JP6103966B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP6103966B2
JP6103966B2 JP2013022084A JP2013022084A JP6103966B2 JP 6103966 B2 JP6103966 B2 JP 6103966B2 JP 2013022084 A JP2013022084 A JP 2013022084A JP 2013022084 A JP2013022084 A JP 2013022084A JP 6103966 B2 JP6103966 B2 JP 6103966B2
Authority
JP
Japan
Prior art keywords
light
wavelength
light source
converted
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013022084A
Other languages
Japanese (ja)
Other versions
JP2014154313A (en
Inventor
宏幸 亀江
宏幸 亀江
和昭 田村
和昭 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013022084A priority Critical patent/JP6103966B2/en
Publication of JP2014154313A publication Critical patent/JP2014154313A/en
Application granted granted Critical
Publication of JP6103966B2 publication Critical patent/JP6103966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光源を具備する照明装置に関する。   The present invention relates to a lighting device including a light source.

従来より、小型固体光源と光ファイバとを組み合わせたファイバ光源が提案されている。このようなファイバ光源は、細径の構造物(例えば細径の管状部材)の先端から光を照射する照明装置として用いられている。
具体的には、例えば特許文献1には、励起光を射出する光源と、前記励起光のうち少なくとも一部を吸収して異なる波長の光を射出する波長変換部材と、を具備する発光装置が開示されている。
Conventionally, a fiber light source in which a small solid light source and an optical fiber are combined has been proposed. Such a fiber light source is used as an illuminating device that emits light from the tip of a thin structure (for example, a thin tubular member).
Specifically, for example, Patent Document 1 discloses a light emitting device that includes a light source that emits excitation light, and a wavelength conversion member that absorbs at least a part of the excitation light and emits light having a different wavelength. It is disclosed.

図14は、特許文献1に開示されている発光装置の構成図である。同図に示すように、特許文献1の発光装置は、光源110と、導光部材120と、波長変換部材130と、波長変換部材140と、を具備する。光源110から射出された励起光101は、レンズ102を透過して射出部に集光される。集光された励起光101は、導光部材120を通して、波長変換部材140の蛍光体に照射されて波長が変換される。   FIG. 14 is a configuration diagram of a light emitting device disclosed in Patent Document 1. As shown in the figure, the light emitting device of Patent Document 1 includes a light source 110, a light guide member 120, a wavelength conversion member 130, and a wavelength conversion member 140. The excitation light 101 emitted from the light source 110 passes through the lens 102 and is condensed on the emission unit. The condensed excitation light 101 is irradiated to the phosphor of the wavelength conversion member 140 through the light guide member 120 and the wavelength is converted.

図15は、特許文献1に開示されている発光装置が具備する波長変換部材130の構造を示す図である。波長変換部材140には、少なくとも光源から射出された励起光の導入方向に交差する断面において複数の層(第1の層140A、第2の層140B、及び第3の層140C)が配置されている。これら複数の層のうち少なくとも2つの層は、励起光に対する耐性が異なる材料で形成されている。ここで、各層は、透光性材料に蛍光体、拡散剤、及びフィラーから成る群から選択した少なくとも1種を混合した混合物で形成されている。フィラーは、照射された光を反射/散乱させる為のものである。フィラーにより、混色が良好になると共に色むらが低減される。   FIG. 15 is a diagram illustrating a structure of the wavelength conversion member 130 included in the light emitting device disclosed in Patent Document 1. A plurality of layers (a first layer 140A, a second layer 140B, and a third layer 140C) are disposed on the wavelength conversion member 140 in a cross section that intersects at least the introduction direction of the excitation light emitted from the light source. Yes. At least two of the plurality of layers are formed of materials having different resistance to excitation light. Here, each layer is formed of a mixture in which at least one selected from the group consisting of a phosphor, a diffusing agent, and a filler is mixed with a translucent material. The filler is for reflecting / scattering irradiated light. The filler improves color mixing and reduces color unevenness.

特開2008−21973号公報JP 2008-21973 A

ところで、特許文献1に開示されている技術では、良好な混色や色むらの低減が実現するものの、実用上、照明光としては暗くなってしまう。すなわち、波長変換部材140の各層で色むら低減や混色を達成する程度に励起光を反射/散乱させると、多くの光が後方反射されて導光部材に再入射してしまう。つまり、照明光として寄与しない後方光が生じてしまう。さらには、照明装置を内視鏡において光源として用いる場合には、良好な混色及び色むらの低減と共に、広範な配光も実現する必要がある。   By the way, although the technique disclosed in Patent Document 1 achieves good color mixing and reduction in color unevenness, it is practically dark as illumination light. That is, when excitation light is reflected / scattered to such an extent that color unevenness is reduced and color mixing is achieved in each layer of the wavelength conversion member 140, a lot of light is reflected back and re-enters the light guide member. That is, back light that does not contribute as illumination light is generated. Furthermore, when the illumination device is used as a light source in an endoscope, it is necessary to realize a wide light distribution as well as good color mixing and color unevenness reduction.

本発明は、前記の事情に鑑みてなされたものであって、良好な混色及び色むらの低減を実現すると共に、所定の明るさを維持し且つ広範な配光を実現した照明装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an illumination device that achieves good color mixing and reduction in color unevenness, maintains predetermined brightness, and realizes a wide range of light distribution. For the purpose.

前記の目的を達成するために、本発明の第1の態様による照明装置は、
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記配光整合部は、少なくとも光軸周辺に配置され、通過する光源光の配光を拡大させる拡散粒子を有し、
前記光源光が最も強い強度で射出される方向を前方と定義し、その逆方向を後方と定義した場合、
前記配光整合部は、前記波長変換部の前方に設置されている、
ことを特徴とする。
また、前記の目的を達成するために、本発明の第2の態様による照明装置は、
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記配光整合部は、前記光源光のうち少なくとも光軸周辺を通過する光を選択的に拡散させて配光を拡大させる
ことを特徴とする。
また、前記の目的を達成するために、本発明の第3の態様による照明装置は、
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記複数の光源は、2個の光源であり、
前記波長変換部は、互いに異なる波長変換を行う2種類の波長変換部材から成り、
前記2種類の波長変換部材のうち少なくとも一方の波長変換部材は、前記2個の光源のうち何れか一方の光源が発した光源光を波長変換しない
ことを特徴とする。
また、前記の目的を達成するために、本発明の第4の態様による照明装置は、
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記光軸に沿って光が進行する方向を前方と定義し、その逆方向を後方と定義し、前記光軸に対して垂直な方向を側方と定義した場合に、
前記光源光の光路外であって、且つ、前記波長変換部の側方または後方には、前記光軸に対して所定の傾きを有する面状に、光を反射する反射部が設けられており、
前記反射部は、前記波長変換光の配光を選択的に狭めることで、前記光源光の配光と整合させる
ことを特徴とする。
In order to achieve the above object, a lighting device according to the first aspect of the present invention comprises:
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Equipped with,
The light distribution matching unit is disposed at least around the optical axis, and has diffusion particles that expand the light distribution of the light source light passing therethrough,
When the direction in which the light source light is emitted with the strongest intensity is defined as the front and the opposite direction is defined as the rear,
The light distribution matching unit is installed in front of the wavelength conversion unit,
It is characterized by that.
In order to achieve the above object, a lighting device according to the second aspect of the present invention includes:
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Comprising
The light distribution matching unit selectively diffuses light that passes at least around the optical axis of the light source light to expand the light distribution.
It is characterized by that.
In order to achieve the above object, a lighting device according to the third aspect of the present invention includes:
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Comprising
The plurality of light sources are two light sources,
The wavelength conversion unit is composed of two types of wavelength conversion members that perform different wavelength conversions,
At least one wavelength conversion member of the two types of wavelength conversion members does not perform wavelength conversion of light source light emitted from any one of the two light sources.
It is characterized by that.
In order to achieve the above object, a lighting device according to the fourth aspect of the present invention includes:
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Comprising
When the direction in which light travels along the optical axis is defined as the front, the opposite direction is defined as the rear, and the direction perpendicular to the optical axis is defined as the side,
A reflection part that reflects light is provided outside the optical path of the light source light and in a planar shape having a predetermined inclination with respect to the optical axis at the side or rear of the wavelength conversion part. ,
The reflecting unit selectively matches the light distribution of the light source light by selectively narrowing the light distribution of the wavelength-converted light.
It is characterized by that.

本発明によれば、良好な混色及び色むらの低減を実現すると共に、所定の明るさを維持し且つ広範な配光を実現した照明装置を提供することができる。   According to the present invention, it is possible to provide an illuminating device that achieves good color mixing and reduction in color unevenness, maintains a predetermined brightness, and realizes a wide range of light distribution.

図1は、本発明の一実施形態に係る照明装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a lighting device according to an embodiment of the present invention. 図2は、黄色変換光L2と青色透過光L1との配光整合の概念を示す図である。FIG. 2 is a diagram illustrating the concept of light distribution matching between the yellow converted light L2 and the blue transmitted light L1. 図3は、第1変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the first modification. 図4は、第2変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the tip unit of the illumination device according to the second modification. 図5は、第3変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the third modification. 図6は、第3変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of the tip unit of the illumination device according to the third modification. 図7は、第4変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the fourth modification. 図8は、第5変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of the tip unit of the lighting apparatus according to the fifth modification. 図9は、第6変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the sixth modification. 図10は、第7変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the seventh modification. 図11は、第7変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the seventh modification. 図12は、第7変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the seventh modification. 図13は、第8変形例に係る照明装置の先端ユニットの一構成例を示す図である。FIG. 13 is a diagram illustrating a configuration example of the tip unit of the lighting device according to the eighth modification. 図14は、特許文献1に開示されている従来の発光装置の構成図である。FIG. 14 is a configuration diagram of a conventional light emitting device disclosed in Patent Document 1. In FIG. 図15は、特許文献1に開示されている従来の発光装置が具備する波長変換部材の構造を示す図である。FIG. 15 is a diagram illustrating a structure of a wavelength conversion member included in a conventional light emitting device disclosed in Patent Document 1.

以下、図面を参照して本発明の一実施形態を説明する。
図1は、本発明の一実施形態に係る照明装置の構成例を示す図である。図1に示すように、本一実施形態に係る照明装置は、光源部1と、先端ユニット2と、を具備する。
前記光源部1は、第1光源10−1と、第2光源10−2と、第1導光部材11−1と、第2導光部材11−2と、光カプラ13と、第3導光部材11−3と、集光レンズ(不図示)と、を有する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration example of a lighting device according to an embodiment of the present invention. As shown in FIG. 1, the illumination device according to the present embodiment includes a light source unit 1 and a tip unit 2.
The light source unit 1 includes a first light source 10-1, a second light source 10-2, a first light guide member 11-1, a second light guide member 11-2, an optical coupler 13, and a third light guide. It has the optical member 11-3 and a condensing lens (not shown).

前記第1光源10−1は、第1光源光を発光する光源であり、その光射出端は第1導光部材11−1を介して光カプラ13と光学的に接続されている。第1光源10−1が第1光源光を発光すると、先端ユニット2から照射対象物90側へ白色光が射出され、照射対象物90が照明される。   The first light source 10-1 is a light source that emits first light source light, and its light exit end is optically connected to the optical coupler 13 via the first light guide member 11-1. When the first light source 10-1 emits the first light source light, white light is emitted from the tip unit 2 to the irradiation object 90 side, and the irradiation object 90 is illuminated.

具体的には、小さな入射口を有する導光部材にも高効率に光を入射させることができるように、第1光源10−1としては例えばLED光源やレーザ光源等を用いることが好ましい。
前記第2光源10−2は、第2光源光を発光する光源であり、その光射出端は、第2導光部材11−2を介して光カプラ13と光学的に接続されている。第2光源10−2が第2光源光を発光すると、当該第2光源光は先端ユニット2において拡散されて照射対象物90側へ射出され、照射対象物90が照明される。
Specifically, for example, an LED light source or a laser light source is preferably used as the first light source 10-1 so that light can be incident on a light guide member having a small incident port with high efficiency.
The second light source 10-2 is a light source that emits second light source light, and its light exit end is optically connected to the optical coupler 13 via the second light guide member 11-2. When the second light source 10-2 emits the second light source light, the second light source light is diffused in the tip unit 2 and emitted toward the irradiation object 90, and the irradiation object 90 is illuminated.

具体的には、第2光源10−2としては、第1光源10−1と同様に例えばLED光源やレーザ光源等を用いることが好ましい。
前記第1導光部材11−1は、一方端が集光レンズ(不図示)を介して第1光源10−1と光学的に接続され、且つ、他方端が光カプラ13と光学的に接続されており、第1光源10−1による第1光源光を光カプラ13へ導く。具体的には、第1導光部材11−1としては、例えばコア径50μmで開口数FNA=0.2を有するマルチモード光ファイバ等を用いればよい。
Specifically, it is preferable to use, for example, an LED light source or a laser light source as the second light source 10-2, similarly to the first light source 10-1.
The first light guide member 11-1 has one end optically connected to the first light source 10-1 via a condenser lens (not shown) and the other end optically connected to the optical coupler 13. The first light source light from the first light source 10-1 is guided to the optical coupler 13. Specifically, for example, a multimode optical fiber having a core diameter of 50 μm and a numerical aperture FNA = 0.2 may be used as the first light guide member 11-1.

前記第2導光部材11−2は、一方端が集光レンズ(不図示)を介して第2光源10−2と光学的に接続され、且つ、他方端が光カプラ13と光学的に接続されており、第2光源10−2による第2光源光を光カプラ13へ導く。具体的には、第2導光部材11−2としては、第1導光部材11−1と同様、例えばコア径50μmで開口数FNA=0.2を有するマルチモード光ファイバ等を用いればよい。   The second light guide member 11-2 has one end optically connected to the second light source 10-2 via a condenser lens (not shown) and the other end optically connected to the optical coupler 13. The second light source light from the second light source 10-2 is guided to the optical coupler 13. Specifically, as the second light guide member 11-2, for example, a multimode optical fiber having a core diameter of 50 μm and a numerical aperture FNA = 0.2 may be used as in the first light guide member 11-1. .

前記光カプラ13は、例えば誘電体ミラーやファイバを用いた光カプラまたはフォトリソグラフィー法等により作製される光導波路であり、2つの導光部材(本例では第1導光部材11−1及び第2導光部材11−2)からの射出光を混合して高効率に1つの導光部材(第3導光部材11−3)に入射させる。   The optical coupler 13 is, for example, an optical coupler using a dielectric mirror or fiber, or an optical waveguide manufactured by a photolithography method or the like, and includes two light guide members (in this example, the first light guide member 11-1 and the first light guide member 11). The light emitted from the two light guide members 11-2) is mixed and incident on one light guide member (third light guide member 11-3) with high efficiency.

前記第3導光部材11−3は、光カプラ13から射出された光を導光して先端ユニット2の光源光入射部28に入射させる。具体的には、第3導光部材11−3としては、第1導光部材11−1や第2導光部材11−2と同様、例えばコア径50μmで開口数FNA=0.2を有するマルチモード光ファイバ等を用いればよい。   The third light guide member 11-3 guides the light emitted from the optical coupler 13 and causes the light to enter the light source light incident portion 28 of the tip unit 2. Specifically, the third light guide member 11-3 has, for example, a core diameter of 50 μm and a numerical aperture FNA = 0.2, like the first light guide member 11-1 and the second light guide member 11-2. A multimode optical fiber or the like may be used.

ところで、前記先端ユニット2は、ホルダ20と、透明部材21と、波長変換部材23と、拡散部材24と、反射部25と、光源光入射部28と、照明光射出部29と、を有する。
ここで、説明の便宜上、軸と方向とを次のように定義する。すなわち、第3導光部材11−3の光源光射出端中心からホルダ20の貫通孔内に入射し且つ進行する光源光が、最大の強度で先端ユニットを進行する軸を、“光軸”と称する。そして、この光軸に沿って光源光が進行する方向を“前方”と定義し、その逆方向を“後方”と定義する。また、前記光軸に対して垂直な方向を“側方”と定義する。
By the way, the tip unit 2 includes a holder 20, a transparent member 21, a wavelength conversion member 23, a diffusion member 24, a reflection unit 25, a light source light incident unit 28, and an illumination light emission unit 29.
Here, for convenience of explanation, axes and directions are defined as follows. That is, the axis where the light source light that enters and travels through the through hole of the holder 20 from the center of the light source light emission end of the third light guide member 11-3 travels the tip unit with the maximum intensity is referred to as the “optical axis”. Called. The direction in which the light source light travels along this optical axis is defined as “front”, and the opposite direction is defined as “rear”. A direction perpendicular to the optical axis is defined as “lateral”.

前記ホルダ20は、当該先端ユニット2の各構成部材を収容するホルダであり、前記光軸を中心軸とするテーパ形状の貫通孔が形成されている。この貫通孔の内壁全面には光を反射する反射部25が設けられている。この貫通孔のうち後方側の開口部は光源光入射部28であり、前方側の間口部は照明光射出部29である。   The holder 20 is a holder that accommodates each component of the tip unit 2, and has a tapered through-hole with the optical axis as a central axis. A reflection portion 25 that reflects light is provided on the entire inner wall of the through hole. The rear opening of the through hole is a light source light incident portion 28, and the front opening is an illumination light emitting portion 29.

具体的には、ホルダ20の材料としては、透明部材21や波長変換部材23等を位置ずれなく保持し且つ波長変換部材23の波長変換によって生じる熱を効率良く放熱させる為に、たとえば金属等を用いることが好ましい。   Specifically, as a material of the holder 20, in order to hold the transparent member 21, the wavelength conversion member 23, and the like without misalignment and to efficiently dissipate heat generated by the wavelength conversion of the wavelength conversion member 23, for example, metal or the like is used. It is preferable to use it.

前記透明部材21は、ホルダ20の貫通孔のうち光源光入射部28側に設けられた可視光を高効率に透過する部材である。透明部材21の材料としては、例えばエポキシ樹脂、シリコーン樹脂、及び無機ガラス等を挙げることができる。   The transparent member 21 is a member that efficiently transmits visible light provided on the light source light incident portion 28 side in the through hole of the holder 20. Examples of the material of the transparent member 21 include an epoxy resin, a silicone resin, and inorganic glass.

前記波長変換部材23は、貫通孔内壁に側方形状が一致した円錐台形状を呈しており、反射部25に対して接着されている。波長変換部材23は、入射した青色光により励起されて第1波長変換光として黄色変換光L2を発光する機能を有している。これら青色光と黄色光とは補色関係であることから、それらの混合光は白色光となる。   The wavelength conversion member 23 has a frustoconical shape whose side shape coincides with the inner wall of the through hole, and is bonded to the reflecting portion 25. The wavelength conversion member 23 has a function of being excited by the incident blue light and emitting yellow converted light L2 as the first wavelength converted light. Since these blue light and yellow light have a complementary color relationship, their mixed light is white light.

すなわち、波長変換部材23に照射された青色光の一部は黄色光に変換され(黄色変換光L2が生成され)、波長変換部材23から360°等方的に射出される。波長変換部材23の側方及び後方には、この黄色変換光L2を反射する反射部25が貫通孔内壁表面全域に設置されている。これにより、黄色変換光L2は前方に反射されるようになる。   That is, a part of blue light irradiated to the wavelength conversion member 23 is converted into yellow light (yellow conversion light L2 is generated), and is emitted from the wavelength conversion member 23 isotropically at 360 °. Reflecting portions 25 that reflect the yellow converted light L2 are provided on the entire surface of the inner wall of the through hole on the side and rear of the wavelength conversion member 23. Accordingly, the yellow converted light L2 is reflected forward.

他方、波長変換部材23によって黄色光に変換されなかった青色光は、波長変換部材23によって励起されずに波長変換部材23を透過し、第1光源透過光(青色透過光L1)が波長変換部材から前方に射出される。
上述したように、波長変換部材23からは、黄色変換光L2と青色透過光L1とが前方に射出する。
On the other hand, the blue light that has not been converted into yellow light by the wavelength conversion member 23 passes through the wavelength conversion member 23 without being excited by the wavelength conversion member 23, and the first light source transmitted light (blue transmitted light L1) is converted into the wavelength conversion member. Is injected forward.
As described above, the wavelength conversion member 23 emits yellow converted light L2 and blue transmitted light L1 forward.

前記波長変換部材23の具体的な材料としては、例えば第1光源10−1によって青色光が照射されると黄色く蛍光する材料として、例えばCe(セリウム)賦活ガーネット結晶構造を有する酸化物蛍光体(YAG、TAG)等を挙げることができる。これらの材料は、430nm乃至470nmの光を吸収して黄色蛍光を発光可能な材料である。従って、これらを材料とする波長変換部材23は、450nm付近の第1光源光(青色光)では励起されるが、415nm付近の第2光源光(紫色光)では励起されない。   As a specific material of the wavelength conversion member 23, for example, an oxide phosphor having a Ce (cerium) activated garnet crystal structure, for example, a material that fluoresces yellow when irradiated with blue light by the first light source 10-1. YAG, TAG) and the like. These materials are materials capable of absorbing yellow light from 430 nm to 470 nm and emitting yellow fluorescence. Accordingly, the wavelength conversion member 23 made of these materials is excited by the first light source light (blue light) near 450 nm, but not excited by the second light source light (purple light) near 415 nm.

なお、これらのような蛍光体材料は一般的に数μmから数十μmの粒子状の形態を有しているため、樹脂等の透明な材料に分散させたり、蛍光体材料そのものを焼結させてセラミック化して設置することが好ましい。これらの材料は一般的に高屈折率であるため、透明な材料との屈折率差を持たせることで、光拡散機能を発現させることができる。ただし、本例のように、青色光の一部については当該波長変換部材23を透過させることで照明光の一部として用いる構成を採る場合には、濃度をあまり濃くしたり厚さを厚くしたりしない方が好ましい。従って、この場合には、光拡散機能は多少限定的になる。   In addition, since such phosphor materials generally have a particulate form of several μm to several tens of μm, they are dispersed in a transparent material such as a resin, or the phosphor material itself is sintered. It is preferable to install ceramics. Since these materials generally have a high refractive index, a light diffusing function can be exhibited by providing a difference in refractive index from a transparent material. However, in the case of adopting a configuration in which a part of blue light is used as a part of illumination light by transmitting the wavelength conversion member 23 as in this example, the density is increased too much or the thickness is increased. It is preferable not to do. Accordingly, in this case, the light diffusion function is somewhat limited.

前記拡散部材24は、略円柱形状を呈しており、ホルダ20の貫通孔のうち波長変換部材23より前方かつ光軸近傍のみの領域に設けられている。このように構成することにより、青色透過光L1の大部分が選択的に配光拡大される。ここで、配光拡大度は、拡散部材24の形状及び屈折率、粒子濃度等に依存する。   The diffusing member 24 has a substantially cylindrical shape, and is provided in an area of the through hole of the holder 20 in front of the wavelength conversion member 23 and only in the vicinity of the optical axis. With this configuration, most of the blue transmitted light L1 is selectively expanded in light distribution. Here, the light distribution magnification depends on the shape and refractive index of the diffusing member 24, the particle concentration, and the like.

具体的には、拡散部材24としては、例えばアルミナ粒子やSiO2粒子等の透明で高屈折率の粒子を用いることが好ましい。詳細には、粒径は数μmが望ましく、このような粒子を拡散部材24として用いることで、散乱特性に波長依存性の少ないミー散乱を発現させ易く、第1光源光及び第2光源光の拡散を効率よく一致させることができる。なお、拡散部材24の分散濃度や厚さは任意に設定できる為、波長変換部材23から射出した2種類の光の配光が一致するよう設計される。   Specifically, as the diffusing member 24, it is preferable to use transparent and high refractive index particles such as alumina particles and SiO2 particles. Specifically, the particle size is desirably several μm, and by using such particles as the diffusing member 24, it is easy to express Mie scattering with less wavelength dependency in the scattering characteristics, and the first light source light and the second light source light Diffusion can be matched efficiently. Since the dispersion concentration and thickness of the diffusing member 24 can be set arbitrarily, the light distribution of the two types of light emitted from the wavelength conversion member 23 is designed to match.

また、拡散部材24の径としては、第3導光部材11−3から射出される光源光の配光に応じて設計するのが好ましい。これは、波長変換部材23で拡散されずに透過した光源光を拡散させるべきである為、第3導光部材11−3からの光源光の大部分が含まれる配光角で、拡散部材24の底面(後方側の面)に形成されるビームスポット径と、拡散部材24の径とを略一致させることが好ましい。   The diameter of the diffusing member 24 is preferably designed according to the light distribution of the light source light emitted from the third light guide member 11-3. This is because the light source light that has been transmitted without being diffused by the wavelength conversion member 23 should be diffused, so that the diffusion member 24 has a light distribution angle that includes most of the light source light from the third light guide member 11-3. It is preferable that the beam spot diameter formed on the bottom surface (the rear surface) and the diameter of the diffusing member 24 are substantially matched.

なお、拡散部材24の径を、前記ビームスポット径以下の径としてもよい。拡散部材24の径を前記ビームスポット径以下の径にした場合、光軸と略平行に進行した光源光のみを当該拡散部材24で拡散させて照明光射出部29から射出させるため、光源光でも傾きを持った光を過度に拡散させることがなくなり、明るい照明光とすることができる。   The diameter of the diffusing member 24 may be equal to or smaller than the beam spot diameter. When the diameter of the diffusing member 24 is equal to or smaller than the beam spot diameter, only the light source light that has traveled substantially parallel to the optical axis is diffused by the diffusing member 24 and emitted from the illumination light emitting unit 29. The inclined light is not diffused excessively, and bright illumination light can be obtained.

ここで、ビームスポットとは、ホルダ20の光源光入射部28から先端ユニット2に入射して様々なルートを通って光軸前方に進行していく光源光のうち、波長変換部材23の前方側の面を含む平面を通る光源光であって、光軸上と当該平面との交点(光量が最大の点)における光量に対して1/eの割合以上の光量で透過するエリアを指している。 Here, the beam spot refers to the front side of the wavelength conversion member 23 among the light source light that enters the tip unit 2 from the light source light incident portion 28 of the holder 20 and travels forward along the optical axis through various routes. Light source light that passes through a plane including the surface of the light source, and refers to an area that is transmitted at a light amount of 1 / e 2 or more with respect to the light amount at the intersection (the point where the light amount is maximum) on the optical axis and the plane. Yes.

なお、拡散部材24の側面と、ホルダ20の貫通孔の内壁面との間には、上述した透明部材21と同様の透明部材を設けてもよいし、何も設けなくとも良い。
ところで、波長変換部材23から射出した2種類の光は、一方が波長変換光であって他方は光源光である為、配光が著しく異なる。青色透過光L1は、配光が狭い為、照明光として適さない。また、青色透過光L1は、黄色変換光L2と配光が異なる為、理想的には全領域が白色となるべき照明光に色むらが存在してしまい、照明光として望ましくない。
A transparent member similar to the transparent member 21 described above may be provided between the side surface of the diffusing member 24 and the inner wall surface of the through hole of the holder 20, or nothing may be provided.
By the way, since two types of light emitted from the wavelength conversion member 23 are wavelength converted light and the other is light source light, the light distribution is remarkably different. The blue transmitted light L1 is not suitable as illumination light because the light distribution is narrow. Further, since the blue transmitted light L1 has a different light distribution from the yellow converted light L2, there is ideally uneven color in the illumination light that should be white in the entire region, which is not desirable as illumination light.

このような問題を鑑みて、本一実施形態に係る照明装置では、拡散部材24を、ホルダ20の貫通孔のうち波長変換部材23より前方かつ光軸近傍のみの領域に設け、青色透過光L1の大部分が選択的に配光拡大されるように構成している。
前記反射部25は、ホルダ20の貫通孔の内壁全面に設けられた(テーパ形状を呈するように設けられた)、光を反射する部材である。具体的には、反射部25としては、紫色光、青色光、及び黄色光等の全てを高効率に反射する材料、例えば銀やアルミニウム等を用いることが好ましい。このように構成することで、第1光源光、第2光源光、及び第1波長変換光(黄色変換光L2)が、反射部25によって反射される。
In view of such a problem, in the illuminating device according to the present embodiment, the diffusing member 24 is provided in a region of the through hole of the holder 20 in front of the wavelength conversion member 23 and only in the vicinity of the optical axis, and the blue transmitted light L1. Is configured to selectively expand the light distribution.
The reflection portion 25 is a member that reflects light and is provided on the entire inner wall of the through hole of the holder 20 (provided to exhibit a tapered shape). Specifically, it is preferable to use a material that reflects all of violet light, blue light, yellow light, and the like with high efficiency, such as silver or aluminum, for example. With this configuration, the first light source light, the second light source light, and the first wavelength converted light (yellow converted light L2) are reflected by the reflecting unit 25.

ところで、反射部25を光軸に垂直に1層設けた場合、黄色変換光L2は、配光が青色透過光L1に比べてかなり広いまま、光軸に対する傾き角が変化せず前方に反射される。   By the way, when the reflecting portion 25 is provided in a single layer perpendicular to the optical axis, the yellow converted light L2 is reflected forward without changing the tilt angle with respect to the optical axis while the light distribution is considerably wider than the blue transmitted light L1. The

しかしながら、本一実施形態に係る照明装置のように、テーパ形状を呈するように反射部を形成することで、波長変換部材23から後方に射出された黄色変換光L2が有効に前方に反射され、かつ、その配光が縮小される。ここで、配光縮小度は、波長変換部材23のテーパ角やテーパ形状、またはテーパ反射面に対する波長変換部材の、光軸方向に対する位置関係などに依存する。   However, like the lighting device according to the present embodiment, the yellow converted light L2 emitted rearward from the wavelength conversion member 23 is effectively reflected forward by forming the reflecting portion so as to exhibit a tapered shape, And the light distribution is reduced. Here, the degree of light distribution reduction depends on the taper angle and taper shape of the wavelength conversion member 23, or the positional relationship of the wavelength conversion member with respect to the tapered reflection surface in the optical axis direction.

さらに、上述したように拡散部材24が波長変換部材23の前方における一部のみに形成されている為、黄色変換光L2の大部分が拡散部材24に照射されることなく、その周囲の空間(または透明部材が設けられていれば当該透明部材)から前方に射出される。上述の構成により、黄色変換光L2と青色透過光L1との配光が整合されて成る混合光(“配光整合”された混合光)が、照明光射出部29より前方に照射され、どの照明角度に対しても同じ色調の白色光が実現する。図2は、黄色変換光L2と青色透過光L1との配光整合の概念を示す図である。   Further, as described above, since the diffusing member 24 is formed only in a part in front of the wavelength converting member 23, a large portion of the yellow converted light L2 is not irradiated on the diffusing member 24, and the surrounding space ( Or, if a transparent member is provided, it is ejected forward from the transparent member). With the above-described configuration, the mixed light formed by matching the light distribution of the yellow converted light L2 and the blue transmitted light L1 (mixed light subjected to “light distribution matching”) is irradiated forward from the illumination light emitting unit 29. White light of the same color tone is realized with respect to the illumination angle. FIG. 2 is a diagram illustrating the concept of light distribution matching between the yellow converted light L2 and the blue transmitted light L1.

なお、反射部25を形成する部位はホルダ20の貫通孔側に限られず、例えば透明部材21や波長変換部材23の側方側に形成しても良い。
ここで、前記“配光整合”とは、互いに広がりの異なる複数の光について、それらの配光を近づけることを意味している。この配光整合においては、それら複数の光が混合された光において実効的な色ムラが発生しないレベルまで配光を近付けることが好ましい。
In addition, the site | part which forms the reflection part 25 is not restricted to the through-hole side of the holder 20, For example, you may form in the side of the transparent member 21 or the wavelength conversion member 23.
Here, the “light distribution matching” means that the light distributions of a plurality of lights having different spreads are brought close to each other. In this light distribution matching, it is preferable that the light distribution is brought close to a level at which effective color unevenness does not occur in the light in which the plurality of lights are mixed.

以下、本一実施形態に係る照明装置による一連の作用について詳細に説明する。
第1光源10−1が点灯されると、第1光源光である青色光(波長450nm付近の光)が当該第1光源10−1から射出され、集光レンズ(不図示)を介して第1導光部材11−1に高効率に入射される。その後、青色光は、細径長尺の第1導光部材11−1内部を高効率で導光されて光カプラ13に入射される。
Hereinafter, a series of operations by the lighting apparatus according to the present embodiment will be described in detail.
When the first light source 10-1 is turned on, blue light (light having a wavelength of around 450 nm), which is the first light source light, is emitted from the first light source 10-1, and is transmitted through a condenser lens (not shown). 1 is incident on the light guide member 11-1 with high efficiency. Thereafter, the blue light is guided through the first light guide member 11-1 having a long and narrow diameter with high efficiency and is incident on the optical coupler 13.

そして、第1導光部材11−1及び第2導光部材11−2から光カプラ13に入射した光は、当該光カプラ13によって高効率に混合されて第3導光部材11−3に入射される。青色光は光カプラを経由して第3導光部材11−3に入射して導光され、第3導光部材11−3の光射出端から先端ユニットの光源光入射部28に射出される。   Then, the light incident on the optical coupler 13 from the first light guide member 11-1 and the second light guide member 11-2 is mixed with high efficiency by the optical coupler 13 and enters the third light guide member 11-3. Is done. The blue light enters the third light guide member 11-3 through the optical coupler and is guided, and is emitted from the light emitting end of the third light guide member 11-3 to the light source light incident portion 28 of the tip unit. .

この第3導光部材11−3から先端ユニットの光源光入射部28に入射した青色光は、平行光に近い配光で透明部材21に入射され、続いて波長変換部材23にほぼ全光量が入射される。この波長変換部材23に入射した青色光の一部は黄色変換光L2に変換され、当該波長変換部材23から360°等方的に射出される。この黄色変換光L2は、波長変換部材23の側方及び後方に設置されている反射部25によって前方に反射される。   The blue light incident on the light source light incident portion 28 of the tip unit from the third light guide member 11-3 is incident on the transparent member 21 with a light distribution close to parallel light, and then the wavelength conversion member 23 has almost all the light quantity. Incident. Part of the blue light incident on the wavelength conversion member 23 is converted into yellow converted light L2 and emitted from the wavelength conversion member 23 isotropically at 360 °. The yellow converted light L <b> 2 is reflected forward by the reflecting portion 25 installed on the side and rear of the wavelength conversion member 23.

他方、波長変換部材23によって励起されなかった青色光は、当該波長変換部材23を透過し、青色透過光L1が波長変換部材から前方に射出される。すなわち、黄色変換光L2と青色透過光L1とが、波長変換部材23から前方に射出する。   On the other hand, the blue light that has not been excited by the wavelength conversion member 23 passes through the wavelength conversion member 23, and the blue transmitted light L1 is emitted forward from the wavelength conversion member. That is, the yellow converted light L <b> 2 and the blue transmitted light L <b> 1 are emitted forward from the wavelength conversion member 23.

ここで、波長変換部材から射出された波長変換光(黄色変換光L2)と光源光(青色透過光L1)とは配光が著しく異なる光であるが、上述した拡散部材24に係る構成によって、青色透過光L1の大部分が選択的に配光拡大され、かつ、波長変換部材23から等方的に射出された黄色変換光L2は反射部25に係る構成によって前方に反射される共に配光が縮小されて照明光射出部29から射出され、配光が整合された青色透過光L1と黄色変換光L2との混合光が、どの照明角度に対しても同じ色調の白色光として照明光射出部29から前方に照射される。   Here, the wavelength converted light (yellow converted light L2) emitted from the wavelength converting member and the light source light (blue transmitted light L1) are light that is significantly different in light distribution, but by the configuration related to the diffusing member 24 described above, Most of the blue transmitted light L1 is selectively distributed and expanded, and the yellow converted light L2 emitted isotropically from the wavelength conversion member 23 is reflected forward by the configuration related to the reflecting section 25 and is distributed. Is emitted from the illumination light emitting unit 29, and the mixed light of the blue transmitted light L1 and the yellow converted light L2, whose light distribution is matched, is emitted as white light having the same color tone at any illumination angle. Irradiated forward from the portion 29.

一方、第2光源10−2を点灯すると、第2光源光である紫色光(波長415nm付近)が第2導光部材11−2に射出され、第1光源10−1と同様の光路で波長変換部材23に入射される。ここで、光路とは、光源光が先端ユニット2内で主に進行して拡散部材24に直接照射されるまでに通過する空間であり、図1において符号Vが付されている空間である。   On the other hand, when the second light source 10-2 is turned on, violet light (wavelength of about 415 nm), which is the second light source light, is emitted to the second light guide member 11-2 and has a wavelength in the same optical path as the first light source 10-1. The light enters the conversion member 23. Here, the optical path is a space through which the light source light travels mainly in the tip unit 2 until it directly irradiates the diffusing member 24, and is a space denoted by a symbol V in FIG.

上述したように第2光源光である紫色光は波長変換部材23によって励起されない為、ほぼ全ての紫色光が波長変換されずに当該波長変換部材23を透過して拡散部材24に入射する。
ここで、拡散部材24によって、青色光に対する拡散度合いと、紫色光に対する拡散度合いとが略一致され、青色透過光L1及び紫色透過光の配光が、黄色変換光L2の配光と略一致される。
As described above, since the violet light that is the second light source light is not excited by the wavelength conversion member 23, almost all of the violet light passes through the wavelength conversion member 23 without being wavelength-converted and enters the diffusion member 24.
Here, the diffusion degree of the blue light and the diffusion degree of the violet light are substantially matched by the diffusion member 24, and the light distribution of the blue transmitted light L1 and the purple transmitted light is substantially matched with the light distribution of the yellow converted light L2. The

そして、第1光源10−1を点灯させたときの第1光源光(青色光)と黄色変換光L2との混合光(白色光)と、第2光源10−2を点灯させたときの第2光源光(紫色光)とが、互いに配光が一致される。
すなわち、均一な切替可能な2種類の照明光(白色照明光及び紫色照明光)が同じ配光となり、両照明光を用いた観察における観察可能エリア、及び、観察画面内明るさ分布やコントラストが、両観察モードにおいて一致する。
Then, the mixed light (white light) of the first light source light (blue light) and the yellow converted light L2 when the first light source 10-1 is turned on, and the first light when the second light source 10-2 is turned on. The light distribution of the two light source lights (purple light) coincides with each other.
That is, two types of uniformly switchable illumination light (white illumination light and purple illumination light) have the same light distribution, and the observation area in observation using both illumination lights, the brightness distribution and contrast in the observation screen, and so on. , The two observation modes agree.

以上説明したように、本一実施形態によれば、良好な混色及び色むらの低減を実現すると共に、所定の明るさを維持し且つ広範な配光を実現した照明装置を提供することができる。具体的には、本一実施形態に係る照明装置は、例えば下記の効果を奏する。
配光拡大部としての拡散部材24は、光源光の光路上に配置されている為、複数種類の光源光を選択的に拡散させることができ、所定の明るさを維持したまま、白色照明時の白色構成色(青色光および黄色光)それぞれの配光を互いに一致させて白色照明光の色むらが低減される。また、白色観察時の白色光の配光と、特殊光照明時の特殊光の配光とが互いに一致する為、両光を用いた観察モードにおける両者の観察可能エリアが一致し、観察画面内の明るさ分布やコントラストも一致する。
As described above, according to the present embodiment, it is possible to provide an illuminating device that achieves good color mixing and reduction in color unevenness, maintains predetermined brightness, and realizes wide light distribution. . Specifically, the lighting device according to the present embodiment has the following effects, for example.
Since the diffusing member 24 as the light distribution expanding portion is arranged on the optical path of the light source light, it is possible to selectively diffuse a plurality of types of light source light and maintain white light while maintaining a predetermined brightness. The respective white light distribution colors (blue light and yellow light) are made to coincide with each other to reduce the color unevenness of the white illumination light. Also, since the white light distribution during white observation and the special light distribution during special light illumination match each other, the observable areas of both in the observation mode using both lights match, The brightness distribution and contrast of the same.

拡散部材24が光軸周辺のみに設置されている為、当該拡散部材24は、光源光の中で光軸周辺を透過する、光軸にほぼ平行な光を選択的に拡散させるので、もともと配光角の広い波長変換光を必要以上に拡散させず、過度な拡散による光のロス(前方に向かっていた光が側方や後方に拡散されることにより、反射部25、透明部材21、第3導光部材11−3等により吸収されてしまうこと)が最小限に抑えられる。   Since the diffusing member 24 is installed only around the optical axis, the diffusing member 24 selectively diffuses light in the light source light that passes through the optical axis and is substantially parallel to the optical axis. Loss of light due to excessive diffusion without diffusing wavelength-converted light with a wide angle of light more than necessary (the light that has been directed forward is diffused sideways or rearward, thereby reflecting part 25, transparent member 21, 3) is absorbed by the light guide member 11-3 and the like.

拡散部材24が波長変換部材23の前方に設置されているため、光源光入射部28との距離が離れており、後方に散乱された光が第3導光部材11−3に入射してロスしてしまうことを防止でき、このことが所定の明るさを維持することに寄与する。
拡散部材24が光源光の描くビームスポットと同径以下の小径で設置されているため、光軸周辺を主に透過する光源光を選択的に拡散させることで、光源光のみを選択的に配光拡大でき、もともと配光角の広い波長変換光を必要以上に拡散させず、過度な拡散による光のロスを最低限に抑えることができる。
Since the diffusing member 24 is installed in front of the wavelength converting member 23, the distance from the light source light incident portion 28 is large, and the light scattered backward is incident on the third light guide member 11-3 and lost. This contributes to maintaining a predetermined brightness.
Since the diffusing member 24 is installed with a small diameter equal to or smaller than the beam spot drawn by the light source light, only the light source light is selectively distributed by selectively diffusing the light source light mainly transmitted around the optical axis. The light can be enlarged, and the wavelength-converted light having a wide light distribution angle is not diffused more than necessary, and light loss due to excessive diffusion can be minimized.

上述した光カプラによって、波長変換部材23や拡散部材24に照射する光源光の射出点が一致される為、照明配光の一致に加え、照明位置に関しても一致が図られ、色むらの低減や良好な混色の実現が更に促進される。
第1光源10−1及び第2光源10−2を何れもレーザ光源として構成することができる為、明るい光源光を効率良く先端ユニット2まで導光させることができる(所定の明るさを実現した照明装置を提供することができる)。このようにレーザ光によって効率よく先端ユニットまでエネルギーを伝達し、先端ユニット2による処理で照明光を得る(光を拡散させる)構成は、良好な効率と省消費電力の実現に寄与する。
Since the emission point of the light source light irradiating the wavelength conversion member 23 and the diffusing member 24 is matched by the optical coupler described above, the illumination position is matched in addition to the matching of the illumination light distribution, and color unevenness is reduced. Realization of good color mixing is further promoted.
Since both the first light source 10-1 and the second light source 10-2 can be configured as laser light sources, bright light source light can be efficiently guided to the tip unit 2 (a predetermined brightness has been realized). Lighting device can be provided). The configuration in which energy is efficiently transmitted to the tip unit by the laser light and the illumination light is obtained by the processing by the tip unit 2 (light is diffused) contributes to the realization of good efficiency and power saving.

テーパ形状に形成された反射部25が、先端ユニット2の波長変換部材23の側方及び後方で、かつ、2つの光源光の光路外に設置されている。これにより、波長変換部材23の後方に、光軸に垂直な反射部を形成した場合と比較して、波長変換部材23から後方に射出された光が、配光角を狭められつつ前方に反射される。従って、広い配光を有する波長変換光L2を、狭い配光の光源光L1の配光に近づけることができ、さらに照明光射出部29に存在する空気との屈折率界面を透過する割合が増え、より多くの光を照明光として利用できる。つまり、より明るい照明装置が実現する。   The reflection part 25 formed in the taper shape is installed on the side and rear of the wavelength conversion member 23 of the tip unit 2 and outside the optical path of the two light source lights. Thereby, compared with the case where the reflection part perpendicular | vertical to an optical axis is formed in the back of the wavelength conversion member 23, the light inject | emitted from the wavelength conversion member 23 is reflected ahead, narrowing a light distribution angle. Is done. Therefore, the wavelength-converted light L2 having a wide light distribution can be brought close to the light distribution of the light source light L1 having a narrow light distribution, and the ratio of transmitting through the refractive index interface with air existing in the illumination light emitting unit 29 is increased. More light can be used as illumination light. That is, a brighter illumination device is realized.

拡散部材24として光吸収率が低く高屈折率の粒子を用い、かつ、当該拡散部材24は任意に濃度や厚さを設定することが可能に構成されている為、照明光をロスすることなく高効率に配光を拡大させることができる。また、白色光における色むらが低減され、かつ、複数の観察モードにおける観察エリア、明るさ、コントラストが一致する。   As the diffusion member 24, particles having a low light absorption rate and a high refractive index are used, and the diffusion member 24 is configured such that the concentration and thickness can be arbitrarily set, so that the illumination light is not lost. Light distribution can be expanded with high efficiency. In addition, color unevenness in white light is reduced, and observation areas, brightness, and contrast in a plurality of observation modes match.

以上、一実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で変形/応用が可能なことは勿論である。以下、上述した一実施形態の変形例について説明する。
《第1変形例》
以下、一実施形態の第1変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。
The present invention has been described based on one embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that modifications / applications are possible within the scope of the gist of the present invention. Hereinafter, a modified example of the above-described embodiment will be described.
<< First Modification >>
Hereinafter, the lighting device according to the first modification of the embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation.

図3は、本第1変形例に係る照明装置の先端ユニット2の一構成例を示す図である。本第1変形例では、ホルダ20におけるテーパ形状の貫通孔を、円錐形状ではなく、ドーム形状(例えば放物面形状)として形成する。詳細には、ホルダ20における貫通孔を、黄色変換光L2を光軸に平行な平行光に近い配光にするような放物面形状に形成することが好ましい。   FIG. 3 is a diagram illustrating a configuration example of the tip unit 2 of the lighting device according to the first modification. In the first modification, the tapered through hole in the holder 20 is formed not in a conical shape but in a dome shape (for example, a paraboloid shape). In detail, it is preferable to form the through-hole in the holder 20 in a paraboloid shape so that the yellow converted light L2 has a light distribution close to parallel light parallel to the optical axis.

このように構成することで、光源光も平行光に近い光とすることができる為、第3導光部材11−3の射出部径が小さい場合、光軸と波長変換部材23の後方側の面とが交差する一点付近に集中して光が照射される。このように構成することで、波長変換部材23から後方に射出される黄色変換光L2が当該一点からの点光源になり、反射光を再び平行光に近い配光に近付けることが容易となる。   By configuring in this way, the light source light can also be light close to parallel light. Therefore, when the diameter of the emission portion of the third light guide member 11-3 is small, the optical axis and the rear side of the wavelength conversion member 23 Light is concentrated in the vicinity of one point where the surface intersects. With this configuration, the yellow converted light L2 emitted backward from the wavelength conversion member 23 becomes a point light source from the one point, and it becomes easy to bring the reflected light close to the light distribution close to parallel light again.

本第1変形例は、波長変換部材23より前方に等方的に射出された黄色変換光L2と、ホルダ20の放物面形状の貫通孔の内壁前面に形成された反射部25により反射された黄色変換光L2との混合光の配光が、平行光に近い青色透過光L1が拡散部材24によって拡散された拡散光の配光に類似している場合に特に有効である。   The first modified example is reflected by the yellow converted light L2 emitted isotropically forward from the wavelength converting member 23 and the reflecting portion 25 formed on the front surface of the inner wall of the parabolic through hole of the holder 20. The light distribution of the mixed light with the yellow converted light L2 is particularly effective when the blue transmitted light L1 close to the parallel light is similar to the light distribution of the diffused light diffused by the diffusing member 24.

以上説明したように、本第1変形例によれば、上述の一実施形態に係る照明装置と同様の効果を奏する上に、反射光を再び平行光に近い配光に近付けることが容易な照明装置を提供することができる。
《第2変形例》
以下、一実施形態の第2変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。
As described above, according to the first modification, the same effect as that of the illumination device according to the above-described embodiment can be obtained, and the reflected light can be easily brought close to the light distribution close to parallel light again. An apparatus can be provided.
<< Second Modification >>
Hereinafter, the lighting device according to the second modification of the embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation.

図4は、本第2変形例に係る照明装置の先端ユニット2の一構成例を示す図である。本第2変形例では、拡散部材24をホルダ20内部に設けるのでなく、ホルダ20とは別体でホルダ20の前方側に設ける。
より詳細には、例えば長手方向中央近傍に拡散部材24を備えた略円柱状ガラス31をホルダ20に対するカバーガラスとして設置する。
FIG. 4 is a diagram illustrating a configuration example of the tip unit 2 of the illumination device according to the second modification. In the second modification, the diffusion member 24 is not provided inside the holder 20 but is provided separately from the holder 20 and on the front side of the holder 20.
More specifically, for example, a substantially cylindrical glass 31 provided with a diffusion member 24 near the center in the longitudinal direction is installed as a cover glass for the holder 20.

以上説明したように、本第2変形例によれば、上述の一実施形態に係る照明装置と同様の効果を奏する上に、ホルダ20とは別体として拡散部材24を作製することができ、歩留まり軽減を期待することができる照明装置を提供することができる。
《第3変形例》
以下、一実施形態の第3変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。
As described above, according to the second modification, in addition to achieving the same effect as the lighting device according to the above-described embodiment, the diffusion member 24 can be manufactured as a separate body from the holder 20, It is possible to provide a lighting device that can be expected to reduce yield.
<< Third Modification >>
Hereinafter, the lighting device according to the third modification of the embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation.

図5は、本第3変形例に係る照明装置の先端ユニット2の一構成例を示す図である。本第3変形例では、拡散部材24を設ける代わりに(散乱粒子を設ける代わりに)、波長変換部材23を照明光射出部29まで設け、当該照明光射出部29の空気界面に係る部位に、微小凹凸形状を形成した拡散部位24−1を設ける。この拡散部位24−1に入射した光は、拡散されて射出される。詳細には、照明光射出部29のうち例えば光源光が照射される部位のみに、当該光源光を拡散射出させるような微小凹凸形状を形成しても良い。   FIG. 5 is a diagram illustrating a configuration example of the tip unit 2 of the illumination device according to the third modification. In the third modified example, instead of providing the diffusing member 24 (instead of providing the scattering particles), the wavelength conversion member 23 is provided up to the illumination light emitting unit 29, and the portion related to the air interface of the illumination light emitting unit 29 is A diffusion region 24-1 having a minute uneven shape is provided. The light that has entered the diffusion portion 24-1 is diffused and emitted. Specifically, for example, only a portion of the illumination light emitting unit 29 that is irradiated with the light source light may be formed with a minute uneven shape that diffuses and emits the light source light.

なお、図5に示すように微小凹凸形状を形成する代わりに、図6に示すように当該照明光射出部29の空気界面に係る部位にレンズ形状の拡散部位24−2を形成しても良い。図6は、本第3変形例に係る照明装置の先端ユニット2の一構成例を示す図である。   Instead of forming the minute uneven shape as shown in FIG. 5, a lens-shaped diffusion part 24-2 may be formed at a part related to the air interface of the illumination light emitting part 29 as shown in FIG. . FIG. 6 is a diagram illustrating a configuration example of the tip unit 2 of the illumination device according to the third modification.

以上説明したように、本第3変形例によれば、上述の一実施形態に係る照明装置と同様の効果を奏する上に、拡散粒子を備える拡散部材を設ける構造よりも、屈折率界面に垂直に照射する光量をより少なくすることができ、結果としてより多くの光を効率的に前方に射出させることができる証明装置を提供することができる。
《第4変形例》
以下、一実施形態の第4変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。図7は、本第4変形例に係る照明装置の先端ユニット2の一構成例を示す図である。
As described above, according to the third modification example, the same effect as that of the lighting device according to the above-described embodiment can be obtained, and in addition to the structure in which the diffusing member including the diffusing particles is provided, it is perpendicular to the refractive index interface. As a result, it is possible to provide a proving device that can emit more light efficiently forward.
<< 4th modification >>
Hereinafter, a lighting device according to a fourth modification of an embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation. FIG. 7 is a diagram illustrating a configuration example of the tip unit 2 of the illumination device according to the fourth modification.

本第4変形例では、拡散部材24を設ける代わりに(散乱粒子を設ける代わりに)、波長変換部材23を照明光射出部29まで設け、且つ、後述する“選択的に光源光を拡散させる手段”を設ける。
すなわち、図7に示すように、例えば長手方向中央近傍に、拡散部材24を備えた略円柱状ガラス31を、ホルダ20に対するカバーガラスとして(ホルダ20とは別体で)ホルダ20の前方側に設ける。
In the fourth modified example, instead of providing the diffusing member 24 (instead of providing the scattering particles), the wavelength converting member 23 is provided up to the illumination light emitting unit 29, and “means for selectively diffusing the light source light, which will be described later”. ".
That is, as shown in FIG. 7, for example, in the vicinity of the center in the longitudinal direction, a substantially cylindrical glass 31 provided with a diffusion member 24 is used as a cover glass for the holder 20 (separate from the holder 20) on the front side of the holder 20. Provide.

さらに、この略円柱状ガラス31のうち波長変換部材23の前方における光軸近傍のみに、可視光を反射する反射部41を形成する。
以上説明したように、本第4変形例によれば、上述の一実施形態に係る照明装置と同様の効果を奏する上に、光源光のみが選択的に後方側に反射され、波長変換部材23によって黄色変換光L2が拡散されて(配光角が拡大されて)前方側から射出される照明装置を提供することができる。
《第5変形例》
以下、一実施形態の第5変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。
Furthermore, the reflection part 41 which reflects visible light is formed only in the vicinity of the optical axis in front of the wavelength conversion member 23 in the substantially cylindrical glass 31.
As described above, according to the fourth modification example, the same effect as that of the illumination device according to the above-described embodiment is obtained, and only the light source light is selectively reflected to the rear side, and the wavelength conversion member 23 is obtained. Thus, it is possible to provide a lighting device in which the yellow converted light L2 is diffused (the light distribution angle is expanded) and emitted from the front side.
<< 5th modification >>
Hereinafter, a lighting device according to a fifth modification of the embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation.

図8は、本第5変形例に係る照明装置の先端ユニット2の一構成例を示す図である。
本第5変形例においては、拡散粒子の径、屈折率、及び分散樹脂の屈折率等を調整し、光源光である紫色光や青色光のみが優先的選択的に拡散されるように、拡散部材24−3を設ける。
FIG. 8 is a diagram illustrating a configuration example of the tip unit 2 of the lighting device according to the fifth modification.
In the fifth modification, the diffusion particle diameter, the refractive index, the refractive index of the dispersion resin, etc. are adjusted so that only the violet light or blue light, which is the light source light, is preferentially diffused. A member 24-3 is provided.

具体的には、例えばμmオーダーからサブミクロンオーダーまで小さい拡散粒子を利用して拡散部材24−3を構成する場合、当該拡散部材24−3による拡散ではレイリー散乱原理に基づく散乱が優先される為、散乱度に波長依存性が生じる。このことを利用し、拡散粒子の径、屈折率、及び分散樹脂の屈折率を調整し、光源光である紫色光や青色光のみを優先的選択的に拡散されるように、拡散部材24−3を構成する。   Specifically, for example, when the diffusion member 24-3 is configured using small diffusion particles from the μm order to the submicron order, scattering based on the Rayleigh scattering principle is given priority in diffusion by the diffusion member 24-3. The wavelength dependence of the scattering degree occurs. Utilizing this fact, the diffusion member 24-adjusts the diameter, refractive index, and refractive index of the dispersion resin of the diffusing particles, and preferentially diffuses only violet light and blue light as the light source light. 3 is configured.

なお、このように拡散部材24−3を構成する場合、拡散部材24−3を設ける位置を、光源光が照射される位置に限定する必要がない。従って、図8に示すように、照明光射出部29全域に亘って(波長変換部材23の前方側全面に亘って)、拡散部材24−3を設けることができる。   In addition, when comprising the diffusing member 24-3 in this way, it is not necessary to limit the position where the diffusing member 24-3 is provided to the position where the light source light is irradiated. Therefore, as shown in FIG. 8, the diffusing member 24-3 can be provided over the entire illumination light emitting portion 29 (over the entire front side of the wavelength conversion member 23).

以上説明したように、本第5変形例によれば、上述の一実施形態に係る照明装置と同様の効果を奏する上に、拡散部材24−3の拡散度波長依存性によって光源光のみが優先的選択的に配光拡大され且つ黄色波長変換光はあまり配光拡大されない明るい照明光を実現した照明装置を提供することができる。
《第6変形例》
以下、一実施形態の第6変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。
As described above, according to the fifth modification, in addition to the same effect as the illumination device according to the above-described embodiment, only the light source light has priority due to the diffusion wavelength dependency of the diffusion member 24-3. It is possible to provide an illuminating device that realizes bright illumination light that is selectively selectively expanded in light distribution and yellow wavelength converted light is not significantly expanded in light distribution.
<< Sixth Modification >>
Hereinafter, an illuminating device according to a sixth modification of one embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation.

図9は、本第6変形例に係る照明装置の先端ユニット2の一構成例を示す図である。本第6変形例では、濃度勾配を導入した(拡散度に勾配を備えさせた)複数の拡散部材24−4,24−5を設けることで、2種の光源光を均一な配光射出とする。
例えば、光源光である紫色光のビームスポット径が、光源光である青色光のビームスポット径よりも狭い場合、狭いビームスポットで照射された紫色光についてはより大きい拡散度で拡散されるべきである。
FIG. 9 is a diagram illustrating a configuration example of the tip unit 2 of the illumination device according to the sixth modification. In the sixth modified example, by providing a plurality of diffusion members 24-4 and 24-5 with a concentration gradient introduced (with a gradient in the diffusivity), two types of light source light can be emitted uniformly. To do.
For example, if the beam spot diameter of the violet light that is the light source light is narrower than the beam spot diameter of the blue light that is the light source light, the violet light irradiated with the narrow beam spot should be diffused with a larger diffusivity. is there.

従って、本第6変形例では、紫色光のビームスポット径上または当該ビームスポット径よりも小さいエリアには、紫色光が効率良く配光拡大がなされる濃度(紫色光に適した配光拡大度)の拡散部材24−4を設置する。
同様に、青色光のビームスポット径に対応するエリアには、拡散部材24−4よりも配光拡大度の小さい拡散部材24−5を設置する。換言すれば、紫色光のビームスポット径上の拡散部材24−4よりも、青色光のビームスポット径上の拡散部材24−5の方が、拡散粒子の分散濃度が低くなるように、拡散部材24−4,24−5を設置する。
Therefore, in the sixth modified example, the density at which the violet light efficiently expands the distribution of light in the area on the beam spot diameter of the violet light or smaller than the beam spot diameter (light distribution expansion degree suitable for violet light). ) Diffusion member 24-4.
Similarly, in the area corresponding to the beam spot diameter of blue light, a diffusing member 24-5 having a light distribution magnification smaller than that of the diffusing member 24-4 is installed. In other words, the diffusion member 24-5 on the blue light beam spot diameter has a lower dispersion concentration of the diffusion particles than the diffusion member 24-4 on the purple light beam spot diameter. 24-4 and 24-5 are installed.

以上説明したように、本第7変形例によれば、上述の一実施形態に係る照明装置と同様の効果を奏する上に、拡散部材に照射される複数の光源光のビームスポット径がそれぞれ互いに異なる場合(例えば、第3導光部材11−3のNAに波長依存性がある場合、透明部材及び拡散部材の屈折率に波長依存性がある場合、拡散部材の拡散度に波長依存性がある場合等)であっても、それら複数種の光源光を均一な配光射出とすることができる照明装置を提供することができる。
《第7変形例》
以下、一実施形態の第7変形例に係る照明装置について説明する。なお、説明の重複を避ける為、一実施形態との相違点を説明する。
As described above, according to the seventh modified example, the same effects as those of the lighting device according to the above-described embodiment can be obtained, and the beam spot diameters of the plurality of light source lights applied to the diffusing member can be mutually different. When different (for example, when the NA of the third light guide member 11-3 has wavelength dependency, when the refractive index of the transparent member and the diffusion member has wavelength dependency, the diffusion degree of the diffusion member has wavelength dependency) Even in such a case, it is possible to provide a lighting device capable of uniform light emission of the plurality of types of light source light.
<< Seventh Modification >>
Hereinafter, an illuminating device according to a seventh modification of the embodiment will be described. Note that differences from the embodiment will be described in order to avoid duplication of explanation.

図10,11,12は、本第7変形例に係る照明装置の先端ユニット2の一構成例を示す図である。本第7変形例では、上述した第6変形例と同様に、濃度勾配を導入した(拡散度に勾配を備えさせた)拡散部材を設ける。
すなわち、図10に示す例では、テーパ状に形成した拡散部材24−6を設けている。図11に示す例では、ドーム状に形成した拡散部材24−7を設けている。図12に示す例では、階段状に形成した拡散部材24−8を設けている。
10, 11, and 12 are diagrams showing a configuration example of the tip unit 2 of the lighting device according to the seventh modification. In the seventh modified example, similarly to the sixth modified example described above, a diffusion member in which a concentration gradient is introduced (a gradient is provided in the diffusivity) is provided.
That is, in the example shown in FIG. 10, the diffusion member 24-6 formed in a tapered shape is provided. In the example shown in FIG. 11, a diffusing member 24-7 formed in a dome shape is provided. In the example shown in FIG. 12, a diffusion member 24-8 formed in a step shape is provided.

図10乃至図12に示すように物理的構造によって拡散度調整を行った拡散部材24−6乃至拡散部材24−8を設けることで、第6変形例のように互いに異なる拡散度を有する複数種類の拡散部材を用いることなく、比較的簡易に所望の拡散度分布を面内で実現することが可能となる。   As shown in FIGS. 10 to 12, by providing diffusion members 24-6 to 24-8 whose diffusivity is adjusted by a physical structure, a plurality of types having different diffusivities as in the sixth modification example are provided. Therefore, a desired diffusivity distribution can be realized in a relatively simple manner without using any diffusion member.

以上説明したように、本第7変形例によれば、第6変形例に係る照明装置と同様の効果を奏する照明装置を提供することができる。
《第8変形例》
以下、一実施形態の第8変形例に係る照明装置について説明する。なお、説明の重複を避ける為、第6変形例との相違点を説明する。
As described above, according to the seventh modification, it is possible to provide an illumination device that has the same effect as the illumination device according to the sixth modification.
<< Eighth Modification >>
Hereinafter, a lighting apparatus according to an eighth modification of the embodiment will be described. In order to avoid duplication of explanation, differences from the sixth modification will be described.

図13は、本第8変形例に係る照明装置の先端ユニット2の一構成例を示す図である。本第8変形例では、波長変換部材を複数設ける。すなわち、例えば同図に示すように第1波長変換部材23−1及び第2波長変換部材23−2を設置する。
前記第1波長変換部材23−1は、第1光源10−1の光を効率良く吸収することで第1波長変換光を射出する。第2波長変換部材23−2は、第2光源10−2からの光を効率良く吸収することで第2波長変換光を射出する。第2波長変換部材23−2は、第1光源10−1の光をほとんど吸収発光しない。
FIG. 13 is a diagram illustrating a configuration example of the tip unit 2 of the illumination device according to the eighth modification. In the eighth modification, a plurality of wavelength conversion members are provided. That is, for example, as shown in the figure, the first wavelength conversion member 23-1 and the second wavelength conversion member 23-2 are installed.
The first wavelength conversion member 23-1 emits the first wavelength converted light by efficiently absorbing the light of the first light source 10-1. The second wavelength conversion member 23-2 emits the second wavelength converted light by efficiently absorbing the light from the second light source 10-2. The second wavelength conversion member 23-2 hardly absorbs and emits light from the first light source 10-1.

このように構成することによって、第1光源10−1を発光させると、第1光源透過光と、第1波長変換光と、が照明光射出部29より射出される。第2光源10−2を発光させると、第2光源透過光と、第2波長変換光と、第1波長変換部材23−1の材料種によっては第2光源光の励起による第1波長変換光が同様に射出される。   With this configuration, when the first light source 10-1 is caused to emit light, the first light source transmitted light and the first wavelength converted light are emitted from the illumination light emitting unit 29. When the second light source 10-2 is caused to emit light, the second light source transmitted light, the second wavelength converted light, and the first wavelength converted light by excitation of the second light source light depending on the material type of the first wavelength converting member 23-1. Is injected in the same way.

ここで、第1光源透過光、第1波長変換光、第2光源透過光、第2波長変換光、及び第2光源光の励起による第1波長変換光の全ての配光が略同一であることが好ましい。
従って、本第8変形例では、上述した構成によって第1光源透過光及び第2光源透過光のうち配光の狭い方の光を選択的に配光拡大させ、且つ、配光の広い方の透過光についても直進光をある程度拡散させる。よって、上述した第6変形例と同様、濃度勾配を導入した(拡散度に勾配を備えさせた)拡散部材24−4,24−5によって配光を整合する。
Here, the first light source transmitted light, the first wavelength converted light, the second light source transmitted light, the second wavelength converted light, and all the light distributions of the first wavelength converted light by excitation of the second light source light are substantially the same. It is preferable.
Therefore, in the eighth modification, the light having the narrower light distribution out of the first light source transmitted light and the second light source transmitted light is selectively enlarged by the above-described configuration, and the wider light distribution is selected. As for the transmitted light, the straight light is diffused to some extent. Therefore, similarly to the above-described sixth modification, the light distribution is matched by the diffusion members 24-4 and 24-5 in which the concentration gradient is introduced (the diffusion degree is provided with the gradient).

以上説明したように、本第8変形例によれば、上述の第5変形例に係る照明装置と同様の効果を奏する上に、第1光源10−1の発光によって照明光射出部29より均一な白色が照明され、更に第2光源10−2の発光によって2色の照明光による特殊光観察が可能となる照明装置を提供することができる。   As described above, according to the eighth modification example, the same effect as that of the illumination device according to the fifth modification example described above is obtained, and the illumination light emission unit 29 is more uniform by the light emission of the first light source 10-1. It is possible to provide an illuminating device that can illuminate a special white color and can observe special light using illumination light of two colors by the light emitted from the second light source 10-2.

さらに、上述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件の適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。   Further, the above-described embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be extracted as an invention.

1…光源部、 2…先端ユニット、 10−1…第1光源、 10−2…第2光源、 11−1…第1導光部材、 11−2…第2導光部材、 11−3…第3導光部材、 13…光カプラ、 20…ホルダ、 21…透明部材、 23…波長変換部材、 24,24−3,24−4,24−5,24−6,24−7,24−8…拡散部材、 24−1,24−2…拡散部位、 25…反射部、 28…光源光入射部、 29…照明光射出部、 31…略円柱状ガラス、 40…波長変換部材、 90…照射対象物。     DESCRIPTION OF SYMBOLS 1 ... Light source part, 2 ... Tip unit, 10-1 ... 1st light source, 10-2 ... 2nd light source, 11-1 ... 1st light guide member, 11-2 ... 2nd light guide member, 11-3 ... 3rd light guide member, 13 ... Optical coupler, 20 ... Holder, 21 ... Transparent member, 23 ... Wavelength conversion member, 24, 24-3, 24-4, 24-5, 24-6, 24-7, 24- DESCRIPTION OF SYMBOLS 8 ... Diffusing member, 24-1, 24-2 ... Diffusion part, 25 ... Reflection part, 28 ... Light source light incident part, 29 ... Illumination light emission part, 31 ... Substantially cylindrical glass, 40 ... Wavelength conversion member, 90 ... Irradiation object.

Claims (15)

互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記配光整合部は、少なくとも光軸周辺に配置され、通過する光源光の配光を拡大させる拡散粒子を有し、
前記光源光が最も強い強度で射出される方向を前方と定義し、その逆方向を後方と定義した場合、
前記配光整合部は、前記波長変換部の前方に設置されている、
ことを特徴とする照明装置。
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Equipped with,
The light distribution matching unit is disposed at least around the optical axis, and has diffusion particles that expand the light distribution of the light source light passing therethrough,
When the direction in which the light source light is emitted with the strongest intensity is defined as the front and the opposite direction is defined as the rear,
The light distribution matching unit is installed in front of the wavelength conversion unit,
A lighting device characterized by that.
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記配光整合部は、前記光源光のうち少なくとも光軸周辺を通過する光を選択的に拡散させて配光を拡大させる
ことを特徴とする照明装置。
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Comprising
The light distribution matching unit includes an illumination device, characterized in that to enlarge the selectively diffused by the light distribution of the light passing through the at least around the optical axis of the source light.
前記複数の光源は、LEDもしくはレーザ光源を含む
ことを特徴とする請求項1または2に記載の照明装置。
Wherein the plurality of light sources, the lighting device according to claim 1 or 2, characterized in that it comprises an LED or laser light source.
前記複数の光源から発された光源光を合波して共通の導波路に入射させる光源光合波部を含む
ことを特徴とする請求項1乃至の何れか一項に記載の照明装置。
Lighting device according to any one of claims 1 to 3, characterized in that it comprises a light source optical multiplexing unit to be incident on a common waveguide multiplexes the light source light emitted from the plurality of light sources.
前記複数の光源から発された光源光を合波して共通の導波路に入射させる光源光合波部を含み、
前記共通の導波路の射出端から射出される光源光が最も強い強度で射出される方向を前方と定義し、その逆方向を後方と定義した場合、
前記配光整合部は、前記波長変換部の前方に設置されている
ことを特徴とする請求項に記載の照明装置。
Including a light source light combining unit for combining light sources emitted from the plurality of light sources to enter a common waveguide;
When the direction in which the light source light emitted from the emission end of the common waveguide is emitted with the strongest intensity is defined as the front, and the opposite direction is defined as the rear,
The lighting device according to claim 2 , wherein the light distribution matching unit is installed in front of the wavelength conversion unit.
前記配光整合部は、
前記光軸に垂直な面へ投影した場合に円形状を呈し、且つ、前記共通の導波路の射出端から射出された光源光によって前記配光整合部に照射されるビームスポット径と同径以下の径である
ことを特徴とする請求項4または5に記載の照明装置。
The light distribution matching unit is:
When projected onto a plane perpendicular to the optical axis, it has a circular shape, and is equal to or smaller than the beam spot diameter irradiated to the light distribution matching portion by the light source light emitted from the emission end of the common waveguide. The illumination device according to claim 4 , wherein the illumination device has a diameter of
前記配光整合部は、屈折率の互いに異なる材料群が混在して成る内部拡散部材から成る
ことを特徴とする請求項1乃至の何れか一項に記載の照明装置。
The illumination device according to any one of claims 1 to 6 , wherein the light distribution matching unit is formed of an internal diffusion member formed by mixing a group of materials having different refractive indexes.
前記配光整合部は、前記光軸方向について高低差を有するドーム形状、階段状形状、またはテーパ形状を呈する
ことを特徴とする請求項7に記載の照明装置。
The lighting device according to claim 7, wherein the light distribution matching unit has a dome shape, a stepped shape, or a tapered shape having a height difference in the optical axis direction.
前記配光整合部は、前記光軸上の濃度が最も高く、且つ、前記光軸に垂直な方向に略同心円状に濃度が漸次低下していく濃度分布で設けられている
ことを特徴とする請求項7に記載の照明装置。
The light distribution matching unit is provided with a concentration distribution in which the concentration on the optical axis is the highest and the concentration gradually decreases in a concentric manner in a direction perpendicular to the optical axis. The lighting device according to claim 7.
前記配光整合部は、当該照明装置の照明光射出端における空気界面上に形成された凹部及び/または凸部である
ことを特徴とする請求項6に記載の照明装置。
The lighting device according to claim 6, wherein the light distribution matching unit is a concave portion and / or a convex portion formed on an air interface at an illumination light emitting end of the lighting device.
前記共通の導波路の射出端から射出される光源光が最も強い強度で射出される方向を前方と定義し、その逆方向を後方と定義した場合、
前記配光整合部は、前記波長変換部の前方に設置され、且つ、前記光源光を正反射または散乱反射する反射部を含む
ことを特徴とする請求項6に記載の照明装置。
When the direction in which the light source light emitted from the emission end of the common waveguide is emitted with the strongest intensity is defined as the front, and the opposite direction is defined as the rear,
The illumination device according to claim 6, wherein the light distribution matching unit includes a reflection unit that is installed in front of the wavelength conversion unit and that regularly or scatter-reflects the light source light.
前記配光整合部の前記拡散粒子による拡散の度合いである光拡散度は、入射光の波長に依存性を有しており、
前記配光整合部は、前記光源光及び前記波長変換光のうち配光が狭い方の光を選択的に強く拡散させる
ことを特徴とする請求項1に記載の照明装置。
The light diffusivity, which is the degree of diffusion by the diffusing particles in the light distribution matching portion, has a dependency on the wavelength of incident light,
The lighting device according to claim 1, wherein the light distribution matching unit selectively and strongly diffuses light having a narrower light distribution among the light source light and the wavelength converted light.
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
前記複数の光源は、2個の光源であり、
前記波長変換部は、互いに異なる波長変換を行う2種類の波長変換部材から成り、
前記2種類の波長変換部材のうち少なくとも一方の波長変換部材は、前記2個の光源のうち何れか一方の光源が発した光源光を波長変換しない
ことを特徴とする照明装置。
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Comprising
The plurality of light sources are two light sources,
The wavelength conversion unit is composed of two types of wavelength conversion members that perform different wavelength conversions,
The two least one wavelength conversion member of the wavelength conversion member, the illuminating device, characterized in that not the source light emitted by the one light source of the two light sources and a wavelength conversion.
互いに波長の異なる光源光を発する複数の光源と、
前記複数の光源から発された各々の光源光の中心波長に対する吸収率が異なり、且つ、特定波長の入射光により励起され、当該入射光を波長変換した波長変換光を発光する波長変換部と、
前記光源光の配光と、前記波長変換光の配光と、を整合して射出する配光整合部と、
を具備し、
光軸に沿って光が進行する方向を前方と定義し、その逆方向を後方と定義し、前記光軸に対して垂直な方向を側方と定義した場合に、
前記光源光の光路外であって、且つ、前記波長変換部の側方または後方には、前記光軸に対して所定の傾きを有する面状に、光を反射する反射部が設けられており、
前記反射部は、前記波長変換光の配光を選択的に狭めることで、前記光源光の配光と整合させる
ことを特徴とする照明装置。
A plurality of light sources emitting light sources having different wavelengths from each other;
A wavelength conversion unit that emits wavelength-converted light that has different absorptance with respect to the center wavelength of each light source light emitted from the plurality of light sources and is excited by incident light of a specific wavelength, and wavelength-converted the incident light;
A light distribution matching unit that matches and emits the light distribution of the light source light and the light distribution of the wavelength-converted light; and
Comprising
When the direction in which light travels along the optical axis is defined as the front, the opposite direction is defined as the rear, and the direction perpendicular to the optical axis is defined as the side,
A reflection part that reflects light is provided outside the optical path of the light source light and in a planar shape having a predetermined inclination with respect to the optical axis at the side or rear of the wavelength conversion part. ,
The reflective portion, by narrowing selectively the light distribution of the wavelength converted light, the illumination device characterized by aligning the light distribution of the light source light.
前記反射部は、パラボラ形状を呈するように設けられている
ことを特徴とする請求項14に記載の照明装置。
The lighting device according to claim 14, wherein the reflecting portion is provided so as to exhibit a parabolic shape.
JP2013022084A 2013-02-07 2013-02-07 Lighting device Expired - Fee Related JP6103966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022084A JP6103966B2 (en) 2013-02-07 2013-02-07 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022084A JP6103966B2 (en) 2013-02-07 2013-02-07 Lighting device

Publications (2)

Publication Number Publication Date
JP2014154313A JP2014154313A (en) 2014-08-25
JP6103966B2 true JP6103966B2 (en) 2017-03-29

Family

ID=51576001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022084A Expired - Fee Related JP6103966B2 (en) 2013-02-07 2013-02-07 Lighting device

Country Status (1)

Country Link
JP (1) JP6103966B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811176B2 (en) * 2014-12-02 2021-01-13 ルミレッズ ホールディング ベーフェー Laser-based lighting systems and methods
EP3309451A4 (en) * 2015-06-10 2019-02-20 Olympus Corporation Lighting device
US10330267B2 (en) 2015-09-03 2019-06-25 Sharp Kabushiki Kaisha Light emission body and illumination device
WO2017043121A1 (en) * 2015-09-10 2017-03-16 シャープ株式会社 Light-emitting device and illumination device
WO2017195303A1 (en) * 2016-05-11 2017-11-16 オリンパス株式会社 Illuminating device
JP7053984B2 (en) * 2017-11-30 2022-04-13 日亜化学工業株式会社 Manufacturing method of optical parts and light emitting device, as well as optical parts and light emitting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081957A (en) * 2008-09-29 2010-04-15 Olympus Corp Light source device
JP2010199027A (en) * 2009-02-27 2010-09-09 Olympus Corp Light source device
JP2011114086A (en) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Light emitting device
JP5478232B2 (en) * 2009-12-11 2014-04-23 オリンパス株式会社 Lighting device
JP4991001B2 (en) * 2009-12-28 2012-08-01 シャープ株式会社 Lighting device
JP2011171376A (en) * 2010-02-16 2011-09-01 Olympus Corp Light-emitting device
JP5598974B2 (en) * 2010-09-01 2014-10-01 シャープ株式会社 Lighting device
JP5508339B2 (en) * 2011-05-25 2014-05-28 富士フイルム株式会社 Endoscopic light projecting unit
JP2012248401A (en) * 2011-05-27 2012-12-13 Olympus Corp Light source device
JP5851140B2 (en) * 2011-07-28 2016-02-03 オリンパス株式会社 Light source device

Also Published As

Publication number Publication date
JP2014154313A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6103966B2 (en) Lighting device
JP4460966B2 (en) Unshielded elliptical illumination module that generates an illumination beam with a cut-off and a headlight comprising such a module
US20120212931A1 (en) Light emitting device
JP5259791B2 (en) Light emitting device, vehicle headlamp, lighting device, and vehicle
US20140369065A1 (en) Illumination device and vehicle headlight
US20130010492A1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
WO2013094590A1 (en) Light emitting device, vehicle light fitting and vehicle
JP5888015B2 (en) Vehicle lamp and vehicle
JP5306799B2 (en) Optical element and light emitting device
JP5945856B2 (en) Vehicle lamp unit
JP6650447B2 (en) Lighting equipment
JP2015005439A (en) Vehicle headlamp and optical fiber bundle used in vehicle headlamp
JP2012169375A (en) Light source device, lighting device, and vehicle head lamp
US9423103B2 (en) Light source device for tubular observation device
JP6146734B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5812283B2 (en) LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP2012248401A (en) Light source device
JP2021536114A (en) Lighting equipment and vehicle lights
JP6300080B2 (en) Light emitting device and vehicle lamp
JP2017195061A (en) Luminaire and vehicular headlight
JP5851119B2 (en) Light source device
JP5895331B2 (en) LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP5896212B2 (en) LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP7287491B2 (en) Light source device
CN109323208A (en) Light emitting device, lamps and lanterns and the vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R151 Written notification of patent or utility model registration

Ref document number: 6103966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees