JP4724644B2 - Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance - Google Patents
Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance Download PDFInfo
- Publication number
- JP4724644B2 JP4724644B2 JP2006297854A JP2006297854A JP4724644B2 JP 4724644 B2 JP4724644 B2 JP 4724644B2 JP 2006297854 A JP2006297854 A JP 2006297854A JP 2006297854 A JP2006297854 A JP 2006297854A JP 4724644 B2 JP4724644 B2 JP 4724644B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- joint
- welding
- sheet pile
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Piles And Underground Anchors (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
本発明は、鋼管本体に機械式継手を溶接して鋼管杭又は鋼管矢板とする継手締結性に優れた鋼管杭の製造方法及び鋼管矢板の製造方法に関する。 The present invention relates to a method for manufacturing a steel pipe pile and a method for manufacturing a steel pipe sheet pile, which are excellent in joint fastening performance by welding a mechanical joint to a steel pipe body to form a steel pipe pile or a steel pipe sheet pile.
地盤改善、安定化のために用いられる鋼管杭及び鋼管矢板は、例えば、空港整備の場合には適用域が広範囲にわたる。そのため、広幅化及び高耐力化が要求され、鋼管本体が大径化する。また、深度が50m以上になる場合もあり、搬送上、施工上の問題から鋼管杭及び鋼管矢板は上下に分割されて施工される。地盤条件によっては、鋼管杭及び鋼管矢板が上中下に分割されることもある。 Steel pipe piles and steel pipe sheet piles used for ground improvement and stabilization, for example, have a wide application range in the case of airport maintenance. Therefore, widening and high yield strength are required, and the diameter of the steel pipe body is increased. Moreover, a depth may be 50 m or more, and a steel pipe pile and a steel pipe sheet pile are divided | segmented up and down and constructed from the problem on conveyance and construction. Depending on the ground conditions, steel pipe piles and steel pipe sheet piles may be divided into upper, middle and lower parts.
鋼管杭及び鋼管矢板の上下方向の結合は、アーク溶接に代表される溶接継手により、行われてきたが、近年では施工の簡易化、迅速化、溶接などの特殊技能を必要としない観点から機械式継手が検討されるようになっている。なお、以下の説明においては、例えば、ねじ式の機械式継手、ボックス継手、ピン継手等、鋼管杭及び鋼管矢板を機械的に締結する継手を総称して機械式継手という。 Steel pipe piles and steel pipe sheet piles have been joined in the vertical direction by welded joints such as arc welding. However, in recent years, the machine is simplified from the viewpoint of not requiring special skills such as construction simplification, speedup, and welding. Type fittings are being considered. In the following description, for example, joints that mechanically fasten a steel pipe pile and a steel pipe sheet pile, such as a screw-type mechanical joint, a box joint, and a pin joint, are collectively referred to as a mechanical joint.
機械式継手は、鋼管本体の端部を直接加工して形成することも可能な場合もあるが、大径及び/又は長尺の鋼管杭及び鋼管矢板では、端部の機械加工が困難であるため、別途、製造した機械式継手を鋼管本体に溶接することが一般的である。このように機械式継手を鋼管本体に溶接する際には、溶接熱変形及び溶接残留応力によって変形が生じ、特に端部の真円度が低下するという問題点がある。 The mechanical joint may be formed by directly machining the end of the steel pipe body, but it is difficult to machine the end of a large-diameter and / or long steel pipe pile and steel pipe sheet pile. Therefore, it is common to weld the manufactured mechanical joint separately to the steel pipe body. As described above, when the mechanical joint is welded to the steel pipe main body, there is a problem that deformation occurs due to welding thermal deformation and welding residual stress, and in particular, the roundness of the end portion is lowered.
前述した鋼管杭用の機械式継手を溶接する際の変形を解決する方法としては、ねじ式の機械式継手において、ねじの嵌合不良を防止する技術が提案されている(例えば、特許文献1参照。)。具体的には、特許文献1に記載された地すべり抑止杭用ねじ継手では、肩部を異径並行ねじの間にのみ配置し、継手部外径を管が異径と実質上等しくしている。また、ねじ式の機械式継手よりも簡便に鋼管杭を締結できる機械式継手も提案されている(例えば、特許文献2及び3参照。)。特許文献2に記載された杭では、ボックス継手材の内周面に凸部を、ピン継手材の外周面に凹部を夫々形成し、この凹部に凸部を嵌合させることにより、ボックス継手材とピン継手材とを相互に結合している。また、特許文献3に記載されている機械継手では、ピン継手材及びボックス継手材にキー溝を設けておき、これらの継手材を嵌め合わせた後このキー溝にキーを挿入することで継手としての耐力を維持している。
As a method for solving the deformation at the time of welding the mechanical joint for a steel pipe pile described above, a technique for preventing a screw fitting failure in a threaded mechanical joint has been proposed (for example, Patent Document 1). reference.). Specifically, in the screw joint for landslide suppression piles described in
一方、鋼管矢板では、鋼管本体の側面に矢板部を溶接するため、鋼管本体が溶接変形により鼓状になるという問題点もある。そこで、この矢板部を鋼管本体の側面に溶接する際の鋼管本体の変形を防止するため、鋼管本体の内部に歪み付与部材を装入し、予め鋼管本体に歪を与えておく方法(例えば、特許文献4参照。)、鋼管本体を内面から冷却しながら溶接する方法(例えば、特許文献5参照。)、鋼管本体の残留応力に応じて、継手に荷重を負荷した状態で溶接する方法(例えば、特許文献6参照)等が提案されている。 On the other hand, in a steel pipe sheet pile, since a sheet pile part is welded to the side surface of a steel pipe main body, there also exists a problem that a steel pipe main body becomes a drum shape by welding deformation. Therefore, in order to prevent deformation of the steel pipe main body when welding the sheet pile portion to the side surface of the steel pipe main body, a strain imparting member is inserted inside the steel pipe main body, and a method of pre-distorting the steel pipe main body (for example, Patent Document 4), a method of welding while cooling the steel pipe body from the inner surface (for example, refer to Patent Document 5), and a method of welding with a load applied to the joint according to the residual stress of the steel pipe body (for example, , See Patent Document 6).
しかしながら、前述の従来の技術には、以下に示す問題点がある。即ち、鋼管本体の外径が大きくなると、溶接による変形も大きくなるが、特許文献1に提案されている段付きの平行ねじによる締結方法では、鋼管本体が大径の場合、ねじの嵌合が困難になるという問題点がある。同様に、特許文献2及び3に記載の技術も、鋼管本体の外径が大きくなると、機械式継手を鋼管本体に溶接する際に、溶接熱変形及び溶接残留応力による変形が生じるという問題点がある。特に、ボックス継手とピン継手とを嵌合させる機械式継手の場合は、変形が大きくなるとピンをボックスに挿入できなくなったり、挿入できてもキーが嵌らなくなったりすることが現場施工で起こることがある。このような現場での嵌合不良に伴う作業中断は、著しい総コストアップを招くため、是非とも解決しなければならない課題の1つとなっている。
However, the conventional techniques described above have the following problems. That is, as the outer diameter of the steel pipe main body increases, deformation due to welding also increases. However, in the fastening method using the stepped parallel screw proposed in
更に、特許文献4〜6に記載の技術は、鋼管本体に継手を溶接する際に生じる変形を防止するための方法ではあるが、これらの方法は矢板部となる継手を鋼管本体の長手方向に溶接する際の変形を軽減、防止又は矯正することを目的としたものであるため、鋼管本体の端部に周方向に溶接される機械式継手の変形を防止することはできない。このため、特許文献4〜6に記載の技術は、矢板溶接による変形は防止できるが、大径管に溶接した際の機械式継手の変形は防止できず、優れた継手締結性は得られないという問題点がある。 Furthermore, although the technique of patent documents 4-6 is a method for preventing the deformation | transformation which arises when welding a joint to a steel pipe main body, these methods make the joint used as a sheet pile part the longitudinal direction of a steel pipe main body. Since the purpose is to reduce, prevent, or correct deformation at the time of welding, it is impossible to prevent deformation of the mechanical joint that is welded to the end of the steel pipe body in the circumferential direction. For this reason, although the technique of patent documents 4-6 can prevent the deformation | transformation by sheet pile welding, it cannot prevent the deformation | transformation of the mechanical coupling at the time of welding to a large diameter pipe, and cannot obtain the outstanding joint fastening property. There is a problem.
本発明は、上述した問題点に鑑みてさなれたものであって、外径が1000mm以上の鋼管本体に機械式継手を溶接して鋼管杭又は鋼管矢板を製造する際に、溶接による機械式継手の変形を軽減し、継手嵌合不良を防止することができる継手締結性に優れた鋼管矢板の製造方法及び鋼管杭の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and is used to manufacture a steel pipe pile or a steel pipe sheet pile by welding a mechanical joint to a steel pipe body having an outer diameter of 1000 mm or more. It aims at providing the manufacturing method of the steel pipe sheet pile excellent in the joint fastening property which can reduce the deformation | transformation of a joint, and can prevent a joint fitting defect, and the manufacturing method of a steel pipe pile.
本願発明に係る継手締結性に優れた鋼管杭の製造方法は、鋼管本体の端部に機械式溶接継手をその周方向に複数個所仮付け溶接した後、本溶接を行う鋼管杭の製造方法であって、前記鋼管本体は外径D(mm)が1000mm以上であり、前記仮付け溶接は、前記鋼管本体の中心軸に対する最大角度θ(°)が下記数式(1)で規定される範囲となる間隔で行うことを特徴とする。 The method of manufacturing a steel pipe pile excellent in joint fastening performance according to the present invention is a method of manufacturing a steel pipe pile in which a mechanical welded joint is temporarily attached to the end of a steel pipe main body at a plurality of locations in the circumferential direction and then main welding is performed. The steel pipe body has an outer diameter D (mm) of 1000 mm or more, and the tack welding has a range in which the maximum angle θ (°) with respect to the central axis of the steel pipe body is defined by the following mathematical formula (1): It is characterized by being performed at intervals.
また、この継手締結性に優れた鋼管杭の製造方法では、少なくとも前記鋼管本体の直径が最大となる位置を仮付け溶接することが好ましい。 Moreover, in the manufacturing method of the steel pipe pile excellent in this joint fastening property, it is preferable to tack-wel at least the position where the diameter of the said steel pipe main body becomes the largest.
更に、前記機械式継手は、例えば、互いに嵌合可能な構造を有するボックス継手又はピン継手であってもよい。 Furthermore, the mechanical joint may be, for example, a box joint or a pin joint having a structure that can be fitted to each other.
本発明に係る継手締結性に優れた鋼管矢板の製造方法は、鋼管本体の端部に機械式溶接継手をその周方向に複数個所仮付け溶接した後、本溶接を行う鋼管矢板の製造方法であって、前記鋼管本体は外径D(mm)が1000mm以上であり、前記仮付け溶接は、前記鋼管本体の中心軸に対する最大角度θ(°)が上記数式(1)で規定される範囲となる間隔で行うことを特徴とする。 The manufacturing method of a steel pipe sheet pile excellent in joint fastening performance according to the present invention is a method of manufacturing a steel pipe sheet pile that performs main welding after temporarily welding a plurality of mechanical welded joints to the end of a steel pipe body in the circumferential direction. The steel pipe body has an outer diameter D (mm) of 1000 mm or more, and the tack welding has a range in which the maximum angle θ (°) with respect to the central axis of the steel pipe body is defined by the above formula (1). It is characterized by being performed at intervals.
また、この継手締結性に優れた鋼管矢板の製造方法は、少なくとも前記鋼管本体の直径が最大となる位置を仮付け溶接することが好ましい。 Moreover, it is preferable that the manufacturing method of the steel pipe sheet pile excellent in this joint fastening property carries out tack welding at least the position where the diameter of the said steel pipe main body becomes the maximum.
この継手締結性に優れた鋼管矢板の製造方法では、前記機械式継手を、互いに嵌合可能な構造を有するボックス継手又はピン継手とすることができる。 In the manufacturing method of the steel pipe sheet pile excellent in the joint fastening property, the mechanical joint can be a box joint or a pin joint having a structure that can be fitted to each other.
本発明によれば、鋼管本体に機械式継手を溶接する際の仮付け間隔を適正化しているため、鋼管本体の外径が1000mm以上であっても、溶接による機械式継手の変形を抑制することができるため、製造された鋼管杭又は鋼管矢板同士を機械式継手を介して上下に連結する際に、嵌合不良の発生を防止でき、優れた締結性が得られる。 According to the present invention, since the temporary attachment interval when welding the mechanical joint to the steel pipe body is optimized, the deformation of the mechanical joint due to welding is suppressed even if the outer diameter of the steel pipe body is 1000 mm or more. Therefore, when the manufactured steel pipe piles or steel pipe sheet piles are connected to each other up and down via mechanical joints, it is possible to prevent the occurrence of poor fitting and to obtain excellent fastening properties.
以下、本発明を実施するための最良の形態について、添付の図面を参照して詳細に説明する。本発明の継手締結性に優れた鋼管杭又は鋼管矢板の製造方法は、鋼管本体の外径D(mm)が1000mm以上である鋼管杭又は鋼管矢板を製造する工程において、鋼管本体に機械式継手を溶接する際の仮付け間隔を特定することにより、継手変形の防止を図ったものである。 The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. The manufacturing method of the steel pipe pile or steel pipe sheet pile excellent in the joint fastening property of the present invention is a mechanical joint in the steel pipe main body in the process of manufacturing the steel pipe pile or steel pipe sheet pile whose outer diameter D (mm) is 1000 mm or more. The joint deformation is prevented by specifying the tacking interval when welding the steel.
本発明が対象としているような鋼管本体の外径が1000mm以上である鋼管杭及び鋼管矢板には、通常、スパイラル鋼管又はUOE鋼管が用いられる。なお、UOE鋼管とは、厚板を特殊なプレス機でU字状とした後、O字状に整形して、接合部をアーク溶接した後、内側からエキスパンダーで拡張(E)して所定の寸法に仕上げた鋼管である。また、その鋼管本体の母材としては、鋼管矢板にはSKY490等が、より肉厚の鋼管杭にはSM490及びSM590等が用いられる。 A spiral steel pipe or a UOE steel pipe is usually used for a steel pipe pile and a steel pipe sheet pile having an outer diameter of 1000 mm or more as the object of the present invention. The UOE steel pipe is a U-shaped steel plate formed by a special press machine, shaped into an O-shape, arc welded at the joint, and expanded (E) from the inside with an expander. It is a steel pipe finished in dimensions. Further, as the base material of the steel pipe main body, SKY490 or the like is used for the steel pipe sheet pile, and SM490 or SM590 or the like is used for the thicker steel pipe pile.
一方、鋼管杭同士又は鋼管矢板同士を長手方向に結合するための機械式継手に使用される素管は、鍛造で製造されることが多く、鋼管杭又は鋼管矢板の鋼管本体に比べて高強度の熱処理材が用いられている。このような機械式継手は、機械加工された後、鋼管杭又は鋼管矢板の端部に溶接によって接合される。その際の溶接の種類は、サブマージアーク溶接、半自動溶接、又は手動のアーク溶接が採用されることが多い。また、サブマージアーク溶接及び半自動溶接の場合は、内面から一層、外面から一層ずつ、手動のアーク溶接の場合は、多層盛りとされることが多い。 On the other hand, raw pipes used in mechanical joints for joining steel pipe piles or steel pipe sheet piles in the longitudinal direction are often manufactured by forging, and have higher strength than steel pipe main bodies of steel pipe piles or steel pipe sheet piles. These heat treatment materials are used. Such mechanical joints are machined and then joined by welding to the ends of steel pipe piles or steel pipe sheet piles. Submerged arc welding, semi-automatic welding, or manual arc welding is often employed as the type of welding at that time. Further, in the case of submerged arc welding and semi-automatic welding, one layer is often formed from the inner surface and one layer from the outer surface.
ここで、一例として、サブマージアーク溶接により、機械式継手を鋼管本体の端部に溶接する方法について説明する。先ず、機械加工により、鋼管本体及び機械式継手の接合面に開先を形成する。その際、サブマージアーク溶接を内面及び外面から一層ずつ行う場合は、開先の形状としてX開先を採用することが好ましい。次に、鋼管本体と機械式継手のルート面とを合わせて、仮付け溶接を行う。なお、仮付け溶接は、外面から、手動のアーク溶接で行われることが多い。その後、全周にシールド溶接を行い、内面及び外面からサブマージアーク溶接による本溶接を行う。これにより、機械式継手が鋼管本体の端部に溶接され、鋼管矢板又は鋼管杭が完成する。 Here, as an example, a method of welding a mechanical joint to an end portion of a steel pipe body by submerged arc welding will be described. First, a groove is formed in the joint surface of the steel pipe body and the mechanical joint by machining. At that time, when the submerged arc welding is performed one layer at a time from the inner surface and the outer surface, it is preferable to employ an X groove as the groove shape. Next, the steel pipe body and the root surface of the mechanical joint are put together to perform tack welding. Note that tack welding is often performed by manual arc welding from the outer surface. Thereafter, shield welding is performed on the entire circumference, and main welding is performed by submerged arc welding from the inner surface and the outer surface. Thereby, a mechanical joint is welded to the edge part of a steel pipe main body, and a steel pipe sheet pile or a steel pipe pile is completed.
上述した鋼管杭又は鋼管矢板の製造工程において、鋼管杭又は鋼管矢板における鋼管本体の外径が1000mm以上になると、溶接変形による影響が大きくなり、嵌合不良の頻度も増す。また、本願発明者の検討により、鋼管本体の外面に矢板部を溶接する際に、鋼管本体が楕円になると同時に真円度が悪化すると、鋼管端部の平面度も悪化するため、機械式継手の溶接変形が助長されることが判明した。 In the manufacturing process of the steel pipe pile or the steel pipe sheet pile described above, when the outer diameter of the steel pipe main body in the steel pipe pile or the steel pipe sheet pile becomes 1000 mm or more, the influence of welding deformation becomes large, and the frequency of poor fitting also increases. In addition, when the sheet pile portion is welded to the outer surface of the steel pipe main body, the flatness of the end of the steel pipe deteriorates when the steel pipe main body becomes elliptical and the roundness deteriorates. It has been found that welding deformation is promoted.
更に、この製造方法で完成した鋼管矢板で嵌合試験を行ったところ、特許文献2に記載されているようなボックス継手材とピン継手材とを相互に結合する機械継手の場合、鋼管本体に溶接する前には嵌合できていたにもかかわらず溶接後には継手のピンをボックスに挿入できないものがあり、また、特許文献3に記載されているようなキーを挿入するタイプの継手では、溶接後にキー溝にキーが挿入できなくなるものが散見されるようになった。更にまた、外径が1000mm以上の鋼管本体にねじ式の機械式継手を溶接すると、溶接変形が生じた場合、平行ねじは著しい締め付けトルク上昇を招き、テーパーねじは所定の締結完了位置まで継手が嵌合できないことがわかった。
Furthermore, when a fitting test was performed on a steel pipe sheet pile completed by this manufacturing method, in the case of a mechanical joint that mutually connects a box joint material and a pin joint material as described in
そこで、本願発明者は上述したような機械継手の嵌合不良の直接的原因を究明すべく、外径1600mm、肉厚24mmの鋼管本体に溶接した後の機械式継手の真円度及び平面度について調査した。図1(a)は真円度を求める方法を模式的に示す図であり、図1(b)は平面度を求める方法を模式的に示す図である。図1(a)に示すように、真円度は、機械式継手1の内径の最大値(最大内径rmax)と、最小値(最小内径rmin)との差(rmax−rmin)から求めた。その際、機械式継手1の内径は、マイクロメーター方式の内測ゲージで測定した。また、図1(b)に示すように、平面度は、機械式継手1の端面を平滑定盤2に押し当て、隙間ゲージにより、機械式継手1の端面のたわみ量、即ち、機械式継手1の端面と平滑定盤2の表面との間の間隙xを測定し、その値を平面度とした。
Therefore, in order to investigate the direct cause of the poor fitting of the mechanical joint as described above, the inventors of the present invention have roundness and flatness of the mechanical joint after welding to a steel pipe body having an outer diameter of 1600 mm and a wall thickness of 24 mm. Investigated. FIG. 1A is a diagram schematically showing a method for obtaining roundness, and FIG. 1B is a diagram schematically showing a method for obtaining flatness. As shown in FIG. 1 (a), circularity, the maximum value of the inner diameter of the mechanical coupling 1 (maximum inner diameter r max), the minimum value the difference between the (minimum inner diameter r min) (r max -r min ) I asked for it. At that time, the inner diameter of the
図2は横軸に真円度をとり、縦軸に平面度をとって、機械式継手の真円度と平面度との関係を示すグラフ図である。図2に示すように、機械式継手の真円度と平面度とは概ね正の比例関係にあり、サンプル間のばらつきは、真円度で最大12mm、平面度で最大2mmあることがわかった。嵌合試験結果を照合すると、真円度が6mmよりも大きくなると、ピンをボックスに挿入できないピン・ボックス挿入不良が生じることがわかった。また、ピンをボックスに挿入できたサンプルのうち、平面度が1mmよりも大きいものは、機械式継手へのキーの挿入ができなくなった。このように鋼管本体に溶接すると、機械式継手の真円度及び平面度が劣化し、嵌合不良を招くことが明らかになった。 FIG. 2 is a graph showing the relationship between roundness and flatness of a mechanical joint, with the roundness on the horizontal axis and the flatness on the vertical axis. As shown in FIG. 2, the roundness and flatness of the mechanical joint are generally in a positive proportional relationship, and the variation between samples was found to be 12 mm at maximum in roundness and 2 mm at maximum in flatness. . When the result of the fitting test was collated, it was found that when the roundness was larger than 6 mm, there was a pin / box insertion failure in which the pin could not be inserted into the box. Moreover, among the samples in which the pins could be inserted into the box, those having a flatness greater than 1 mm could not be inserted into the mechanical joint. It has been clarified that when the steel pipe main body is welded in this way, the roundness and flatness of the mechanical joint deteriorate, leading to poor fitting.
次に、本願発明者は、真円度及び平面度をばらつかせる要因を明らかにするために、FEA(Finite ElementAnalysis:有限要素解析)による感受性解析を試みた。図3は外径1600mm、肉厚24mmの鋼管本体を有する鋼管矢板に機械式継手を溶接した時のFEAモデルの一例を示す図であり、図4はその機械式継手12と鋼管本体11との接合部16の拡大図である。この図3及び図4に示すモデルを用いて、鋼管本体13の外面に矢板部14が設けられ、内部に十字形リブ15が設けられた鋼管矢板11の端部に、機械式継手12を、周方向位置に複数箇所仮付けした後、周方向に移動させながら内面及び外面の順にそれぞれ一層ずつ溶接することを想定し、非定常熱伝導解析及び応力解析を行った。その際、影響因子として、仮付け溶接部の間隔、鋼管本体13の真円度及び平面度、本溶接開始位置、矢板部14の有無、並びに十字形リブ15の有無等について検討した。なお、機械式継手12の真円度及び平面度と同様に、鋼管本体13の真円度及び平面度も、鋼管本体13の端部の形状により評価することができる。
Next, the inventor of the present application attempted sensitivity analysis by FEA (Finite Element Analysis) in order to clarify the factors causing the roundness and flatness to vary. FIG. 3 is a view showing an example of an FEA model when a mechanical joint is welded to a steel pipe sheet pile having a steel pipe body having an outer diameter of 1600 mm and a wall thickness of 24 mm. FIG. 4 shows the relationship between the mechanical joint 12 and the
これらの要因を個別に解析した結果、仮付け溶接部の間隔が機械式継手12の真円度及び平面度に最も大きく影響を与えており、その他の要因の影響度合いは小さいことがわかった。図5は横軸に周方向位置をとり、縦軸に変位をとって、周方向に90°ずつずらして4箇所仮付け溶接したときの機械式継手の真円度及び平面度の変化を示す図である。図5に示すように、機械式継手の真円度及び平面度には、共に仮付け溶接部を節として1波長分のサインカーブが存在し、真円度分布と平面度分布は同期することがわかった。更に発生時期を分析すると仮付け溶接の終了時に最終分布に近い状態にあることが判明した。 As a result of individually analyzing these factors, it has been found that the interval between the tack welds has the greatest influence on the roundness and flatness of the mechanical joint 12, and the influence of other factors is small. FIG. 5 shows changes in the roundness and flatness of the mechanical joint when the horizontal position is taken along the circumferential direction and the vertical axis is displaced, and the four positions are tack-welded by shifting 90 ° in the circumferential direction. FIG. As shown in FIG. 5, the roundness and flatness of the mechanical joint both have a sine curve for one wavelength with the tack welded joint as a node, and the roundness distribution and the flatness distribution are synchronized. I understood. Furthermore, when the generation time was analyzed, it was found that it was close to the final distribution at the end of tack welding.
以上の解析結果から、真円度及び平面度の変位におけるサインカーブの周期を短くすると、その振幅が小さくなることが想定されるため、仮付け溶接部の点数を増やし、隣り合う仮付け溶接部間の間隔を変化させて、同様の解析を行った。図6は横軸に周方向位置をとり、縦軸に変位をとって、周方向に60°ずつずらして6箇所仮付け溶接したときの機械式継手の真円度及び平面度の変化を示す図である。図6に示すように、鋼管本体の中心軸に対して垂直の断面において、隣り合う2つの仮付け溶接部と鋼管本体の中心軸がなす最大角度(以下、仮付け間隔という。)θが60゜である場合は、仮付け間隔θが90゜であるときに比べて、真円度及び平面度ともに優れていた。 From the above analysis results, it is assumed that when the period of the sine curve in the roundness and flatness displacement is shortened, the amplitude is assumed to be small. The same analysis was performed by changing the interval between them. FIG. 6 shows changes in the roundness and flatness of the mechanical joint when the horizontal position is circumferential and the vertical axis is displaced, and six points are tack-welded by shifting by 60 ° in the circumferential direction. FIG. As shown in FIG. 6, in a cross section perpendicular to the central axis of the steel pipe main body, the maximum angle (hereinafter referred to as a temporary attachment interval) θ formed by two adjacent tack welds and the central axis of the steel pipe main body is 60. In the case of °, both roundness and flatness were superior compared to when the tacking interval θ was 90 °.
図7は横軸に仮付け間隔θをとり、縦軸に真円度及び平面度をとって、仮付け間隔θと機械式継手の真円度及び平面度との関係を示すグラフ図である。図7に示すように、真円度及び平面度は、共に仮付け間隔θが90゜を下回ると急減に減少し始める。一方、仮付け間隔θを40゜以下にまで密にしても、効果はそれほど大きくならない。また、仮付け間隔θが0゜とはFEA解析上の理想的な状態を意味しており、仮付けを行わずに本溶接を始めること、又は、シールド溶接のように周方向に連続的に溶接することを意味するが、実溶接においては重量が大きい機械式継手を固定するための大がかりな固定冶具が必要となり、実用的ではない。これらの結果から、本願発明者は、コスト対効果を考えると、仮付け間隔θを30〜60゜とし、等間隔で、周方向に12点〜6点の仮付けを行うことが最も好適であることを見出した。 FIG. 7 is a graph showing the relationship between the tacking interval θ and the roundness and flatness of the mechanical joint, where the horizontal axis represents the tacking interval θ and the vertical axis represents the roundness and flatness. . As shown in FIG. 7, both roundness and flatness start to decrease sharply when the tacking interval θ is less than 90 °. On the other hand, even if the tacking interval θ is set to 40 ° or less, the effect is not so great. Further, when the tacking interval θ is 0 °, it means an ideal state in the FEA analysis, and the main welding is started without performing tacking, or continuously in the circumferential direction as in shield welding. Although it means welding, in actual welding, a large-sized fixing jig for fixing a mechanical joint having a large weight is required, which is not practical. From these results, in view of cost effectiveness, the inventor of the present application is most preferable to set the temporary attachment interval θ to 30 to 60 ° and perform temporary attachment of 12 to 6 points in the circumferential direction at equal intervals. I found out.
以上の知見をもとに、外径1600mm、肉厚24mmの鋼管本体に対して、仮付け間隔θを30゜〜120゜まで変化させて機械式継手を実際に溶接し、溶接後の機械式継手の真円度及び平面度を測定すると共に、それらの嵌合試験を行った。図8は横軸に仮付け間隔θをとり、縦軸に真円度をとって、仮付け間隔と機械式継手の真円度との関係を示すグラフ図であり、図9は横軸に仮付け間隔θをとり、縦軸に平面度をとって、仮付け間隔θと機械式継手の平面度との関係を示すグラフ図である。その結果、図8及び図9に示すように、FEAによる予測通り、仮付け間隔θの増加に従い、機械式継手の真円度及び平面度はいずれも劣化し、90゜以上の仮付け間隔では嵌合不良サンプルが現れ始めた。これに対して、仮付け間隔θが60゜以下の場合は、全本とも良好に嵌合することができ、継手締結性が優れていた。 Based on the above knowledge, a mechanical joint is actually welded to a steel pipe body having an outer diameter of 1600 mm and a wall thickness of 24 mm by changing the tacking interval θ from 30 ° to 120 °. The roundness and flatness of the joint were measured and their fitting test was performed. FIG. 8 is a graph showing the relationship between the tacking interval and the roundness of the mechanical joint, where the horizontal axis represents the tacking interval θ and the vertical axis represents the roundness, and FIG. FIG. 5 is a graph showing the relationship between the tacking interval θ and the flatness of a mechanical joint, with the tacking interval θ taken and the vertical axis taken flatness. As a result, as shown in FIGS. 8 and 9, as predicted by FEA, as the tacking interval θ increases, the roundness and flatness of the mechanical joint both deteriorate, and at a tacking interval of 90 ° or more. Misfit samples started to appear. On the other hand, when the tacking interval θ was 60 ° or less, all of them could be fitted well, and the joint fastening performance was excellent.
次に、本願発明者は、鋼管本体の外径(以下、単に管外径ともいう。)の影響について調査することとした。図8及び図9に示すように、外径が1600mmである鋼管本体に機械式継手を溶接する場合、仮付け間隔θが60゜以下であれば、安定的に嵌合が可能なことがわかっており、機械式継手の平面度のFEAによる予測値は約0.4mmである。従って、機械式継手の平面度が0.4mmであれば、安定的な嵌合が可能であると考えられる。 Next, this inventor decided to investigate the influence of the outer diameter of a steel pipe main body (henceforth only a pipe outer diameter). As shown in FIGS. 8 and 9, when a mechanical joint is welded to a steel pipe body having an outer diameter of 1600 mm, it can be understood that a stable fitting is possible if the temporary attachment interval θ is 60 ° or less. The predicted value of flatness of the mechanical joint by FEA is about 0.4 mm. Therefore, if the flatness of the mechanical joint is 0.4 mm, it is considered that stable fitting is possible.
以上の考察に基づき、種々の外径の鋼管本体に機械式継手を溶接した場合を想定し、機械式継手の平面度の予測値が0.4mmとなる仮付け間隔をFEAによって求めた。図10は横軸に管外径Dをとり、縦軸に仮付け間隔θをとって、管外径Dと限界仮付け間隔との関係をFEAにより予測した結果を示すグラフ図である。更に、図10に示した鋼管本体の外径Dに関するサイズ依存性を実証するため、外径Dが800〜2000mmの鋼管本体に対して仮付け間隔を変化させて、嵌合不良が起こる限界の仮付け間隔を求めた。その際、3本の試験を行い、1本以上のサンプルにピン・ボックスの挿入不良、又はキー溝へのキー挿入不良が起こった場合を嵌合不良と定義した。図11は横軸に鋼管本体の外径Dをとり、縦軸に仮付け間隔θをとって、鋼管本体の外径Dと限界仮付け間隔との関係を実験により確認した結果を示すグラフ図である。 Based on the above consideration, assuming a case where a mechanical joint is welded to a steel pipe body having various outer diameters, a temporary attachment interval at which the predicted flatness of the mechanical joint is 0.4 mm was obtained by FEA. FIG. 10 is a graph showing the result of predicting the relationship between the pipe outer diameter D and the limit tacking interval by FEA, with the tube outer diameter D on the horizontal axis and the tacking interval θ on the vertical axis. Furthermore, in order to demonstrate the size dependency regarding the outer diameter D of the steel pipe main body shown in FIG. 10, the temporary attachment interval is changed with respect to the steel pipe main body having the outer diameter D of 800 to 2000 mm, and the limit of the occurrence of poor fitting. The tacking interval was determined. At that time, three tests were conducted, and a case where a pin / box insertion failure or a key insertion failure in a keyway occurred in one or more samples was defined as a fitting failure. FIG. 11 is a graph showing the results of confirming the relationship between the outer diameter D of the steel pipe body and the limit tacking interval by experiment, with the outer diameter D of the steel pipe body on the horizontal axis and the tacking interval θ on the vertical axis. It is.
図10及び図11に示すように、外径Dが1000mm以上の鋼管本体に対しては、FEAの予測限界(θ=97400/D)よりも仮付け間隔θが狭いものでは、嵌合不良が生じることはなかった。一方、外径が800mmの鋼管本体に対しては、FEAの予測限界(θ=97400/D)よりも仮付け間隔θが広いものでも嵌合不良は起こさず、仮付け間隔θが180°となるように対向する2個所を仮付けした場合であっても嵌合することができた。これらの結果から、本願発明者は、溶接変形という問題を解決するという本発明の効果が得られる範囲は、鋼管本体の外径が1000mm以上の場合であることを見出した。なお、図10及び図11に示すように、鋼管本体の外径Dが2000mmの場合でも同様の効果が得られる。 As shown in FIGS. 10 and 11, for a steel pipe main body having an outer diameter D of 1000 mm or more, if the temporary attachment interval θ is narrower than the FEA prediction limit (θ = 97400 / D), there is a poor fitting. It never happened. On the other hand, for a steel pipe body having an outer diameter of 800 mm, even if the temporary attachment interval θ is wider than the FEA prediction limit (θ = 97400 / D), a fitting failure does not occur, and the temporary attachment interval θ is 180 °. Thus, even when two opposing locations were temporarily attached, they could be fitted. From these results, the inventors of the present application have found that the range in which the effect of the present invention for solving the problem of welding deformation is obtained is when the outer diameter of the steel pipe body is 1000 mm or more. In addition, as shown in FIG.10 and FIG.11, the same effect is acquired even when the outer diameter D of a steel pipe main body is 2000 mm.
次に、本願発明者は仮付け時における鋼管本体の楕円の方向及びルート間隙と仮付け開始の周方向位置との関係に注目し、検討を行った。特に、鋼管矢板の場合、矢板部を鋼管本体の側面に溶接(矢板溶接)すると、鋼管本体の断面が楕円状に変形し、矢板溶接を行った位置が楕円の長径方向となる。このような鋼管本体の真円度の劣化をできるだけ抑えるために、従来は矢板溶接後に鋼管本体をプレス矯正するか、又は鋼管端部近傍に十字形のリブを設置する等して、特に、鋼管本体の端部の真円度及び平面度の劣化を防止してきた。しかしながら、鋼管本体が大径になると、特に、矢板溶接による鋼管本体の変形を抑制して造管ままの形状を維持させるには、さらなるコストと時間を要する。このため、鋼管本体の矢板溶接による変形をある程度許容した状態で機械式継手を周溶接する必要がある。 Next, the inventor of the present application paid attention to the ellipse direction of the steel pipe main body at the time of temporary attachment and the relationship between the root gap and the circumferential position at the start of temporary attachment. In particular, in the case of a steel pipe sheet pile, when the sheet pile part is welded to the side surface of the steel pipe main body (sheet pile welding), the cross section of the steel pipe main body is deformed into an elliptical shape, and the position where the sheet pile welding is performed becomes the major axis direction of the ellipse. In order to suppress such deterioration of the roundness of the steel pipe body as much as possible, conventionally, the steel pipe body has been press-corrected after sheet pile welding, or a cross-shaped rib is installed near the end of the steel pipe. The deterioration of the roundness and flatness of the end of the main body has been prevented. However, when the diameter of the steel pipe main body becomes large, particularly costs and time are required to suppress the deformation of the steel pipe main body by sheet pile welding and maintain the shape as it is. For this reason, it is necessary to circumferentially weld the mechanical joint in a state in which the deformation due to sheet pile welding of the steel pipe body is allowed to some extent.
矢板溶接によって鋼管本体は鼓状に変形するため、断面が楕円に変形し、特に、端面では長径位置で、機械式継手を溶接する際の溶接開先のルート面に隙間が生じる。この矢板溶接による鋼管本体の変形は、プレス矯正後も残存し、周溶接後は継手端面の平面度に反映されることがわかった。 Since the steel pipe body is deformed into a drum shape by sheet pile welding, the cross section is deformed into an ellipse, and in particular, a gap is generated in the root surface of the welding groove when welding the mechanical joint at the long diameter position on the end face. It was found that the deformation of the steel pipe main body due to this sheet pile welding remains even after press correction, and is reflected in the flatness of the end face of the joint after circumferential welding.
図12は横軸に仮付け間隔θをとり、縦軸に平面度をとって、仮付け位置が機械式継手の平面度に及ぼす効果を示すグラフ図である。図12に示す値は、外径1600mmの鋼管本体に対し、任意の位置を仮付け溶接した場合、及び少なくとも長径位置となる2点を仮付け溶接した場合について、それぞれの3本ずつ試験を行い、その平均値である。図12に示すように、いずれの仮付け間隔においても、長径位置に仮付け点を置いた方が平面度が向上していた。 FIG. 12 is a graph showing the effect of the tacking position on the flatness of the mechanical joint, with the tacking interval θ on the horizontal axis and the flatness on the vertical axis. The values shown in FIG. 12 are tested for each of three cases of a steel pipe main body having an outer diameter of 1600 mm when tack welding is performed at an arbitrary position, and when at least two points having a major axis position are tack welding. The average value. As shown in FIG. 12, in any of the tacking intervals, the flatness was improved by placing a tacking point at the position of the major axis.
次に、本願発明者は、機械式継手のうち、ねじ式の機械式継手について検討を行った。図13は横軸に管外径Dをとり、縦軸に仮付け間隔θをとって、ねじ式機械式継手を溶接した場合の管外径Dと仮付け間隔θとの関係を示すグラフ図である。なお、図13に示すデータにおいては、人力によりねじが所定の位置まで締結できなかった場合を嵌合不良としている。図13に示すように、ねじ式機械式継手を溶接した場合においても、FEAの予測限界(θ=97400/D)よりも仮付け間隔θが小さいもの、即ち、鋼管本体の中心軸に対して(97400/D)°以下の間隔で仮付け溶接したものは、いずれも良好に嵌合することができ、継手締結性が優れていた。 Next, this inventor examined the screw type mechanical coupling among mechanical couplings. FIG. 13 is a graph showing the relationship between the pipe outer diameter D and the tacking interval θ when a threaded mechanical joint is welded with the pipe outer diameter D on the horizontal axis and the tacking interval θ on the vertical axis. It is. In the data shown in FIG. 13, the case where the screw cannot be fastened to a predetermined position by human power is regarded as a poor fitting. As shown in FIG. 13, even when a screw type mechanical joint is welded, the temporary attachment interval θ is smaller than the FEA prediction limit (θ = 97400 / D), that is, with respect to the central axis of the steel pipe body. Any of those that were tack welded at intervals of (97400 / D) ° or less were able to fit well, and the joint fastening properties were excellent.
本発明は上述した各知見に基づいてなされたものであり、外径D(mm)が1000mm以上の鋼管本体の端部に、機械式溶接継手を溶接して鋼管杭又は鋼管矢板を製造する場合に、先ず、鋼管本体の中心軸に対する最大角度θ(°)が下記数式(2)で規定される範囲となる間隔で、即ち、仮付け間隔θを下記数式(2)で規定される範囲内として、周方向に複数個所仮付け溶接し、その後、本溶接を行う。 The present invention has been made on the basis of the above-described findings, and a steel pipe pile or a steel pipe sheet pile is manufactured by welding a mechanical weld joint to the end of a steel pipe body having an outer diameter D (mm) of 1000 mm or more. First, the maximum angle θ (°) with respect to the central axis of the steel pipe body is an interval that falls within the range defined by the following formula (2), that is, the temporary attachment interval θ is within the range defined by the following formula (2). As a result, a plurality of locations are temporarily welded in the circumferential direction, and then the main welding is performed.
このとき、仮付け間隔θが(97400/D)°よりも大きい場合、接合後の機械式溶接継手に変形が生じ、鋼管杭又は鋼管矢板同士を結合する際に、継手の嵌合不良が発生する。一方、本発明の鋼管杭の製造方法又は鋼管矢板の製造方法では、鋼管本体に溶接する際の機械式継手の変形を抑制することができるため、一方の鋼管本体の端部に溶接された機械式継手と、他方の鋼管本体の端部に接合された機械式継手との締結性が向上し、鋼管杭又は鋼管矢板同士を良好に連結することができる。従って、本発明によれば、継手締結性が優れた鋼管杭又は鋼管矢板を製造することができる。 At this time, when the tacking interval θ is larger than (97400 / D) °, deformation occurs in the mechanical welded joint after joining, and when the steel pipe piles or the steel pipe sheet piles are joined to each other, poor fitting of the joint occurs. To do. On the other hand, in the steel pipe pile manufacturing method or the steel pipe sheet pile manufacturing method of the present invention, the deformation of the mechanical joint when welding to the steel pipe body can be suppressed, so the machine welded to the end of one steel pipe body. Fastening between the joint and the mechanical joint joined to the end of the other steel pipe body is improved, and the steel pipe piles or steel pipe sheet piles can be connected well. Therefore, according to the present invention, it is possible to manufacture a steel pipe pile or a steel pipe sheet pile having excellent joint fastening properties.
また、本発明の鋼管杭の製造方法又は鋼管矢板の製造方法においては、少なくとも、鋼管本体の長径が延びる方向に対向する2箇所を仮付け溶接することが好ましい。これにより、機械式継手の変形が抑制されて平面度が増し、継手締結性をより向上させることができる。 Moreover, in the manufacturing method of the steel pipe pile of this invention, or the manufacturing method of a steel pipe sheet pile, it is preferable to tack-wel at least 2 places which oppose the direction where the long diameter of a steel pipe main body extends. Thereby, a deformation | transformation of a mechanical coupling is suppressed, flatness increases, and a joint fastening property can be improved more.
更に、鋼管本体に溶接される機械式継手としては、例えば、互いに嵌合可能な構造を有するボックス継手とピン継手とが挙げられる。本発明の鋼管杭の製造方法又は鋼管矢板の製造方法は、鋼管本体に溶接する際の機械式継手の変形を抑制することができるため、一方の鋼管本体の端部に溶接されたピン継手を、他方の鋼管本体の端部に接合されたボックス継手に良好に嵌合することができる。 Further, examples of the mechanical joint welded to the steel pipe main body include a box joint and a pin joint having structures that can be fitted to each other. Since the manufacturing method of the steel pipe pile or the manufacturing method of the steel pipe sheet pile of the present invention can suppress the deformation of the mechanical joint when welding to the steel pipe body, the pin joint welded to the end of one steel pipe body is used. The box joint joined to the end of the other steel pipe main body can be satisfactorily fitted.
なお、本実施形態においては、機械式継手を等間隔で仮付け溶接した場合を例にして説明しているが、本発明はこれに限定されるものではなく、仮付け間隔θが(97400/D)°以下の範囲であれば、等間隔に仮付けしていなくても同様の効果が得られる。 In the present embodiment, the case where the mechanical joints are tack welded at equal intervals is described as an example. However, the present invention is not limited to this, and the temporary tack interval θ is (97400 / If it is in the range of D) ° or less, the same effect can be obtained even if it is not temporarily attached at regular intervals.
以下、本発明の実施例及び本発明の範囲から外れる比較例を挙げて、本発明の効果について具体的に説明する。先ず、本発明の第1実施例として、鋼管本体の外径Dが1000〜2000mmであるJIS A 5530 SKY490の鋼管矢板の端部に、JIS G3221 SFCM880Rの機械式継手を本発明の範囲内の条件で仮付け溶接した後、サブマージアーク溶接により本溶接し、機械式継手の真円度、平面度及び継手締結性について評価した。その際、仮付け溶接は、等間隔で、外面から手動のアーク溶接で行った。また、本溶接は、仮付け溶接の後、全周にシールド溶接を行い、内面及び外面からサブマージアーク溶接を行った。更に、評価は、それぞれ3本を同じ条件で行い、機械式継手の真円度及び平面度はその平均値をとり、継手締結性は、嵌合の可否で評価し、3本全てが嵌合できたものを良好とした。一方、比較例として、仮付け溶接及び本溶接の条件は前述の実施例と同様とし、仮付け溶接の数を減らして機械式継手を溶接し、機械式継手の真円度、平面度及び継手締結性について評価した。以上の結果を下記表1及び表2に示す。なお、下記表1及び表2に示す仮付け間隔θ(°)は、鋼管本体の中心軸と隣り合う仮付け溶接部とがなす角度の最大値であり、限界仮付け間隔は、鋼管本体の外径D(mm)に基づき求めた値(=97400/D)である。 Hereinafter, the effects of the present invention will be specifically described with reference to examples of the present invention and comparative examples that are out of the scope of the present invention. First, as a first embodiment of the present invention, a mechanical joint of JIS G3221 SFCM880R is a condition within the scope of the present invention at the end of a steel pipe sheet pile of JIS A 5530 SKY490 whose outer diameter D of the steel pipe body is 1000 to 2000 mm. After tack welding with, the main welding was performed by submerged arc welding, and the roundness, flatness and joint fastening property of the mechanical joint were evaluated. At that time, tack welding was performed by manual arc welding from the outer surface at equal intervals. Moreover, this welding performed the shield welding to the perimeter after the tack welding, and performed the submerged arc welding from the inner surface and the outer surface. Furthermore, the evaluation is performed for three pieces under the same conditions, and the roundness and flatness of the mechanical joint are averaged, and the joint fastening performance is evaluated based on the possibility of fitting, and all three pieces are fitted. What was made was considered good. On the other hand, as a comparative example, the conditions of tack welding and main welding are the same as those of the above-described embodiment, the number of tack welding is reduced and the mechanical joint is welded, and the roundness, flatness and joint of the mechanical joint are welded. The fastening property was evaluated. The above results are shown in Tables 1 and 2 below. In addition, the tacking interval θ (°) shown in the following Table 1 and Table 2 is the maximum value of the angle formed between the central axis of the steel pipe main body and the adjacent tack welding weld, and the limit tacking interval is the steel pipe main body. The value obtained based on the outer diameter D (mm) (= 97400 / D).
上記表1に示すように、仮付け間隔θが限界仮付け間隔(97400/D)°以下である実施例No.1〜No.23の鋼管矢板は、いずれも継手同士を正常に嵌合することができた。これに対して、上記表2に示すように、仮付け間隔θが限界仮付け間隔(97400/D)°を超えている比較例No.1〜No.17の鋼管矢板は、真円度及び平面度が劣化しており、ボックスへのピンの挿入、及び挿入後の荷重伝達キーの挿入ができないといった嵌合不良が生じた。 As shown in Table 1 above, Example No. 1 in which the tacking interval θ is equal to or less than the limit tacking interval (97400 / D) °. 1-No. All of the 23 steel pipe sheet piles were able to fit the joints normally. On the other hand, as shown in Table 2, the comparative example No. in which the tacking interval θ exceeds the limit tacking interval (97400 / D) °. 1-No. As for the 17 steel pipe sheet pile, roundness and flatness deteriorated, and the fitting failure that the insertion of the pin into the box and the insertion of the load transmission key after the insertion was not possible occurred.
次に、本発明の第2実施例として、鋼管本体の外径が1000〜1600mmであるJIS G 3106 SM490鋼からなる鋼管杭に、HT780鋼からなるねじ式継手を、本発明の範囲内の条件で仮付け溶接した後、炭酸ガスアーク溶接で本溶接し、機械式継手の真円度、平面度及び継手締結性について評価した。その際、仮付け溶接は、等間隔で、外面から手動のアーク溶接で行った。また、本溶接は、全周にシールド溶接を行い、内面及び外面から炭酸ガスアーク溶接して行った。更に、評価は前述の実施例1と同様に、3本ずつ行った。一方、比較例として、仮付け溶接及び本溶接の条件は前述の実施例と同様とし、仮付け溶接の数を減らして機械式継手を溶接し、機械式継手の真円度、平面度及び継手締結性について評価した。以上の結果を下記表3にまとめて示す。 Next, as a second embodiment of the present invention, a threaded joint made of HT780 steel is applied to a steel pipe pile made of JIS G 3106 SM490 steel having an outer diameter of a steel pipe body of 1000 to 1600 mm, within the scope of the present invention. After tack welding with, carbon dioxide arc welding was used to evaluate the roundness, flatness, and joint fastness of the mechanical joint. At that time, tack welding was performed by manual arc welding from the outer surface at equal intervals. In addition, the main welding was performed by performing shield welding on the entire circumference and carbon dioxide arc welding from the inner surface and the outer surface. Further, the evaluation was performed three by three in the same manner as in Example 1 described above. On the other hand, as a comparative example, the conditions of tack welding and main welding are the same as those of the above-described embodiment, the number of tack welding is reduced and the mechanical joint is welded, and the roundness, flatness and joint of the mechanical joint are welded. The fastening property was evaluated. The above results are summarized in Table 3 below.
上記表3に示すように、本発明の範囲内で溶接した実施例No.24〜No.29の鋼管杭は、ねじ継手を人力により嵌合することができた。これに対して、仮付け間隔θが限界仮付け間隔(97400/D)°を超えている比較例No.18〜No.20の鋼管矢板は、継手の真円度及び平面度が劣化しており、ねじ継手を人力で嵌合することはできなかった。 As shown in Table 3 above, Example No. welded within the scope of the present invention was used. 24-No. 29 steel pipe piles were able to fit screw joints manually. On the other hand, comparative example No. in which the tacking interval θ exceeds the limit tacking interval (97400 / D) °. 18-No. As for 20 steel pipe sheet piles, the roundness and flatness of the joint were deteriorated, and the threaded joint could not be manually fitted.
次に、本発明の第3実施例として、鋼管本体の外径が1600mmであるJIS A 5530 SKY490の鋼管矢板にJIS G3221 SFCM880Rの機械式継手を、サブマージアーク溶接により、仮付け溶接の位置を変えて円周溶接し、機械式継手の平面度及び継手締結性について評価した。なお、仮付け溶接及び本溶接の条件、並びに評価方法は、前述した実施例1と同様にした。以上の結果を下記表4に示す。 Next, as a third embodiment of the present invention, a mechanical joint of JIS G3221 SFCM880R is attached to a steel pipe sheet pile of JIS A 5530 SKY490 whose outer diameter is 1600 mm, and the position of the tack welding is changed by submerged arc welding. Were circumferentially welded, and the flatness of the mechanical joint and the fastening performance of the joint were evaluated. The conditions for tack welding and main welding and the evaluation method were the same as in Example 1 described above. The above results are shown in Table 4 below.
上記表4に示すように、実施例No.30〜No.35の鋼管矢板は、いずれも仮付け間隔θが限界仮付け間隔97400/D以下であるが、実施例No.30〜No.32の鋼管矢板は鋼管本体の長径位置を仮付け溶接したものであり、実施例No.33〜No.35の鋼管矢板は、長径位置を仮付け溶接していないものである。また、実施例No.30の鋼管矢板とNo.33の鋼管矢板、実施例No.31の鋼管矢板とNo.34の鋼管矢板、実施例No.32の鋼管矢板とNo.35の鋼管矢板は、夫々同一サイズ、同一溶接条件下における周溶接であるが、いずれの条件においても鋼管本体の長径位置を仮付け溶接したものの方が、それ以外の位置を仮付け溶接したものよりも平面度が向上していた。
As shown in Table 4 above, Example No. 30-No. In each of the 35 steel pipe sheet piles, the tacking interval θ is the
1,12 機械式継手
2 平滑定盤
11 鋼管矢板
13 鋼管本体
14 矢板部
15 十字形リブ
16 接合部
DESCRIPTION OF
Claims (6)
前記鋼管本体は外径D(mm)が1000mm以上であり、
前記仮付け溶接は、前記鋼管本体の中心軸に対する最大角度θ(°)が下記数式(A)で規定される範囲となる間隔で行うことを特徴とする継手締結性に優れた鋼管杭の製造方法。
A steel pipe pile manufacturing method in which main welding is performed after temporarily welding a plurality of mechanical weld joints to the end of a steel pipe body in the circumferential direction,
The steel pipe body has an outer diameter D (mm) of 1000 mm or more,
The tack welding is performed at intervals in which the maximum angle θ (°) with respect to the central axis of the steel pipe body is within a range defined by the following formula (A). Method.
前記鋼管本体は外径D(mm)が1000mm以上であり、
前記仮付け溶接は、前記鋼管本体の中心軸に対する最大角度θ(°)が下記数式(A)で規定される範囲となる間隔で行うことを特徴とする継手締結性に優れた鋼管矢板の製造方法。
A steel pipe sheet pile manufacturing method for performing main welding after temporarily welding a plurality of mechanical weld joints to the end of a steel pipe body in the circumferential direction,
The steel pipe body has an outer diameter D (mm) of 1000 mm or more,
The tack welding is performed at intervals in which the maximum angle θ (°) with respect to the central axis of the steel pipe main body is within a range defined by the following mathematical formula (A). Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006297854A JP4724644B2 (en) | 2006-11-01 | 2006-11-01 | Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006297854A JP4724644B2 (en) | 2006-11-01 | 2006-11-01 | Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008115558A JP2008115558A (en) | 2008-05-22 |
JP4724644B2 true JP4724644B2 (en) | 2011-07-13 |
Family
ID=39501728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006297854A Active JP4724644B2 (en) | 2006-11-01 | 2006-11-01 | Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4724644B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5421750B2 (en) * | 2009-11-30 | 2014-02-19 | 新日鐵住金株式会社 | Steel pipe sheet pile structure and its construction method |
JP5967862B2 (en) * | 2011-01-14 | 2016-08-10 | Jfeスチール株式会社 | Steel pipe pile pier |
JP6104648B2 (en) * | 2012-03-28 | 2017-03-29 | 株式会社クボタ | Flatness correction method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1024366A (en) * | 1996-07-11 | 1998-01-27 | Japan Steel & Tube Constr Co Ltd | Circumferential welding method |
JPH10249532A (en) * | 1997-03-05 | 1998-09-22 | Nippon Steel Corp | Tube shape correcting method for tube body intermediate welding |
JP2004293231A (en) * | 2003-03-28 | 2004-10-21 | Jfe Steel Kk | Connection structure of steel pipe and its connecting method |
-
2006
- 2006-11-01 JP JP2006297854A patent/JP4724644B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008115558A (en) | 2008-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3389919B1 (en) | Method for connection and tubular connection assembly for improved fatigue performance of metallic risers | |
JP4724644B2 (en) | Steel pipe pile manufacturing method and steel pipe sheet pile manufacturing method excellent in joint fastening performance | |
US20060284417A1 (en) | Method of impeding crack propagation | |
JP2009228825A (en) | Joining method loose flange type flared pipe coupling and steel pipe | |
AU2014204559B2 (en) | Structural connectors for dragline boom and mast tubular clusters and method for repair, reinforcement and life extension of dragline booms and masts | |
CN205776421U (en) | Reinforced sound detecting pipe | |
US11872663B2 (en) | Repair welding method | |
Liu et al. | Misalignment effect on stress concentration of thickness mismatched plate structures | |
US9833856B2 (en) | Circumferential welded joint of line pipe, method of forming circumferential welded joint of line pipe, and line pipe | |
JP7151807B2 (en) | Method for manufacturing steel pipe sheet piles having mechanical joint pipes | |
Zheng et al. | Influence of morphological characteristics on the mechanical properties and failure mechanisms of legacy butt welds | |
JP5474411B2 (en) | Ring steel for building structures | |
US20030102669A1 (en) | Threaded joint for an oil well pipe | |
WO2022270262A1 (en) | Joint pipe and methods of manufacturing and designing same, steel pipe with joint pipe and methods of manufacturing and designing same, steel pipe pile, and method of constructing steel pipe pile | |
JP2001198678A (en) | Steel pipe having excellent on-site welding excutability | |
JP4551463B2 (en) | Loose flange type flare pipe joint sealability improvement method, flare end face angle control method, loose flange type flare pipe fitting, loose flange type flare pipe fitting steel pipe, loose flange type flare pipe fitting manufacturing method, and steel pipe joining Method | |
Macdonald et al. | Engineering critical assessment in the complex girth welds of clad and lined linepipe materials | |
JP2024053558A (en) | Steel pipe connection structure and steel pipe manufacturing method for steel pipe joint | |
JP2014031717A (en) | Mechanical joint structure of steel pipe pile | |
JP2010151325A (en) | Loose flange type flared pipe coupling, steel pipe for the loose flange type flared pipe coupling, method for manufacturing the steel pipe for the loose flange type flared pipe coupling, and method for joining the steel pipe | |
JP5661419B2 (en) | Beam joint forming method | |
JP2009190056A (en) | Method for controlling residual stress of weld zone | |
JPH0713368B2 (en) | Landslide prevention pile | |
JP2009050889A (en) | Welding method and structure of weld joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110411 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4724644 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |