を分取し合一した溶液約35mLが得られた。これをさらに遠心濃縮器(EYELA)にてメタノールを留去した18mLの溶液に36mLの酢酸エチルを加えてよく混合し、2,000×g、室温にて30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた2.4mgの固形分に0.6mLのメタノール−
dを添加して溶解し、プロトンNMRを測定したところ、NMRのプロファイルはハイドロコルチゾン標品のそれと一致したことから、P450A1はステロイド11β水酸化酵素であると判断された。
Saccharomyces cerevisiae INVSc1 (P450A1) strain was inoculated into 50 mL of SD0.25-U medium (liquid medium excluding agar in the above SD0.25-U agar medium composition) charged in two 300 mL Erlenmeyer flasks. Incubated overnight at 30 ° C. with 180 rpm swirling. Thereafter, 5.5 mL of a 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours at 30 ° C. with swirling shaking at 180 rpm. After completion of the culture, the entire culture solution was transferred to a 50 mL conical tube (Nippon Becton Dickinson), centrifuged at 2,000 × g for 3 minutes at room temperature, and the supernatant was removed. After 10 mL of water was added to each cell and suspended, the two were combined and centrifuged again at 2,000 × g for 3 minutes at room temperature to wash the cells. Subsequently, the cells were suspended in 20 mL of SG solution (in which 0.25% glucose in SD0.25-U medium was replaced with 2% galactose). 1 mL of the yeast suspension was added to each of 20 15 mL conical tubes to which 50 μL of a 1.7% compound S methanol solution had been added in advance, and reacted by reciprocal shaking at 28 ° C. and 280 rpm. After 24 hours, 2 mL of ethyl acetate was added to the reaction solution and mixed well, followed by centrifugation at 2,000 × g and room temperature for 30 seconds. The upper layer is transferred to another container, and 1.0 mL of methanol is added to and dissolved in the solid content obtained by distilling off the solvent with a centrifugal concentrator, and HPLC analysis (sample injection amount of analysis condition A is 20 μL). The solution was subjected to 42 times and the eluate having the same retention time as that of hydrocortisone was collected and about 35 mL of a solution was obtained. Further, 36 mL of ethyl acetate was added to and mixed with 18 mL of the solution obtained by distilling off methanol using a centrifugal concentrator (EYELA), followed by centrifugation at 2,000 × g and room temperature for 30 seconds. The upper layer was transferred to another container, and the solvent was distilled off with a centrifugal concentrator.
When d was added and dissolved, and proton NMR was measured, the NMR profile was consistent with that of the hydrocortisone preparation, so P450A1 was determined to be steroid 11β hydroxylase.

(実施例9)
NCP1の効果確認
1ng pUC118−P450A1を鋳型DNAとして、それぞれ10pmolesのプライマーp450A1−F8、及び、p450A1−R7、25μL PrimeSTAR Max Premix(タカラバイオ社製)、さらに、水を添加して、総量50μLのPCR反応液を調製し、1サイクルが98℃・10秒→52℃・5秒→72℃・8秒から成る温度プログラムを30サイクル運転した。
P450A1-F8: GCGAATTCAAAAAAATGGATACCCAGACTG (含EcoRI) (配列番号54)
P450A1-R7: GGTAGATCTACACTACTACTCTCTTGAAAG (含BglII) (配列番号55)
Example 9
Confirmation of the effect of NCP1 Using 1 ng pUC118-P450A1 as template DNA, 10 pmoles primers p450A1-F8 and p450A1-R7, 25 μL PrimeSTAR Max Premix (manufactured by Takara Bio Inc.), and further adding water, PCR in a total amount of 50 μL A reaction solution was prepared, and a temperature program comprising one cycle of 98 ° C. · 10 seconds → 52 ° C. · 5 seconds → 72 ° C. · 8 seconds was operated for 30 cycles.
P450A1-F8: GCGAATTCAAAAAAATGGATACCCAGACTG (including EcoRI) (SEQ ID NO: 54)
P450A1-R7: GGTAGATCTACACTACTACTCTCTTGAAAG (including BglII) (SEQ ID NO: 55)

上記のPCR反応液をEcoRI(タカラバイオ社)およびBglII(タカラバイオ社)で制限酵素処理を施し、P450A1遺伝子断片を含む約1.5kbpのDNAを取得し、同様にEcoRIおよびBglIIで制限処理を施したpKIM−URAプラスミドのDNA断片と混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を持ってE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep
Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをEcoRIおよびBglIIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り1.5kbpおよび7.6kbpのDNA断片の存在が確認できたことから、想定どおりのA1遺伝子がGal10プロモーターの下流に機能する形で挿入されたpKIM−URA−P450A1プラスミドを取得した。
The PCR reaction solution is subjected to restriction enzyme treatment with EcoRI (Takara Bio) and BglII (Takara Bio) to obtain about 1.5 kbp DNA containing the P450A1 gene fragment. Similarly, restriction treatment with EcoRI and BglII is performed. Ligation Mix (DNA Ligation Kit <Mighty Mix>) was added to the DNA fragment of the pKIM-URA plasmid applied, and ligation reaction was performed. After transformation of E. coli DH5α with the reaction solution, The suspension was spread on an LB agar medium containing 50 μg / mL ampicillin sodium salt and incubated overnight at 37 ° C., and colonies that grew on the agar medium were obtained. Inoculate 5 mL of LB medium containing sodium salt From the bacterial cells obtained by overnight culture at 37 ° C. and 300 rpm reciprocal shaking culture, QIAprep Spin Miniprep
Plasmid DNA was extracted using Kit. The obtained plasmid DNA was treated simultaneously with EcoRI and BglII, and the reaction mixture was analyzed by agarose gel electrophoresis. As a result, the presence of DNA fragments of 1.5 kbp and 7.6 kbp was confirmed as expected. The pKIM-URA-P450A1 plasmid in which the same A1 gene was inserted so as to function downstream of the Gal10 promoter was obtained.

サッカロミセス・セレビシエINVSc1株をpKIM−URA−P450A1を用いて酢酸リチウム法により形質転換し、SD−U寒天培地上に塗布し、30℃で2日間インキュベートしたところ、コロニーの生育が見られ、これをサッカロミセス・セレビシエINVSc1(pKIM−URA−P450A1)とした。   The Saccharomyces cerevisiae INVSc1 strain was transformed with pKIM-URA-P450A1 by the lithium acetate method, spread on an SD-U agar medium, and incubated at 30 ° C. for 2 days. Saccharomyces cerevisiae INVSc1 (pKIM-URA-P450A1) was used.

サッカロミセス・セレビシエINVSc1(pKIM−URA−P450A1)株、および、同INVSc1(pKIM−URA−NCP1−P450A1)株をそれぞれ300mL三角フラスコに仕込んだ40mLのSD0.25−U培地に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、4.4mLの20% ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、50mL容コニカルチューブに培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた後、10mLの水を添加し懸濁後、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を8mLのSG溶液で懸濁し、菌体懸濁液から1mLずつをそれぞれ6本の試験管に採取し、そこへ50μLの1%(w/v) コンパウンドSのメタノール溶液を加え、さらに28℃にて280rpmの往復
振盪で反応させた。1、2、4、7、11、22時間後、それぞれの菌株について1本の試験管反応液に2mLの酢酸エチルを加えてよく混合し、室温、2,000×gで30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に0.5mLのメタノールに溶解した。さらにこのメタノール溶液にメタノールを添加し、10倍に希釈しHPLC分析(分析条件A)に供した。分析の結果、ハイドロコル
チゾンに該当するピークの面積値から各反応時間におけるハイドロコルチゾンの濃度を計算した(下表)。その結果、P450A1のみを過剰発現するサッカロミセス・セレビシエ INVSc1(pKIM−URA−P450A1)株においても11β水酸化によるハイドロコルチゾンの蓄積が確認できた。
Saccharomyces cerevisiae INVSc1 (pKIM-URA-P450A1) strain and INVSc1 (pKIM-URA-NCP1-P450A1) strain were inoculated in a 40 mL SD0.25-U medium charged in a 300 mL Erlenmeyer flask, respectively, at 30 ° C. Incubated overnight with 180 rpm swirl shaking. Then, 4.4 mL of 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours at 30 ° C. with 180 rpm rotation. After completion of the culture, transfer the entire amount of the culture solution to a 50 mL conical tube, centrifuge at 2,000 × g for 3 minutes at room temperature, remove the supernatant, add 10 mL of water, suspend, The cells were washed by centrifugation at 000 × g for 3 minutes at room temperature. Subsequently, the cells are suspended in 8 mL of the SG solution, and 1 mL each is collected from each of the cell suspensions into 6 test tubes, and 50 μL of a 1% (w / v) compound S methanol solution is added thereto. In addition, the reaction was further carried out at 28 ° C. by reciprocal shaking at 280 rpm. After 1, 2, 4, 7, 11, and 22 hours, 2 mL of ethyl acetate was added to each test tube reaction solution for each strain, mixed well, and centrifuged at 2,000 × g for 30 seconds at room temperature. . The upper layer was transferred to another container, and the solvent was distilled off with a centrifugal concentrator, and the resulting solid was dissolved in 0.5 mL of methanol. Further, methanol was added to the methanol solution, diluted 10 times, and subjected to HPLC analysis (analysis condition A). As a result of the analysis, the concentration of hydrocortisone at each reaction time was calculated from the area value of the peak corresponding to hydrocortisone (table below). As a result, accumulation of hydrocortisone by 11β hydroxylation could be confirmed even in the Saccharomyces cerevisiae INVSc1 (pKIM-URA-P450A1) strain overexpressing only P450A1.

Figure 0006107130
Figure 0006107130

(実施例10)
他のサッカロミセス・セレビシェ株におけるP450A1の組換え発現
サッカロミセス・セレビシエ FY1679−6c株(EUROSCARF、ドイツ)、および、サッカロミセス・セレビシエ YPH499株(ライフテクノロジーズジャパン社)を宿主として、酢酸リチウム法によりpKIM−URA−NCP1−P450A1で形質転換し、それぞれSD−URA寒天培地(2% グルコース、0.67% 酵母ニトロゲンベース(アミノ酸不含)(Difco)、1.92g/L Yeast Synthetic Dropout Medium Supplement Without
Uracil(シグマーアルドリッチ社)、2% 寒天)に形質転換液を塗布し、30℃で2日間インキュベートした結果、それぞれの宿主にpKIM−URA−NCP1−P450A1が導入されたCY852株、及び、CY851株が得られた。さらにこれらについて2クローンずつを別の同寒天培地上にレプリカし、2日間インキュベートしたのち、同寒天培地上に生育したCY852株、及び、CY851株の2クローンをそれぞれ別個に2mLのSD−URA培地に植菌し、30℃、200rpmで旋回振盪培養した。一晩経過したのち、それぞれの培養液をさらに200mL容三角フラスコに仕込んだ0.1mMのFeSO4・7H2Oを含む同培地20mLに植菌し、30℃、200rpmの旋回振盪培養を行った。8時間後に50mL容コニカルチューブに培養液全量を移し、5,000×g、5分、室温の遠心分離により菌体を回収し、1mLの水酸化菌体反応液(67mM リン酸カリウム緩衝液(pH7.5)、1% ガラクトース、2.7% グリセロール)に再懸濁した。これに最終濃度50mg/LになるようにコンパウンドSを加えて、30℃、200rpmの旋回振盪により反応を約20時間実施した。反応終了後、反応液1mLに酢酸エチルを1mL添加し、激しく混和したのち18,000×g、30秒、室温の遠心分離を行い、上層を別のポリプロピレン製チューブに移し、窒素気流下で酢酸エチルを留去した。これを再度繰返して得られた残渣をまとめて回収したのち、200μLアセトニトリルを添加し、激しく振盪することでこれを溶解した。得られたアセトニトリル溶液を試料として、以下の条件で分析した(分析条件B)。
分析機器;ACQUITY UltraPerformance LC(ウォーターズ)カラム;ACQUITY UPLCR BEH C18 1.7μm φ2.1×100mm
カラム温度;40℃
(Example 10)
Recombinant expression of P450A1 in other Saccharomyces cerevisiae strains Saccharomyces cerevisiae FY1679-6c strain (EUROSCARF, Germany) and Saccharomyces cerevisiae YPH499 strain (Life Technologies Japan) were used as hosts for pKIM-URA- NCP1-P450A1 was transformed with SD-URA agar medium (2% glucose, 0.67% yeast nitrogen base (without amino acids) (Difco), 1.92 g / L Yeast Synthetic Dropout Medium Supplement Without, respectively.
The transformant was applied to Uracil (Sigma Aldrich), 2% agar) and incubated at 30 ° C. for 2 days. As a result, pKIM-URA-NCP1-P450A1 introduced into each host, CY852 strain, and CY851 strain was gotten. Further, 2 clones of each of these were replicated on another same agar medium, incubated for 2 days, and then 2 clones of CY852 strain and CY851 strain grown on the same agar medium were separately added to 2 mL of SD-URA medium. And incubating at 30 ° C. and 200 rpm with shaking. After one night, each culture solution was further inoculated into 20 mL of the same medium containing 0.1 mM FeSO 4 .7H 2 O charged in a 200 mL Erlenmeyer flask, and swirling culture was performed at 30 ° C. and 200 rpm. . After 8 hours, transfer the entire amount of the culture solution to a 50 mL conical tube, collect the cells by centrifugation at 5,000 × g for 5 minutes at room temperature, and 1 mL of a hydroxylated cell reaction solution (67 mM potassium phosphate buffer ( pH 7.5), 1% galactose, 2.7% glycerol). Compound S was added to this so that the final concentration was 50 mg / L, and the reaction was carried out for about 20 hours by swirling at 30 ° C. and 200 rpm. After completion of the reaction, 1 mL of ethyl acetate was added to 1 mL of the reaction solution, and after vigorous mixing, centrifugation was performed at 18,000 × g for 30 seconds at room temperature. Ethyl was distilled off. The residue obtained by repeating this procedure again was collected and then 200 μL acetonitrile was added and dissolved by vigorous shaking. The obtained acetonitrile solution was used as a sample and analyzed under the following conditions (analysis condition B).
Analytical instrument: ACQUITY UltraPerformance LC (Waters) column; ACQUITY UPLCR BEH C18 1.7 μm φ2.1 × 100 mm
Column temperature: 40 ° C

Figure 0006107130
分析時間;5分
試料注入量;2μL
検出方法;吸光度240nm
Figure 0006107130
Analysis time: 5 minutes Sample injection volume: 2 μL
Detection method; absorbance 240 nm

分析の結果、CY852及びCY851のそれぞれ2クローンにおいて、ハイドロコルチゾンの蓄積を確認した。   As a result of analysis, accumulation of hydrocortisone was confirmed in 2 clones each of CY852 and CY851.

Figure 0006107130
Figure 0006107130

(実施例11)
哺乳類由来ステロイド11β水酸化酵素CYP11B1との比較
GenBankにAAH96285.1として登録されたアミノ酸配列を参考に、ヒト由来CYP11B1をコードする遺伝子配列を以下のとおり合成し、pUC57に挿入した形でpUC57−CYP11B1を取得した(配列番号56:ヒト由来CYP11B1コード領域は塩基番号432〜1943であり、他はpUC57ベクター部分)。なお、配列番号56の塩基番号432〜1940に相当するアミノ酸配列を配列番号57に示す。
(Example 11)
Comparison with mammalian-derived steroid 11β hydroxylase CYP11B1 With reference to the amino acid sequence registered as AAH96285.1 in GenBank, a gene sequence encoding human-derived CYP11B1 was synthesized as follows, and inserted into pUC57 in the form of pUC57-CYP11B1 (SEQ ID NO: 56: human-derived CYP11B1 coding region has base numbers 432 to 1943, and the others are pUC57 vector portions). The amino acid sequence corresponding to base numbers 432 to 1940 of SEQ ID NO: 56 is shown in SEQ ID NO: 57.

ウシ由来ADXをコードする遺伝子配列については牛腎臓由来RNAからcDNAを逆転写した後、このcDNAを鋳型として合成し、pESC−URAに挿入した形で取得した。それぞれの遺伝子配列を同一のpESC−URAプラスミドに挿入したが、この場合、遺伝子産物をミトコンドリアにて機能させることを意図して、それぞれの蛋白質のN末端にサッカロミセス・セレビシエ S288c株由来COX4蛋白質のミトコンドリア移行シグナル配列が付加するようにDNA配列を設計した。   The gene sequence encoding bovine-derived ADX was obtained by reversely transcribing cDNA from bovine kidney-derived RNA, then synthesizing this cDNA as a template and inserting it into pESC-URA. Each gene sequence was inserted into the same pESC-URA plasmid. In this case, the mitochondrion of COX4 protein derived from Saccharomyces cerevisiae S288c strain was placed at the N-terminus of each protein with the intention of allowing the gene product to function in mitochondria. The DNA sequence was designed to add a transition signal sequence.

サッカロミセス・セレビシエ S288c株の染色体DNA 1ngを鋳型DNAとして、それぞれ10pmolesのプライマーcox4−F、及び、cox4−R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Aを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・10秒から成る温度プログラムを30サイクル運転した。   Using 1 ng of chromosomal DNA of Saccharomyces cerevisiae S288c strain as template DNA, 10 pmoles primers cox4-F, cox4-R, 25 μL PrimeSTAR Max Premix, and water were further prepared to prepare a PCR reaction solution A with a total amount of 50 μL. A temperature program consisting of 98 ° C. · 10 seconds → 50 ° C. · 15 seconds → 72 ° C. · 10 seconds was operated for 30 cycles.

cox4-F:AGTACTAGTATGCTTTCACTACGTCAATCGAT (配列番号58)
cox4-R:GCTGGTACCGGGTTTTTGCTGAAGCAGAT (配列番号59)
cox4-F: AGTACTAGTATGCTTTCACTACGTCAATCGAT (SEQ ID NO: 58)
cox4-R: GCTGGTACCGGGTTTTTGCTGAAGCAGAT (SEQ ID NO: 59)

また、1ng pUC57−CYP11B1を鋳型DNAとして、それぞれ10pmolesのプライマーmm11B1−F、及び、m11B1−R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Bを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・90秒から成る温度プログラムを30サイクル運転した。   Also, using 1 ng pUC57-CYP11B1 as template DNA, 10 pmoles primers mm11B1-F, m11B1-R, 25 μL PrimeSTAR Max Premix, and water were further added to prepare 50 μL total PCR reaction solution B. A temperature program comprising a cycle of 98 ° C. · 10 seconds → 50 ° C. · 15 seconds → 72 ° C. · 90 seconds was operated for 30 cycles.

mm11B1-F: ACCCTACTAGTATGGGTACCCGCGCCGCGCG (含KpnI) (配列番号60)
m11B1-R: TCCAGAATTCTTAGTTAATGGCACGAAAGG (含SacI) (配列番号61)
mm11B1-F: ACCCTACTAGTATGGGTACCCGCGCCGCGCG (including KpnI) (SEQ ID NO: 60)
m11B1-R: TCCAGAATTCTTAGTTAATGGCACGAAAGG (including SacI) (SEQ ID NO: 61)

上記のPCR反応液AをSpeI(タカラバイオ社)およびKpnI(タカラバイオ社)で、PCR反応液BをKpnIおよびSacI(タカラバイオ社)で制限酵素処理を施し、それぞれcox4シグナル配列を含む約0.1kbpのDNA、および、CYP11B1遺伝子断片を含む約1.4kbpのDNAを取得し、同様にSpeIおよびSacIで制限処理を施したpESC−URAプラスミドのDNA断片と混合し、Ligation High(東洋紡社製)を加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、200rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep
Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをSpeIおよびKpnIおよびSacIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り0.1kbpおよび1.4kbpおよび6.6kbpのDNA断片の存在が確認できたことから、想定どおりのcox4−CYP11B1遺伝子がGal10プロモーターの下流に機能する形で挿入されたpESC−URA−cox4−CYP11B1プラスミドを取得した。
The PCR reaction solution A was subjected to restriction enzyme treatment with SpeI (Takara Bio Inc.) and KpnI (Takara Bio Inc.), and the PCR reaction solution B was subjected to KpnI and SacI (Takara Bio Inc.), each containing about 0 containing a cox4 signal sequence. .About.1 kbp DNA and about 1.4 kbp DNA containing CYP11B1 gene fragment were obtained, mixed with DNA fragment of pESC-URA plasmid similarly treated with SpeI and SacI, and Ligation High (manufactured by Toyobo Co., Ltd.) ) Was added to carry out a ligation reaction. Using the reaction solution, E. coli. After transformation of E. coli DH5α, the cell suspension was spread on an LB agar medium containing 50 μg / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained. . From the cells obtained by inoculating these colonies in 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt and culturing overnight by reciprocal shaking culture at 37 ° C. and 200 rpm, QIAprep Spin Miniprep
Plasmid DNA was extracted using Kit. The obtained plasmid DNA was simultaneously treated with SpeI, KpnI and SacI, and the reaction mixture was analyzed by agarose gel electrophoresis. As expected, the presence of DNA fragments of 0.1 kbp, 1.4 kbp and 6.6 kbp was confirmed. As a result, the pESC-URA-cox4-CYP11B1 plasmid in which the expected cox4-CYP11B1 gene was inserted in a form that functions downstream of the Gal10 promoter was obtained.

サッカロミセス・セレビシエ S288c株の染色体DNA 1ngを鋳型DNAとして、それぞれ10pmolesのプライマーcox4−3F、及び、cox4−2R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Cを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・10秒から成る温度プログラムを30サイクル運転した。   Using 1 ng of chromosomal DNA of Saccharomyces cerevisiae S288c strain as template DNA, 10 pmoles of cox4-3F, cox4-2R, 25 μL PrimeSTAR Max Premix, and water were further added to prepare 50 μL of PCR reaction solution C A temperature program consisting of 98 ° C. · 10 seconds → 50 ° C. · 15 seconds → 72 ° C. · 10 seconds was operated for 30 cycles.

cox4-3F: AGTGGATCCATGCTTTCACTACGTCAATCGAT (含BamHI) (配列番号62)
cox4-2R: GGGTTTTTGCTGCAGCAGAT (含PstI) (配列番号63)
cox4-3F: AGTGGATCCATGCTTTCACTACGTCAATCGAT (including BamHI) (SEQ ID NO: 62)
cox4-2R: GGGTTTTTGCTGCAGCAGAT (including PstI) (SEQ ID NO: 63)

ウシ由来Adxをコードする遺伝子については牛腎臓由来のRNA<Bovine Kindey poly A+ RNA(クロンテック社製)>を鋳型として、逆転写反応キット<Super ScriptIII First−strand Sythesis system for RT−PCR(インビトロジェン社製)>の取扱説明書に記載された反応条件に従い逆転写反応によってcDNAを得た後、このcDNA 1ngを鋳型DNAとして、それぞれ10pmolesのプライマーADX−F、及び、ADX−3R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Dを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・30秒から成る温度プログラムを30サイクル運転することにより、シグナルペプチド部分を除くAdxに該当する遺伝子部分を増幅した。   As for the gene encoding bovine-derived Adx, reverse transcription reaction kit <Super Script III First-system system for RT-PCR (Invitrogen) was made using bovine kidney-derived RNA <Bovine Kindy poly A + RNA (Clontech)> as a template. )> After obtaining cDNA by reverse transcription reaction according to the reaction conditions described in the instruction manual, 10 pmoles of primer ADX-F and ADX-3R, 25 μL PrimeSTAR Max Premix, Furthermore, water is added to prepare a PCR reaction solution D having a total volume of 50 μL, and one cycle consists of 98 ° C., 10 seconds → 50 ° C., 15 seconds → 72 ° C., 30 seconds. By operating 30 cycles, to amplify the gene portion corresponding to Adx excluding signal peptide parts.

ADX-F:AGTACTAGTATGCTTTCACTACGTCAATCGAT (配列番号64)
ADX-3R:GCTGGTACCGGGTTTTTGCTGAAGCAGAT (配列番号65)
ADX-F: AGTACTAGTATGCTTTCACTACGTCAATCGAT (SEQ ID NO: 64)
ADX-3R: GCTGGTACCGGGTTTTTGCTGAAGCAGAT (SEQ ID NO: 65)

上記のPCR反応液DをBamHI(タカラバイオ社)およびHindIII(タカラバイオ社)で制限酵素処理を施し、Adx遺伝子断片を含む約0.4kbpのDNAを取得し、同様にBamHIおよびHindIIIで制限処理を施したpESC−URAプラスミドのDNA断片と混合し、Ligation Highを加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep
Spin Miniprep Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをBamHIおよびHindIIIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り0.4kbpおよび6.6kbpのDNA断片の存在が確認できたことから、想定どおりのAdx遺伝子がGal1プロモーターの下流に機能する形で挿入されたpESC−URA−Adxプラスミドを取得した(配列番号66:配列上、Adx遺伝子は塩基番号2946〜3335である)。なお、配列番号66の塩基番号2946〜3332に相当するアミノ酸配列を配列番号67に示す。
The PCR reaction solution D is subjected to restriction enzyme treatment with BamHI (Takara Bio Inc.) and HindIII (Takara Bio Inc.) to obtain about 0.4 kbp of DNA containing the Adx gene fragment, and similarly restriction treatment with BamHI and HindIII. Was mixed with the DNA fragment of the pESC-URA plasmid subjected to the above, and Ligation High was added to carry out a ligation reaction. Using the reaction solution, E. coli. After transformation of E. coli DH5α, the cell suspension was spread on an LB agar medium containing 50 μg / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained. . From these cells obtained by inoculating these colonies in 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt and culturing overnight by reciprocal shaking culture at 37 ° C. and 300 rpm, QIAprep
Plasmid DNA was extracted using Spin Miniprep Kit. The obtained plasmid DNA was treated with BamHI and HindIII at the same time, and the reaction mixture was analyzed by agarose gel electrophoresis. As a result, the presence of DNA fragments of 0.4 kbp and 6.6 kbp was confirmed as expected. A pESC-URA-Adx plasmid was obtained in which the same Adx gene was inserted in such a manner that it functions downstream of the Gal1 promoter (SEQ ID NO: 66: on the sequence, the Adx gene has base numbers 2946 to 3335). The amino acid sequence corresponding to base numbers 2946 to 3332 of SEQ ID NO: 66 is shown in SEQ ID NO: 67.

1ng pESC−URA−Adxを鋳型DNAとして、それぞれ10pmolesのプライマーcox4−4F、及び、ADX−3R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Eを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・30秒から成る温度プログラムを30サイクル運転した。   Using 1 ng pESC-URA-Adx as a template DNA, 10 pmoles primer cox4-4F, ADX-3R, 25 μL PrimeSTAR Max Premix, and water were further added to prepare a PCR reaction solution E having a total amount of 50 μL. A temperature program comprising a cycle of 98 ° C. · 10 seconds → 50 ° C. · 15 seconds → 72 ° C. · 30 seconds was operated for 30 cycles.

cox4-4F: AGTCTGCAGCAAAAACCCAGCAGCTCAGAAGATAAAA(配列番号68)
ADX-3R: GTAAAAGCTTTTATTCTATCTTTGAGGAGTTC(配列番号69)
cox4-4F: AGTCTGCAGCAAAAACCCAGCAGCTCAGAAGATAAAA (SEQ ID NO: 68)
ADX-3R: GTAAAAGCTTTTATTCTATCTTTGAGGAGTTC (SEQ ID NO: 69)

上記のPCR反応液CをBamHIおよびPstIで、PCR反応液EをPstIおよびHindIIIで制限酵素処理を施し、それぞれcox4シグナル配列を含む約0.1kbpのDNAとAdx遺伝子断片を含む約0.4kbpのDNAを取得し、同様にBamHIおよびHindIIIで制限処理を施したpESC−URA−cox4−CYP11B1プラスミドのDNA断片と混合し、Ligation Highを加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、200rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをBamHIおよびPstI並びにHindIIIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り0.1kbpおよび0.4kbpおよび8.1kbpのDNA断片の存在が確認できたことから、想定どおりのAdx遺伝子がGal1プロモーターの下流に機能する形で挿入されたpESC−URA−cox4−CYP11B1−cox4−Adxプラスミドを取得した。   The PCR reaction solution C was subjected to restriction enzyme treatment with BamHI and PstI, and the PCR reaction solution E was subjected to restriction enzyme treatment with PstI and HindIII. About 0.1 kbp DNA containing the cox4 signal sequence and about 0.4 kbp containing the Adx gene fragment, respectively. DNA was obtained, mixed with the DNA fragment of the pESC-URA-cox4-CYP11B1 plasmid similarly treated with BamHI and HindIII, and Ligation High was added to carry out a ligation reaction. Using the reaction solution, E. coli. After transformation of E. coli DH5α, the cell suspension was spread on an LB agar medium containing 50 μg / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained. . These colonies were inoculated into 5 mL of LB medium containing 50 μg / mL ampicillin sodium salt, and cultured overnight at 37 ° C. and 200 rpm reciprocal shaking culture, and then the QIAprep Spin Miniprep Kit was used. Plasmid DNA was extracted. The obtained plasmid DNA was simultaneously treated with BamHI, PstI and HindIII, and the reaction solution was analyzed by agarose gel electrophoresis. As a result, the presence of DNA fragments of 0.1 kbp, 0.4 kbp and 8.1 kbp was confirmed as expected. As a result, a pESC-URA-cox4-CYP11B1-cox4-Adx plasmid was obtained in which the expected Adx gene was inserted in a form that functions downstream of the Gal1 promoter.

FY1679−6cを宿主として、pESC−URA−cox4−CYP11B1−c
ox4−Adxをそれぞれ導入する形質転換をエレクトロポレーション法により行い、その細胞懸濁液をSD−URA寒天培地に塗布し、30℃で2日間インキュベートした結果、FY1679−6c (pESC−URA−cox4−CYP11B1−cox4−Adx)(以後、CY542)が得られた。SD−URA寒天培地上に生育したCY542およびCY852を2mLのSD−URA培地に、またFY1679−6cを2mg/L
ウラシルを添加したSD−URA培地に植菌し、30℃、200rpmで旋回振盪培養した。一晩経過したのち、それぞれの培養液をさらに200mL容三角フラスコに仕込んだ20mLのグルコースの濃度を0.25%に減少させたSD-URA培地(FY167
9−6c培養には2mg/L ウラシルをさらに添加)に植菌し、また終濃度1mMになるようFeSO4・7H2Oを加え、30℃、200rpmの旋回振盪培養を行った。8時間後にそれぞれの培養液に2mLの20%ガラクトース水溶液を加え培養を継続し、さらにその20時間後、1%コンパウンドSのエタノール溶液を0.1mL添加し、培養を24時間継続した。この際、培養期間0時間、4時間、8時間において200μLずつサンプリングを行った。これらの培養液に酢酸エチルを1mL添加し、激しく混和したのち18,000×g、30秒、室温の遠心分離を行い、上層を別のポリプロピレン製チューブに移し、窒素気流下で酢酸エチルを留去した。これを再度繰返して得られた残渣に、200μLアセトニトリルを添加し、激しく振盪することでこれを溶解した。得られたアセトニトリル溶液を試料として、分析条件Bで培養液に含まれるハイドロコルチゾンとコンパウンドSの濃度を測定した。その結果、下表のとおり、P450A1を導入したCY852においては、CYP11B1を導入したCY542よりも良好なコンパウンドSのハイドロコルチゾンへの変換が確認された。
Using FY1679-6c as a host, pESC-URA-cox4-CYP11B1-c
Transformation into which ox4-Adx was respectively introduced was performed by electroporation, and the cell suspension was applied to an SD-URA agar medium and incubated at 30 ° C. for 2 days. As a result, FY1679-6c (pESC-URA-cox4 -CYP11B1-cox4-Adx) (hereinafter CY542) was obtained. CY542 and CY852 grown on SD-URA agar medium were added to 2 mL of SD-URA medium, and FY1679-6c was 2 mg / L.
The cells were inoculated into SD-URA medium supplemented with uracil, and cultured with shaking at 30 ° C. and 200 rpm. After overnight, each culture solution was further charged in a 200 mL Erlenmeyer flask. The concentration of 20 mL glucose was reduced to 0.25% (FY167).
9-6c was further inoculated with 2 mg / L uracil), FeSO 4 .7H 2 O was added to a final concentration of 1 mM, and swirling culture at 30 ° C. and 200 rpm was performed. After 8 hours, 2 mL of 20% galactose aqueous solution was added to each culture solution, and the culture was continued. After 20 hours, 0.1 mL of 1% compound S ethanol solution was added, and the culture was continued for 24 hours. At this time, 200 μL was sampled at 0, 4, and 8 hours of culture period. Add 1 mL of ethyl acetate to these cultures, mix vigorously, and centrifuge at 18,000 xg for 30 seconds at room temperature. Transfer the upper layer to another polypropylene tube and keep the ethyl acetate under a nitrogen stream. Left. 200 μL acetonitrile was added to the residue obtained by repeating this process again, and this was dissolved by shaking vigorously. Using the obtained acetonitrile solution as a sample, the concentration of hydrocortisone and compound S contained in the culture solution was measured under analysis condition B. As a result, as shown in the table below, in CY852 introduced with P450A1, conversion of compound S into hydrocortisone was confirmed better than CY542 introduced with CYP11B1.

Figure 0006107130
なお、CY852株のコンパウンドSを基質とする11β水酸化反応におけるハイドロコルチゾンのモル収率は95%であった。
Figure 0006107130
The molar yield of hydrocortisone in the 11β hydroxylation reaction using Compound S of CY852 strain as a substrate was 95%.

(実施例12)
ステロイド基質の検討
サッカロミセス・セレビシエ INVSc1(pKIM−URA−NCP1−A1)株を300mL容三角フラスコに仕込んだ40mLのSD0.25−U培地に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、4.4mLの20%ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、50mL容コニカルチューブに培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた後、10mLの水を添加し懸濁後、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を8mLのSG溶液で懸濁し、酵母懸濁液から1mLずつを4本の試験管に採取し、そこへ60μLの25% メチル−β−シクロデキストリン(和光純薬工業)水溶液、及び、50μLの2% 11−デオキシコルチコステロン(MP Biomedicals)のメタノール溶液、1%
17α−ヒドロキシプロゲステロン(ナカライテスク)のメタノール溶液、2% プロ
ゲステロン(和光純薬工業)のメタノール溶液、または、1% 4−コレステン−3−オン(和光純薬工業)のメタノール溶液を加え、28℃、280rpmの往復振盪で反応させた。24時間後、反応液に2mLの酢酸エチルを加えてよく混合し、室温、2,000×gで30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に0.5mLのメタノールに溶解した。さらにこのメタノール溶液をメタノールで10倍に希釈したものをHPLC分析の試料とした(分析条件C:下に示した)。その結果、11−デオキシコルチコステロン、17α−ヒドロキシプロゲステロン、プロゲステロンを加えたものにおいてはそれぞれの11−β水酸化物と同一の保持時間に吸光度ピークが確認されたが、4−コレステン−3−オンにおいては確認できなかった。このことから、プロゲステロン、17α−ヒドロキシプロゲステロン、11−デオキシコルチコステロン、および、コンパウンドSはP450A1による11β水酸化反応の基質となるが、4−コレステン−3−オンを基質とした場合は極めて反応速度が遅いということが示唆された。
(Example 12)
Examination of Steroid Substrate Saccharomyces cerevisiae INVSc1 (pKIM-URA-NCP1-A1) strain was inoculated into 40 mL of SD0.25-U medium charged in a 300 mL Erlenmeyer flask and cultured overnight at 30 ° C. with 180 rpm swirl shaking. did. Thereafter, 4.4 mL of a 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours at 30 ° C. with swirling shaking at 180 rpm. After completion of the culture, transfer the entire amount of the culture solution to a 50 mL conical tube, centrifuge at 2,000 × g for 3 minutes at room temperature, remove the supernatant, add 10 mL of water, suspend, The cells were washed by centrifugation at 000 × g for 3 minutes at room temperature. Subsequently, the bacterial cells were suspended in 8 mL of SG solution, and 1 mL each of the yeast suspension was collected in 4 test tubes, and 60 μL of 25% methyl-β-cyclodextrin (Wako Pure Chemical Industries) aqueous solution was collected there. And 50 μL of 2% 11-deoxycorticosterone (MP Biomedicals) in methanol, 1%
Add a methanol solution of 17α-hydroxyprogesterone (Nacalai Tesque), a methanol solution of 2% progesterone (Wako Pure Chemical Industries), or a methanol solution of 1% 4-cholesten-3-one (Wako Pure Chemical Industries), 28 ° C. The reaction was performed by reciprocal shaking at 280 rpm. After 24 hours, 2 mL of ethyl acetate was added to the reaction mixture, mixed well, and centrifuged at 2,000 × g for 30 seconds at room temperature. The upper layer was transferred to another container, and the solvent was distilled off with a centrifugal concentrator, and the resulting solid was dissolved in 0.5 mL of methanol. Further, this methanol solution diluted 10-fold with methanol was used as a sample for HPLC analysis (analysis condition C: shown below). As a result, when 11-deoxycorticosterone, 17α-hydroxyprogesterone, and progesterone were added, an absorbance peak was confirmed at the same retention time as each 11-β hydroxide, but 4-cholestene-3- It was not possible to confirm when it was on. Therefore, progesterone, 17α-hydroxyprogesterone, 11-deoxycorticosterone, and compound S serve as substrates for 11β hydroxylation by P450A1, but extremely react when 4-cholesten-3-one is used as a substrate. It was suggested that the speed was slow.

分析条件C
使用カラム;COSMOSIL 5C18−AR−II φ4.6×150mm(ナカライテスク、日本)
カラム温度;40℃
検出方法;254nmの吸光度
試料注入量;5μL
溶出条件
Analysis condition C
Column used: COSMOSIL 5C18-AR-II φ4.6 × 150 mm (Nacalai Tesque, Japan)
Column temperature: 40 ° C
Detection method: Absorbance at 254 nm Sample injection volume: 5 μL
Elution conditions

Figure 0006107130
Figure 0006107130

それぞれを基質として用いた場合の11β水酸化反応について、添加した基質量とそれぞれの11β水酸化物の蓄積濃度を表9に記す。   Table 11 shows the added base mass and the accumulated concentration of each 11β hydroxide for the 11β hydroxylation reaction when each was used as a substrate.

Figure 0006107130
Figure 0006107130

さらに、同様に調製した酵母懸濁液2mLに、20μLの1% ハイドロコルチゾン メタノール溶液を添加して、上記と同様に反応し、抽出した画分について分析条件CでLC分析したところ、わずかながらハイドロコルチゾン由来と思われる変換物(未同定)の蓄積をクロマトグラム上で確認したが、ほとんどのハイドロコルチゾンが残存していた。これにより、P450A1の酵素によりハイドロコルチゾンが分解されないことを確認できた。   Further, 20 μL of 1% hydrocortisone methanol solution was added to 2 mL of the yeast suspension prepared in the same manner, and the mixture was reacted in the same manner as described above. The extracted fraction was subjected to LC analysis under analysis condition C. Accumulation of the conversion product (unidentified) that seems to be derived from cortisone was confirmed on the chromatogram, but most of the hydrocortisone remained. This confirmed that hydrocortisone was not degraded by the P450A1 enzyme.

本発明のDNAを酵母等に遺伝子組換えして得られる形質転換体をコンパウンドS等の11−デオキシステロイド化合物と接触させることによりハイドロコルチゾン等の有用物質が効率よく製造できる。また、当該DNAのほか、ステロール7位還元酵素遺伝子、ステロール側鎖切断酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、および/または、ステロイド21位水酸化酵素遺伝子を酵母等に導入することにより得られる形質転換体を用いて、安価な炭素源からハイドロコルチゾン等の11β位が水酸化された有用物質を効率よく発酵生産することができる。   A useful substance such as hydrocortisone can be efficiently produced by bringing a transformant obtained by genetic recombination of the DNA of the present invention into yeast or the like with an 11-deoxysteroid compound such as compound S. In addition to the DNA, sterol 7-position reductase gene, sterol side chain cleaving enzyme gene, steroid 3-position oxidase / isomerase gene, steroid 17α-position hydroxylase gene, and / or steroid 21-position hydroxylase By using a transformant obtained by introducing a gene into yeast or the like, a useful substance in which the 11β-position such as hydrocortisone is hydroxylated can be efficiently fermented and produced from an inexpensive carbon source.

当該遺伝子を用いた組換え微生物によるコンパウンドSの11β水酸化反応については、収率および反応速度等において実用化に近いレベルである。一方で、本発明のDNAのほかに、ステロール7位還元酵素遺伝子、ステロール側鎖切断酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、および/または、ステロイド21位水酸化酵素遺伝子を酵母等に導入することにより得られる形質転換体を用いて、安価な炭素源からハイドロコルチゾン等の11β位が水酸化された有用物質を効率よく発酵生産する方法においては、従来のCYP11B1等に比べて当該遺伝子産物の11β水酸化活性高いことから有用である。   The 11β hydroxylation reaction of Compound S by a recombinant microorganism using the gene is close to practical use in terms of yield and reaction rate. On the other hand, in addition to the DNA of the present invention, sterol 7-position reductase gene, sterol side chain cleaving enzyme gene, steroid 3-position oxidase / isomerase gene, steroid 17α-position hydroxylase gene, and / or steroid 21 In a method for efficiently fermentatively producing a useful substance hydroxylated at the 11β-position such as hydrocortisone from an inexpensive carbon source using a transformant obtained by introducing a hydroxylase gene into yeast or the like, This gene is useful because the 11β hydroxylation activity of the gene product is higher than that of conventional CYP11B1 and the like.

Claims (5)

以下の(a1)、(b1)または(c1)の蛋白質をコードするDNA
(a1)配列番号43のアミノ酸配列を含む蛋白質。
(b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。(c1)配列番号43のアミノ酸配列との配列一致性が90%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
DNA encoding the following protein (a1), (b1) or (c1).
(A1) A protein comprising the amino acid sequence of SEQ ID NO: 43.
(B1) A protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 43, and having steroid 11β hydroxylation activity. (C1) a protein comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence of SEQ ID NO: 43 and having steroid 11β hydroxylation activity.
以下の(a2)、(b2)、(c2)または(d2)のDNA。
(a2)配列番号42の塩基配列を含むDNA。
(b2)配列番号42の塩基配列において1または数個の塩基が欠失、置換または付加された塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(c2)配列番号42の塩基配列との配列一致性が90%以上の塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(d2)配列番号42の塩基配列からなるDNAと相補的なDNAと、ストリンジェントな条件下でハイブリダイズし、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
DNA of the following (a2), (b2), (c2) or (d2).
(A2) DNA comprising the nucleotide sequence of SEQ ID NO: 42.
(B2) DNA encoding a protein comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence of SEQ ID NO: 42 and having steroid 11β hydroxylation activity.
(C2) DNA encoding a protein comprising a nucleotide sequence having a sequence identity of 90% or more with the nucleotide sequence of SEQ ID NO: 42 and having steroid 11β hydroxylation activity.
(D2) A DNA that hybridizes with a DNA complementary to the DNA consisting of the nucleotide sequence of SEQ ID NO: 42 under a stringent condition and encodes a protein having steroid 11β hydroxylation activity.
請求項または請求項に記載のDNAと、該DNAがコードする蛋白質が宿主生物または宿主細胞内で発現可能な発現制御領域とを含む組換えベクター。 A recombinant vector comprising the DNA according to claim 1 or 2 , and an expression control region in which a protein encoded by the DNA can be expressed in a host organism or host cell. 請求項もしくは請求項に記載のDNA、または請求項に記載の組換えベクターを宿主生物または宿主細胞に導入した形質転換体。 A transformant in which the DNA according to claim 1 or 2 or the recombinant vector according to claim 3 is introduced into a host organism or host cell. 求項に記載の形質転換体またはその処理物に11−デオキシステロイド化合物を接触させることで11βヒドロキシステロイド化合物を生成させ、該11βヒドロキシステロイド化合物を回収することを特徴とする、11βヒドロキシステロイド化合物の製造方法。 Motomeko 4 to produce a 11.beta.-hydroxy steroid compounds by contacting the 11-deoxy steroids compound transformant or a processed product thereof according to, and recovering the 11.beta.-hydroxy steroid compound, 11.beta.-hydroxy steroid Compound production method.
JP2012285649A 2012-12-27 2012-12-27 Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same Active JP6107130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285649A JP6107130B2 (en) 2012-12-27 2012-12-27 Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285649A JP6107130B2 (en) 2012-12-27 2012-12-27 Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same

Publications (2)

Publication Number Publication Date
JP2014124179A JP2014124179A (en) 2014-07-07
JP6107130B2 true JP6107130B2 (en) 2017-04-05

Family

ID=51404225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285649A Active JP6107130B2 (en) 2012-12-27 2012-12-27 Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same

Country Status (1)

Country Link
JP (1) JP6107130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085870A (en) * 2021-11-18 2022-02-25 山东大学 Method for marking living cells of adrenal gland tissue fasciculate cortex

Also Published As

Publication number Publication date
JP2014124179A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
US8124388B2 (en) Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
US20190127765A1 (en) Altered host cell pathway for improved ethanol production
JP4651896B2 (en) (R) -2-Octanol dehydrogenase, method for producing the enzyme, DNA encoding the enzyme, and method for producing alcohol using the same
KR102643557B1 (en) Genetically optimized microorganisms for production of target molecules
CA2526896A1 (en) Glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase promoters for gene expression in oleaginous yeast
WO2010085731A2 (en) Production of 1,4 butanediol in a microorganism
EP2764085A1 (en) Eukaryotic cell and method for producing glycolic acid
CN112135905A (en) Optimization of C-8 sterol isomerization
WO2016056610A1 (en) Manufacturing method for 7-dehydrocholesterol and vitamin d3
JP6107130B2 (en) Novel steroid 11β-hydroxylase and method for producing 11β-hydroxysteroid using the same
JP2014030376A (en) Method for producing butadiene
US6830907B2 (en) Mutants of Mycobacterium vaccae-derived formate dehydrogenase and uses thereof
WO2015111155A1 (en) NOVEL STEROID 11β-HYDROXYLASE AND METHOD FOR PRODUCING 11β-HYDROXYSTEROID USING SAME
JP4668176B2 (en) Triterpene hydroxylase
JPWO2019159831A1 (en) New production method for recombinant host cells and D-butantriol
JP6622564B2 (en) Method for producing 1,4-butanediol
US20140170722A1 (en) Method for producing isobutanol and recombinant microorganism capable of producing isobutanol
JP4688313B2 (en) Novel enone reductase, production method thereof, and method for selectively reducing carbon-carbon double bond of α, β-unsaturated ketone using the same
JP7460540B2 (en) Modified sterol acyltransferase
CN112154213A (en) Optimization of C-5 sterol desaturation
EP3810760A1 (en) Method of selecting a polypeptide of interest
CN109468287B (en) Hydroxylase mutant
US20200377898A1 (en) Intron-containing promoters and uses thereof
CN113136347B (en) Saccharomyces cerevisiae engineering bacterium for high yield of coniferyl alcohol and construction and application thereof
WO2018150377A2 (en) Culture modified to convert methane or methanol to 3-hydroxyproprionate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350