JP6104648B2 - Flatness correction method - Google Patents

Flatness correction method Download PDF

Info

Publication number
JP6104648B2
JP6104648B2 JP2013045795A JP2013045795A JP6104648B2 JP 6104648 B2 JP6104648 B2 JP 6104648B2 JP 2013045795 A JP2013045795 A JP 2013045795A JP 2013045795 A JP2013045795 A JP 2013045795A JP 6104648 B2 JP6104648 B2 JP 6104648B2
Authority
JP
Japan
Prior art keywords
steel pipe
sheet pile
heating
flatness
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045795A
Other languages
Japanese (ja)
Other versions
JP2013226597A (en
Inventor
弘理 荒川
弘理 荒川
泰明 菊池
泰明 菊池
健次 昇
健次 昇
友之 鈴木
友之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013045795A priority Critical patent/JP6104648B2/en
Publication of JP2013226597A publication Critical patent/JP2013226597A/en
Application granted granted Critical
Publication of JP6104648B2 publication Critical patent/JP6104648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、径方向に隣接させる隣接管に対する継手が、鋼管の外周面に長手方向に沿って溶接されている鋼管矢板を対象として、前記鋼管矢板の端面の平面度を矯正する平面度矯正方法に関する。The present invention relates to a flatness correction method for correcting the flatness of the end face of the steel pipe sheet pile, in which a joint to an adjacent pipe adjacent in the radial direction is welded to the outer peripheral surface of the steel pipe along the longitudinal direction. about the law.

従来、この種の鋼管矢板技術としては、例えば、鋼管の両側面にそれぞれ継手を備えた鋼管矢板の場合を例に挙げて説明すると、図18に示すように、継手3を鋼管1の外周面に溶接によって本固定してしまう前に、鋼管1の内空部において継手取付位置間に亘るリブ部20Aと、それに直交するリブ部20Bとからなる断面十字形状のリブ部材20を、溶接によって鋼管1の内周面に固定しておき、その後、継手3の全長を鋼管1に溶接で取り付けて本固定を行う方法があった(例えば、特許文献1参照)。   Conventionally, as this type of steel pipe sheet pile technology, for example, the case of a steel pipe sheet pile provided with joints on both side surfaces of the steel pipe will be described as an example. As shown in FIG. Before the main fixing by welding, a rib member 20 having a cross-shaped cross section composed of a rib portion 20A extending between joint fitting positions in the inner space of the steel pipe 1 and a rib portion 20B orthogonal thereto is welded to the steel pipe. 1 was fixed to the inner peripheral surface of No. 1, and then the full length of the joint 3 was attached to the steel pipe 1 by welding (see, for example, Patent Document 1).

特開2009−166084号公報(図1、図2)JP 2009-166084 A (FIGS. 1 and 2)

従来から、鋼管の両側面に溶接によって継手を取り付けると、それに伴う鋼管矢板の熱収縮の影響の一つが、長さ方向の収縮歪みとして管端面に表れることが知られている。
具体的には、管端面における継手取り付き延長線上の近傍箇所が、他の部分よりも凹む傾向があり、その結果、管端面の平面度が悪くなる。
因みに、平面度とは、管端面に基準平板を当てた時の隙間の最大値をいい、大きい値であるほど、管端面の凹凸が激しく平面度が悪いことを表す。
そして、管端面での平面度が悪いことによる弊害は、別の鋼管を軸芯方向に継ぎ足す状態で配置して、両者を溶接する溶接継手を使用するような場合、接合面どうしの間隔にバラツキが大きくなることが挙げられ、鋼管どうしの接合不良の原因になる危険性があって好ましくない。また、鋼管どうしの接合部に機械式継手を使用するような場合には、正常に嵌合連結できなくなる危険性もある。
従って、従来の鋼管矢板技術は、上述のようにリブ部材を鋼管内周部に固定することで、継手溶接箇所に作用する管長方向の収縮力を、リブ部材を介して他の周部分に分散させ、大きな凹みが生じるのを防止し、管端面の平面度を小さくするものである。
しかし、このような従来の鋼管矢板技術によれば、リブ部材を鋼管の内周部に配置しながらの溶接作業を実施する必要があり、手間とコストがかかる問題点がある。
Conventionally, when joints are attached to both side surfaces of a steel pipe by welding, it is known that one of the effects of thermal contraction of the steel pipe sheet pile accompanying it appears on the pipe end face as shrinkage strain in the length direction.
Specifically, the vicinity of the joint attachment extension line on the pipe end surface tends to be recessed more than the other parts, and as a result, the flatness of the pipe end surface is deteriorated.
Incidentally, the flatness means the maximum value of the gap when the reference flat plate is applied to the tube end surface, and the larger the value, the more uneven the tube end surface and the lower the flatness.
And the adverse effect of poor flatness at the pipe end surface is that the distance between the joint surfaces is different when using another welded pipe that welds both steel pipes in the axial direction. There is an increase in variation, which is not preferable because there is a risk of causing a joint failure between steel pipes. In addition, when a mechanical joint is used at a joint between steel pipes, there is a risk that the fitting connection cannot be performed normally.
Therefore, in the conventional steel pipe sheet pile technology, the rib member is fixed to the inner peripheral portion of the steel pipe as described above, so that the contracting force in the pipe length direction acting on the joint welding location is distributed to other peripheral portions via the rib member. This prevents the formation of a large dent and reduces the flatness of the tube end face.
However, according to such a conventional steel pipe sheet pile technology, it is necessary to perform a welding operation while disposing the rib member on the inner peripheral portion of the steel pipe, and there is a problem that it takes time and cost.

従って、本発明の目的は、上記問題点を解消し、手間とコストを抑えながら、鋼管矢板の端面の平面度を改善できる鋼管矢板技術を提供するところにある。   Accordingly, an object of the present invention is to provide a steel pipe sheet pile technology capable of improving the flatness of the end face of the steel pipe sheet pile while eliminating the above-mentioned problems and suppressing labor and cost.

本発明の第1の特徴構成は、鋼管の外周面に、隣接管との継手が長手方向に沿って溶接されている鋼管矢板を対象として、前記鋼管矢板の端面の平面度を矯正する平面度矯正方法であって、前記鋼管の全周の内、前記継手が設けられていない周範囲の少なくとも一部を加熱することで、加熱後の温度低下に伴う素材の収縮を起こさせて、前記鋼管矢板の端面の平面度を向上させるところにある。   1st characteristic structure of this invention is the flatness which corrects the flatness of the end surface of the said steel pipe sheet pile for the steel pipe sheet pile by which the joint with an adjacent pipe is welded along the longitudinal direction on the outer peripheral surface of a steel pipe. In the straightening method, the steel pipe is caused to shrink by heating at least a part of the entire circumference of the steel pipe where the joint is not provided, and the shrinkage of the material accompanying a temperature drop after heating is caused. It exists in improving the flatness of the end face of a sheet pile.

本発明の第1の特徴構成によれば、前記鋼管の全周の内、前記継手が設けられていない周範囲の少なくとも一部を加熱するから、加熱後の温度低下に伴う素材の収縮を、継手が設けられていない周範囲にも起こさせることができ、継手が設けられている周範囲と、継手が設けられていない周範囲との間での、端面凹みの落差を少なくでき、その結果、管端面の平面度を向上させることができる。
しかも、その作業そのものは、上述のとおり、鋼管の全周の内、継手が設けられていない周範囲の少なくとも一部を加熱するだけであるから、簡単に、且つ、迅速に平面度矯正を行うことができる。
更には、従来方法に比べて、鋼管の内空部にリブ部材等の余分な部材を配置する必要がないから、コストダウンを図ることが可能であると共に、鋼管の内空部に、例えば、骨材やコンクリート等を打設するような場合にも、その障害になる存在が無いから、スムースに作業を進めることができる。
また、鋼管の全周の内、継手が設けられている周範囲を加熱しないから、その部分における熱収縮を助長する虞が無く、継手が設けられていない周範囲の加熱によって生じる素材の収縮による顕著な効果によって管端面の平面度の向上を図ることができる。
更には、鋼管と継手との溶接箇所の加熱による品質低下を来す虞もない。
According to the first characteristic configuration of the present invention, the entire circumference of the steel pipe is heated at least a part of the circumferential range where the joint is not provided. It can also be caused to occur in the circumferential range where the joint is not provided, and the drop of the end surface dent between the circumferential range where the joint is provided and the circumferential range where the joint is not provided can be reduced. The flatness of the tube end face can be improved.
In addition, as described above, the work itself is only to heat at least a part of the circumferential range where the joint is not provided in the entire circumference of the steel pipe, so that the flatness is corrected easily and quickly. be able to.
Furthermore, compared with the conventional method, since it is not necessary to arrange an extra member such as a rib member in the inner space of the steel pipe, it is possible to reduce the cost, and in the inner space of the steel pipe, for example, Even when placing aggregate, concrete, or the like, there is no obstacle to the work, so the work can be carried out smoothly.
Moreover, since the circumferential range in which the joint is provided is not heated in the entire circumference of the steel pipe, there is no possibility of promoting thermal shrinkage in the portion, and due to the shrinkage of the material caused by heating in the circumferential range in which the joint is not provided. The flatness of the pipe end face can be improved by a remarkable effect.
Furthermore, there is no risk of quality deterioration due to heating of the welded portion between the steel pipe and the joint.

本発明の第2の特徴構成は、前記鋼管の加熱位置は、前記周範囲の内で、前記鋼管の長手方向での中央部より平面度矯正対象の鋼管端部側の範囲に設定するところにある。   According to a second characteristic configuration of the present invention, the heating position of the steel pipe is set in a range on the end of the steel pipe end to be flattened from the center in the longitudinal direction of the steel pipe within the circumferential range. is there.

鋼管の加熱による熱収縮の影響は、加熱位置の周囲に広がるに連れて減衰する傾向があるから、加熱位置は、鋼管の中央部よりは自由端部に近い方が、端部への影響が大きく表れる。
本発明の第2の特徴構成によれば、前記鋼管の加熱位置は、前記周範囲の内で、前記鋼管の長手方向での中央部より平面度矯正対象の鋼管端部側の範囲に設定するから、中央部を加熱するのに比べて、熱収縮の作用を端面矯正に大きく活かすことができ、管端面の平面度の向上を図り易くなる。
The effect of heat shrinkage due to heating of the steel pipe tends to attenuate as it spreads around the heating position, so the heating position is closer to the free end than the center of the steel pipe, and the influence on the end is less. It appears greatly.
According to the 2nd characteristic structure of this invention, the heating position of the said steel pipe is set to the range of the steel pipe end part side of flatness correction object from the center part in the longitudinal direction of the said steel pipe within the said circumferential range. Therefore, compared with heating the central portion, the effect of heat shrinkage can be greatly utilized for end face correction, and the flatness of the pipe end face can be easily improved.

本発明の第3の特徴構成は、前記鋼管の周方向での加熱位置は、前記継手から最も離れた周位置を基準位置とし、前記継手が、前記鋼管の周方向での複数箇所に設けられ、且つ、周方向に隣合う前記継手の溶接の入熱量が異なる場合は、両継手の溶接の入熱量に応じて、前記基準位置を入熱量の少ない前記継手側に補正するところにある。   According to a third characteristic configuration of the present invention, a heating position in the circumferential direction of the steel pipe is a circumferential position farthest from the joint, and the joint is provided at a plurality of locations in the circumferential direction of the steel pipe. And when the heat input of the welding of the said joint adjacent to the circumferential direction differs, it exists in the place which correct | amends the said reference position to the said joint side with little heat input according to the heat input of welding of both joints.

継手を溶接で鋼管に取り付けるに伴って発生する鋼管の管軸芯方向の収縮量は、溶接時の入熱量や溶着金属量が大きい程、大きくなる傾向を見出した。また、その収縮量(管軸芯方向の収縮量)の鋼管の周方向での分布は、継手を溶接した位置が最大となり、継手から最も離れた周位置が最小となる傾向を見出した。
従って、鋼管矢板の端面の平面度を向上させるためには、前記収縮量の最小(又は0)となる周範囲を、継手位置での前記収縮量に近付けるように収縮させることで叶えることができる。
本発明の第3の特徴構成によれば、継手から最も離れた周位置を加熱の基準位置とするから、前記収縮量の最小の周範囲を加熱収縮させることができ、鋼管矢板の端面の平面度を向上させることができる。これは、継手が一つのみ取り付けられている場合や、複数の継手が取り付けられていても、周方向に隣合う継手の溶接の入熱量が同様の場合に有効である。
また、周方向に隣合う継手の溶接の入熱量が異なる場合は、両継手の溶接の入熱量に応じて、加熱の基準位置を入熱量の少ない継手側に補正するから、その結果、前記収縮量の最小となる周範囲を加熱収縮させて、より効率よく、且つ、精度よく鋼管矢板の平面度の向上を図ることができる。
It has been found that the amount of shrinkage in the tube axis direction of the steel pipe that occurs when the joint is attached to the steel pipe by welding increases as the amount of heat input during welding or the amount of deposited metal increases. Further, the distribution of the shrinkage amount (shrinkage amount in the tube axis direction) in the circumferential direction of the steel pipe tended to be maximized at the position where the joint was welded and the circumferential position furthest away from the joint was minimized.
Therefore, in order to improve the flatness of the end face of the steel pipe sheet pile, it can be realized by contracting the circumferential range that is the minimum (or 0) of the contraction amount so as to approach the contraction amount at the joint position. .
According to the third characteristic configuration of the present invention, since the circumferential position farthest from the joint is used as the heating reference position, the minimum circumferential range of the shrinkage can be heated and shrunk, and the plane of the end face of the steel pipe sheet pile The degree can be improved. This is effective when only one joint is attached, or even when a plurality of joints are attached, the amount of heat input from welding of joints adjacent in the circumferential direction is the same.
Also, if the heat input of the joints adjacent in the circumferential direction is different, the heating reference position is corrected to the joint side with the smaller heat input according to the heat input of the welds of both joints. The flatness of the steel pipe sheet pile can be improved more efficiently and accurately by heating and shrinking the circumferential range where the amount is minimum.

本発明の第4の特徴構成は、前記鋼管の加熱温度は、前記鋼管の素材の機械的性質が、加熱前後において変化しない範囲での上限側に設定するところにある。   A fourth characteristic configuration of the present invention is that the heating temperature of the steel pipe is set to an upper limit side in a range where the mechanical properties of the material of the steel pipe do not change before and after heating.

鋼管の加熱温度は、高ければ高い程、温度降下後の熱収縮が大きくなるから、管端面の平面度の向上を目差す上からは、高温加熱が好ましい。
一方、加熱温度が高すぎれば、鋼管素材の機械的性質が変化する危険性があり、鋼管矢板全体とした所定の物性が確保できなくなる虞がある。
本発明の第4の特徴構成によれば、機械的性質が変化しない範囲での上限温度で鋼管を加熱するから、鋼管矢板素材の所定の機械的性質を維持できながら、その範囲内で最大限の熱収縮を生じさせて、効率のよい平面度矯正を行うことができる。
The higher the heating temperature of the steel pipe, the higher the heat shrinkage after the temperature drop, so high temperature heating is preferable from the viewpoint of improving the flatness of the pipe end face.
On the other hand, if the heating temperature is too high, there is a risk that the mechanical properties of the steel pipe material will change, and it may be impossible to ensure the predetermined physical properties of the entire steel pipe sheet pile.
According to the fourth characteristic configuration of the present invention, since the steel pipe is heated at the upper limit temperature within the range where the mechanical properties do not change, the predetermined mechanical properties of the steel pipe sheet pile material can be maintained, but the maximum within the range. Thus, the flatness can be corrected efficiently.

管の外周面に、隣接管との継手が長手方向に沿って溶接されている鋼管矢板であって、前記鋼管の全周の内、前記継手が設けられていない周範囲の少なくとも一部に、加熱後の温度低下に伴う素材の収縮を起こさせて、前記鋼管の端面の平面度を向上させている被加熱部が設けてある構成によれば、被加熱部がもたらす鋼管素材の収縮によって、鋼管の端面において、継手が設けられていない周範囲の鋼管長手方向での変位傾向を、継手が設けられている周範囲での変位傾向に合わせることができる。その結果、管端面の平面度が向上し、長手方向に連結する別の鋼管矢板との密着性が良くなり、鋼管矢板どうしの接続性能を良好に維持できる。
しかも、被加熱部の加熱作業そのものは、上述のとおり、鋼管の全周の内、継手が設けられていない周範囲の少なくとも一部を加熱するだけであるから、簡単に、且つ、迅速に平面度矯正を行うことができ、コストアップの抑制を図ることができる。
更には、従来方法に比べて、鋼管の内空部にリブ部材等の余分な部材を配置する必要がないから、コストダウンを図ることが可能であると共に、鋼管の内空部に、例えば、骨材やコンクリート等を打設するような場合にも、その障害になる存在が無いから、スムースに作業を進めることができる。
また、鋼管の全周の内、継手が設けられている周範囲を加熱しないから、その部分における熱収縮を助長する虞が無く、継手が設けられていない周範囲の加熱によって生じる素材の収縮による顕著な効果によって管端面の平面度の向上を図ることができる。
更には、鋼管と継手との溶接箇所の加熱による品質低下を来す虞もない。
The outer peripheral surface of the steel pipe, a steel pipe sheet pile joint between adjacent pipes are welded along the longitudinal direction, of the entire periphery of the steel tube, at least a portion of the circumferential extent of the coupling is not provided , thereby causing shrinkage of the material due to the temperature drop after heating, according to the heated portion that the flatness is improved Oh Ru configuration provided in an end surface of the steel pipe, the steel pipe material heated portion results By contraction, the displacement tendency in the longitudinal direction of the steel pipe in the circumferential range where the joint is not provided on the end face of the steel pipe can be matched with the displacement tendency in the circumferential range where the joint is provided. As a result, the flatness of the pipe end face is improved, the adhesiveness with another steel pipe sheet pile connected in the longitudinal direction is improved, and the connection performance between the steel pipe sheet piles can be maintained well.
In addition, as described above, the heating operation itself of the heated portion only heats at least a part of the entire circumference of the steel pipe where no joint is provided. Degree correction can be performed, and the increase in cost can be suppressed.
Furthermore, compared with the conventional method, since it is not necessary to arrange an extra member such as a rib member in the inner space of the steel pipe, it is possible to reduce the cost, and in the inner space of the steel pipe, for example, Even when placing aggregate, concrete, or the like, there is no obstacle to the work, so the work can be carried out smoothly.
Moreover, since the circumferential range in which the joint is provided is not heated in the entire circumference of the steel pipe, there is no possibility of promoting thermal shrinkage in the portion, and due to the shrinkage of the material caused by heating in the circumferential range in which the joint is not provided. The flatness of the pipe end face can be improved by a remarkable effect.
Furthermore, there is no risk of quality deterioration due to heating of the welded portion between the steel pipe and the joint.

鋼管矢板を示す斜視図Perspective view showing steel pipe sheet pile 機械継手部材の嵌合状況を示す一部切欠き斜視図Partially cutaway perspective view showing fitting state of mechanical joint member 鋼管矢板の横断面図Cross section of steel pipe sheet pile 鋼管矢板の端面の変形状況を示す要部側面図Side view of main part showing deformation of end face of steel pipe sheet pile 第1実施形態の鋼管矢板の端面の変形状況を示す線図The diagram which shows the deformation | transformation condition of the end surface of the steel pipe sheet pile of 1st Embodiment 第1実施形態の鋼管矢板の加熱エリアを示す側面図Side view showing the heating area of the steel pipe sheet pile of the first embodiment 第2実施形態の鋼管矢板の凸型機械継手部材側端面の変形状況を示す線図The diagram which shows the deformation | transformation condition of the convex-type mechanical coupling member side end surface of the steel pipe sheet pile of 2nd Embodiment. 第2実施形態の鋼管矢板の凹型機械継手部材側端面の変形状況を示す線図The diagram which shows the deformation | transformation condition of the concave type machine joint member side end surface of the steel pipe sheet pile of 2nd Embodiment. 第2実施形態の鋼管矢板の加熱エリアを示す側面図Side view showing the heating area of the steel pipe sheet pile of the second embodiment 第3実施形態の鋼管矢板の凸型機械継手部材側端面の変形状況を示す線図The diagram which shows the deformation | transformation condition of the convex-type mechanical coupling member side end surface of the steel pipe sheet pile of 3rd Embodiment. 第3実施形態の鋼管矢板の凹型機械継手部材側端面の変形状況を示す線図The diagram which shows the deformation | transformation condition of the concave type machine joint member side end surface of the steel pipe sheet pile of 3rd Embodiment. 第3実施形態の鋼管矢板の加熱エリアを示す側面図Side view showing the heating area of the steel pipe sheet pile of the third embodiment 矢板継手部材を示す要部横断面図Cross section of the main part showing the sheet pile joint member 別実施形態の鋼管矢板の加熱エリアを示す横断面図Cross-sectional view showing the heating area of the steel pipe sheet pile of another embodiment 別実施形態の鋼管矢板の加熱エリアを示す横断面図Cross-sectional view showing the heating area of the steel pipe sheet pile of another embodiment 別実施形態の鋼管矢板の加熱エリアを示す側面図Side view showing heating area of steel pipe sheet pile of another embodiment 別実施形態の鋼管矢板の加熱エリアを示す側面図Side view showing heating area of steel pipe sheet pile of another embodiment 従来例の鋼管矢板を示す説明図Explanatory drawing which shows the steel pipe sheet pile of a prior art example

以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts indicated by the same reference numerals as those in the conventional example indicate the same or corresponding parts.

図1は、本発明の鋼管矢板技術の対象となる鋼管矢板Pの一実施品を示している。
鋼管矢板Pは、鋼管1の両端部に、管軸芯方向に連結する別の鋼管1との機械継手部材2をそれぞれ溶接によって取り付け、鋼管1の両側面のほぼ全長にわたって、並設させる別の鋼管矢板との矢板継手部材(継手に相当)3をそれぞれ溶接によって取り付けて構成してある。
FIG. 1 shows an embodiment of a steel pipe sheet pile P that is an object of the steel pipe sheet pile technology of the present invention.
The steel pipe sheet piles P are attached to both ends of the steel pipe 1 by welding, respectively, with mechanical joint members 2 with other steel pipes 1 connected in the axial direction of the pipe, and are arranged side by side over almost the entire length of both side surfaces of the steel pipe 1. A sheet pile joint member (corresponding to a joint) 3 with a steel pipe sheet pile is attached by welding, respectively.

そして、図には示さないが、矢板継手部材3どうしが嵌合するように鋼管矢板Pを設置対象部に順次建て込んで、横に連続した鋼管矢板群によって土留め壁や護岸等の仕切壁を構成することができる。また、深さ方向に関しては、凹型機械継手部材2Aと凸型機械継手部材2Bとを嵌合連結して複数の鋼管矢板Pを継ぎ足すことで、所定の長さ寸法を確保することができる。   And although not shown in a figure, the steel pipe sheet pile P is sequentially built in an installation object part so that the sheet pile coupling members 3 may fit, and partition walls, such as a retaining wall and a seawall, are laterally continued by the steel pipe sheet pile group. Can be configured. In addition, with respect to the depth direction, a predetermined length dimension can be secured by fitting and connecting the concave mechanical joint member 2A and the convex mechanical joint member 2B and adding a plurality of steel pipe sheet piles P.

前記機械継手部材2は、図2に示すように、鋼管1の一端部(例えば、下端部)に設けられるリング状の凹型機械継手部材2Aと、鋼管1の他端部(例えば、上端部)に設けられて凹型機械式継手部材2Aと嵌合連結可能な構造をもつリング状の凸型機械継手部材2Bとがある。   As shown in FIG. 2, the mechanical joint member 2 includes a ring-shaped concave mechanical joint member 2A provided at one end (for example, the lower end) of the steel pipe 1, and the other end (for example, the upper end) of the steel pipe 1. And a ring-shaped convex mechanical joint member 2B having a structure that can be fitted and connected to the concave mechanical joint member 2A.

これら凹型機械継手部材2Aと凸型機械継手部材2Bとは、管径方向の内外に重なる状態で嵌合できるように構成してあり、互いの摺接面で対向する状態にそれぞれ周溝4,5が構成してある。これら両周溝4,5に亘って介在可能なキー部材6が設けてあり、このキー部材6を両周溝4,5に亘って位置させることで、凹型機械継手部材2Aと凸型機械継手部材2Bとの管軸芯方向への相対移動を規制するロック状態にすることができ、対応する鋼管1どうしを抜け止め状態に連結することができる。   The concave mechanical joint member 2A and the convex mechanical joint member 2B are configured so as to be able to fit in a state of overlapping inside and outside in the pipe diameter direction, and each of the circumferential grooves 4, 5 is configured. A key member 6 that can be interposed between the circumferential grooves 4 and 5 is provided. By positioning the key member 6 across the circumferential grooves 4 and 5, the concave mechanical joint member 2A and the convex mechanical joint are provided. It can be in a locked state that restricts relative movement of the member 2B in the tube axis direction, and the corresponding steel pipes 1 can be connected to each other in a retaining state.

このように、機械継手部材2どうしは、前記キー部材6が、両周溝4,5にわたって嵌合できるように比較的高い寸法精度を備えた仕上げに構成してある。
従って、鋼管1への前記矢板継手部材3の溶接によって熱収縮が生じると、機械継手部材2どうしの寸法精度も低下し、キー部材6を前記ロック状態に位置させることが不可能となる虞がある。
これを防止する意味から、管端面の平面度が低下しないように維持する必要がある。
Thus, the mechanical coupling members 2 are configured to have a relatively high dimensional accuracy so that the key member 6 can be fitted over the circumferential grooves 4 and 5.
Therefore, if thermal contraction occurs due to the welding of the sheet pile joint member 3 to the steel pipe 1, the dimensional accuracy between the mechanical joint members 2 also decreases, and it may be impossible to position the key member 6 in the locked state. is there.
In order to prevent this, it is necessary to maintain the flatness of the tube end face so as not to decrease.

前記矢板継手部材3は、本実施形態においては、図3に示すように、管軸芯方向視での断面形状が「C」字形状、又は、「T」字形状の鋼材で構成してあるものを、鋼管1の全周面の内、筒軸芯周りの中心角として基準点Kから90度の位置と、270度の位置とにそれぞれ溶接によって取り付けてあるものを例に挙げて説明している。図においては、基準点Kが、上に位置する状態を基準としている。但し、ここでいう基準点Kからの角度は、鋼管矢板Pの凸型機械継手部材2B側から凹型機械継手部材2A側に向かって、筒軸芯周りでの右周りの角度としている。
矢板継手部材3の取付位置や取付箇所数は、これに限るものではなく、鋼管矢板Pが使用される現場状況に応じて、例えば、90度の位置のみの場合や(図15(a)参照)、90度の位置と180度(又は360度)の位置の場合や(図15(b)参照)、90度の位置と180度の位置と270度の位置の場合(図15(c)参照)等、任意の位置と任意の取付箇所数に設定されることもある。また、取付位置の基準点Kからの中心角は、上述した90度や、180度や、270度等の90の倍数に限るものではなく、例えば、80度や、100度等、90の倍数以外の任意の角度の位置に設定してあってもよい。
In the present embodiment, as shown in FIG. 3, the sheet pile joint member 3 is made of a steel material having a “C” -shaped or “T” -shaped cross section when viewed from the tube axis direction. An example is described in which the steel tube 1 is attached by welding at a position 90 degrees from the reference point K and a position 270 degrees from the reference point K as the central angle around the cylinder axis. ing. In the figure, the reference point K is based on a state where it is positioned above. However, the angle from the reference point K here is a clockwise angle around the cylinder axis from the convex mechanical joint member 2B side of the steel pipe sheet pile P to the concave mechanical joint member 2A side.
The attachment position and the number of attachment places of the sheet pile joint member 3 are not limited to this, and depending on the field situation where the steel pipe sheet pile P is used, for example, only at a position of 90 degrees (see FIG. 15 (a)). ), A position of 90 degrees and a position of 180 degrees (or 360 degrees) (see FIG. 15B), a position of 90 degrees, a position of 180 degrees, and a position of 270 degrees (FIG. 15C). It may be set at any position and any number of attachment points. Further, the central angle of the mounting position from the reference point K is not limited to the multiple of 90 such as 90 degrees, 180 degrees, and 270 degrees described above. For example, a multiple of 90 such as 80 degrees and 100 degrees. You may set to the position of arbitrary angles other than.

〔第1実施形態〕
両端部に機械継手部材2を溶接によって取り付けた鋼管1の両側部(前記90度、270度の位置)に、前記矢板継手部材3をそれぞれ溶接によって取り付けると、熱が下がるに伴って鋼材の熱収縮が生じ、その影響が、鋼管矢板Pの端面の凹みとして表れる。
この計測例として、直径1000mm、肉厚12mm、長さ5000mmの鋼管矢板Pでの凸型機械継手部材2Bの端面2aで、図4に示すとおり、計測用の仮想基準平面Hから継手部材端面2aまでの離間寸法Sを割り出した。その値は、図5に示すとおりである。
また、矢板継手部材3は、二ヵ所とも断面形状が「C」字形状の鋼材を用いている。
この結果によれば、矢板継手部材3が取り付けられている周範囲、即ち、90度の位置と、270度の位置との近傍において、他の周範囲よりも凹みが大きく表れており、特に、270度の位置においては、最大値0.77mmが観測されている。前記仮想基準平面Hと継手部材端面2aとの離間寸法Sの最大値が平面度に相当するから、当該例においては、平面度Smaxは、0.77mmを示した。
[First Embodiment]
When the sheet pile joint member 3 is attached by welding to both side portions (positions of 90 ° and 270 °) of the steel pipe 1 to which the mechanical joint member 2 is attached by welding at both ends, the heat of the steel material increases as the heat decreases. Shrinkage occurs, and the effect appears as a dent in the end face of the steel pipe sheet pile P.
As an example of this measurement, the end face 2a of the convex mechanical joint member 2B with a steel pipe sheet pile P having a diameter of 1000 mm, a wall thickness of 12 mm, and a length of 5000 mm, as shown in FIG. 4, from the virtual reference plane H for measurement to the joint member end face 2a. The separation dimension S up to was determined. The values are as shown in FIG.
Further, the sheet pile joint member 3 uses a steel material having a “C” cross-sectional shape at both locations.
According to this result, in the vicinity of the circumferential range to which the sheet pile joint member 3 is attached, that is, in the vicinity of the 90-degree position and the 270-degree position, the dent appears larger than the other circumferential ranges. At a position of 270 degrees, a maximum value of 0.77 mm is observed. Since the maximum value of the separation dimension S between the virtual reference plane H and the joint member end surface 2a corresponds to the flatness, the flatness Smax is 0.77 mm in this example.

第1実施形態での鋼管矢板Pの端面の平面度を矯正する方法は、鋼管矢板Pの凸型機械継手部材2Bが固着されている方の端部(鋼管矢板の他端部他)において、図3、図4に示すように、鋼管1の全周の内、矢板継手部材3が設けられていない周範囲の少なくとも一部をガス炎によって加熱することで、加熱後の温度低下に伴う素材の収縮を起こさせて、鋼管矢板Pの他端部の端面の平面度を向上させる方法をとった。
詳しくは、鋼管矢板Pの他端部から821mmの位置において、鋼管1の全周面の内、前記基準点Kから0度の位置、及び、180度の位置をそれぞれ中心として196mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の加熱エリアEを設定し(図6参照)、700℃の温度で5分かけて加熱した。即ち、加熱エリアEの中心は、鋼管矢板Pの周方向において、二つの矢板継手部材3が取り付けられている位置間の中央部に設定されている。
更に詳しくは、196mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の加熱エリアEにおける加熱ポイントを、図6に示すように、等ピッチで3行5列の15ポイントに設定し、1列の3つのポイントを、合計1分かけて加熱し、順次、次の列に移動し、合計で5分の加熱を行った。
また、加熱温度の700℃に関しては、鋼管1の素材(例えば、SKY400や、SKY490等)としての機械的性質が、加熱前後において変化しない範囲での上限側に設定されており、また、鋼管1の加熱位置は、鋼管1の長手方向での中央部より鋼管端部側(鋼管矢板の他端部側)の範囲に設定されている。
The method of correcting the flatness of the end face of the steel pipe sheet pile P according to the first embodiment is the end part (the other end part of the steel pipe sheet pile, etc.) to which the convex mechanical joint member 2B of the steel pipe sheet pile P is fixed. As shown in FIG. 3 and FIG. 4, at least a part of the entire circumference of the steel pipe 1 where the sheet pile joint member 3 is not provided is heated with a gas flame, thereby causing a temperature drop after heating. The shrinkage | contraction of this was raised and the method of improving the flatness of the end surface of the other end part of the steel pipe sheet pile P was taken.
Specifically, at a position of 821 mm from the other end of the steel pipe sheet pile P, a position of 196 mm (steel pipe length) centering on the position of 0 degrees and the position of 180 degrees from the reference point K in the entire peripheral surface of the steel pipe 1. A heating area E of (direction range) × 314 mm (steel pipe circumferential direction range) was set (see FIG. 6) and heated at a temperature of 700 ° C. over 5 minutes. That is, the center of the heating area E is set at the center between the positions where the two sheet pile joint members 3 are attached in the circumferential direction of the steel pipe sheet pile P.
More specifically, the heating point in the heating area E of 196 mm (steel pipe length direction range) × 314 mm (steel pipe circumferential direction range) is set to 15 points in 3 rows and 5 columns at an equal pitch, as shown in FIG. The three points in one row were heated for a total of 1 minute, moved sequentially to the next row, and heated for a total of 5 minutes.
Moreover, regarding the heating temperature of 700 ° C., the mechanical properties as the material of the steel pipe 1 (for example, SKY400, SKY490, etc.) are set to the upper limit side in a range that does not change before and after heating. The heating position is set in the range of the steel pipe end side (the other end side of the steel pipe sheet pile) from the central part in the longitudinal direction of the steel pipe 1.

以上の平面度矯正方法を実施することで、鋼管矢板Pの端面の平面度は、図5に示すように、改善されている。
即ち、270度の位置に見られる前記離間寸法Sの最大値が、0.48mmという結果となり、平面度Smaxが、0.77mmから0.48mmに矯正されたことになる。
この矯正の結果、機械継手部材2どうしの嵌合、及び、キー部材6によるロック状態への切換が可能となり、鋼管矢板Pどうしの連結が可能となった。
By performing the flatness correction method described above, the flatness of the end face of the steel pipe sheet pile P is improved as shown in FIG.
That is, the maximum value of the separation dimension S seen at a position of 270 degrees is 0.48 mm, and the flatness Smax is corrected from 0.77 mm to 0.48 mm.
As a result of this correction, the mechanical joint members 2 can be fitted together and switched to the locked state by the key member 6, and the steel pipe sheet piles P can be connected to each other.

〔第2実施形態〕
先に説明した第1実施形態と共通する事項に関しては、説明を割愛し、異なる事項を主に説明する。
この実施形態では、長さ12000mmの鋼管矢板を用いている。
また、矢板継手部材3は、二ヵ所とも断面形状が「C」字形状の鋼材を用いている。
矢板継手部材3の溶接が完了した時点では、第1実施形態と同様に、基準点Kから90度の位置と、270度の位置との近傍において、他の周範囲よりも端面での凹みが大きく表れている。
[Second Embodiment]
Descriptions that are common to the first embodiment described above are omitted, and different items are mainly described.
In this embodiment, a steel pipe sheet pile having a length of 12000 mm is used.
Further, the sheet pile joint member 3 uses a steel material having a “C” cross-sectional shape at both locations.
At the time when the welding of the sheet pile joint member 3 is completed, as in the first embodiment, in the vicinity of the position of 90 degrees from the reference point K and the position of 270 degrees, there is a dent on the end face more than the other circumferential ranges. It appears greatly.

鋼管矢板Pの端面の平面度矯正方法は、鋼管矢板Pの凸型機械継手部材2Bが固着されている方の端部(他端部)と、凹型機械継手部材2Aが固着されている方の端部(一端部)との両方において、図3、図4に示すように、鋼管1の全周の内、矢板継手部材3が設けられていない周範囲の少なくとも一部をガス炎によって加熱することで、加熱後の温度低下に伴う素材の収縮を起こさせて、鋼管矢板Pの両端部の端面の平面度を向上させる方法をとった。
詳しくは、鋼管矢板Pの凸型機械継手部材2B側では、端部から815mmの位置において、鋼管1の全周面の内、前記基準点Kから0度の位置、及び、180度の位置をそれぞれ中心として154mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の加熱エリアEを設定して(図9参照)、700℃の温度で5分かけて加熱した。
また、鋼管矢板Pの凹型機械継手部材2A側では、端部から759mmの位置において、鋼管1の全周面の内、前記基準点Kから0度の位置、及び、180度の位置をそれぞれ中心として157mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の加熱エリアEを設定して(図9参照)、700°Cの温度で5分かけて加熱した。
The method for correcting the flatness of the end face of the steel pipe sheet pile P is the one in which the convex mechanical joint member 2B of the steel pipe sheet pile P is fixed and the concave mechanical joint member 2A is fixed. As shown in FIGS. 3 and 4, at both the end portion (one end portion), at least a part of the entire circumference of the steel pipe 1 where the sheet pile joint member 3 is not provided is heated by a gas flame. Thus, a method was adopted in which the shrinkage of the material accompanying the temperature drop after heating was caused to improve the flatness of the end faces of both ends of the steel pipe sheet pile P.
Specifically, on the convex mechanical joint member 2B side of the steel pipe sheet pile P, at a position of 815 mm from the end portion, a position of 0 degrees from the reference point K and a position of 180 degrees of the entire circumferential surface of the steel pipe 1 are set. A heating area E of 154 mm (steel pipe length direction range) × 314 mm (steel pipe circumferential direction range) was set as the center (see FIG. 9) and heated at a temperature of 700 ° C. for 5 minutes.
Moreover, on the concave mechanical joint member 2A side of the steel pipe sheet pile P, the position of 0 degrees from the reference point K and the position of 180 degrees are centered in the entire circumferential surface of the steel pipe 1 at a position of 759 mm from the end. The heating area E of 157 mm (steel pipe length direction range) × 314 mm (steel pipe circumferential direction range) was set (see FIG. 9), and heated at a temperature of 700 ° C. for 5 minutes.

以上の平面度矯正方法を実施することで、鋼管矢板Pの端面の平面度は、凸型機械継手部材2B側は図7、凹型機械継手部材2A側は図8に示すように、改善されている。
即ち、鋼管矢板Pの凸型機械継手部材2B側では、平面度Smaxが、1.05mmから0.65mmに矯正され、鋼管矢板Pの凹型機械継手部材2A側では、平面度Smaxが、1.02mmから0.65mmに矯正されている。
この矯正の結果、機械継手部材2どうしの嵌合、及び、キー部材6によるロック状態への切換が可能となり、鋼管矢板Pどうしの連結が可能となった。
By performing the above flatness correction method, the flatness of the end face of the steel pipe sheet pile P is improved as shown in FIG. 7 on the convex mechanical joint member 2B side and FIG. 8 on the concave mechanical joint member 2A side. Yes.
That is, on the convex mechanical joint member 2B side of the steel pipe sheet pile P, the flatness Smax is corrected from 1.05 mm to 0.65 mm, and on the concave mechanical joint member 2A side of the steel pipe sheet pile P, the flatness Smax is 1. It is corrected from 02mm to 0.65mm.
As a result of this correction, the mechanical joint members 2 can be fitted together and switched to the locked state by the key member 6, and the steel pipe sheet piles P can be connected to each other.

〔第3実施形態〕
先に説明した第1実施形態と共通する事項に関しては、説明を割愛し、異なる事項を主に説明する。
この実施形態では、長さ12000mmの鋼管矢板を用いている。
また、矢板継手部材3は、二ヵ所の内の一方は、断面形状が「C」字形状の鋼材で、他方は、断面形状が「T」字形状の鋼材を用いている。
矢板継手部材3の溶接が完了した時点では、第1実施形態と同様に、基準点Kから90度の位置と、270度の位置との近傍において、他の周範囲よりも端面の凹みが大きく表れている。
[Third Embodiment]
Descriptions that are common to the first embodiment described above are omitted, and different items are mainly described.
In this embodiment, a steel pipe sheet pile having a length of 12000 mm is used.
Moreover, the sheet pile joint member 3 uses a steel material having a “C” -shaped cross section in one of the two locations, and a steel material having a “T” -shaped cross section in the other.
At the time when the welding of the sheet pile joint member 3 is completed, as in the first embodiment, in the vicinity of the position of 90 degrees from the reference point K and the position of 270 degrees, the dent of the end surface is larger than the other circumferential ranges. Appears.

鋼管矢板Pの端面の平面度矯正方法は、鋼管矢板Pの凸型機械継手部材2Bが固着されている方の端部(他端部)と、凹型機械継手部材2Aが固着されている方の端部(一端部)との両方において、図3、図4に示すように、鋼管1の全周の内、矢板継手部材3が設けられていない周範囲の少なくとも一部をガス炎によって加熱することで、加熱後の温度低下に伴う素材の収縮を起こさせて、鋼管矢板Pの両端部の端面の平面度を向上させる方法をとった。但し、鋼管矢板Pの凹型機械継手部材2A側に関しては、鋼管矢板Pの長手方向に間隔をあけた二ヵ所に加熱エリアを設定している。
詳しくは、鋼管矢板Pの凸型機械継手部材2B側は、端部から715mmの位置において、鋼管1の全周面の内、前記基準点Kから0度の位置、及び、180度の位置をそれぞれ中心として190mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の加熱エリアEを設定して(図12参照)、700℃の温度で5分かけて加熱した。
また、鋼管矢板Pの凹型機械継手部材2A側は、端部から715mmの位置と、端部から1630mmの位置において、鋼管1の全周面の内、前記基準点Kから0度の位置、及び、180度の位置をそれぞれ中心として加熱エリアEを設定して(図12参照)、700°Cの温度で5分かけて加熱した。端部に近い加熱エリアEは190mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の範囲が設定され、端部から遠い加熱エリアEは180mm(鋼管長さ方向範囲)×314mm(鋼管周方向範囲)の範囲が設定されている。
また、各加熱エリアEの加熱順は、鋼管矢板Pの凸型機械継手部材2B側の加熱エリアEから、鋼管矢板Pの凹型機械継手部材2A側の端部に近い加熱エリアE、端部から遠い加熱エリアEの順で実施された。
The method for correcting the flatness of the end face of the steel pipe sheet pile P is the one in which the convex mechanical joint member 2B of the steel pipe sheet pile P is fixed and the concave mechanical joint member 2A is fixed. As shown in FIGS. 3 and 4, at both the end portion (one end portion), at least a part of the entire circumference of the steel pipe 1 where the sheet pile joint member 3 is not provided is heated by a gas flame. Thus, a method was adopted in which the shrinkage of the material accompanying the temperature drop after heating was caused to improve the flatness of the end faces of both ends of the steel pipe sheet pile P. However, with respect to the concave mechanical joint member 2 </ b> A side of the steel pipe sheet pile P, heating areas are set at two places spaced in the longitudinal direction of the steel pipe sheet pile P.
Specifically, the convex mechanical joint member 2B side of the steel pipe sheet pile P has a position of 0 degrees from the reference point K and a position of 180 degrees in the entire circumferential surface of the steel pipe 1 at a position of 715 mm from the end. A heating area E of 190 mm (steel pipe length direction range) × 314 mm (steel pipe circumferential direction range) was set as the center (see FIG. 12) and heated at a temperature of 700 ° C. for 5 minutes.
Further, the concave mechanical joint member 2A side of the steel pipe sheet pile P is located at a position of 715 mm from the end, and at a position of 1630 mm from the end, at a position of 0 degree from the reference point K in the entire circumferential surface of the steel pipe 1; The heating area E was set around the position of 180 degrees (see FIG. 12) and heated at a temperature of 700 ° C. for 5 minutes. The heating area E close to the end is set to a range of 190 mm (steel pipe length direction range) x 314 mm (steel pipe circumferential direction range), and the heating area E far from the end is 180 mm (steel pipe length direction range) x 314 mm (steel pipe) (Range in the circumferential direction) is set.
Moreover, the heating order of each heating area E starts from the heating area E on the convex mechanical joint member 2B side of the steel pipe sheet pile P, from the heating area E near the end part on the concave mechanical joint member 2A side of the steel pipe sheet pile P, and the end part. It was carried out in the order of distant heating area E.

以上の平面度矯正方法を実施することで、鋼管矢板Pの端面の平面度は、図10、図11に示すように、改善されている。
即ち、三ヵ所の加熱エリアEでの加熱後において、鋼管矢板Pの凸型機械継手部材2B側では、平面度Smaxが、1.22mmから0.79mmに矯正され、鋼管矢板Pの凹型機械継手部材2A側では、平面度Smaxが、1.09mmから0.68mmに矯正されている。
尚、図には、凸型機械継手部材2B側の加熱エリアEと、凹型機械継手部材2A側の端部に近い方の加熱エリアEとの両端二ヵ所のみでの加熱が終了した時点での平面度に関しても記載している。この時点での平面度Smaxは、凸型機械継手部材2B側においては、0.81mmを示し、凹型機械継手部材2A側においては、0.76mmを示している。
この結果によれば、凹型機械継手部材2A側の端部から遠い加熱エリアEにおける加熱の効果が、凸型機械継手部材2B側においても反映されていることが解る。
これらの矯正の結果、機械継手部材2どうしの嵌合、及び、キー部材6によるロック状態への切換が可能となり、鋼管矢板Pどうしの連結が可能となった。
By implementing the above flatness correction method, the flatness of the end surface of the steel pipe sheet pile P is improved as shown in FIGS.
That is, after heating in the three heating areas E, the flatness Smax is corrected from 1.22 mm to 0.79 mm on the convex mechanical joint member 2B side of the steel pipe sheet pile P, and the concave mechanical joint of the steel pipe sheet pile P is obtained. On the member 2A side, the flatness Smax is corrected from 1.09 mm to 0.68 mm.
In the drawing, the heating at the two ends of the heating area E on the convex mechanical joint member 2B side and the heating area E closer to the end on the concave mechanical joint member 2A side is completed. It also describes the flatness. The flatness Smax at this time is 0.81 mm on the convex mechanical joint member 2B side and 0.76 mm on the concave mechanical joint member 2A side.
According to this result, it is understood that the heating effect in the heating area E far from the end on the concave mechanical joint member 2A side is also reflected on the convex mechanical joint member 2B side.
As a result of these corrections, the mechanical joint members 2 can be fitted together and switched to the locked state by the key member 6, and the steel pipe sheet piles P can be connected to each other.

〔別実施形態〕
以下に他の実施の形態を説明する。
[Another embodiment]
Other embodiments will be described below.

〈1〉 鋼管矢板Pは、先の実施形態で説明した寸法や形状に限るものではなく、公知の鋼管矢板の全般がその対象となる。
例えば、両端部に機械継手部材2を設けた鋼管矢板Pに限るものではなく、例えば、機械継手部材2を設けずに鋼管1の端部をそのまま溶接継手として使用できる構成であってもよい。
また、矢板継手部材3は、例えば、図13に示すように、断面形状が「C」字形状の鋼材や(図13(a)、図13(b)参照)、断面形状が「T」字形状の鋼材や(図13(b)、図13(c)参照)、断面形状が「L」字形状の2つの鋼材を使用するものや(図13(c)参照)、それらの組合せによる構成であってもよい。
但し、矢板継手部材3の形状が異なるに伴って、鋼管1との溶接に使用する溶接量に差が生じるから、溶接部への入熱量にも差が生じる。「C」字形状の継手部材が、もっとも入熱量が大きく、次が「L」字形状の継手部材となり、「T」字形状の継手部材がこれらの中では最小の入熱量となる。
その結果、熱収縮量にも差が生まれるから、平面度の低下の度合も異なる虞があり、平面度矯正を実施する上では、これらの条件差を考慮して対処する必要がある。
特に、図14に示すように、一本の鋼管矢板Pに、形状の異なる矢板継手部材3を混在させる場合、加熱エリアEを設定する上で、鋼管1の周方向での中心位置(基準位置に相当)を、入熱量の少ない矢板継手部材3側に寄せることが好ましい。これは、矢板継手部材3を取り付けた位置での鋼管矢板Pの収縮量(管軸芯方向)は、入熱量が大きい程、収縮量も大きくなることに起因している。
即ち、加熱によって平面度の矯正を図る上で、より効率よく行うためには、端面の管軸芯方向の突出量が大きいエリア(収縮量の少ないエリア)を中心として加熱収縮させることが重要であるから、そのエリアを加熱エリアEとして設定することが好ましい。従って、図14に示すような、入熱量の異なる二つの矢板継手部材3が固着された鋼管矢板Pにおいては、両矢板継手部材3間の中央位置(継手から最も離れた周位置に相当)より、入熱量の少ない矢板継手部材3が取り付けられた側に寄った箇所に収縮量の少ないエリアが分布するから、そのエリアを加熱エリアEとして設定することが好ましいことになる。
また、入熱量の差に応じた位置の微調整を行うことも好ましい。
<1> The steel pipe sheet pile P is not limited to the dimensions and shapes described in the previous embodiment, and general steel pipe sheet piles are targeted.
For example, it is not restricted to the steel pipe sheet pile P which provided the mechanical coupling member 2 in both ends, For example, the structure which can use the edge part of the steel pipe 1 as a welding joint as it is without providing the mechanical coupling member 2 may be sufficient.
Further, as shown in FIG. 13, the sheet pile joint member 3 is a steel material having a “C” -shaped cross section (see FIGS. 13 (a) and 13 (b)), and has a “T” -shaped cross section. Shaped steel materials (see FIG. 13 (b) and FIG. 13 (c)), those using two steel materials having a cross-sectional shape of “L” shape (see FIG. 13 (c)), and combinations thereof It may be.
However, as the shape of the sheet pile joint member 3 is different, a difference occurs in the amount of welding used for welding with the steel pipe 1, so that a difference occurs in the amount of heat input to the welded portion. The “C” -shaped joint member has the largest heat input, the next is the “L” -shaped joint member, and the “T” -shaped joint member has the smallest heat input.
As a result, there is a difference in the amount of heat shrinkage, and there is a possibility that the degree of decrease in flatness may be different, and in implementing flatness correction, it is necessary to deal with these difference in conditions.
In particular, as shown in FIG. 14, when the sheet pile joint members 3 having different shapes are mixed in one steel pipe sheet pile P, the center position (reference position) in the circumferential direction of the steel pipe 1 is set in setting the heating area E. Is equivalent to the sheet pile joint member 3 side with a small amount of heat input. This is because the amount of contraction (in the tube axis direction) of the steel pipe sheet pile P at the position where the sheet pile joint member 3 is attached increases as the amount of heat input increases.
That is, in order to correct the flatness by heating, in order to perform more efficiently, it is important to heat-shrink around an area where the protruding amount of the end surface in the tube axis direction is large (an area where the shrinkage is small). Therefore, it is preferable to set the area as the heating area E. Therefore, in the steel pipe sheet pile P to which the two sheet pile joint members 3 having different heat inputs as shown in FIG. 14 are fixed, the center position between the two sheet pile joint members 3 (corresponding to the circumferential position furthest away from the joint). Since an area with a small amount of shrinkage is distributed at a location near the side where the sheet pile joint member 3 with a small amount of heat input is attached, it is preferable to set the area as the heating area E.
It is also preferable to finely adjust the position according to the difference in heat input.

〈2〉 また、鋼管矢板Pにおける矢板継手部材3の取付位置や取付箇所数も、任意に変更することができる。
図15に、矢板継手部材3の位置と、加熱エリアEとの関係を例示している。
<2> Moreover, the attachment position and the number of attachment locations of the sheet pile joint member 3 in the steel pipe sheet pile P can also be changed arbitrarily.
FIG. 15 illustrates the relationship between the position of the sheet pile joint member 3 and the heating area E.

〈3〉 鋼管矢板Pの端面平面度矯正の為の加熱エリアEの設定は、先の実施形態で説明した鋼管矢板Pの他端部側のみに限るものではなく、例えば、両端部側共、実施するものであってもよい。
更には、加熱エリアEは、鋼管1の外周面に設定することに限らず、鋼管1の内周面に設定するものであってもよい。
また、加熱エリアEの寸法設定、先の実施形態で説明したものに限定されるものではない。
加熱エリアEの形状は、先の実施形態で説明した管周方向に細長形状のものに限らず、例えば、図16(a)に示すように、管軸芯方向に沿って細長形状であったり、図16(b)に示すように、管端部側ほど管周方向の寸法が大きな形状であってもよい。
また、鋼管1がスパイラル鋼管で構成してある場合は、図16(c)に示すように、スパイラル状の溶接線に沿った細長形状を設定してもよい。
また、図17(a)に示すように、対角線方向が管軸芯方向に交差する矩形形状の加熱エリアEであってもよい。
また、加熱エリアEは、管周方向に複数箇所設けたり、図17(b)に示すように、管軸芯方向に複数箇所設けるものであってもよい。
要するに、鋼管1の全周の内、矢板継手部材3が設けられていない周範囲の少なくとも一部を加熱するものであればよい。
〈4〉 加熱エリアEについては、次のような数値限定を設定することができる。
鋼管矢板Pの端面から加熱エリアEまでの範囲は、加熱による平面度矯正への貢献度が期待できる値として、鋼管1の外径の3倍以内の数値が挙げられる。また、より好ましくは鋼管1の外径の2倍以内の数値が挙げられる。一方、加熱による歪みの悪影響が出ない値として鋼管矢板Pの端面から30mm以上の数値が挙げられる。また、より好ましくは、150mm以上の数値が挙げられる。
管周方向の長さは、加熱による平面度矯正への貢献度が期待できる値として、管軸芯周りの中心角で20度以上の数値が挙げられる。また、より好ましくは中心角で30度以上の数値が挙げられる。一方、矢板継手部材3に熱変形を与えない値として、管軸芯周りの中心角で85度以下の数値が挙げられる。また、より好ましくは中心角で80度以下の数値が挙げられる。
管軸芯方向の長さは、加熱による平面度矯正への貢献度が期待できる値として、80mm以上の数値が挙げられる。また、より好ましくは100mm以上の数値が挙げられる。一方、良好な加熱作業性を確保できる値として、500mm以下の数値が挙げられる。また、より好ましくは300mm以下の数値が挙げられる。
加熱エリアEの面積は、加熱による平面度矯正への貢献度が期待できる値として、5000mm2以上の数値が挙げられる。また、より好ましくは25000mm2以上の数値が挙げられる。一方、良好な加熱作業性を確保できる値として、3000000mm2以下の数値が挙げられる。また、より好ましくは2500000mm2以下の数値が挙げられる。
<3> The setting of the heating area E for correcting the end face flatness of the steel pipe sheet pile P is not limited to the other end side of the steel pipe sheet pile P described in the previous embodiment. It may be implemented.
Furthermore, the heating area E is not limited to being set on the outer peripheral surface of the steel pipe 1 but may be set on the inner peripheral surface of the steel pipe 1.
Moreover, it is not limited to the dimension setting of the heating area E and what was demonstrated by previous embodiment.
The shape of the heating area E is not limited to the shape elongated in the pipe circumferential direction described in the previous embodiment, and for example, as shown in FIG. As shown in FIG. 16 (b), the pipe end may be larger in the pipe circumferential direction.
Moreover, when the steel pipe 1 is comprised with the spiral steel pipe, as shown in FIG.16 (c), you may set the elongate shape along a spiral weld line.
Moreover, as shown to Fig.17 (a), the rectangular heating area E in which a diagonal direction cross | intersects a pipe axis direction may be sufficient.
Moreover, the heating area E may be provided in a plurality of locations in the tube circumferential direction, or may be provided in a plurality of locations in the tube axis direction as shown in FIG.
In short, what is necessary is just to heat at least a part of the circumferential range in which the sheet pile joint member 3 is not provided in the entire circumference of the steel pipe 1.
<4> For the heating area E, the following numerical limits can be set.
In the range from the end face of the steel pipe sheet pile P to the heating area E, a value within 3 times the outer diameter of the steel pipe 1 can be cited as a value that can be expected to contribute to flatness correction by heating. More preferably, a numerical value within twice the outer diameter of the steel pipe 1 is mentioned. On the other hand, as a value that does not adversely affect the distortion caused by heating, a numerical value of 30 mm or more from the end face of the steel pipe sheet pile P can be given. More preferably, the numerical value is 150 mm or more.
As for the length in the tube circumferential direction, a value that can be expected to contribute to flatness correction by heating is a numerical value of 20 degrees or more in the central angle around the tube axis. More preferably, a numerical value of 30 degrees or more in the central angle is mentioned. On the other hand, as a value which does not give thermal deformation to the sheet pile joint member 3, a numerical value of 85 degrees or less is given as a central angle around the tube axis. More preferably, a numerical value of 80 degrees or less in terms of the central angle is used.
As for the length in the tube axis direction, a value that can be expected to contribute to flatness correction by heating is a numerical value of 80 mm or more. More preferably, the numerical value is 100 mm or more. On the other hand, a numerical value of 500 mm or less can be cited as a value that can ensure good heating workability. More preferably, the numerical value is 300 mm or less.
As the area of the heating area E, a value that can be expected to contribute to flatness correction by heating is a numerical value of 5000 mm 2 or more. More preferably, a numerical value of 25000 mm 2 or more is used. On the other hand, a value that can ensure good heating workability includes a value of 3000000 mm 2 or less. More preferably, a numerical value of 2500000 mm 2 or less is used.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.

1 鋼管
3 矢板継手部材(継手に相当)
P 鋼管矢板
1 Steel pipe 3 Sheet pile joint member (equivalent to joint)
P Steel pipe sheet pile

Claims (4)

鋼管の外周面に、隣接管との継手が長手方向に沿って溶接されている鋼管矢板を対象として、前記鋼管矢板の端面の平面度を矯正する平面度矯正方法であって、
前記鋼管の全周の内、前記継手が設けられていない周範囲の少なくとも一部を加熱することで、加熱後の温度低下に伴う素材の収縮を起こさせて、前記鋼管矢板の端面の平面度を向上させる平面度矯正方法。
A flatness correction method for correcting the flatness of the end face of the steel pipe sheet pile for a steel pipe sheet pile in which a joint with an adjacent pipe is welded along the longitudinal direction on the outer peripheral surface of the steel pipe,
Heating at least a part of the circumferential range where the joint is not provided in the entire circumference of the steel pipe causes the material to shrink due to a temperature drop after heating, and the flatness of the end face of the steel pipe sheet pile To improve flatness.
前記鋼管の加熱位置は、前記周範囲の内で、前記鋼管の長手方向での中央部より平面度矯正対象の鋼管端部側の範囲に設定する請求項1に記載の平面度矯正方法。  2. The flatness correction method according to claim 1, wherein the heating position of the steel pipe is set in a range closer to a steel pipe end part to be flattened than a center part in a longitudinal direction of the steel pipe within the circumferential range. 前記鋼管の周方向での加熱位置は、前記継手から最も離れた周位置を基準位置とし、前記継手が、前記鋼管の周方向での複数箇所に設けられ、且つ、周方向に隣合う前記継手の溶接の入熱量が異なる場合は、両継手の溶接の入熱量に応じて、前記基準位置を入熱量の少ない前記継手側に補正する請求項1又は2に記載の平面度矯正方法。  The heating position in the circumferential direction of the steel pipe is a circumferential position furthest away from the joint, and the joint is provided at a plurality of locations in the circumferential direction of the steel pipe, and the joint adjacent in the circumferential direction. 3. The flatness correction method according to claim 1, wherein when the heat input amount of welding is different, the reference position is corrected to the joint side having a small heat input amount according to the heat input amount of welding of both joints. 前記鋼管の加熱温度は、前記鋼管の素材の機械的性質が、加熱前後において変化しない範囲での上限側に設定する請求項1〜3の何れか一項に記載の平面度矯正方法。  The flatness correction method according to any one of claims 1 to 3, wherein the heating temperature of the steel pipe is set to an upper limit side in a range where the mechanical properties of the material of the steel pipe do not change before and after heating.
JP2013045795A 2012-03-28 2013-03-07 Flatness correction method Active JP6104648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045795A JP6104648B2 (en) 2012-03-28 2013-03-07 Flatness correction method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012074402 2012-03-28
JP2012074402 2012-03-28
JP2013045795A JP6104648B2 (en) 2012-03-28 2013-03-07 Flatness correction method

Publications (2)

Publication Number Publication Date
JP2013226597A JP2013226597A (en) 2013-11-07
JP6104648B2 true JP6104648B2 (en) 2017-03-29

Family

ID=49674841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045795A Active JP6104648B2 (en) 2012-03-28 2013-03-07 Flatness correction method

Country Status (1)

Country Link
JP (1) JP6104648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165034B2 (en) * 2013-03-29 2017-07-19 株式会社クボタ Steel pipe sheet pile, steel pipe sheet pile production method, and steel pipe sheet pile production apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219483A (en) * 1985-03-26 1986-09-29 Nippon Steel Corp Method for preventing sheet pile of steel pipe from bending
JP4218627B2 (en) * 2004-10-29 2009-02-04 株式会社Ihi Evaluation method of heating conditions in high frequency induction heating residual stress improvement method and construction method of high frequency induction heating residual stress improvement method
JP4724644B2 (en) * 2006-11-01 2011-07-13 新日本製鐵株式会社 Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance
JP4899944B2 (en) * 2007-03-06 2012-03-21 株式会社Ihi Residual stress improvement method
JP4874271B2 (en) * 2008-01-16 2012-02-15 新日本製鐵株式会社 Steel pipe sheet pile and its manufacturing method

Also Published As

Publication number Publication date
JP2013226597A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
AU2018374067B2 (en) Method for manufacturing tower tube section, tower tube section and wind turbine generator system
CN104203443B (en) UOE steel pipe and structure
JP6104648B2 (en) Flatness correction method
JP6857968B2 (en) Beam reinforcement
WO2013132561A1 (en) Misalignment calculation system
KR200480962Y1 (en) Non-welding type connector for connecting piles
JP2010065478A (en) Method of manufacturing steel pipe with stiffener
JP4724644B2 (en) Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance
JP2014231093A (en) Backing strip for weldment
JP5929968B2 (en) UOE steel pipe and steel pipe structure formed by the UOE steel pipe
JP4874271B2 (en) Steel pipe sheet pile and its manufacturing method
JP6165034B2 (en) Steel pipe sheet pile, steel pipe sheet pile production method, and steel pipe sheet pile production apparatus
KR102107306B1 (en) Correction device for plate and correction method thereof
JP4751207B2 (en) Connection structure of circular steel pipe column and H-section steel beam and pier using the connection structure
JP2022516375A (en) Support structure for wind turbines
JP6479603B2 (en) Steel plate for welding backing
WO2022270262A1 (en) Joint pipe and methods of manufacturing and designing same, steel pipe with joint pipe and methods of manufacturing and designing same, steel pipe pile, and method of constructing steel pipe pile
JP6641907B2 (en) Steel pipe coupler structure
JP6410595B2 (en) Connecting member, connecting member unit, and connecting method
JP7471996B2 (en) Steel piece for external diaphragm, column-beam joint structure and column-beam joint method
JP7061876B2 (en) Joint structure of steel pipe sheet pile
WO2010137294A1 (en) Steel pipe joining structure, steel pipe joining method, and joint members
JP5376002B2 (en) UOE steel pipe
JP7151807B2 (en) Method for manufacturing steel pipe sheet piles having mechanical joint pipes
JP6771907B2 (en) Repair structure and repair method for tubular structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R150 Certificate of patent or registration of utility model

Ref document number: 6104648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150