JP6103693B2 - Vehicle collision determination device - Google Patents
Vehicle collision determination device Download PDFInfo
- Publication number
- JP6103693B2 JP6103693B2 JP2013018792A JP2013018792A JP6103693B2 JP 6103693 B2 JP6103693 B2 JP 6103693B2 JP 2013018792 A JP2013018792 A JP 2013018792A JP 2013018792 A JP2013018792 A JP 2013018792A JP 6103693 B2 JP6103693 B2 JP 6103693B2
- Authority
- JP
- Japan
- Prior art keywords
- collision
- prediction time
- host vehicle
- approaching object
- traveling direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001133 acceleration Effects 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Traffic Control Systems (AREA)
- Regulating Braking Force (AREA)
Description
本発明は、自車両に接近する接近物と自車両との衝突を判定する車両の衝突判定装置に関する。 The present invention relates to a vehicle collision determination device that determines a collision between an approaching object approaching the host vehicle and the host vehicle.
近年、自動車等の車両においては、自車両に接近する物体(接近物)を検出し、この接近物と自車両とが衝突する可能性があると判定した場合、ドライバに対する警報や自動的なブレーキ制御を行うシステムが開発されている。 In recent years, in vehicles such as automobiles, when an object approaching the host vehicle (approaching object) is detected and it is determined that there is a possibility that the approaching object and the host vehicle collide with each other, an alarm to the driver or automatic braking is performed. Control systems have been developed.
接近物との衝突を回避するための制御は、一般的に、接近物が自車両前方に到達するまでの時間を予測し、この予測時間の大小に応じて、警報を発したり強制的にブレーキを作動させる等して衝突を回避するようにしている。特に、交差点の出会い頭等、側方から自車両に接近する接近物との衝突事故を回避するためには、横方向の動きを把握する必要がある。 In order to avoid a collision with an approaching object, generally, the time until the approaching object reaches the front of the host vehicle is predicted, and an alarm is issued or forced braking is performed according to the size of the predicted time. To avoid collisions. In particular, in order to avoid a collision accident with an approaching object approaching the host vehicle from the side, such as at an intersection, it is necessary to grasp the lateral movement.
例えば、特許文献1には、自車の進行方向と交差する方向に移動する横移動物体と自車との衝突までの時間(衝突予測時間)を算出して閾値と比較することで、衝突判定を行う技術が開示されている。この先行技術では、自車に対する移動物体の進行方向の相対距離Y及び相対速度Vyから衝突予測時間TTCを算出し(TTC=Y/Vy)、この衝突予測時間TTCが、横方向の相対距離X及び相対速度Vx,自車幅Wから決定される以下の(a)式の条件を満たしたとき、衝突発生と判定している。
−W/2<X+Vx×TTC<W/2 …(a)
For example, Patent Document 1 discloses a collision determination by calculating a time (collision prediction time) until a collision between a laterally moving object that moves in a direction crossing the traveling direction of the own vehicle and the own vehicle and comparing it with a threshold value. Techniques for performing are disclosed. In this prior art, the collision prediction time TTC is calculated from the relative distance Y in the traveling direction of the moving object with respect to the own vehicle and the relative speed Vy (TTC = Y / Vy), and the collision prediction time TTC is calculated as the relative distance X in the lateral direction. When the condition of the following equation (a) determined from the relative speed Vx and the vehicle width W is satisfied, it is determined that a collision has occurred.
−W / 2 <X + Vx × TTC <W / 2 (a)
しかしながら、特許文献1に開示の技術では、自車が停止から発進しようとしているとき若しくは極低速で走行しているような状況で移動物体が接近した場合、衝突予測時間TTVCが非常に大きな値となって(a)式の条件に当てはまらなくなり、警報・制御が行われない虞がある。自車が動かない場合は衝突しないので問題ないが、もし、その後自車が動いたとすると、衝突の可能性が高くなる。 However, in the technique disclosed in Patent Document 1, when a moving object approaches when the host vehicle is about to start from a stop or is traveling at an extremely low speed, the predicted collision time TTVC is a very large value. Therefore, the condition of the formula (a) is not satisfied, and there is a possibility that alarm / control is not performed. If the vehicle does not move, there is no problem because the vehicle does not collide, but if the vehicle moves after that, the possibility of a collision increases.
本発明は上記事情に鑑みてなされたもので、自車両が停止若しくは低速走行中にも、自車両に接近する接近物との衝突を信頼性高く判定することのできる車両の衝突判定装置を提供することを目的としている。 The present invention has been made in view of the above circumstances, and provides a vehicle collision determination device that can reliably determine a collision with an approaching object approaching the host vehicle even when the host vehicle is stopped or traveling at a low speed. The purpose is to do.
本発明による車両の衝突判定装置は、自車両に接近する接近物を検出する接近物検出部と、自車両に対する前記接近物の横方向における相対距離と相対速度とから横方向衝突予測時間を算出する横方向衝突予測時間算出部と、自車両に対する前記接近物の進行方向における相対距離と相対速度とから進行方向衝突予測時間を算出する進行方向衝突予測時間算出部と、前記横方向衝突予測時間と前記進行方向衝突予測時間とに基づいて自車両と前記接近物との衝突を判定する衝突判定部とを備え、前記進行方向衝突予測時間算出部は、自車両が設定車速以下のとき、ブレーキ圧力に基づいてドライバの発進の意思を推定し、発進の意思があると推定された場合にのみ、自車両の加速度に、過去の発進時における加速度の履歴に基づいて作成した頻度分布によって推定した複数の値を設定して、設定したそれぞれの加速度で前記横方向衝突予測時間が零になるときの前記進行方向衝突予測時間を修正した複数の予測時間の候補を算出し、前記衝突判定部は、前記複数の予測時間の候補の一つでも衝突判定条件を満足するとき、衝突発生と判定する。 A vehicle collision determination apparatus according to the present invention calculates a lateral collision prediction time from an approaching object detection unit that detects an approaching object approaching the host vehicle, and a relative distance and a relative speed of the approaching object relative to the host vehicle in the lateral direction. A lateral collision prediction time calculation unit, a traveling direction collision prediction time calculation unit that calculates a traveling direction collision prediction time from a relative distance and a relative speed in the traveling direction of the approaching object with respect to the host vehicle, and the lateral collision prediction time And a collision determination unit that determines a collision between the host vehicle and the approaching object based on the traveling direction collision prediction time, and the traveling direction collision prediction time calculation unit brakes when the host vehicle is below a set vehicle speed. Based on pressure, the driver's intention to start was estimated, and only when it was estimated that there was an intention to start, the vehicle's acceleration was created based on the history of acceleration at the time of previous departure Setting a plurality of values estimated by the degree distribution, calculating a plurality of prediction time candidates correcting the traveling direction collision prediction time when the lateral collision prediction time becomes zero at each set acceleration, The collision determination unit determines that a collision has occurred when at least one of the plurality of prediction time candidates satisfies a collision determination condition.
本発明によれば、自車両が停止若しくは低速走行中にも、自車両に接近する接近物との衝突を信頼性高く判定することができる。 According to the present invention, even when the host vehicle is stopped or traveling at a low speed, a collision with an approaching object approaching the host vehicle can be determined with high reliability.
以下、図面を参照して本発明の実施の形態を説明する。
図1に示す衝突判定装置1は、例えば自動車等の車両の衝突防止システムの一部として搭載され、主として、交差点等の交差路における他車両等の移動物体と自車両との出会い頭の衝突を判定する。具体的には、衝突判定装置1は、交差点等の交差路で側方(左右方向)から自車両に接近する他車両等の移動物体(接近物)を検出し、検出した接近物が自車両位置に到達する時間を予測し、自車両と接近物との衝突の可能性を判定する。
Embodiments of the present invention will be described below with reference to the drawings.
A collision determination apparatus 1 shown in FIG. 1 is mounted as a part of a collision prevention system for a vehicle such as an automobile, and mainly determines a collision at the time of encounter between a moving object such as another vehicle and the own vehicle in an intersection such as an intersection. To do. Specifically, the collision determination device 1 detects a moving object (approaching object) such as another vehicle that approaches the host vehicle from the side (left and right direction) at an intersection such as an intersection, and the detected approaching object is the host vehicle. The time to reach the position is predicted, and the possibility of collision between the host vehicle and the approaching object is determined.
自車両と接近物との衝突判定は、接近物が自車両位置に達するまでの横方向からの予測時間(横方向衝突予測時間)TTCRと、接近物が自車両位置に達するまでの進行方向からの予測時間(進行方向衝突予測時間)TTCとを用いて判定する。すなわち、横方向衝突予測時間TTCRは、接近物が自車両を横切るまでの時間であり、自車両と衝突する場合以外にも、自車両の前を横切る(接近物が先に通り過ぎる)、自車両の後を横切る(自車両が先に通過する)場合も含むため、進行方向の予測時間TTCを加えることにより、衝突判定の精度を上げて不要な警報や制御介入を回避する。 The collision determination between the own vehicle and the approaching object is based on the predicted time (lateral collision prediction time) TTCR from the lateral direction until the approaching object reaches the own vehicle position and the traveling direction until the approaching object reaches the own vehicle position. And the predicted time (traveling direction collision predicted time) TTC. In other words, the predicted lateral collision time TTCR is the time until the approaching object crosses the host vehicle. In addition to the case where the approaching object collides with the host vehicle, the host vehicle crosses the front of the host vehicle (the approaching object passes first). Therefore, by adding the predicted time TTC in the traveling direction, the accuracy of the collision determination is increased and unnecessary alarms and control interventions are avoided.
その際、横方向衝突予測時間TTCRが0になるとき、すなわち接近物が自車両の横位置に達したときの進行方向衝突予測時間TTCの値で一義的に衝突判定を行うと、自車両が停止から発進しようとしている場合、若しくは極低速で走行している場合には、進行方向衝突予測時間TTCが非常に大きな値となってしまい、衝突回避の警報・制御が実行されない虞がある。自車両が動かない場合は衝突しないので問題はないが、その後、自車両が動いた場合には、衝突の可能性が高くなる。 At that time, when the collision determination is performed based on the value of the traveling direction collision prediction time TTC when the predicted lateral collision time TTCR becomes 0, that is, when the approaching object reaches the lateral position of the own vehicle, When starting from a stop, or when traveling at an extremely low speed, the traveling direction collision prediction time TTC becomes a very large value, and there is a possibility that warning / control of collision avoidance will not be executed. If the host vehicle does not move, there is no problem because the vehicle does not collide, but if the host vehicle moves thereafter, the possibility of a collision increases.
このため、衝突判定装置1は、自車両が設定車速以下の場合には、横方向衝突予測時間TTCRが0となるときの進行方向衝突予測時間TTCの値を自車両の加速度を考慮して修正し、この修正した衝突予測時間に基づいて衝突判定を行う。これにより、衝突の可能性がない場合の不要な警報を抑制するとともに、自車両が停止時(極低速時)であってもドライバに発進の意思がある場合の未警報・警報遅れを回避することができる。 For this reason, the collision determination apparatus 1 corrects the value of the traveling direction collision prediction time TTC when the lateral collision prediction time TTCR becomes 0 in consideration of the acceleration of the own vehicle when the own vehicle is below the set vehicle speed. Then, the collision determination is performed based on the corrected collision prediction time. This suppresses unnecessary alarms when there is no possibility of a collision, and avoids an unalarmed alarm / alarm delay when the driver intends to start even when the host vehicle is stopped (at extremely low speed). be able to.
自車両に接近する移動物体は、本実施の形態においては、自車両の外界の環境を認識するデバイスとして、単眼の広画角のカメラ(例えば、画角180°の魚眼カメラ)2を用いて検出する。衝突判定装置1は、このカメラ2と、カメラ2で撮像した画像を処理して自車両と接近物との衝突を判定する単一のコンピュータ或いはワーク接続される複数のコンピュータとによって構成されている。 In this embodiment, a moving object approaching the host vehicle uses a monocular wide-angle camera (for example, a fish-eye camera with an angle of view of 180 °) 2 as a device for recognizing the external environment of the host vehicle. To detect. The collision determination device 1 is configured by the camera 2 and a single computer or a plurality of computers connected to each other for processing the image captured by the camera 2 to determine the collision between the host vehicle and an approaching object. .
このような衝突判定装置1の機能部は、接近物検出部11,接近物距離算出部12、横方向衝突予測時間算出部13、進行方向衝突予測時間算出部14、衝突判定部15、警報・回避制御判定部16によって構成され、更に、進行方向衝突予測時間算出部14は、付加機能として、設定車速以下で進行方向衝突予測時間を修正する予測時間修正部14aを備えている。以下では、先ず、図2のフローチャートに示す衝突判定装置1の全体の処理の流れについて説明し、その後、各部の処理の詳細について説明する。 The functional units of the collision determination apparatus 1 include an approaching object detection unit 11, an approaching object distance calculation unit 12, a lateral collision prediction time calculation unit 13, a traveling direction collision prediction time calculation unit 14, a collision determination unit 15, an alarm / Further, the traveling direction collision prediction time calculation unit 14 includes a prediction time correction unit 14a that corrects the traveling direction collision prediction time below the set vehicle speed as an additional function. Below, first, the flow of the whole process of the collision determination apparatus 1 shown to the flowchart of FIG. 2 is demonstrated, and the detail of the process of each part is demonstrated after that.
図2のフローチャートに示す全体の処理では、最初にステップS1でカメラ2から図3に示すような広画角の画像G(魚眼レンズによる180度画像)を入力し、ステップS2でカメラ画像Gから自車両に接近する移動物体(接近物)及びその位置を検出する。例えば、カメラ画像Gのフレーム間での画像上の動き(オプティカルフロー)を求め、このオプティカルフローから自車両に接近する移動物体を検出する。図3は、自車両に右側から接近する他車両CRoを接近物として検出した例を示している。 In the entire process shown in the flowchart of FIG. 2, first, a wide-angle image G (a 180-degree image by a fisheye lens) as shown in FIG. 3 is input from the camera 2 in step S1, and the camera image G automatically starts in step S2. A moving object (approaching object) approaching the vehicle and its position are detected. For example, a motion (optical flow) on the image between frames of the camera image G is obtained, and a moving object approaching the host vehicle is detected from the optical flow. FIG. 3 shows an example in which another vehicle CRo approaching the host vehicle from the right side is detected as an approaching object.
次に、ステップS3において、自車両に対する接近物の横方向位置(横方向距離)Xと相対速度Vxとから横方向衝突予測時間TTCRを算出するとともに、自車両に対する接近物の進行方向位置(進行方向距離)Zと相対速度Vzとから進行方向衝突予測時間TTCを算出する。ここで、衝突予測時間は、距離/相対速度であるので、横方向衝突予測時間TTCR、進行方向衝突予測時間TTCは、それぞれ、以下の(1),(2)式より求められる。
TTCR=X/Vx …(1)
TTC =Z/Vz …(2)
Next, in step S3, a lateral collision prediction time TTCR is calculated from the lateral position (lateral distance) X of the approaching object relative to the host vehicle and the relative speed Vx, and the approaching direction position (progression of the approaching object relative to the host vehicle). The traveling direction collision prediction time TTC is calculated from the directional distance Z and the relative speed Vz. Here, since the collision prediction time is distance / relative velocity, the lateral collision prediction time TTCR and the traveling direction collision prediction time TTC are obtained from the following equations (1) and (2), respectively.
TTCR = X / Vx (1)
TTC = Z / Vz (2)
その後、ステップS4において、自車両の車速が設定車速以下のとき、横方向衝突予測時間TTCRが0となるときの進行方向衝突予測時間TTC((TTC0とする)を自車両の加速度の推定値に基づいて修正する。そして、ステップS5で横方向衝突予測時間TTCRが0となるときの進行方向衝突予測時間TTCを用いて衝突判定を行い、ステップS6で衝突判定の判定結果に応じてドライバに対する警報や衝突回避のブレーキ制御等の制御介入の可否を判定する。 Thereafter, in step S4, when the vehicle speed of the host vehicle is equal to or lower than the set vehicle speed, the traveling direction collision prediction time TTC ((TTC0)) when the lateral collision prediction time TTCR becomes 0 is set as an estimated value of the acceleration of the host vehicle. Then, in step S5, a collision determination is performed using the traveling direction collision prediction time TTC when the lateral collision prediction time TTCR becomes 0, and in step S6, a warning is given to the driver according to the determination result of the collision determination. And whether or not control intervention such as brake control for collision avoidance is possible.
次に、以上の全体処理における各機能部の処理について、詳細に説明する。
接近物検出部11は、画像上の動き情報(オプティカルフロー)を主として、この動き情報に基づいて画像上から接近物の領域を切り出し、追跡を行う。例えば、図3に示すような入力画像Gのサイズを640×60ピクセルとするとき、8×8ピクセルのブロック毎に、時間的に連続するフレーム間でのオプティカルフローをブロックマッチング等によって求め、画像中心方向への動き(自車両に向かう動き)を調べる。そして、画像中心方向へ動いているブロックすなわち自車両に向かって動いているブロックを纏めて接近物領域として切り出し、この接近物領域の時系列的な追跡を行う。図3の例では、他車両CRoを含む矩形の領域ARが画像中心方向に動いている接近物として検出される。
Next, processing of each functional unit in the above overall processing will be described in detail.
The approaching object detection unit 11 extracts and tracks the approaching object region from the image based on the motion information (optical flow) on the image, based on the motion information. For example, when the size of the input image G as shown in FIG. 3 is 640 × 60 pixels, the optical flow between temporally continuous frames is obtained by block matching or the like for each 8 × 8 pixel block, and the image Check the movement toward the center (movement toward the vehicle). Then, blocks moving toward the center of the image, that is, blocks moving toward the host vehicle are collectively cut out as an approaching object region, and the approaching object region is tracked in time series. In the example of FIG. 3, a rectangular area AR including the other vehicle CRo is detected as an approaching object moving in the image center direction.
次に、接近物距離算出部12は、画像座標上の接近物領域の位置を、図4に示すように、自車両CRsを原点として接近物(他車両)CRoまでの横方向の距離をX、進行方向の距離をZとする実空間座標上の位置に変換する。この画像上の位置から実空間上の位置への変換は、予め作成してある距離変換テーブルを用いて行い、テーブル参照により接近物領域の画像座標(i,j)から距離X,Zのそれぞれを求める。 Next, the approaching object distance calculation unit 12 sets the position of the approaching object region on the image coordinates to the lateral distance from the host vehicle CRs to the approaching object (other vehicle) CRo, as shown in FIG. Then, the distance in the traveling direction is converted to a position on the real space coordinates with Z as the distance. The conversion from the position on the image to the position on the real space is performed using a distance conversion table prepared in advance, and each of the distances X and Z is determined from the image coordinates (i, j) of the approaching object region by referring to the table. Ask for.
距離変換テーブルの参照に際しては、先ず、接近物領域において自車両に一番近い接地点Poを求める。具体的には、画像左半分では、接近物領域の右下、右半分では接近物領域の右下に接地点Poを設定する。図3の例では、矩形状に囲われた領域ARの左下の点が接地点Poとなる。 When referring to the distance conversion table, first, the contact point Po closest to the host vehicle in the approaching object region is obtained. Specifically, the ground point Po is set at the lower right of the approaching object region in the left half of the image and at the lower right of the approaching object region in the right half. In the example of FIG. 3, the lower left point of the area AR enclosed in a rectangular shape is the ground point Po.
次に、距離変換テーブルで接地点Poの位置を参照する。距離変換テーブルは、カメラの設置位置や角度から画像上の各画素がどの距離(X,Z)に対応するかを表すテーブルである。本実施の形態におけるカメラ2は立体射影方式の魚眼カメラであるため、立体射影カメラモデルと地表面への射影モデルとを合わせたモデルを用いて予めテーブルを作成しておく。その際、カメラパラメータは、実カメラ画像からキャリブレーションにより設定する。 Next, the position of the ground point Po is referred to in the distance conversion table. The distance conversion table is a table representing which distance (X, Z) each pixel on the image corresponds to from the installation position and angle of the camera. Since the camera 2 in the present embodiment is a stereoscopic projection type fisheye camera, a table is created in advance using a model obtained by combining a stereoscopic projection camera model and a projection model onto the ground surface. At that time, the camera parameters are set by calibration from an actual camera image.
尚、距離変換テーブルによって現時刻tで変換された距離X,Zは、時系列のフィルタをかけて安定化する。理想的には、時系列のフィルタはかけないことが望ましいが、現実的には、画像の分解能(特に遠方は分解能が悪くなる)や、接近物領域、トラッキング等の処理精度が十分でない場合等に誤差が大きくなることがある。このため、時系列のフィルタをかけることで、衝突予測時間TTCR,TTCを算出するために扱う距離データを時系列で安定させる。 The distances X and Z converted at the current time t by the distance conversion table are stabilized by applying a time series filter. Ideally, it is desirable not to apply time-series filters, but in reality, the resolution of the image (especially the resolution becomes worse at far distances), the approaching object area, tracking, and other processing accuracy are insufficient. The error may increase. For this reason, by applying a time series filter, the distance data handled for calculating the collision prediction times TTCR and TTC is stabilized in time series.
以上の接近物距離算出部12で求めた距離X,Zは、それぞれ、横方向衝突予測時間算出部13、進行方向衝突予測時間算出部14に送られる。横方向衝突予測時間算出部13は、接近物のオプティカルフローの変化量又はトラッキングによる位置微分により自車両に対する接近物の横方向相対速度Vxを求め、(1)式に基づいて横方向衝突予測時間TTCRを算出する。同様に、進行方向衝突予測時間算出部14は、接近物のオプティカルフロー変化量又はトラッキングによる位置微分により自車両に対する接近物の進行方向相対速度Vzを求め、(2)式に基づいて進行方向衝突予測時間TTCを算出する。 The distances X and Z obtained by the approaching object distance calculation unit 12 are sent to the lateral collision prediction time calculation unit 13 and the traveling direction collision prediction time calculation unit 14, respectively. The lateral collision prediction time calculation unit 13 obtains the lateral relative speed Vx of the approaching object with respect to the host vehicle by the amount of change in the optical flow of the approaching object or the position differentiation by tracking, and the lateral collision prediction time based on the equation (1). TTCR is calculated. Similarly, the traveling direction collision prediction time calculation unit 14 obtains the traveling direction relative velocity Vz of the approaching object with respect to the host vehicle based on the optical flow change amount of the approaching object or the position differentiation by tracking, and the traveling direction collision is calculated based on the equation (2). A predicted time TTC is calculated.
更に、自車両の速度が0若しくは設定車速(例えば、3km/h)以下の場合、予測時間修正部14aにおいて、横方向衝突予測時間TTCRが0となる時刻の進行方向衝突予測時間TTC0を、自車両がこの後加速すると仮定して修正する。具体的には、現時刻をt=0とし、自車両の加速度をAとすると、時刻tでの進行方向距離Z(t)、進行方向相対速度Vz(t)は、以下の(3),(4)式で求められる。
Z(t) =Z0―A×t×t/2−Vzo×t …(3)
Vz(t)=A×t+Vzo …(4)
但し、Z0 :現時刻の進行方向距離
Vz0:現時刻の進行方向相対速度
Further, when the speed of the host vehicle is 0 or less than the set vehicle speed (for example, 3 km / h), the predicted time correction unit 14a sets the traveling direction predicted collision time TTC0 at the time when the lateral collision predicted time TTCR becomes zero. It is corrected assuming that the vehicle will accelerate after this. Specifically, assuming that the current time is t = 0 and the acceleration of the host vehicle is A, the traveling direction distance Z (t) and the traveling direction relative speed Vz (t) at time t are expressed by the following (3), It is obtained by the equation (4).
Z (t) = Z0-A * t * t / 2-Vzo * t (3)
Vz (t) = A × t + Vzo (4)
Where Z0: Distance in the direction of travel at the current time
Vz0: Current direction relative speed
横方向衝突予測時間TTCRが0になる時刻tは、t=TTCRつまり現在の横方向衝突予測時間TTCRの値であるため、(3),(4)式からt=TTCRでの進行方向距離Z、進行方向相対速度Vzを求めて、(2)式に代入する。これにより得られる進行方向衝突予測時間TTC0が自車両の加速度Aで修正した予測時間となる。 Since the time t at which the lateral collision prediction time TTCR becomes 0 is t = TTCR, that is, the value of the current lateral collision prediction time TTCR, the traveling direction distance Z at t = TTCR from the equations (3) and (4) Then, the traveling direction relative speed Vz is obtained and substituted into the equation (2). The traveling direction collision prediction time TTC0 obtained thereby becomes the prediction time corrected by the acceleration A of the host vehicle.
ここで、加速度Aは、一般的な発進時の加速度(例えば、A=0.2G)としても良く、また、ドライバ毎の差を考慮した推定値としても良い。ドライバ毎の差を考慮する場合には、過去のドライバの発進時の加速度を記憶しておき、平均化処理する等した値を用いることができる。 Here, the acceleration A may be a general acceleration at the time of starting (for example, A = 0.2G), or may be an estimated value considering a difference for each driver. When considering the difference for each driver, it is possible to use a value obtained by storing the acceleration at the start of the past driver and performing an averaging process.
また、今後の加速度の予測精度を上げて予測時間TTC0の修正をより適正なものとするため、複数の加速度を仮定しても良い。具体的には、異なる加速度での複数の予測時間TTC0の候補を計算し、以下に説明する衝突判定部15にて、複数の候補のうち一つでも衝突判定条件を満足するとき、衝突が発生すると判定する。 Further, in order to improve the prediction accuracy of future acceleration and make the correction of the prediction time TTC0 more appropriate, a plurality of accelerations may be assumed. Specifically, when a plurality of candidates for the predicted time TTC0 at different accelerations are calculated and the collision determination unit 15 described below satisfies one of the plurality of candidates, the collision occurs. Judge that.
複数の加速度の候補は、例えば、図5に示すように、過去のドライバの発進時の加速度の履歴から作成した頻度分布を用いて、上位の頻度(例えば、上位30%)に位置する第1候補の加速度A1、下位の頻度(例えば、下位30%)に位置する第2候補の加速度A2等により、加速度が大きめの予測と加速度が小さめの予測とを行うようにして良い。 For example, as shown in FIG. 5, the plurality of acceleration candidates is a first frequency located at a higher frequency (for example, upper 30%) using a frequency distribution created from a history of acceleration at the time of starting of the past driver. Prediction with a higher acceleration and prediction with a lower acceleration may be performed based on the candidate acceleration A1, the second candidate acceleration A2 located at a lower frequency (for example, lower 30%), and the like.
但し、この場合、ドライバに発進の意思がない場合にも警報が発生する虞がある。そこで、ドライバの運転操作から発進の意思があると推定されるときにのみ複数の加速度を適用することで、不要な警報を回避することができる。具体的には、ドライバのブレーキ圧力を参照し、ブレーキ圧力の微分値が負の値(ブレーキを離す方向)若しくはブレーキ圧力が零のときドライバに発進の意思があるものとして、複数の加速度を適用する。 However, in this case, there is a possibility that an alarm is generated even when the driver does not intend to start. Therefore, unnecessary warnings can be avoided by applying a plurality of accelerations only when it is estimated that there is an intention to start from the driving operation of the driver. Specifically, refer to the brake pressure of the driver and apply multiple accelerations assuming that the driver has a willingness to start when the differential value of the brake pressure is negative (the direction in which the brake is released) or when the brake pressure is zero To do.
以上の横方向衝突予測時間TTCR及び進行方向衝突予測時間TTCは衝突判定部15に送られ、横方向衝突予測時間TTCR及び進行方向衝突予測時間TTCに基づいて自車両と接近物との衝突が判定される。自車両と接近物との衝突は、横方向衝突予測時間TTCRが0となる時刻の進行方向衝突予測時間TTC0が以下の条件で示す範囲に入ったときに発生すると判定される。この衝突判定条件は、自車両の幅Ws及び長さLs、接近物の幅Wo及び長さLoを用いて、以下の(5)式で与えられる。
−(Wo+Ls)/Vz<TTC0<(Ws+Lo)/Vx …(5)
The above-described lateral collision prediction time TTCR and traveling direction collision prediction time TTC are sent to the collision determination unit 15, and a collision between the host vehicle and an approaching object is determined based on the lateral collision prediction time TTCR and the traveling direction collision prediction time TTC. Is done. It is determined that the collision between the host vehicle and the approaching object occurs when the traveling direction collision prediction time TTC0 at the time when the lateral direction collision prediction time TTCR becomes 0 enters the range indicated by the following conditions. This collision determination condition is given by the following equation (5) using the width Ws and length Ls of the host vehicle and the width Wo and length Lo of the approaching object.
-(Wo + Ls) / Vz <TTC0 <(Ws + Lo) / Vx (5)
ここで、自車両の加速度Aによる修正がある場合には、進行方向相対速度Vzが変化するため、(5)式の条件は、具体的には、(4)式でt=TTCRとした進行方向相対速度Vzを用いて表現した以下の(5’)式で示すことができる。予測時間TTC0が(5’)式の判定条件を満足するとき、自車両と接近物とが衝突すると判定する。
−(Wo+Ls)/(A×TTCR+Vz0)<TTC0<(Ws+Lo)/Vx …(5’)
Here, when there is a correction due to the acceleration A of the host vehicle, the traveling direction relative speed Vz changes. Therefore, specifically, the condition of the equation (5) is a progression in which t = TTCR in the equation (4). It can be expressed by the following equation (5 ′) expressed using the directional relative velocity Vz. When the predicted time TTC0 satisfies the determination condition of the equation (5 ′), it is determined that the host vehicle and an approaching object collide.
− (Wo + Ls) / (A × TTCR + Vz0) <TTC0 <(Ws + Lo) / Vx (5 ′)
以上の衝突判定の条件は、図6に示す横方向衝突予測時間TTCRと進行方向衝突予測時間TTCとを軸とするTTCR−TTC空間で示すことができる。図6において、現在の時刻t=0で自車両が現在位置Psにあるとき、現在から時刻が進むと、図中の曲線Ptで示すように横方向衝突予測時間TTCRが小さくなる一方、自車両の加速により進行方向相対速度Vzが大きくなって進行方向衝突予測時間TTCは小さくなっていく。そして、最終的に横方向衝突予測時間TTCRが0となる時刻の進行方向衝突予測時間TTC0が図6中に破線で示すラインLu,Ldの間の領域内に入るとき、自車両と接近物が衝突すると判定される。 The above collision determination conditions can be shown in a TTCR-TTC space with the horizontal collision prediction time TTCR and the traveling direction collision prediction time TTC shown in FIG. 6 as axes. In FIG. 6, when the host vehicle is at the current position Ps at the current time t = 0, as the time advances from the present time, the predicted lateral collision time TTCR is reduced as shown by the curve Pt in the figure, while the host vehicle The traveling direction relative speed Vz is increased by the acceleration of the traveling direction, and the traveling direction collision prediction time TTC is decreased. When the traveling direction collision prediction time TTC0 at the time when the lateral direction collision prediction time TTCR finally becomes 0 enters the region between the lines Lu and Ld indicated by the broken line in FIG. It is determined that there is a collision.
詳細には、図6において、TTCR−TTC空間の座標原点を通るラインLcは、自車両と接近物とを代表点で表したときの両者が衝突する衝突ラインを示している(TTCR=0のとき、TTC=0)。このラインLcに対して、上側の破線のラインLuは、自車両及び接近物のサイズを加味した場合の衝突範囲の上限となる(Ws+Lo)/Vxのラインを示し、下側の破線のラインLdは、衝突範囲の下限となる(Wo+Ls)/Vzのラインで、自車両の加速度で修正したラインを示している。 Specifically, in FIG. 6, a line Lc passing through the coordinate origin of the TTCR-TTC space indicates a collision line where the host vehicle and an approaching object are represented by representative points (TTCR = 0). When TTC = 0). The upper broken line Lu with respect to the line Lc indicates the (Ws + Lo) / Vx line that is the upper limit of the collision range when the size of the host vehicle and the approaching object is taken into account, and the lower broken line Ld Indicates a (Wo + Ls) / Vz line that is the lower limit of the collision range, and is corrected by the acceleration of the host vehicle.
ラインLuの上側の領域は、接近物が衝突することなく先に自車両の前を通り過ぎることを示し、ラインLu,Lcの間の領域は、自車両が接近物にぶつけるような状況を表している。逆に、ラインLc,Ldの間の領域は、自車両が接近物にぶつられるような状況を表し、ラインLdの下側の領域は、自車両が接近物に衝突することなく先に通り過ぎる(接近物が自車両の後を通る)ことを示している。 The upper area of the line Lu indicates that the approaching object passes the front of the host vehicle without colliding first, and the area between the lines Lu and Lc indicates a situation where the host vehicle hits the approaching object. Yes. Conversely, the area between the lines Lc and Ld represents a situation in which the host vehicle is hit by an approaching object, and the area below the line Ld passes through the vehicle without colliding with the approaching object ( The approaching object passes behind the host vehicle.
警報・回避制御判定部16は、衝突判定部15で衝突と判定され、且つ横方向衝突予測時間TTCRが閾値Th_war(例えば、Th_war=3sec)以下のとき、警報発令又は回避制御介入と判定する。図7は、TTCR−TTC空間上での警報領域を示している。図7において、同図(a)の領域K_TTCRは、横方向衝突予測時間TTCRのみの条件で判定を行った場合の従来の警報範囲を示し、同図(b)の領域K_TTC0は、本手法の衝突予測時間TTCR,TTC0による条件で判定を行った場合の警報範囲を示している。 The alarm / avoidance control determination unit 16 determines that the alarm is issued or the avoidance control intervention is performed when the collision determination unit 15 determines that the collision occurs and the lateral collision prediction time TTCR is equal to or less than a threshold Th_war (for example, Th_war = 3 sec). FIG. 7 shows an alarm area on the TTCR-TTC space. In FIG. 7, area K_TTCR in FIG. 7A shows a conventional alarm range when the determination is made only under the condition of predicted lateral collision time TTCR, and area K_TTC0 in FIG. The alarm range when the determination is made under the condition of the predicted collision times TTCR and TTC0 is shown.
図7からは、単に横方向衝突予測時間TTCRのみで警報判定を行う従来の手法では、衝突が発生しないと予測される領域でも警報が発令されてしまう。これに対して、本手法では、衝突が発生しないと予測される領域では警報が発令されず、不要な警報を抑制できることがわかる。 From FIG. 7, in the conventional method in which the alarm determination is performed only by the lateral collision prediction time TTCR, an alarm is issued even in an area where no collision is predicted to occur. On the other hand, according to this method, it is understood that an alarm is not issued in an area where a collision is predicted not to occur, and an unnecessary alarm can be suppressed.
また、上述したように、自車両と接近物との衝突の形態として、双方の何れが先に相手に接触するかの衝突形態、すなわち自車両が接近物にぶつける場合と、自車両が接近物にぶつけられる場合とがある。自車両が接近物にぶつける場合は、減速による回避が望ましいが、自車両が接近物からぶつけられる場合には、逆に加速したほうが衝突を回避できる場合もある。従って、衝突判定部15で衝突の形態を含めた衝突判定を行い、衝突の形態により警報又は制御介入の方法を変更することで、ドライバにより安全な事故回避を促すことができる。 Further, as described above, as a form of collision between the own vehicle and the approaching object, a collision form of which of the two contacts the opponent first, that is, when the own vehicle hits the approaching object, You may be hit by. When the host vehicle hits an approaching object, avoidance by deceleration is desirable. However, when the host vehicle is hit from an approaching object, acceleration may be avoided to avoid a collision. Therefore, the collision determination unit 15 performs a collision determination including the collision type, and changes the warning or control intervention method according to the collision type, thereby prompting the driver to avoid a safe accident.
このように本実施の形態においては、自車両と接近物とが出会い頭に衝突する可能性を横方向の衝突予測時間と進行方向の衝突予測時間とに基づいて判定し、自車両が設定車速以下のときには、横方向の衝突予測時間が零になるときの進行方向の衝突予測時間を自車両の加速度に基づいて修正するようにしている。これにより、自車両が停止から発進しようとしている場合、若しくは極低速で走行している場合にも、衝突判定の信頼性を向上して誤判定を回避することができ、更に、衝突の可能性がない場合の不要な警報を抑制するとともに、自車両が停止時であってもドライバに発進の意思がある場合の未警報・警報遅れを回避することができる。 Thus, in the present embodiment, the possibility that the host vehicle and an approaching object meet and collide with each other is determined based on the collision prediction time in the lateral direction and the collision prediction time in the traveling direction, and the host vehicle is below the set vehicle speed. In this case, the collision prediction time in the traveling direction when the predicted collision time in the lateral direction becomes zero is corrected based on the acceleration of the host vehicle. As a result, even when the host vehicle is about to start from a stop or is traveling at an extremely low speed, the reliability of collision determination can be improved and erroneous determination can be avoided. It is possible to suppress unnecessary warnings when there is no warning and to avoid unalarmed / alarm delays when the driver intends to start even when the vehicle is stopped.
1 衝突判定装置
11 接近物検出部
12 接近物距離算出部
13 横方向衝突予測時間算出部
14 進行方向衝突予測時間算出部
14a 予測時間修正部
15 衝突判定部
16 警報・回避制御判定部
A 加速度
TTC 進行方向衝突予測時間
TTC0 横方向衝突予測時間が零になるときの進行方向衝突予測時間
TTCR 横方向衝突予測時間
X 横方向距離
Z 進行方向距離
Vx 横方向相対速度
Vz 進行方向相対速度
DESCRIPTION OF SYMBOLS 1 Collision determination apparatus 11 Approaching object detection part 12 Approaching object distance calculation part 13 Lateral direction collision prediction time calculation part 14 Travel direction collision prediction time calculation part 14a Prediction time correction part 15 Collision determination part 16 Alarm / avoidance control determination part A Acceleration TTC Traveling direction collision prediction time TTC0 Traveling direction collision prediction time when the lateral collision prediction time becomes zero TTCR Lateral collision prediction time X Lateral distance Z Traveling direction distance Vx Lateral relative speed Vz Traveling direction relative speed
Claims (2)
自車両に対する前記接近物の横方向における相対距離と相対速度とから横方向衝突予測時間を算出する横方向衝突予測時間算出部と、
自車両に対する前記接近物の進行方向における相対距離と相対速度とから進行方向衝突予測時間を算出する進行方向衝突予測時間算出部と、
前記横方向衝突予測時間と前記進行方向衝突予測時間とに基づいて自車両と前記接近物との衝突を判定する衝突判定部とを備え、
前記進行方向衝突予測時間算出部は、自車両が設定車速以下のとき、ブレーキ圧力に基づいてドライバの発進の意思を推定し、発進の意思があると推定された場合にのみ、自車両の加速度に、過去の発進時における加速度の履歴に基づいて作成した頻度分布によって推定した複数の値を設定して、設定したそれぞれの加速度で前記横方向衝突予測時間が零になるときの前記進行方向衝突予測時間を修正した複数の予測時間の候補を算出し、
前記衝突判定部は、前記複数の予測時間の候補の一つでも衝突判定条件を満足するとき、衝突発生と判定する
ことを特徴とする車両の衝突判定装置。 An approaching object detection unit for detecting an approaching object approaching the host vehicle;
A lateral collision prediction time calculation unit that calculates a lateral collision prediction time from a relative distance and a relative speed in a lateral direction of the approaching object with respect to the host vehicle;
A traveling direction collision prediction time calculation unit that calculates a traveling direction collision prediction time from the relative distance and relative speed in the traveling direction of the approaching object with respect to the host vehicle;
A collision determination unit for determining a collision between the host vehicle and the approaching object based on the lateral collision prediction time and the traveling direction collision prediction time;
The traveling direction collision prediction time calculation unit estimates the driver's intention to start based on the brake pressure when the host vehicle is below the set vehicle speed, and only when the host vehicle's intention to start is estimated. A plurality of values estimated by a frequency distribution created based on a history of acceleration at the time of a past start, and the traveling direction collision when the lateral collision prediction time becomes zero at each set acceleration Calculate multiple forecast time candidates with revised forecast times,
The vehicle collision determination device, wherein the collision determination unit determines that a collision has occurred when at least one of the plurality of prediction time candidates satisfies a collision determination condition .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013018792A JP6103693B2 (en) | 2013-02-01 | 2013-02-01 | Vehicle collision determination device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013018792A JP6103693B2 (en) | 2013-02-01 | 2013-02-01 | Vehicle collision determination device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014149741A JP2014149741A (en) | 2014-08-21 |
JP6103693B2 true JP6103693B2 (en) | 2017-03-29 |
Family
ID=51572647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013018792A Active JP6103693B2 (en) | 2013-02-01 | 2013-02-01 | Vehicle collision determination device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6103693B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6168025B2 (en) | 2014-10-14 | 2017-07-26 | トヨタ自動車株式会社 | Intersection-related warning device for vehicles |
KR20170046483A (en) | 2015-10-21 | 2017-05-02 | 현대자동차주식회사 | Autonomous emergency braking apparatus and method |
JP2017109560A (en) * | 2015-12-15 | 2017-06-22 | 株式会社Subaru | Vehicle driving support control device |
KR102576697B1 (en) * | 2016-04-01 | 2023-09-12 | 주식회사 에이치엘클레무브 | Collision preventing apparatus and collision preventing method |
CN106004832A (en) * | 2016-06-22 | 2016-10-12 | 王文礼 | Double-control automatic emergency brake device |
KR102545582B1 (en) * | 2016-07-11 | 2023-06-21 | 주식회사 에이치엘클레무브 | System for avoiding collision in crossroad and method for control thereof |
US10403145B2 (en) | 2017-01-19 | 2019-09-03 | Ford Global Technologies, Llc | Collison mitigation and avoidance |
JP6881219B2 (en) | 2017-10-18 | 2021-06-02 | トヨタ自動車株式会社 | Pre-collision control device and pre-collision control method |
JP2022149840A (en) | 2021-03-25 | 2022-10-07 | トヨタ自動車株式会社 | Drop-off assist device |
CN113954867B (en) * | 2021-09-29 | 2023-10-20 | 广州文远知行科技有限公司 | Method, device, equipment and storage medium for rapidly calculating time from object to collision |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3654048B2 (en) * | 1999-05-20 | 2005-06-02 | 日産自動車株式会社 | Drive control apparatus for hybrid vehicle |
JP4396250B2 (en) * | 2003-12-08 | 2010-01-13 | 日産自動車株式会社 | Intersection collision prevention device |
JP4762610B2 (en) * | 2005-06-14 | 2011-08-31 | 本田技研工業株式会社 | Vehicle travel safety device |
JP4914787B2 (en) * | 2007-08-30 | 2012-04-11 | 本田技研工業株式会社 | Vehicle object detection device |
JP2011118723A (en) * | 2009-12-04 | 2011-06-16 | Honda Motor Co Ltd | Device for avoiding collision of vehicle |
KR101029096B1 (en) * | 2010-11-18 | 2011-04-13 | 김은숙 | Method of avoiding side collision of vehicle |
EP2711911B1 (en) * | 2011-05-18 | 2017-07-12 | Honda Motor Co., Ltd. | Drive control device |
-
2013
- 2013-02-01 JP JP2013018792A patent/JP6103693B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014149741A (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6103693B2 (en) | Vehicle collision determination device | |
JP5167051B2 (en) | Vehicle driving support device | |
US10627228B2 (en) | Object detection device | |
US10967857B2 (en) | Driving support device and driving support method | |
CN104554272B (en) | The path planning of avoidance steering operation when target vehicle and surrounding objects be present | |
JP6184923B2 (en) | Vehicle collision avoidance device | |
EP3134888B1 (en) | False warning reduction using location data | |
US8060307B2 (en) | Vehicle driving assistance system | |
US9613280B2 (en) | System and method for front detecting of vehicle | |
US10569769B2 (en) | Vehicle control device | |
WO2017111135A1 (en) | Travel assistance device and travel assistance method | |
WO2018074287A1 (en) | Vehicle control device | |
JP7279053B2 (en) | System and method for detecting collision risk between a motor vehicle and a secondary object in the driving lane next to the vehicle when changing lanes | |
JP6384534B2 (en) | Vehicle target detection system | |
JP2011073529A (en) | Vehicle controller | |
JP6035095B2 (en) | Vehicle collision determination device | |
JP6497329B2 (en) | Vehicle travel control device | |
JP6207952B2 (en) | Leading vehicle recognition device | |
JP4864450B2 (en) | Vehicle driving support device | |
JP2012071676A (en) | Driving support system for vehicle | |
CN115223131A (en) | Adaptive cruise following target vehicle detection method and device and automobile | |
EP2686702B1 (en) | A device and a method for estimating parameters relating to vehicles in front | |
JP2023107674A (en) | Driving support device for vehicle | |
JP5601980B2 (en) | Vehicle object determination device | |
US20240282196A1 (en) | Vehicle drive control device, vehicle control system, and vehicle control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6103693 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |