JP6103749B2 - FeCo-based magnetostrictive alloy and method for producing the same - Google Patents

FeCo-based magnetostrictive alloy and method for producing the same Download PDF

Info

Publication number
JP6103749B2
JP6103749B2 JP2012232906A JP2012232906A JP6103749B2 JP 6103749 B2 JP6103749 B2 JP 6103749B2 JP 2012232906 A JP2012232906 A JP 2012232906A JP 2012232906 A JP2012232906 A JP 2012232906A JP 6103749 B2 JP6103749 B2 JP 6103749B2
Authority
JP
Japan
Prior art keywords
plane
alloy
magnetostrictive alloy
feco
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012232906A
Other languages
Japanese (ja)
Other versions
JP2014084484A (en
Inventor
泰文 古屋
泰文 古屋
禎子 岡崎
禎子 岡崎
久保田 健
健 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2012232906A priority Critical patent/JP6103749B2/en
Publication of JP2014084484A publication Critical patent/JP2014084484A/en
Application granted granted Critical
Publication of JP6103749B2 publication Critical patent/JP6103749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、外部からの磁力付与に伴って自ら伸縮する機能を有するFeCo系磁歪合金及びその製造方法に関する。   The present invention relates to an FeCo-based magnetostrictive alloy having a function of expanding and contracting itself with the application of magnetic force from the outside, and a method for producing the same.

一般に、外部磁場により磁性を帯びる強磁性体は、外部の磁場付与に伴って、結晶内部に存在する自発磁区のS極とN極の反転、回転等に伴って伸縮現象が起きる。これは磁歪現象と呼ばれ(非特許文献1参照)、磁性体周囲に設置したコイルに交流電流を流して交番磁界を作ると、能動素子としての応用ができる。   In general, in a ferromagnetic material that is magnetized by an external magnetic field, an expansion and contraction phenomenon occurs as the S and N poles of the spontaneous magnetic domains existing in the crystal are reversed and rotated with the application of the external magnetic field. This is called a magnetostriction phenomenon (see Non-Patent Document 1). When an alternating current is made to flow through a coil installed around a magnetic material to create an alternating magnetic field, it can be applied as an active element.

この磁歪効果は、セラミックスの圧電効果や電歪効果に比べて、立ち上がり時のエネルギー密度が大きく、また、合金ゆえに材料強度もあり、また、バルク化が容易であるので、大型海底探査、魚群探知用ソナー、地下資源探索用超音波振動子への応用が研究され、さらに最近では、逆磁歪効果を利用した振動発電への応用も研究されている。   This magnetostrictive effect has a larger energy density at the start-up than the piezoelectric and electrostrictive effects of ceramics, and also has material strength due to the alloy, and it is easy to bulkize, so large seafloor exploration and fish school detection Application to ultrasonic sonar and ultrasonic transducer for searching underground resources has been studied, and recently, application to vibration power generation using inverse magnetostriction effect has also been studied.

また、磁歪合金での逆磁歪効果を利用した力センサへの利用も可能である。例えば次世代で要求される人間の手のようにソフトで高精細な作業機能を備えた知能ロボットや低侵襲型医療機器でのマニュピレータやロボットハンド部では、ハンドに力覚、触覚を備えなければならないため、指先だけでなく、指の関節部においても高精度に回転角度やねじり力を計測し、制御することが要求される。   It can also be used for a force sensor utilizing the inverse magnetostriction effect in a magnetostrictive alloy. For example, in intelligent robots with soft, high-definition work functions, such as human hands required in the next generation, and manipulators and robot hand units in minimally invasive medical devices, the hands must have force and touch. Therefore, it is required to measure and control the rotation angle and torsional force with high accuracy not only at the fingertips but also at the joints of the fingers.

しかし、現時点でのモバイル機器や知能ロボット等に組み込み可能な小型軽量、構造が簡単で、しかも高感度なトルクセンサは市販されておらず、次世代ロボットへの適用を視野に入れた小型、高感度トルクセンサの開発が求められている。このトルクセンサシステムでは、回転シャフトへの応力負荷時に磁歪合金表面から発生する漏れ磁束が、負荷力に比例する原理を用いているため、センサ感度が磁歪合金の磁気特性に大きく依存しており、優れた材料特性を有する磁歪合金の作製、材料選定が重要である。   However, there is no commercially available torque sensor with a small size, light weight, simple structure, and high sensitivity that can be incorporated into mobile devices and intelligent robots at the present time. Development of a sensitive torque sensor is required. In this torque sensor system, the leakage magnetic flux generated from the magnetostrictive alloy surface when stress is applied to the rotating shaft uses the principle proportional to the load force, so the sensor sensitivity depends greatly on the magnetic properties of the magnetostrictive alloy, Production and material selection of magnetostrictive alloys with excellent material properties are important.

磁歪効果を利用した振動素子(アクチュエータ)やセンサ素子の主な特徴としては、以下の点が挙げられる。
(1) 金属素材であるので、励磁コイルに設置する際の複雑な形状に加工が容易である。
(2) 材料が金属で強度が高く、堅牢で、長時間にわたる繰り返し振動変形でも破損し難く、耐久性がある。
(3) 非接触ワイヤレスで外部磁場コイルにより駆動可能である。それゆえに、流体内や生体内等のアクチュエータ素子などを、ワイヤレスで遠隔的に設置することができる自由度がある。
(4) 共振振動での高出力発電特性が得られる。
(5) 低出力インピーダンスで、圧電体よりも低電圧で駆動可能であり、母構造側との振動付与、制御でのインピーダンスマッチングが取り易く、大型アクチュエータ設計が容易となる。
(6) 磁歪合金はキュリー温度が高い温度域にあり、使用温度範囲を広く取ることができる(−100℃〜500℃)。
(7) コイルを使用するため、アクチュエータ容積が大型化するのは避けられない。
(8) 高周波振動子で発熱防止用の冷却装置が必要になる。
(9) 電磁ノイズ漏れ遮断用の容器(ハウジング)が必要となる。
The main features of the vibration element (actuator) and sensor element using the magnetostrictive effect are as follows.
(1) Since it is a metal material, it can be easily processed into a complicated shape when it is installed on the exciting coil.
(2) The material is metal, high in strength, strong, durable against repeated vibration deformation over a long period of time, and durable.
(3) It can be driven by an external magnetic field coil in a non-contact wireless manner. Therefore, there is a degree of freedom in which actuator elements and the like in the fluid and the living body can be remotely installed remotely.
(4) High power generation characteristics with resonance vibration can be obtained.
(5) With low output impedance, it can be driven with a voltage lower than that of the piezoelectric body, and it is easy to apply impedance matching with the mother structure side and control impedance matching, and a large actuator can be designed easily.
(6) The magnetostrictive alloy is in a temperature range where the Curie temperature is high, and a wide use temperature range can be taken (-100 ° C to 500 ° C).
(7) Since the coil is used, it is inevitable that the actuator volume increases.
(8) A cooling device for preventing heat generation with a high-frequency vibrator is required.
(9) A container (housing) for blocking electromagnetic noise leakage is required.

実際に、磁歪材料の振動素子(アクチュエータ)やセンサ素子としての工業的応用では、これまでは、超磁歪材料(Tb−Dy−Fe合金)(非特許文献1参照)に、一軸方向の圧縮力を付与しながら、振動素子やセンサデバイスとして利用を行うものがあるが、この材料は、希土類元素を含み、延性が低く、また、製品が高コストであるため、使用環境が制限される。   Actually, in an industrial application as a vibration element (actuator) or sensor element of a magnetostrictive material, until now, a compressive force in a uniaxial direction has been applied to a giant magnetostrictive material (Tb-Dy-Fe alloy) (see Non-Patent Document 1). However, this material contains rare earth elements, has low ductility, and has a high product cost, so that the use environment is limited.

また、最近になって、加工性を有する単結晶及び方向性多結晶FeGa合金(Galfenol)(非特許文献2参照)を用いて、磁歪振動素子の実用化(非特許文献3参照)が推進されてきている。   Recently, practical use of a magnetostrictive vibration element (see Non-Patent Document 3) has been promoted using a single crystal and directional polycrystalline FeGa alloy (Galfenol) (see Non-Patent Document 2) having workability. It is coming.

これらのFeGa合金では、最大300ppmの磁歪を利用しているが、その場合は、単結晶や方向性を有する粗大結晶組織に限られるので、材質は柔らかく、縦弾性係数(ヤング率)は50〜60GPaとなり、機械的強度が低下することは避けられない。しかしながら、現状のFeGa合金でも、まだ、磁歪エネルギー密度が低く、且つ、単結晶作製には多大なコストがかかる。そのため、磁歪サンプルの量産性、振動素子の加工成形コスト面での汎用の産業機器の様々な使用条件分野に合致した適用レベルには至っていない。   These FeGa alloys utilize magnetostriction of 300 ppm at the maximum, but in that case, since the material is limited to a single crystal or a coarse crystal structure having directionality, the material is soft and the longitudinal elastic modulus (Young's modulus) is 50 to 50. It becomes 60 GPa, and it is inevitable that the mechanical strength is lowered. However, even with current FeGa alloys, the magnetostrictive energy density is still low, and the production of single crystals is very expensive. For this reason, it has not reached an application level that matches various fields of use of general-purpose industrial equipment in terms of mass productivity of magnetostrictive samples and processing and molding costs of vibration elements.

また、従来では、一般的な鉄基磁歪材料で、強磁性体であるCo(コバルト)元素からなり、さらに高剛性と高い飽和磁束密度を有するFeCo元系合金をベースにした合金に着目した例が開示されている(非特許文献4〜7)。   Also, heretofore, an example of focusing on an alloy based on an FeCo-based alloy that is a general iron-based magnetostrictive material, made of a ferromagnetic Co (cobalt) element, and having high rigidity and high saturation magnetic flux density. Are disclosed (Non-Patent Documents 4 to 7).

非特許文献4は、縦弾性係数(ヤング率)のCo依存性を調べたものであり、これによると、Co組成が30原子%付近で最大値(約210GPa)を示し、その後、Co=50原子%付近までは最大値を維持して、その後、Coの濃度が増加するにつれてヤング率が徐々に減少し、Co=85原子%付近で最小値(約182GPa)となっている。   Non-Patent Document 4 investigates the Co dependence of the longitudinal elastic modulus (Young's modulus). According to this, the Co composition shows a maximum value (about 210 GPa) around 30 atomic%, and then Co = 50. The maximum value is maintained up to the vicinity of atomic%, and then the Young's modulus gradually decreases as the Co concentration increases, and reaches a minimum value (about 182 GPa) near Co = 85 atomic%.

非特許文献5には、合金素材を真空中で誘導電気炉により溶解し、さらに金属の型を用いて鋳造した後、真空炉中で1050℃、1.5時間の熱処理を行う例が記載されている。例えばCo=70原子%のFeCo合金では、磁界1000Oeで磁歪量90ppmが得られている。   Non-Patent Document 5 describes an example in which an alloy material is melted in an induction electric furnace in a vacuum, cast using a metal mold, and then heat-treated in a vacuum furnace at 1050 ° C. for 1.5 hours. ing. For example, in a Co = 70 atomic% FeCo alloy, a magnetostriction amount of 90 ppm is obtained at a magnetic field of 1000 Oe.

非特許文献6には、合金素材をアルゴン雰囲気中でアーク溶解し、さらに、1000℃×3日間の熱処理を行い、さらに、アルゴン雰囲気中で、試料毎に300℃、350℃等の各温度で熱処理を行う例が記載されている。例えばCo=70原子%のFeCo合金では、840℃の熱処理を行った場合、|縦ひずみ−横ひずみ|で150ppmが得られている。但し、非単結晶の磁歪の定義は、λ=(2/3)×(縦歪―横歪)であるので、磁歪量は100ppmと推定される。   Non-Patent Document 6 discloses that an alloy material is arc-melted in an argon atmosphere, further heat-treated at 1000 ° C. for 3 days, and further in each atmosphere such as 300 ° C. and 350 ° C. for each sample in an argon atmosphere. An example of performing heat treatment is described. For example, in the case of Co = 70 atomic% FeCo alloy, 150 ppm is obtained by | vertical strain−transverse strain | when heat treatment at 840 ° C. is performed. However, since the definition of magnetostriction of non-single crystal is λ = (2/3) × (longitudinal strain−lateral strain), the magnetostriction amount is estimated to be 100 ppm.

非特許文献7は、片持ち梁状の基体上にFeCo合金をスパッタにて成膜した後、800℃×1時間の熱処理を行い、水で急冷した例が記載されている。例えばCo=66原子%のFeCo合金薄膜では、磁歪量260±10ppmが得られている。   Non-Patent Document 7 describes an example in which an FeCo alloy film is formed on a cantilever base by sputtering, then heat-treated at 800 ° C. for 1 hour, and rapidly cooled with water. For example, a magnetostrictive amount of 260 ± 10 ppm is obtained in an FeCo alloy thin film of Co = 66 atomic%.

A.E.クラーク及び江田 弘著、「超磁歪材料」、日刊工業新聞社(1995)、pp.94―100, p143およびp170.A. E. Clark and Hiroshi Eda, “Super Magnetostrictive Materials”, Nikkan Kogyo Shimbun (1995), pp. 94-100, p143 and p170. A.E.Clark,J.B.Restorff,M.Wun−Fogle,T.A.Lagrasso and D.L.Schlagel、IEEE Trans.Magn.、36、2000、239−244A. E. Clark, J. et al. B. Restorff, M.M. Wun-Fogle, T.W. A. Lagrasso and D.M. L. Schlagel, IEEE Trans. Magn. 36, 2000, 239-244 T.Ueno and S.Yamada、Study on Micro−energy Harvesting Device Using Iron−Gallium Alloy、Journal of the Magnetics Society of Japan、vol.35、No.2、2011、88−91T. T. Ueno and S.M. Yamada, Study on Micro-energy Harvesting Device Using Iron-Gallium Alloy, Journal of the Magnetics Society of Japan, vol. 35, no. 2, 2011, 88-91 Mikio Yamamoto、Young’s Modulus of Elasticity and Its Change with Magnetization in Iron−Cobalt Alloys、Sci. Rep.、Tohoku Imp.Univ.、30、1941、768Miki Yamamoto, Young's Modulus of Elasticity and Its Change with Magnetization in Iron-Cobalt Alloys, Sci. Rep. Tohoku Imp. Univ. , 30, 1941, 768 Yosio Masiyama、On the Magnetostriction of Iron−Cobalt Alloys.、The 294th report of the Research Institute for Iron, Steel and Other Metals.Yosio Masayama, On the Magnetostriction of Iron-Cobalt Alloys. The 294th report of the Research Institute for Iron, Steel and Other Metals. Liyang Dai and Manfred Wuttig,Magnetostriction in Co−rich bcc CoFe Solid Solutions,Submitted for publication in Scripta Mat.October 9,2007Liang Dai and Manfred Wuttig, Magnetostriction in Co-rich bcc CoFe Solid Solutions, Submitted for publication in Script Mat. October 9, 2007 Dwight Hunter,Will Osborn,Ke Wang,Nataliya Kazantseva,Jason Hattrick−Simpers,Richard Suchoski,Ryota Takahashi,Marcus L.Young,Apurva Mehta,Leonid A.Bendersky,Sam E.Lofland,Manfred Wuttig & Ichiro Takeuchi、Giant magnetostriction in annealed Co1−xFex thin−films、nature COMMUNICATIONS,ARTICLE;Received 25 May 2011/Accepted 4 Oct 2011/Published 1 Nov 2011Dight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apura Mehta, Leonid A. et al. Bendersky, Sam E. et al. Loland, Manfred Wuttig & Ichiro Takeuchi, Giant magnetostriction in annealed Co1-xFex thin-films, natural COMMUNICATIONS, ATICLE p21

FeCo合金は、FeGa合金よりもヤング率が高いため、機械的強度が高く、磁歪振動素子の実用化に有望である。しかし、FeCo合金に関する上述した非特許文献5及び6では、磁歪を高める上で有効な配向度の規定について何ら記載がなく、磁歪を向上させるには限界がある。なお、非特許文献7は、磁歪が高いが、片持ち梁状の基体上に形成された薄膜によるFeCo合金であるため、バルク合金に適用することができないという問題がある。もちろん、非特許文献7には、配向度についての記載もない。   Since FeCo alloy has a higher Young's modulus than FeGa alloy, it has high mechanical strength and is promising for practical use of magnetostrictive vibration elements. However, in the above-mentioned Non-Patent Documents 5 and 6 relating to the FeCo alloy, there is no description about the definition of the degree of orientation effective in increasing the magnetostriction, and there is a limit to improving the magnetostriction. Although Non-Patent Document 7 has a high magnetostriction, there is a problem that it cannot be applied to a bulk alloy because it is a FeCo alloy using a thin film formed on a cantilever base. Of course, Non-Patent Document 7 does not describe the degree of orientation.

本発明はこのような課題を考慮してなされたものであり、配向度を規定することで、バルク合金の磁歪量を高めることができ、磁歪振動素子等の実用化を促進させることができるFeCo系磁歪合金を提供することを目的とする。ここで、バルク合金とは、塊状、柱状、立方体状、直方体状、薄板状等を有し、薄膜を含まない。   The present invention has been made in consideration of such problems. By defining the degree of orientation, the amount of magnetostriction of the bulk alloy can be increased, and the practical application of magnetostrictive vibration elements and the like can be promoted. An object of the present invention is to provide a magnetostrictive alloy. Here, the bulk alloy has a lump shape, a column shape, a cubic shape, a rectangular parallelepiped shape, a thin plate shape, and the like, and does not include a thin film.

また、本発明の他の目的は、配向度を19%以上に高めることで、磁歪量も大きくすることができ、磁歪振動素子等の実用化を促進させることができる優れた磁歪合金を容易に作製することができるFeCo系磁歪合金の製造方法を提供することにある。   Another object of the present invention is to increase the degree of orientation to 19% or more, thereby increasing the amount of magnetostriction, and easily producing an excellent magnetostrictive alloy that can promote the practical use of magnetostrictive vibration elements and the like. An object of the present invention is to provide a method of producing an FeCo magnetostrictive alloy that can be produced.

[1] 第1の本発明に係るFeCo系磁歪合金は、Fe(鉄)とCo(コバルト)とからなり、Coを50原子%〜70原子%含む体心立方構造を持つ磁歪合金であって、Cu(銅)のKα特性X線を用いたX線回折結果に基づく下記式(1)で表される(110)面の配向度(ロットゲーリングファクタ)が19%以上であり、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上であることを特徴とする。
配向度=(P−P0)/(1−P0) ……(1)
ここで、P=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211))}
0=ΣI0(110)/{ΣI0(110)+ΣI0(200)+ΣI0(211)}
であって、ΣI(110)、ΣI(200)及びΣI(211)は、(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示し、ΣI0(110)、ΣI0(200)及びΣI0(211)は、理想的な無配向の試料における(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示す。
[1] The FeCo magnetostrictive alloy according to the first aspect of the present invention is a magnetostrictive alloy composed of Fe (iron) and Co (cobalt) and having a body-centered cubic structure containing 50 atomic% to 70 atomic% of Co. The orientation degree (Lotgering factor) of the (110) plane represented by the following formula (1) based on the X-ray diffraction result using the Kα characteristic X-ray of Cu (copper) is 19% or more and is effective. The magnetostriction amount in a magnetic field H = 1000 Oe is 100 ppm or more.
Degree of orientation = (P−P 0 ) / (1−P 0 ) (1)
Here, P = ΣI (110) / {ΣI (110) + ΣI (200) + ΣI (211))}
P 0 = ΣI 0 (110) / {ΣI 0 (110) + ΣI 0 (200) + ΣI 0 (211)}
Where ΣI (110), ΣI (200) and ΣI (211) indicate the integrated intensities of diffraction intensities of the (110) plane, (200) plane and (211) plane, respectively, and ΣI 0 (110), ΣI 0 (200) and ΣI 0 (211) indicate the integrated intensities of diffraction intensities of the (110) plane, (200) plane, and (211) plane in an ideal non-oriented sample, respectively.

[2] 第1の本発明において、前記X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.5°以下であってもよい。 [2] In the first aspect of the present invention, the half width of the peak waveform of the (110) plane in the X-ray diffraction result may be 0.1 ° or more and 0.5 ° or less.

[3] さらに好ましくは、前記X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.3°以下である。 [3] More preferably, the half width of the peak waveform on the (110) plane in the X-ray diffraction result is 0.1 ° or more and 0.3 ° or less.

[4] 第1の本発明において、合金素材を溶解した後に、1500℃/min以上の冷却速度で冷却して構成してもよい。 [4] In the first aspect of the present invention, the alloy material may be melted and then cooled at a cooling rate of 1500 ° C./min or more.

[5] この場合、さらに、融点の1/4の温度±40℃で24時間以上の熱処理を行って構成してもよい。 [5] In this case, the heat treatment may be further performed at a temperature ± 40 ° C. of ¼ of the melting point for 24 hours or more.

[6] 第2の本発明に係るFeCo系磁歪合金の製造方法は、Fe(鉄)とCo(コバルト)とからなり、Coを50原子%〜70原子%含む磁歪合金の製造方法において、合金素材を溶解した後に、1500℃/min以上の冷却速度で冷却することで、Cu(銅)のKα特性X線を用いたX線回折結果に基づく下記式(1)で表される(110)面の配向度が19%以上であり、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上である磁歪合金を作製することを特徴とする。
配向度=(P−P0)/(1−P0) ……(1)
ここで、P=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211))}
0=ΣI0(110)/{ΣI0(110)+ΣI0(200)+ΣI0(211)}
であって、ΣI(110)、ΣI(200)及びΣI(211)は、(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示し、ΣI0(110)、ΣI0(200)及びΣI0(211)は、理想的な無配向の試料における(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示す。
[6] A method for producing an FeCo magnetostrictive alloy according to the second aspect of the present invention is a method for producing a magnetostrictive alloy comprising Fe (iron) and Co (cobalt) and containing 50 atomic% to 70 atomic% of Co. After melting the material, it is cooled at a cooling rate of 1500 ° C./min or more, and is represented by the following formula (1) based on the X-ray diffraction result using the Kα characteristic X-ray of Cu (copper) (110) A magnetostrictive alloy having a plane orientation degree of 19% or more and a magnetostriction amount in an effective magnetic field H = 1000 Oe of 100 ppm or more is manufactured.
Degree of orientation = (P−P 0 ) / (1−P 0 ) (1)
Here, P = ΣI (110) / {ΣI (110) + ΣI (200) + ΣI (211))}
P 0 = ΣI 0 (110) / {ΣI 0 (110) + ΣI 0 (200) + ΣI 0 (211)}
Where ΣI (110), ΣI (200) and ΣI (211) indicate the integrated intensities of diffraction intensities of the (110) plane, (200) plane and (211) plane, respectively, and ΣI 0 (110), ΣI 0 (200) and ΣI 0 (211) indicate the integrated intensities of diffraction intensities of the (110) plane, (200) plane, and (211) plane in an ideal non-oriented sample, respectively.

[7] この場合、作製される前記磁歪合金の前記X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.5°以下である。 [7] In this case, the full width at half maximum of the peak waveform of the (110) plane in the X-ray diffraction result of the magnetostrictive alloy to be manufactured is 0.1 ° to 0.5 °.

[8] 第2の本発明において、前記冷却後、前記磁歪合金の融点の1/4の温度±40℃で24時間以上の熱処理を行ってもよい。 [8] In the second aspect of the present invention, after the cooling, heat treatment may be performed for 24 hours or more at a temperature ± 40 ° C. that is ¼ of the melting point of the magnetostrictive alloy.

[9] この場合、作製される前記磁歪合金の前記X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.3°以下である。 [9] In this case, the full width at half maximum of the peak waveform of the (110) plane in the X-ray diffraction result of the magnetostrictive alloy to be produced is 0.1 ° or more and 0.3 ° or less.

以上説明したように、本発明に係るFeCo系磁歪合金によれば、配向度を規定することで、バルク合金の磁歪量を高めることができ、磁歪振動素子等の実用化を促進させることができる。   As described above, according to the FeCo magnetostrictive alloy according to the present invention, by defining the degree of orientation, the amount of magnetostriction of the bulk alloy can be increased, and the practical use of a magnetostrictive vibration element or the like can be promoted. .

また、本発明に係るFeCo系磁歪合金の製造方法によれば、合金素材を溶解した後、1500℃/min以上の冷却速度で急冷するようにしたので、配向度を19%以上に高めることができ、配向度の向上に応じて磁歪量も大きくすることができる。その結果、磁歪振動素子等の実用化を促進させることができる優れた磁歪合金を容易に作製することができる。   In addition, according to the method for producing an FeCo magnetostrictive alloy according to the present invention, the alloy material is melted and then rapidly cooled at a cooling rate of 1500 ° C./min or more, so that the degree of orientation can be increased to 19% or more. In addition, the amount of magnetostriction can be increased as the degree of orientation is improved. As a result, it is possible to easily produce an excellent magnetostrictive alloy that can promote the practical use of a magnetostrictive vibration element or the like.

第1の本実施の形態に係る製造方法(第1製造方法)を示す工程図である。It is process drawing which shows the manufacturing method (1st manufacturing method) which concerns on 1st this Embodiment. 図2Aは第1製造方法で作製した第1磁歪合金(Coの比率=50原子%)のX線回折結果を示すグラフであり、図2Bは図2Aの横軸を拡大して示すグラフである。FIG. 2A is a graph showing an X-ray diffraction result of a first magnetostrictive alloy (Co ratio = 50 atomic%) manufactured by the first manufacturing method, and FIG. 2B is a graph showing an enlarged horizontal axis of FIG. 2A. . 図3Aは第1製造方法で作製した第2磁歪合金(Coの比率=70原子%)のX線回折結果を示すグラフであり、図3Bは図3Aの横軸を拡大して示すグラフである。FIG. 3A is a graph showing an X-ray diffraction result of the second magnetostrictive alloy (Co ratio = 70 atomic%) manufactured by the first manufacturing method, and FIG. 3B is a graph showing the horizontal axis of FIG. 3A in an enlarged manner. . 第2の本実施の形態に係る製造方法(第2製造方法)を示す工程図である。It is process drawing which shows the manufacturing method (2nd manufacturing method) based on 2nd this Embodiment. 図5Aは第2製造方法で作製した第3磁歪合金(Coの比率=50原子%)のX線回折結果を示すグラフであり、図5Bは図5Aの横軸を拡大して示すグラフである。FIG. 5A is a graph showing an X-ray diffraction result of a third magnetostrictive alloy (Co ratio = 50 atomic%) manufactured by the second manufacturing method, and FIG. 5B is a graph showing an enlarged horizontal axis of FIG. 5A. . 図6Aは第2製造方法で作製した第4磁歪合金(Coの比率=70原子%)のX線回折結果を示すグラフであり、図6Bは図6Aの横軸を拡大して示すグラフである。FIG. 6A is a graph showing an X-ray diffraction result of the fourth magnetostrictive alloy (Co ratio = 70 atomic%) manufactured by the second manufacturing method, and FIG. 6B is a graph showing the horizontal axis of FIG. 6A in an enlarged manner. .

以下、本発明に係るFeCo系磁歪合金及びその製造方法の実施の形態例を図1〜図6Bを参照しながら説明する。なお、本明細書において数値範囲を示す「〜」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。   Embodiments of an FeCo magnetostrictive alloy and a method for producing the same according to the present invention will be described below with reference to FIGS. In the present specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.

最初に、第1の実施の形態に係るFeCo系磁歪合金の製造方法(以下、第1製造方法と記す)について図1〜図3Bを参照しながら説明する。   First, a method for manufacturing an FeCo magnetostrictive alloy according to the first embodiment (hereinafter referred to as a first manufacturing method) will be described with reference to FIGS.

この第1製造方法は、先ず、図1のステップS1において、Fe(鉄)とCo(コバルト)とを秤量して合金素材を作製する。この場合、Coを50原子%〜80原子%の範囲にする。   In the first manufacturing method, first, in step S1 of FIG. 1, Fe (iron) and Co (cobalt) are weighed to produce an alloy material. In this case, Co is in the range of 50 atomic% to 80 atomic%.

その後、ステップS2において、合金素材を溶解して母合金を作製する。この母合金の作製にあたっては、例えばプラズマアーク溶解装置を使用することができる。   Thereafter, in step S2, the alloy material is melted to produce a mother alloy. In producing this mother alloy, for example, a plasma arc melting apparatus can be used.

その後、ステップS3において、母合金を1000℃/min以上の冷却速度で冷却する。すなわち、急冷する。この急冷処理は、母合金を水冷されている銅ハース中で行うことができる。冷却速度は、好ましくは1500℃/min以上3000℃/min以下、より好ましくは1700℃/min以上2200℃/min以下である。   Thereafter, in step S3, the mother alloy is cooled at a cooling rate of 1000 ° C./min or more. That is, it cools rapidly. This rapid cooling treatment can be performed in a copper hearth where the mother alloy is water cooled. The cooling rate is preferably 1500 ° C./min to 3000 ° C./min, more preferably 1700 ° C./min to 2200 ° C./min.

その後、ステップS4において、母合金を切り出して、例えば縦×横×高さ=20mm×2mm×1mmの直方体(磁歪合金の製品モデルの一例)を作製する。   Thereafter, in step S4, the mother alloy is cut out to produce, for example, a rectangular parallelepiped (an example of a magnetostrictive alloy product model) of length × width × height = 20 mm × 2 mm × 1 mm.

この製品モデルを磁気特性評価用の試験片として使用して磁気特性を調べたところ、Cu(銅)のKα特性X線を用いたX線回折結果に基づく下記式(1)で表される(110)面の配向度(ロットゲーリングファクタ)が19%以上であり、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上であった。
配向度=(P−P0)/(1−P0) ……(1)
ここで、P=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211))}
0=ΣI0(110)/{ΣI0(110)+ΣI0(200)+ΣI0(211)}
であって、ΣI(110)、ΣI(200)及びΣI(211)は、(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示し、ΣI0(110)、ΣI0(200)及びΣI0(211)は、理想的な無配向の試料における(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示す。
When this product model was used as a test piece for evaluating magnetic properties and the magnetic properties were examined, it was expressed by the following formula (1) based on the X-ray diffraction result using the Kα characteristic X-ray of Cu (copper) ( 110) The orientation degree (Lotgering factor) of the plane was 19% or more, and the magnetostriction amount in the effective magnetic field H = 1000 Oe was 100 ppm or more.
Degree of orientation = (P−P 0 ) / (1−P 0 ) (1)
Here, P = ΣI (110) / {ΣI (110) + ΣI (200) + ΣI (211))}
P 0 = ΣI 0 (110) / {ΣI 0 (110) + ΣI 0 (200) + ΣI 0 (211)}
Where ΣI (110), ΣI (200) and ΣI (211) indicate the integrated intensities of diffraction intensities of the (110) plane, (200) plane and (211) plane, respectively, and ΣI 0 (110), ΣI 0 (200) and ΣI 0 (211) indicate the integrated intensities of diffraction intensities of the (110) plane, (200) plane, and (211) plane in an ideal non-oriented sample, respectively.

ここで、一例として、Coを50原子%含む実施の形態に係るFeCo系磁歪合金(以下、第1磁歪合金と記す)と、Coを70原子%含む実施の形態に係るFeCo系磁歪合金(以下、第2磁歪合金と記す)について説明する。   Here, as an example, an FeCo magnetostrictive alloy according to an embodiment containing 50 atomic% Co (hereinafter referred to as a first magnetostrictive alloy) and an FeCo magnetostrictive alloy according to an embodiment containing 70 atomic% Co (hereinafter referred to as “first magnetostrictive alloy”). Will be described as a second magnetostrictive alloy).

第1磁歪合金のX線回折結果を図2A及び図2Bに示し、第2磁歪合金のX線回折結果を図3A及び図3Bに示す。X線回折結果は、横軸に回折角2θ、縦軸に規格化回折強度をとって示すグラフで示した。なお、図2B及び図3Bは、図2A及び図3Aの横軸(回折角2θ)を拡大して示したものである。   2A and 2B show the X-ray diffraction results of the first magnetostrictive alloy, and FIGS. 3A and 3B show the X-ray diffraction results of the second magnetostrictive alloy. The X-ray diffraction results are shown in a graph showing the diffraction angle 2θ on the horizontal axis and the normalized diffraction intensity on the vertical axis. 2B and 3B are enlarged views of the horizontal axis (diffraction angle 2θ) of FIGS. 2A and 3A.

第1磁歪合金及び第2磁歪合金は共に、(110)面、(200)面及び(211)面でピーク波形が現れ、具体的には下記表1に示す結果であった。   In both the first magnetostrictive alloy and the second magnetostrictive alloy, peak waveforms appeared on the (110) plane, the (200) plane, and the (211) plane. Specifically, the results are shown in Table 1 below.

Figure 0006103749
Figure 0006103749

また、第1磁歪合金及び第2磁歪合金の(110)面における各ピーク波形の半値幅は、第1磁歪合金が0.38°、第2磁歪合金が0.40°であった。半値幅は、図2B及び図3Bに示すように、ピーク波形の高さhaの1/2の幅Waを示す。   Further, the half width of each peak waveform on the (110) plane of the first magnetostrictive alloy and the second magnetostrictive alloy was 0.38 ° for the first magnetostrictive alloy and 0.40 ° for the second magnetostrictive alloy. As shown in FIGS. 2B and 3B, the half-value width indicates a width Wa that is ½ of the height ha of the peak waveform.

そして、有効磁界H=1000Oeにおける第1磁歪合金の磁歪量は106ppmであり、第2磁歪合金の磁歪量は110ppmであった。   The magnetostriction amount of the first magnetostrictive alloy in the effective magnetic field H = 1000 Oe was 106 ppm, and the magnetostriction amount of the second magnetostrictive alloy was 110 ppm.

このように、本実施の形態に係るFeCo系磁歪合金は、(110)面の配向度が19%以上と高く(100%が上限)、しかも、有効磁界H=1000Oeにおける磁歪量が100ppm以上と大きい。   As described above, the FeCo magnetostrictive alloy according to the present embodiment has a (110) plane orientation degree as high as 19% or higher (100% is the upper limit), and the magnetostriction amount in an effective magnetic field H = 1000 Oe is 100 ppm or higher. large.

つまり、Fe(鉄)とCo(コバルト)とからなり、Coを50原子%〜80原子%含む磁歪合金であって、配向度を19%以上に規定することで、有効磁界H=1000Oeにおける磁歪量が100ppm以上という大きな磁歪量を発現できることがわかった。Fe及びCoは共に、強磁性体であり、従来の非磁性GaからなるFeGa系(Galfenol)よりも飽和磁束密度(Bs)及び透磁率(μ)が高く、ヤング率も最大で210GPaにも達するため、高強度と耐久性及び軟磁気特性の優れた磁歪合金となりうる。   In other words, it is a magnetostrictive alloy composed of Fe (iron) and Co (cobalt) and containing 50 atomic% to 80 atomic% of Co, and by defining the degree of orientation to 19% or more, the magnetostriction in the effective magnetic field H = 1000 Oe. It was found that a large magnetostriction amount of 100 ppm or more can be expressed. Both Fe and Co are ferromagnetic materials, and have a higher saturation magnetic flux density (Bs) and magnetic permeability (μ) than the conventional FeGa system (Galfenol) made of nonmagnetic Ga, and the Young's modulus reaches 210 GPa at the maximum. Therefore, it can be a magnetostrictive alloy having high strength, durability and soft magnetic properties.

しかも、非希土類系であるため、脆弱性はなく、超磁歪材料(Tb−Dy−Fe合金)よりも安価であり、Coは資源量も多く、量産化できる利点がある。   Moreover, since it is a non-rare earth system, it is not brittle, is cheaper than a giant magnetostrictive material (Tb-Dy-Fe alloy), and Co has an advantage that it has a large amount of resources and can be mass-produced.

従って、この磁歪合金を用いることで、磁歪振動素子等の実用化を促進させることができる。例えば大型海底探査、魚群探知用ソナー、地下資源探索用超音波振動子への応用や、逆磁歪効果を利用した振動発電への応用にも有利である。   Therefore, by using this magnetostrictive alloy, practical application of a magnetostrictive vibration element or the like can be promoted. For example, it is advantageous for application to large-scale seabed exploration, fish detection sonar, ultrasonic transducers for underground resource search, and vibration power generation using the inverse magnetostriction effect.

さらに、上述したように、ソフトで高精細な作業機能を備えた知能ロボットや低侵襲型医療機器でのマニュピレータやロボットハンド部等で使用されると想定されるトルクセンサシステムでは、回転シャフトへの応力負荷時に磁歪合金表面からの発生する漏れ磁束が、負荷力に比例する原理を用いているため、センサ感度が磁歪合金の磁気特性に大きく依存することになるが、本実施の形態に係るFeCo系磁歪合金は、上述のように優れた磁気特性及び材料特性を有するため、トルクセンサシステムの磁歪合金として好適となる。   Furthermore, as described above, in a torque sensor system assumed to be used in an intelligent robot having a soft and high-definition work function, a manipulator or a robot hand unit in a minimally invasive medical device, Since the magnetic flux leakage generated from the surface of the magnetostrictive alloy at the time of stress loading uses the principle proportional to the load force, the sensor sensitivity greatly depends on the magnetic characteristics of the magnetostrictive alloy. Since the magnetostrictive alloy has excellent magnetic properties and material properties as described above, it is suitable as a magnetostrictive alloy for a torque sensor system.

また、上述した第1製造方法によれば、合金素材を溶解した後、1500℃/min以上3000℃/min以下の冷却速度で冷却制御することにより、(110)面での配向度を19%以上に高めることができ、配向度の向上に応じて磁歪量も大きくすることができる。その結果、磁歪振動素子等の実用化を促進させることができる優れた磁歪合金を容易に作製することができる。   Further, according to the first manufacturing method described above, after the alloy material is melted, cooling control is performed at a cooling rate of 1500 ° C./min to 3000 ° C./min, whereby the degree of orientation on the (110) plane is 19%. The amount of magnetostriction can be increased as the degree of orientation is improved. As a result, it is possible to easily produce an excellent magnetostrictive alloy that can promote the practical use of a magnetostrictive vibration element or the like.

次に、第2の実施の形態に係るFeCo系磁歪合金の製造方法(以下、第2製造方法と記す)について図4〜図6Bを参照しながら説明する。   Next, a method of manufacturing an FeCo magnetostrictive alloy according to the second embodiment (hereinafter referred to as a second manufacturing method) will be described with reference to FIGS. 4 to 6B.

先ず、図4のステップS101〜ステップS104に示す工程は、上述した第1製造方法におけるステップS1〜ステップS4に示す工程とほぼ同じであるため、その重複説明を省略するが、ステップS101において、合金素材を作製し、ステップS102において、母合金を作製する。その後、ステップS103において、母合金を1500℃/min以上の冷却速度で急冷し、ステップS104において、母合金を切り出して、例えば縦×横×高さ=20mm×2mm×1mmの直方体(磁歪合金の製品モデルの一例)を作製する。   First, since the process shown in step S101 to step S104 in FIG. 4 is substantially the same as the process shown in step S1 to step S4 in the first manufacturing method described above, the duplicate description is omitted. A material is prepared, and a master alloy is prepared in step S102. Thereafter, in step S103, the mother alloy is rapidly cooled at a cooling rate of 1500 ° C./min or more, and in step S104, the mother alloy is cut out, for example, a rectangular parallelepiped (magnetostrictive alloy of length × width × height = 20 mm × 2 mm × 1 mm). An example of a product model is produced.

そして、次のステップS105において、製品モデルに対して、該製品モデルの融点の1/4の温度±40℃で24時間以上の熱処理を行う。   In the next step S105, the product model is subjected to heat treatment for 24 hours or more at a temperature ± 40 ° C. that is ¼ of the melting point of the product model.

この製品モデルを磁気特性評価用の試験片として使用して磁気特性を調べたところ、X線回折結果における(110)面、(200)面及び(211)面の積分強度をそれぞれI(110)、I(200)及びI(211)としたとき、上記式(1)で表される(110)面の配向度が19%以上であり、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上であった。   When this product model was used as a test piece for evaluating magnetic properties and the magnetic properties were examined, the integrated intensities of the (110) plane, (200) plane, and (211) plane in the X-ray diffraction results were I (110), respectively. , I (200) and I (211), the orientation degree of the (110) plane represented by the above formula (1) is 19% or more, and the magnetostriction amount in the effective magnetic field H = 1000 Oe is 100 ppm or more. Met.

ここで、一例として、Coを50原子%含む熱処理(ステップS105)後の実施の形態に係るFeCo系磁歪合金(以下、第3磁歪合金と記す)と、Coを70原子%含む熱処理後の実施の形態に係るFeCo系磁歪合金(以下、第4磁歪合金と記す)について説明する。   Here, as an example, the FeCo-based magnetostrictive alloy (hereinafter referred to as a third magnetostrictive alloy) according to the embodiment after heat treatment containing 50 atomic% Co (step S105), and the implementation after heat treatment containing 70 atomic% Co. An FeCo magnetostrictive alloy (hereinafter referred to as a fourth magnetostrictive alloy) according to the embodiment will be described.

第3磁歪合金のX線回折結果を図5A及び図5Bに示し、第4磁歪合金のX線回折結果を図6A及び図6Bに示す。なお、図5B及び図6Bは、図5A及び図6Aの横軸を拡大して示したものである。   The X-ray diffraction results of the third magnetostrictive alloy are shown in FIGS. 5A and 5B, and the X-ray diffraction results of the fourth magnetostrictive alloy are shown in FIGS. 6A and 6B. 5B and 6B are enlarged views of the horizontal axis of FIGS. 5A and 6A.

第3磁歪合金及び第4磁歪合金は共に、(110)面、(200)面及び(211)面でピーク波形が現れ、具体的には下記表2に示す結果であった。   In both the third magnetostrictive alloy and the fourth magnetostrictive alloy, peak waveforms appeared on the (110) plane, the (200) plane, and the (211) plane. Specifically, the results shown in Table 2 below were obtained.

Figure 0006103749
Figure 0006103749

また、第3磁歪合金及び第4磁歪合金の(110)面における各ピーク波形の半値幅は、第3磁歪合金が0.19°、第4磁歪合金が0.24°であった。半値幅は、図5B及び図6Bに示すように、ピーク波形の高さhaの1/2の幅Waを示す。第3磁歪合金及び第4磁歪合金は、上述した熱処理前の第1磁歪合金及び第2磁歪合金と比して半値幅が40%以上も狭くなっており、結晶性が向上していることがわかる。   The half width of each peak waveform on the (110) plane of the third and fourth magnetostrictive alloys was 0.19 ° for the third magnetostrictive alloy and 0.24 ° for the fourth magnetostrictive alloy. As shown in FIGS. 5B and 6B, the half-value width indicates a width Wa that is ½ of the height ha of the peak waveform. The third magnetostrictive alloy and the fourth magnetostrictive alloy have a half width of 40% or more narrower than the first magnetostrictive alloy and the second magnetostrictive alloy before the heat treatment described above, and the crystallinity is improved. Recognize.

また、有効磁界H=1000Oeにおける第3磁歪合金の磁歪量は100ppm、第4磁歪合金の磁歪量は102ppmであり、第1磁歪合金及び第2磁歪合金とほとんど変わらないことがわかった。   In addition, the magnetostriction amount of the third magnetostrictive alloy in the effective magnetic field H = 1000 Oe was 100 ppm, and the magnetostriction amount of the fourth magnetostrictive alloy was 102 ppm, which was found to be almost the same as the first magnetostrictive alloy and the second magnetostrictive alloy.

このことから、上述した熱処理を施すことで、(110)面の配向度を保ったまま、結晶性が向上した磁歪合金を得ることができ、磁場の変化に対して敏感に反応する振動素子を提供することが可能となる。すなわち、結晶性が向上することによるメリットは、結晶性と粒径(結晶子サイズ)効果で変わってくるが、この場合、格子歪の緩和(内部応力の緩和・均一化)に限定すると、磁束のピンニング(磁気モーメントの回転、磁壁の移動を邪魔する効果)が減少する。結晶性が不安定である場合と比べ、磁化過程がスムーズになるため、高透磁率化、つまり、低磁界で磁歪が立ち上がれるようになる。つまり、磁歪感受率が上昇するため、“磁場の変化に対して敏感”になったと言える。   From this, it is possible to obtain a magnetostrictive alloy with improved crystallinity while maintaining the degree of orientation of the (110) plane by performing the heat treatment described above, and to provide a vibration element that reacts sensitively to changes in the magnetic field. It becomes possible to provide. In other words, the merit of improving crystallinity varies depending on the crystallinity and grain size (crystallite size) effect. In this case, if limited to relaxation of lattice strain (relaxation / uniformization of internal stress), the magnetic flux Pinning (effect of obstructing rotation of magnetic moment and movement of domain wall) is reduced. Compared with the case where the crystallinity is unstable, the magnetization process becomes smooth, so that the magnetic strain rises with a high magnetic permeability, that is, with a low magnetic field. In other words, since the magnetostriction susceptibility increases, it can be said that it has become “sensitive to changes in the magnetic field”.

[第1実施例]
実施例1〜4、比較例1〜4について、有効磁界H=1000Oeにおける磁歪量を確認した。実施例1〜4、比較例1〜4の内訳は次の通りである。
[First embodiment]
About Examples 1-4 and Comparative Examples 1-4, the magnetostriction amount in the effective magnetic field H = 1000 Oe was confirmed. The breakdown of Examples 1-4 and Comparative Examples 1-4 is as follows.

(実施例1)
第1製造方法(図1参照)に従って実施例1に係る試験片を作製した。すなわち、FeとCoとを秤量してCoの比率が50原子%の合金素材を作製し、その後、プラズマアーク溶解装置(TIG−400F:東栄科学産業社製)を用いて、合金素材を水冷している銅ハース内で熔解、母合金を作製した。その後、母合金を水冷している銅ハース内で、1500℃/min以上3000℃/min以下の冷却速度で、冷却制御しながら、鋳造した。その後、鋳造合金を切り出して、縦×横×高さ=20mm×2mm×1mmの磁気特性評価用の実施例1に係る試験片を作製した。
Example 1
A test piece according to Example 1 was manufactured according to the first manufacturing method (see FIG. 1). That is, Fe and Co are weighed to prepare an alloy material having a Co ratio of 50 atomic%, and then the alloy material is water-cooled using a plasma arc melting apparatus (TIG-400F: manufactured by Toei Scientific Industrial Co., Ltd.). A mother alloy was prepared by melting in a copper hearth. Thereafter, the mother alloy was cast in a copper hearth which was water-cooled while cooling was controlled at a cooling rate of 1500 ° C./min to 3000 ° C./min. Thereafter, the cast alloy was cut out to prepare a test piece according to Example 1 for evaluating magnetic properties of length × width × height = 20 mm × 2 mm × 1 mm.

(実施例2〜4)
実施例2、3及び4は、Coの比率をそれぞれ60原子%、65原子%、70原子%の合金素材を用いたこと以外は、上述した実施例1と同様にして作製した。
(Examples 2 to 4)
Examples 2, 3 and 4 were produced in the same manner as Example 1 described above, except that alloy materials having a Co ratio of 60 atomic%, 65 atomic% and 70 atomic% were used.

(比較例1)
上述した非特許文献5に示す方法により比較例1に係る試験片を作製した。すなわち、FeとCoとを秤量してCoの比率が50原子%の合金素材を作製し、合金素材を真空中で誘導電気炉により溶解し、さらに金属の型を用いて鋳造して母合金を作製した。その後、母合金を切り出して、縦×横×高さ=20mm×2mm×1mmの直方体を作製した後、この直方体を真空炉中で1050℃、1.5時間の熱処理を行って比較例1に係る試験片を作製した。
(Comparative Example 1)
A test piece according to Comparative Example 1 was produced by the method shown in Non-Patent Document 5 described above. That is, Fe and Co are weighed to prepare an alloy material having a Co ratio of 50 atomic%, the alloy material is melted in an induction electric furnace in a vacuum, and further cast using a metal mold to form a master alloy. Produced. Thereafter, the mother alloy was cut out to produce a rectangular parallelepiped of length × width × height = 20 mm × 2 mm × 1 mm, and this rectangular parallelepiped was subjected to a heat treatment at 1050 ° C. for 1.5 hours in a vacuum furnace. Such a test piece was prepared.

(比較例2〜4)
比較例2、3及び4は、Coの比率をそれぞれ60原子%、65原子%及び70原子%の合金素材を用いたこと以外は、上述した比較例1と同様にして作製した。
(Comparative Examples 2 to 4)
Comparative Examples 2, 3 and 4 were prepared in the same manner as Comparative Example 1 described above, except that alloy materials having a Co ratio of 60 atomic%, 65 atomic% and 70 atomic% were used.

<評価>
実施例1〜4、比較例1〜4について、磁歪量は歪ゲージ法、磁気特性は振動試料型磁力計(VSM)を用いて分析、評価を行った。
<Evaluation>
For Examples 1 to 4 and Comparative Examples 1 to 4, magnetostriction was analyzed and evaluated using a strain gauge method, and magnetic characteristics were analyzed using a vibrating sample magnetometer (VSM).

<評価結果>
実施例1〜4、比較例1〜4の評価結果を表3に示す。
<Evaluation results>
Table 3 shows the evaluation results of Examples 1 to 4 and Comparative Examples 1 to 4.

Figure 0006103749
Figure 0006103749

表3から、第1製造方法に従って作製した実施例1〜4はいずれも磁歪量が100ppm以上で良好であった。一方、非特許文献5の方法で作製した比較例1〜4のうち、比較例4は磁歪量が90ppmで良好であったが、他の比較例1、2及び3については磁歪量が低く、しかも、Coの比率によってばらつきが大きかった。実施例1〜4において、磁歪量が共に大きくなったのは、本発明による手段、すなわち、合金素材を溶解した後に、1500℃/min以上の冷却速度で急冷したことにより、(110)面の配向度が高くなったことによるものと考えられる。   From Table 3, Examples 1-4 produced according to the 1st manufacturing method were all good with the magnetostriction amount being 100 ppm or more. On the other hand, among Comparative Examples 1 to 4 produced by the method of Non-Patent Document 5, Comparative Example 4 had a good magnetostriction amount of 90 ppm, but the other Comparative Examples 1, 2 and 3 had a low magnetostriction amount, Moreover, the variation was large depending on the Co ratio. In Examples 1 to 4, the amount of magnetostriction increased because the means according to the present invention, that is, the alloy material was melted and then rapidly cooled at a cooling rate of 1500 ° C./min or more, so This is thought to be due to the higher degree of orientation.

[第2実施例]
第1製造方法(図1参照)にて作製した実施例5〜9、比較例5及び6について、有効磁界H=1000Oeにおける磁歪量、X線回折結果における上記式(1)にて表される(110)面の配向度、X線回折結果における(110)面のピーク波形の半値幅の違いを確認した。実施例5〜9、比較例5及び6の内訳は次の通りである。
[Second Embodiment]
For Examples 5 to 9 and Comparative Examples 5 and 6 produced by the first manufacturing method (see FIG. 1), the magnetostriction amount in the effective magnetic field H = 1000 Oe, and the above formula (1) in the X-ray diffraction results are represented. Differences in the degree of orientation of the (110) plane and the half width of the peak waveform of the (110) plane in the X-ray diffraction results were confirmed. The breakdown of Examples 5 to 9 and Comparative Examples 5 and 6 is as follows.

(実施例5)
上述した実施例1と同様に、FeとCoとを秤量してCoの比率が50原子%の合金素材を作製し、その後、プラズマアーク溶解装置(TIG−400F:東栄科学産業社製)を用いて、合金素材を溶解後、1500℃/min以上の冷却速度で冷却制御しながら鋳造した。その後、鋳造合金を切り出して、縦×横×高さ=20mm×2mm×1mmの磁気特性評価用の実施例5に係る試験片を作製した。
(Example 5)
Similar to Example 1 described above, Fe and Co are weighed to produce an alloy material having a Co ratio of 50 atomic%, and then a plasma arc melting apparatus (TIG-400F: manufactured by Toei Scientific Industrial Co., Ltd.) is used. Then, after melting the alloy material, casting was performed while cooling control was performed at a cooling rate of 1500 ° C./min or more. Thereafter, the cast alloy was cut out to prepare a test piece according to Example 5 for evaluating magnetic properties of length × width × height = 20 mm × 2 mm × 1 mm.

(実施例6〜9)
実施例6、7、8及び9は、Coの比率をそれぞれ55原子%、60原子%、65原子%、及び70原子%の合金素材を用いたこと以外は、上述した実施例5と同様にして作製した。
(Examples 6 to 9)
Examples 6, 7, 8 and 9 were the same as Example 5 described above, except that alloy materials having a Co ratio of 55 atomic%, 60 atomic%, 65 atomic% and 70 atomic% were used. Made.

(比較例5及び6)
比較例5及び6は、Coの比率をそれぞれ45原子%及び75原子%の合金素材を用いたこと以外は、上述した実施例5と同様にして作製した。
(Comparative Examples 5 and 6)
Comparative Examples 5 and 6 were produced in the same manner as in Example 5 described above, except that alloy materials having Co ratios of 45 atomic% and 75 atomic% were used.

<評価>
実施例5〜9、比較例5及び6に係る各試験片について、磁歪合金の結晶構造解析はX線回折法(XRD)、磁歪量は歪ゲージ法、磁気特性は振動試料型磁力計(VSM)を用いて分析、評価を行った。
<Evaluation>
For each of the test pieces according to Examples 5 to 9 and Comparative Examples 5 and 6, the crystal structure analysis of the magnetostrictive alloy is the X-ray diffraction method (XRD), the magnetostriction is the strain gauge method, and the magnetic properties are the vibrating sample magnetometer (VSM). ) Was used for analysis and evaluation.

<評価結果>
実施例5〜9、比較例5及び6の評価結果を表4に示す。
<Evaluation results>
Table 4 shows the evaluation results of Examples 5 to 9 and Comparative Examples 5 and 6.

Figure 0006103749
Figure 0006103749

表4の結果から、FeとCoとからなり、且つ、Coの比率が50原子%〜70原子%の磁歪合金(実施例5〜9)については、X線回折結果における上記式(1)にて表される(110)面の配向度が19%以上でいずれも高く、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上であることがわかった。また、X線回折結果における(110)面のピーク波形の半値幅は、0.38°〜0.40°であった。一方、比較例5及び6は共に、磁歪量が上述した比較例1、2及び3よりも高かったが、100ppm未満であった。   From the results of Table 4, for magnetostrictive alloys (Examples 5 to 9) made of Fe and Co and having a Co ratio of 50 atomic% to 70 atomic% (Examples 5 to 9), It was found that the degree of orientation of the (110) plane expressed as follows was 19% or higher and both were high, and the magnetostriction amount in the effective magnetic field H = 1000 Oe was 100 ppm or more. In addition, the half width of the peak waveform on the (110) plane in the X-ray diffraction result was 0.38 ° to 0.40 °. On the other hand, in both Comparative Examples 5 and 6, the magnetostriction amount was higher than Comparative Examples 1, 2, and 3 described above, but was less than 100 ppm.

従って、磁歪量で評価した場合の好ましいCoの比率は、50原子%以上70原子%以下がよく、好ましくは60原子%以上70原子%以下であることがわかる。   Therefore, it can be seen that the preferable Co ratio when evaluated by the amount of magnetostriction is 50 to 70 atomic%, preferably 60 to 70 atomic%.

[第3実施例]
第2製造方法(図4参照)にて作製した実施例10〜14、比較例7及び8について、有効磁界H=1000Oeにおける磁歪量、X線回折結果における上記式(1)にて表される(110)面の配向度、X線回折結果における(110)面のピーク波形の半値幅の違いを確認した。実施例10〜14、比較例7及び8の内訳は次の通りである。
[Third embodiment]
About Examples 10-14 produced by the 2nd manufacturing method (refer FIG. 4) and Comparative Examples 7 and 8, the magnetostriction amount in effective magnetic field H = 1000 Oe, It represents with the said Formula (1) in a X-ray-diffraction result. Differences in the degree of orientation of the (110) plane and the half width of the peak waveform of the (110) plane in the X-ray diffraction results were confirmed. The breakdown of Examples 10 to 14 and Comparative Examples 7 and 8 is as follows.

(実施例10)
第2製造方法に従って、FeとCoとを秤量してCoの比率が50原子%の合金素材を作製し、その後、プラズマアーク溶解装置(TIG−400F:東栄科学産業社製)を用いて、合金素材を水冷している銅ハース内で熔解、母合金を作製した。その後、母合金は水冷している銅ハース内で、1500℃/min以上の冷却速度で冷却ながら鋳造した。その後、鋳造合金を切り出して、縦×横×高さ=20mm×2mm×1mmの磁気特性評価用の試験片を作製した。そして、この試験片に対して、該試験片の融点の1/4の温度±40℃で24時間以上の熱処理を行った。
(Example 10)
According to the second manufacturing method, Fe and Co are weighed to prepare an alloy material having a Co ratio of 50 atomic%, and then the alloy is formed using a plasma arc melting apparatus (TIG-400F: manufactured by Toei Kagaku Sangyo Co., Ltd.). The material was melted in a copper hearth with water cooling to produce a master alloy. Thereafter, the mother alloy was cast while being cooled at a cooling rate of 1500 ° C./min or higher in a water-cooled copper hearth. Thereafter, the cast alloy was cut out to prepare a test piece for evaluating magnetic properties of length × width × height = 20 mm × 2 mm × 1 mm. Then, this test piece was subjected to heat treatment for 24 hours or more at a temperature ± 40 ° C. that is ¼ of the melting point of the test piece.

(実施例11〜14)
実施例11、12、13及び14は、Coの比率をそれぞれ55原子%、60原子%、65原子%、及び70原子%の合金素材を用いたこと以外は、上述した実施例10と同様にして作製した。
(Examples 11-14)
Examples 11, 12, 13 and 14 are the same as Example 10 described above except that alloy materials having Co ratios of 55 atomic%, 60 atomic%, 65 atomic%, and 70 atomic% are used. Made.

(比較例7及び8)
比較例7及び8は、Coの比率をそれぞれ45原子%及び75原子%の合金素材を用いたこと以外は、上述した実施例10と同様にして作製した。
(Comparative Examples 7 and 8)
Comparative Examples 7 and 8 were produced in the same manner as in Example 10 described above, except that alloy materials having a Co ratio of 45 atomic% and 75 atomic%, respectively, were used.

<評価>
実施例10〜14、比較例7及び8に係る各試験片について、磁歪合金の結晶構造解析はX線回折法(XRD)、磁歪量は歪ゲージ法、磁気特性は振動試料型磁力計(VSM)を用いて分析、評価を行った。
<Evaluation>
For each of the test pieces according to Examples 10 to 14 and Comparative Examples 7 and 8, the crystal structure analysis of the magnetostrictive alloy is the X-ray diffraction method (XRD), the magnetostriction is the strain gauge method, and the magnetic characteristics are the vibration sample magnetometer (VSM). ) Was used for analysis and evaluation.

<評価結果>
実施例10〜14、比較例7及び8の評価結果を表5に示す。
<Evaluation results>
Table 5 shows the evaluation results of Examples 10 to 14 and Comparative Examples 7 and 8.

Figure 0006103749
Figure 0006103749

表5の結果から、FeとCoとからなり、且つ、Coの比率が50原子%〜70原子%の磁歪合金(実施例10〜14)については、X線回折結果における上記式(1)にて表される(110)面の配向度が19%以上でいずれも高く、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上であることがわかった。また、X線回折結果における(110)面のピーク波形の半値幅は、0.19°〜0.24°であり、上述した第1製造方法にて作製した実施例1〜7と比して半値幅が約40%も狭くなっており、結晶性が向上していることがわかる。一方、比較例7及び8は共に、磁歪量が上述した比較例1及び2よりも高かったが、100ppm未満であった。   From the results in Table 5, for magnetostrictive alloys (Examples 10 to 14) composed of Fe and Co and having a Co ratio of 50 atomic% to 70 atomic% (Examples 10 to 14), It was found that the degree of orientation of the (110) plane expressed as follows was 19% or higher and both were high, and the magnetostriction amount in the effective magnetic field H = 1000 Oe was 100 ppm or more. Moreover, the half width of the peak waveform of the (110) plane in the X-ray diffraction result is 0.19 ° to 0.24 °, as compared with Examples 1 to 7 manufactured by the first manufacturing method described above. The full width at half maximum is narrowed by about 40%, indicating that the crystallinity is improved. On the other hand, although both the comparative examples 7 and 8 had a magnetostriction amount higher than the comparative examples 1 and 2 mentioned above, they were less than 100 ppm.

従って、磁歪量で評価した場合の好ましいCoの比率は、50原子%以上70原子%以下がよく、好ましくは65原子%以上70原子%以下であることがわかる。   Therefore, it can be seen that the preferable Co ratio when evaluated by the magnetostriction amount is 50 atomic% or more and 70 atomic% or less, and preferably 65 atomic% or more and 70 atomic% or less.

なお、本発明に係るFeCo系磁歪合金及びその製造方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   It should be noted that the FeCo magnetostrictive alloy and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

ha…高さ Wa…半値幅 ha ... Height Wa ... Half-value width

Claims (7)

Fe(鉄)とCo(コバルト)とからなり、Coを50原子%〜70原子%含む体心立方構造を持つ磁歪合金であって、Cu(銅)のKα特性X線を用いたX線回折結果に基づく下記式(1)で表される(110)面の配向度が19%以上であり、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上であることを特徴とするFeCo系磁歪合金。
配向度=(P−P)/(1−P) ……(1)
ここで、P=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211))}
=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211)}
であって、ΣI(110)、ΣI(200)及びΣI(211)は、(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示し、ΣI(110)、ΣI(200)及びΣI(211)は、理想的な無配向の試料における(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示す。
X-ray diffraction using a Kα characteristic X-ray of Cu (copper), which is a magnetostrictive alloy composed of Fe (iron) and Co (cobalt) and having a body-centered cubic structure containing 50 atomic% to 70 atomic% of Co. An FeCo magnetostrictive alloy characterized in that the degree of orientation of the (110) plane represented by the following formula (1) based on the results is 19% or more and the magnetostriction amount in an effective magnetic field H = 1000 Oe is 100 ppm or more. .
Degree of orientation = (P−P 0 ) / (1−P 0 ) (1)
Here, P = ΣI (110) / {ΣI (110) + ΣI (200) + ΣI (211))}
P 0 = ΣI 0 (110) / {ΣI 0 (110) + ΣI 0 (200) + ΣI 0 (211)}
Where ΣI (110), ΣI (200) and ΣI (211) indicate the integrated intensities of the diffraction intensities of the (110) plane, (200) plane and (211) plane, respectively, and ΣI 0 (110), ΣI 0 (200) and ΣI 0 (211) indicate the integrated intensities of diffraction intensities of the (110) plane, the (200) plane, and the (211) plane in an ideal non-oriented sample, respectively.
請求項1記載のFeCo系磁歪合金において、
X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.5°以下であることを特徴とするFeCo系磁歪合金。
In the FeCo magnetostrictive alloy according to claim 1,
A FeCo-based magnetostrictive alloy characterized in that the half width of the peak waveform of the (110) plane in the X-ray diffraction result is 0.1 ° or more and 0.5 ° or less.
請求項1記載のFeCo系磁歪合金において、
X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.3°以下であることを特徴とするFeCo系磁歪合金。
In the FeCo magnetostrictive alloy according to claim 1,
An FeCo magnetostrictive alloy characterized in that the half-value width of the peak waveform of the (110) plane in the X-ray diffraction result is 0.1 ° or more and 0.3 ° or less.
Fe(鉄)とCo(コバルト)とからなり、Coを50原子%〜70原子%含むFeCo系磁歪合金の製造方法において、
合金素材を溶解した後に、1500℃/min以上の冷却速度で冷却することで、Cu(銅)のKα特性X線を用いたX線回折結果に基づく下記式(1)で表される(110)面の配向度が19%以上であり、且つ、有効磁界H=1000Oeにおける磁歪量が100ppm以上である磁歪合金を作製することを特徴とするFeCo系磁歪合金の製造方法。
配向度=(P−P)/(1−P) ……(1)
ここで、P=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211))}
=ΣI(110)/{ΣI(110)+ΣI(200)+ΣI(211)}
であって、ΣI(110)、ΣI(200)及びΣI(211)は、(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示し、ΣI(110)、ΣI(200)及びΣI(211)は、理想的な無配向の試料における(110)面、(200)面及び(211)面の回折強度の積分強度をそれぞれ示す。
In a method for producing an FeCo magnetostrictive alloy comprising Fe (iron) and Co (cobalt) and containing 50 atomic% to 70 atomic% of Co,
After melting the alloy material, the alloy material is cooled at a cooling rate of 1500 ° C./min or more, and expressed by the following formula (1) based on the X-ray diffraction result using the Kα characteristic X-ray of Cu (copper) (110) (2) A method for producing a FeCo magnetostrictive alloy, comprising producing a magnetostrictive alloy having a degree of orientation of a plane of 19% or more and a magnetostriction amount of 100 ppm or more in an effective magnetic field H = 1000 Oe.
Degree of orientation = (P−P 0 ) / (1−P 0 ) (1)
Here, P = ΣI (110) / {ΣI (110) + ΣI (200) + ΣI (211))}
P 0 = ΣI 0 (110) / {ΣI 0 (110) + ΣI 0 (200) + ΣI 0 (211)}
Where ΣI (110), ΣI (200) and ΣI (211) indicate the integrated intensities of the diffraction intensities of the (110) plane, (200) plane and (211) plane, respectively, and ΣI 0 (110), ΣI 0 (200) and ΣI 0 (211) indicate the integrated intensities of diffraction intensities of the (110) plane, the (200) plane, and the (211) plane in an ideal non-oriented sample, respectively.
請求項記載のFeCo系磁歪合金の製造方法において、
作製される前記磁歪合金の前記X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.5°以下であることを特徴とするFeCo系磁歪合金の製造方法。
In the manufacturing method of the FeCo type magnetostrictive alloy according to claim 4 ,
A method for producing an FeCo-based magnetostrictive alloy, wherein a half width of a peak waveform of a (110) plane in the X-ray diffraction result of the produced magnetostrictive alloy is 0.1 ° or more and 0.5 ° or less.
請求項記載のFeCo系磁歪合金の製造方法において、
前記冷却後、前記磁歪合金の融点の1/4の温度±40℃で24時間以上の熱処理を行うことを特徴とするFeCo系磁歪合金の製造方法。
In the manufacturing method of the FeCo type magnetostrictive alloy according to claim 4 ,
After the cooling, a heat treatment is performed for 24 hours or more at a temperature ± 40 ° C. that is ¼ of the melting point of the magnetostrictive alloy.
請求項記載のFeCo系磁歪合金の製造方法において、
作製される前記磁歪合金の前記X線回折結果における(110)面のピーク波形の半値幅が0.1°以上0.3°以下であることを特徴とするFeCo系磁歪合金の製造方法。
In the manufacturing method of the FeCo type magnetostrictive alloy according to claim 6 ,
A method for producing an FeCo-based magnetostrictive alloy, wherein a half width of a peak waveform of a (110) plane in the X-ray diffraction result of the produced magnetostrictive alloy is 0.1 ° or more and 0.3 ° or less.
JP2012232906A 2012-10-22 2012-10-22 FeCo-based magnetostrictive alloy and method for producing the same Expired - Fee Related JP6103749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232906A JP6103749B2 (en) 2012-10-22 2012-10-22 FeCo-based magnetostrictive alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232906A JP6103749B2 (en) 2012-10-22 2012-10-22 FeCo-based magnetostrictive alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014084484A JP2014084484A (en) 2014-05-12
JP6103749B2 true JP6103749B2 (en) 2017-03-29

Family

ID=50787850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232906A Expired - Fee Related JP6103749B2 (en) 2012-10-22 2012-10-22 FeCo-based magnetostrictive alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6103749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122882B2 (en) * 2015-01-29 2017-04-26 日本高周波鋼業株式会社 Magnetostrictive member and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472016A (en) * 1990-02-28 1992-03-06 Kawasaki Steel Corp Production of fe-co foil having high saturation magnetic flux density
US6153020A (en) * 1999-03-03 2000-11-28 Lucent Technologies Process for fabricating improved iron-cobalt magnetostrictive alloy and article comprising alloy
JP2001358377A (en) * 2000-02-10 2001-12-26 Toshiba Corp Ultra-magnetostriction material, its manufacturing method, and magnetostriction actuator and magnetostriction sensor using the same
JP2010159491A (en) * 2008-12-12 2010-07-22 Hitachi Metals Ltd Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2013177664A (en) * 2012-02-28 2013-09-09 Yasubumi Furuya Alloy for magnetostrictive vibration power generation

Also Published As

Publication number Publication date
JP2014084484A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
Atulasimha et al. A review of magnetostrictive iron–gallium alloys
Zhukov et al. Correlation of crystalline structure with magnetic and transport properties of glass-coated microwires
Mikler et al. Tuning the phase stability and magnetic properties of laser additively processed Fe-30at% Ni soft magnetic alloys
McCallum et al. Composite magnetostrictive materials for advanced automotive magnetomechanical sensors
JP4895108B2 (en) FeGaAl alloy and magnetostrictive torque sensor
Liu et al. Structure and phase transformation in the giant magnetostriction Laves-phase SmFe2
Gui et al. Crystal structure, magnetism, and electronic properties of a rare-earth-free ferromagnet: MnPt5As
Rosen et al. Magnetoelasticity in Sm Fe 2
Jen et al. Structural, magneto-mechanical, and damping properties of slowly-cooled polycrystalline Fe81Ga19 alloy
Venkata Siva et al. Bipolar magnetostriction in CoFe2O4: Effect of sintering, measurement temperature, and prestress
Du et al. Magnetostriction in twin-free single crystals Tb y Dy 1− y Fe 2 with the addition of aluminum or manganese
JP6103749B2 (en) FeCo-based magnetostrictive alloy and method for producing the same
McDonald et al. Exchange bias in bulk α-Fe/γ-Fe70Mn30 nanocomposites for permanent magnet applications
Sander Magnetostriction and magnetoelasticity
Fujieda et al. Influence of Co substitution on magnetostriction and on Young's modulus of Fe-Ga alloy single crystal
Sarawate et al. Dynamic sensing behavior of ferromagnetic shape memory Ni–Mn–Ga
Yamaura et al. Magnetic properties of heat-treated Fe-Co alloys and their potential for vibration energy harvesting
Malla et al. Large magnetically induced strains in Ni50Mn28. 7Ga21. 3 driven with collinear field and stress
JP2013177664A (en) Alloy for magnetostrictive vibration power generation
JP2019029502A (en) Magnetostrictive material for vibration power
Datta Quasi-static characterization and modeling of the bending behavior of single crystal galfenol for magnetostrictive sensors and actuators
Rajapan et al. Advanced magnetostrictive materials for sonar applications
Parsons et al. Torque sensing using rolled galfenol patches
Zhang Experimental characterization of Galfenol (FeGa) alloys
Pokharel magnetic anisotropy and magnetostriction in functional ferromagnets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6103749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees