JP6103628B2 - Methane reforming method and methane reforming catalyst used therefor - Google Patents

Methane reforming method and methane reforming catalyst used therefor Download PDF

Info

Publication number
JP6103628B2
JP6103628B2 JP2012257440A JP2012257440A JP6103628B2 JP 6103628 B2 JP6103628 B2 JP 6103628B2 JP 2012257440 A JP2012257440 A JP 2012257440A JP 2012257440 A JP2012257440 A JP 2012257440A JP 6103628 B2 JP6103628 B2 JP 6103628B2
Authority
JP
Japan
Prior art keywords
methane reforming
methane
gas
gasification
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012257440A
Other languages
Japanese (ja)
Other versions
JP2014105120A (en
Inventor
中西 正和
正和 中西
知子 小木
知子 小木
高城 室井
高城 室井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012257440A priority Critical patent/JP6103628B2/en
Publication of JP2014105120A publication Critical patent/JP2014105120A/en
Application granted granted Critical
Publication of JP6103628B2 publication Critical patent/JP6103628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、バイオマスや石炭等の固体有機物のガス化に関し、特に、生成ガス中に含まれるメタンをガス化剤の一部である水蒸気と反応させてH2とCOへ改質するメタン改質方法、及びそれに用いるメタン改質触媒に関する。 The present invention relates to gasification of solid organic matter such as biomass and coal, and in particular, methane reforming by reacting methane contained in product gas with water vapor that is part of a gasifying agent to reform to H 2 and CO. The present invention relates to a method and a methane reforming catalyst used therefor.

バイオマスや石炭のガス化は、これらの固体有機物を、ガス化炉内で水蒸気や酸素等のガス化剤を用い、H2、CO、CO2、CH4を主成分とするガス生成する技術である。ガス化により生成したガスは、ガスエンジンの燃料に利用可能であり、また、触媒を利用すると、H2、CO、CO2から液体燃料などの化学製品を製造することができ、液体燃料は、自動車や飛行機等輸送機関の燃料に利用可能であるために、実用化を前提とした実証段階にあり、これからの発展が期待されている。 Biomass and coal gasification is a technology that uses these solid organic substances to produce gas containing H 2 , CO, CO 2 , and CH 4 as main components using a gasifying agent such as water vapor or oxygen in a gasification furnace. is there. The gas generated by gasification can be used as a fuel for a gas engine, and if a catalyst is used, a chemical product such as liquid fuel can be produced from H 2 , CO, and CO 2 . Since it can be used as a fuel for transportation vehicles such as automobiles and airplanes, it is in a demonstration stage premised on practical use, and future development is expected.

バイオマスや石炭等の固体有機物のガス化方式には、実用化段階または実証化段階のものとして、固定床型ガス化、ロータリーキルン、噴流床型ガス化、及び流動床型ガス化がある。
固定床ガス化やロータリーキルンは、構造と運転が簡単で、原則的に空気をガス化剤に用いるので、早い時期に開発された。しかし、空気由来の窒素が生成ガス中に含まれる、タール生成量が多い、生成ガス組成を制御できない等の欠点を有する。
流動床型ガス化や噴流床型ガス化は、比較的最近開発され、水蒸気や酸素等をガス化剤に用いることが多く、生成ガス組成を制御可能、窒素が生成ガス中に含まれない等の特徴を有する。
これらのガス化方式は、以下のとおり、用いる固体有機物や生成ガスの用途等によって異なる。
Gasification methods for solid organic substances such as biomass and coal include fixed bed type gasification, rotary kiln, spouted bed type gasification, and fluidized bed type gasification as those in the practical use stage or demonstration stage.
Fixed bed gasification and rotary kilns were developed early because they are simple in structure and operation and in principle use air as the gasifying agent. However, there are drawbacks such that nitrogen derived from air is contained in the product gas, the amount of tar produced is large, and the composition of the product gas cannot be controlled.
Fluidized bed gasification and spouted bed gasification have been developed relatively recently, and water vapor, oxygen, etc. are often used as gasifying agents, the composition of the product gas can be controlled, nitrogen is not included in the product gas, etc. It has the characteristics of.
These gasification methods differ depending on the use of the solid organic matter to be used and the product gas as follows.

石炭の場合、固定床型石炭ガス化を採用している場合もあるが、世界的に多くの企業が噴流床型石炭ガス化を採用している。
また、バイオマスの場合、IEA(International Energy Agency、国際エネルギー機関)のBioenergy Agreementに基づくTask33(Thermal gasification)が報告している様に、用途により、ガス化方式は使い分けられている。
In the case of coal, fixed bed coal gasification may be adopted, but many companies worldwide are adopting spouted bed coal gasification.
Further, in the case of biomass, as reported by Task 33 (Thermal gasification) based on the Bioenergy Agreement of IEA (International Energy Agency), gasification methods are properly used depending on applications.

すなわち、生成ガスを燃焼して熱を得、ガスエンジンの燃料として発電を行う場合には、生成ガスが燃焼すれば良く、生成ガス組成を制御する必要が無い。そのため小規模なプラントでは固定床型バイオマスガス化またはロータリーキルンが主に用いられる。大規模プラントでは流動床型バイオマスガス化や噴流床型バイオマスガス化が用いられる。
一方、生成ガスから触媒により液体燃料を合成する場合や生成ガスを化学原料に利用する場合には、触媒性能に応じ生成ガス組成を制御する必要があるため、流動床型バイオマスガス化や噴流床型バイオマスガス化が用いられる。
That is, when the generated gas is burned to obtain heat and power is generated as a fuel for the gas engine, the generated gas only needs to be burned, and there is no need to control the generated gas composition. Therefore, fixed-bed biomass gasification or rotary kiln is mainly used in small-scale plants. In large-scale plants, fluidized bed biomass gasification and spouted bed biomass gasification are used.
On the other hand, when synthesizing liquid fuel from a product gas with a catalyst or when the product gas is used as a chemical raw material, it is necessary to control the product gas composition according to the catalyst performance. Type biomass gasification is used.

さらに、下水汚泥の様な廃棄物系バイオマスは、無料もしくは安価で、安定に供給可能であるが、下水汚泥は含水率が高く、乾燥すると粉状になるため、固定床型ガス化やロータリーキルンの原料には使用できず、流動床型バイオマスガス化または噴流床型バイオマスガス化の原料に用いることができる。   Furthermore, waste biomass such as sewage sludge is free or inexpensive and can be supplied stably, but sewage sludge has a high water content and becomes powdery when dried. It cannot be used as a raw material, and can be used as a raw material for fluidized bed type biomass gasification or spouted bed type biomass gasification.

バイオマスや石炭等の固体有機物をガス化剤を用いてガス化すると、前記のH2、CO、CO2、CH4を主成分とする生成ガスの他に、常温で液状の炭化水素(タール)と固体の炭化水素や灰分(固体残渣)も副生される。タールと固体残渣が副生すると生成ガス量が減り、全体の効率が低下する。 When solid organic matter such as biomass or coal is gasified using a gasifying agent, in addition to the product gas mainly composed of H 2 , CO, CO 2 and CH 4 , hydrocarbon (tar) which is liquid at normal temperature Solid hydrocarbons and ash (solid residue) are also by-produced. When tar and solid residue are by-produced, the amount of generated gas decreases and the overall efficiency decreases.

前記の固定床型ガス化、ロータリーキルン及び流動床型ガス化では、副生するタールと生成ガスの比率は通常数g〜数十g/m3であるが、触媒を用い、タールを水蒸気と反応させて、H2、CO、CO2、CH4を主成分とするガスへ水蒸気改質することにより生成ガス量を増やすことが行われる。 In the fixed bed type gasification, rotary kiln and fluidized bed type gasification, the ratio of by-product tar to product gas is usually several g to several tens g / m 3 , but the catalyst is used to react tar with water vapor. Thus, the amount of generated gas is increased by steam reforming to a gas containing H 2 , CO, CO 2 , and CH 4 as main components.

例えば、特許文献1においては、流動床ガス化炉内の温度を1000℃以下の低温でガス化処理してもタール分を効率的に水蒸気改質できるガス化触媒を目的として、タングステン塩、コバルト塩、モリブデン塩の1種または2種以上と、硫酸ニッケル、酢酸ニッケル、炭酸ニッケルから選ばれた1種又は2種以上と、マグネシウム原料およびカルシウム原料との複合体を、担体表面に担持したガス化触媒が提案されており、タングステン、コバルト、モリブデン成分は、ニッケルに吸着し易い硫黄分を取り込み、触媒をガス化炉に投入した際、ガス中に離脱する作用をするので、ニッケルの触媒活性が高く維持され、触媒の硫黄被毒を確実かつ効果的に抑制するとしている。触媒層を流動床ガス化炉内に設置する場合の触媒温度は1000℃以下、流動床ガス化炉後段にタール分解設備を設置する場合の触媒温度は500〜900℃としている。   For example, in Patent Document 1, tungsten salt and cobalt are used for the purpose of a gasification catalyst capable of efficiently steam reforming the tar content even when the temperature in the fluidized bed gasification furnace is gasified at a low temperature of 1000 ° C. or less. A gas in which a composite of one or more of salts and molybdenum salts, one or more selected from nickel sulfate, nickel acetate, and nickel carbonate, and a magnesium raw material and a calcium raw material is supported on the support surface A catalytic catalyst has been proposed, and the tungsten, cobalt, and molybdenum components take in sulfur that is easily adsorbed by nickel, and when the catalyst is put into a gasification furnace, it acts to separate into the gas, so the catalytic activity of nickel Is maintained high, and the sulfur poisoning of the catalyst is surely and effectively suppressed. The catalyst temperature when the catalyst layer is installed in the fluidized bed gasification furnace is 1000 ° C. or less, and the catalyst temperature when the tar decomposition facility is installed at the latter stage of the fluidized bed gasification furnace is 500 to 900 ° C.

また、特許文献2では、固定床型ガス化炉内に設けられた支持体上に、ルテニウムをアルミナ担体に担持してなるRu/Al23触媒、ニッケル系触媒、酸化鉄系触媒等の水蒸気改質触媒からなる触媒層を配置することにより、固体燃料を熱分解してガス化した際に副生するタールを水蒸気改質触媒を用いて水蒸気改質することが提案されている。 Further, in Patent Document 2, a Ru / Al 2 O 3 catalyst, a nickel-based catalyst, an iron oxide-based catalyst, etc., in which ruthenium is supported on an alumina carrier on a support provided in a fixed bed type gasifier. It has been proposed that by using a steam reforming catalyst, a tar formed as a by-product when a solid fuel is pyrolyzed and gasified by using a steam reforming catalyst by arranging a catalyst layer made of a steam reforming catalyst.

一方、噴流床型ガス化では、生成するタール量は、前記の固定床型ガス化、ロータリーキルン及び流動床型ガス化で生成するタール量と比較して、約1/100と微量なので、タールの水蒸気改質は通常行われない。
生成されたガスを触媒による液体燃料合成や化学原料に用いる場合、前記のとおり、流動床型バイオマスガス化又は噴流床型バイオマスガス化が用いられるが、流動床型バイオマスガス化ではタール改質が行われ、噴流床型バイオマスガス化ではタール改質を行うことなく単独で用いられることとなる。
On the other hand, in spouted bed gasification, the amount of tar produced is about 1/100, which is a small amount compared to the amount of tar produced by the fixed bed gasification, rotary kiln and fluidized bed gasification. Steam reforming is not usually performed.
When the generated gas is used for liquid fuel synthesis or chemical raw materials using a catalyst, fluidized bed type biomass gasification or spouted bed type biomass gasification is used as described above. In fluidized bed type biomass gasification, tar reforming is performed. In spouted bed type biomass gasification, it will be used alone without tar reforming.

バイオマスや石炭等の固体燃料をガス化して得られる、H2、CO、CO2、CH4を主成分とする生成ガスから触媒を用いて液体燃料を合成するBTL(Biomass-to-Liquid)やCTL(Coal-to-Liquid)プロセスは、H2とCOやCO2を原料とするプロセスでC1化学と呼ばれる。
C1化学では、H2とCOやCO2をできるだけ多く含むこと、さらに、H2とCOやCO2のモル比([H2]/[CO]、[H2]/([CO]+[CO2])が1〜3.5と、水素比率の高いガスを得ることが望ましい。
BTL (Biomass-to-Liquid), which uses a catalyst to synthesize liquid fuel from a product gas containing H 2 , CO, CO 2 , and CH 4 as main components, obtained by gasifying solid fuel such as biomass and coal The CTL (Coal-to-Liquid) process is a process using H 2 and CO or CO 2 as raw materials and is called C1 chemistry.
In C1 chemistry, H 2 and CO or CO 2 are contained as much as possible, and the molar ratio of H 2 to CO or CO 2 ([H 2 ] / [CO], [H 2 ] / ([CO] + [ It is desirable to obtain a gas with a high hydrogen ratio of CO 2 ]) of 1 to 3.5.

生成ガス中のH2、CO、CO2濃度は、ガス化条件を変えることにより制御可能であるが、メタン(CH4)濃度はガス化条件によらず、ほぼ一定で、バイオマスからの生成ガス中には常に約10%含まれる。しかし、メタンはBTLやCTLプロセスの合成原料にならず、触媒合成後のオフガスにそのまま含まれる。システムによってはCH4の一部を熱源として用いる場合もあるが、通常はトータルプロセス効率が低下する。
そこで、生成ガス中に含まれるメタンを、メタン改質触媒を用い、650℃以上の高温で、未反応ガス化剤の一部である水蒸気と反応させてH2とCOへ改質し(CH4+H2O→3H2+CO)、触媒合成原料を増やせば、トータルプロセス効率を10%程度以上向上できる。
The H 2 , CO, and CO 2 concentrations in the product gas can be controlled by changing the gasification conditions, but the methane (CH 4 ) concentration is almost constant regardless of the gasification conditions, and the product gas from biomass It is always about 10%. However, methane does not become a synthesis raw material for BTL or CTL processes, but is included as it is in the off-gas after catalyst synthesis. Depending on the system, a part of CH 4 may be used as a heat source, but the total process efficiency usually decreases.
Therefore, methane contained in the product gas is reacted with water vapor, which is a part of the unreacted gasifying agent, at a high temperature of 650 ° C. or higher using a methane reforming catalyst and reformed to H 2 and CO (CH 4 + H 2 O → 3H 2 + CO) If the catalyst synthesis raw material is increased, the total process efficiency can be improved by about 10% or more.

2はCH4に比べ、単位エネルギー当たりのエクセルギーが大きい。石炭ガス化複合発電(IGCCやIGFC)で用いられるタービン発電では、CH4をH2とCOへ水蒸気改質すると、発電効率が向上する。
さらにH2は燃料電池の燃料である。IGFCは燃料電池をカスケード利用するので、CH4をH2とCOへ水蒸気改質すると、効率は著しく向上する。
H 2 has a larger exergy per unit energy than CH 4 . In turbine power generation used in coal gasification combined power generation (IGCC or IGFC), power generation efficiency is improved by steam reforming CH 4 into H 2 and CO.
Further, H 2 is a fuel for the fuel cell. Since IGFC uses fuel cells in cascade, efficiency is significantly improved when steam reforming CH 4 to H 2 and CO.

Niが、メタン改質効果を有することはよく知られており、Niを主成分とするNi系メタン改質触媒は既に商品化されている。
しかし、バイオマスや石炭等の固体燃料は硫黄(S)を含むため、生成ガスには、原料に由来する硫黄化合物(H2SやCOS等。通常、バイオマスからの生成ガス中のH2S濃度は100〜1000ppm、下水汚泥からの生成ガス中のH2S濃度は1%、石炭からの生成ガス中のH2S濃度は0.5%程度)やハロゲン(Cl等)や窒素化合物(NH3等)やリン化合物が含まれ、これらの成分S、P、Cl等は、Niと反応しやすく、これらと反応したNiはメタン改質効果を失う(メタン改質触媒が失活する)。特にH2S等の硫黄化合物とCl等のハロゲン化合物は、微量でも被毒作用が強いため、1ppm以下レベルの精製が必要である。
そのため、従来、触媒によるメタン改質前に、脱硫剤等を用いて生成ガスを精製し、その後メタン改質触媒によるメタン改質が行われている。
It is well known that Ni has a methane reforming effect, and Ni-based methane reforming catalysts containing Ni as a main component have already been commercialized.
However, since solid fuels such as biomass and coal contain sulfur (S), the produced gas contains sulfur compounds (H 2 S, COS, etc. derived from raw materials. Usually, the H 2 S concentration in the produced gas from biomass is 100 to 1000 ppm, H 2 S concentration of 1% in the product gas from sewage sludge, H 2 S concentration is about 0.5% of the product gas from coal) or halogen (Cl, etc.) and nitrogen compounds (NH 3 ) and phosphorus compounds, and these components S, P, Cl and the like are likely to react with Ni, and Ni reacting with these loses the methane reforming effect (the methane reforming catalyst is deactivated). In particular, a sulfur compound such as H 2 S and a halogen compound such as Cl have a strong poisoning action even in a very small amount, and need to be purified at a level of 1 ppm or less.
Therefore, conventionally, before the methane reforming by the catalyst, the product gas is purified using a desulfurizing agent or the like, and then the methane reforming by the methane reforming catalyst is performed.

特開2007−283209号公報JP 2007-283209 A 特開2009−197073号公報JP 2009-197073 A

従来の脱硫方法は、生成ガスを室温に冷却後、アミン溶液等を用いる湿式脱硫、活性炭やZn系脱硫剤を用いた乾式脱硫がある。
バイオマスのガス化温度は900〜1000℃、石炭のガス化温度は1200〜1500℃である。ガス化炉から出て来た直後の生成ガスは800℃程度以上で、未反応ガス化剤の水蒸気を含む。これまで、高温かつ高水蒸気で機能する脱硫剤は報告されておらず、例えば水蒸気を含まない条件では、活性炭等を用いて400〜500℃程度迄(これ以上の温度では活性炭が燃焼する)、水蒸気を含む条件では、Zn系脱硫剤が実用化されているが、350℃程度迄しか使用できない。そこで、800〜1,200℃の高温で、かつ水蒸気を30〜50%含む生成ガスを、一旦室温〜100℃まで冷却し、水蒸気除去後、湿式あるいは乾式で脱硫し、650℃〜750℃に再加熱して水蒸気を加え、メタン改質を行うというプロセスが通常行われている。
Conventional desulfurization methods include wet desulfurization using an amine solution or the like after the product gas is cooled to room temperature, and dry desulfurization using activated carbon or a Zn-based desulfurizing agent.
The gasification temperature of biomass is 900 to 1000 ° C, and the gasification temperature of coal is 1200 to 1500 ° C. The product gas immediately after coming out of the gasification furnace is about 800 ° C. or higher and contains water vapor as an unreacted gasifying agent. So far, no desulfurization agent that functions at high temperature and high steam has been reported. For example, under conditions that do not include steam, activated carbon or the like is used up to about 400 to 500 ° C. (the activated carbon burns at higher temperatures), Under conditions containing water vapor, Zn-based desulfurization agents have been put into practical use, but can only be used up to about 350 ° C. Therefore, the product gas containing 30 to 50% of water vapor at a high temperature of 800 to 1,200 ° C. is once cooled to room temperature to 100 ° C., and after removing the water vapor, desulfurized by wet or dry method to 650 ° C. to 750 ° C. A process of reheating and adding steam to perform methane reforming is usually performed.

このプロセスは、冷却&再加熱プロセス(高温→低温→高温)と水蒸気添加が必要で、装置と運転が複雑高価になり、ヒートロスも大きく、効率が低下する。可能であれば、ガス化直後の高温かつ高水蒸気状態をできるだけ維持したまま、脱硫→メタン改質、あるいは脱硫プロセス無しで直接メタン改質を行うことが望ましい。   This process requires a cooling & reheating process (high temperature → low temperature → high temperature) and steam addition, which makes the equipment and operation complicated and expensive, has a large heat loss, and reduces efficiency. If possible, it is desirable to perform methane reforming directly without desulfurization → methane reforming or desulfurization process while maintaining the high temperature and high steam state immediately after gasification as much as possible.

従来の脱硫方法により、H2S濃度を1ppm程度以下に低減できるので、Ni系メタン改質触媒は硫黄(S)等と反応、NiSとなり、Niメタン改質触媒が失活する迄の時間(寿命)を100倍以上伸ばすことができるものの、寿命は有限である。Ni金属は高価で、Ni系メタン改質触媒も同様に高価である。可能であれば、半永久的にメタン改質できることが望ましい。 Since the H 2 S concentration can be reduced to about 1 ppm or less by the conventional desulfurization method, the Ni-based methane reforming catalyst reacts with sulfur (S), etc., becomes NiS, and the time until the Ni methane reforming catalyst is deactivated ( Life) can be extended more than 100 times, but the life is finite. Ni metal is expensive, and Ni-based methane reforming catalysts are also expensive. If possible, it is desirable to be able to reform methane semipermanently.

脱硫プロセス無しに半永久的にNi系メタン改質触媒を用い、生成ガスに含まれるCH4をH2とCOへ改質できれば、触媒による液体燃料合成及び化学原料及び石炭ガス化複合発電(IGCCやIGFC)の効率を向上できるとともにコストを大幅に削減できる。
しかるに、特許文献1及び特許文献2は、ガス化時に副生するタールを触媒により水蒸気と反応させ、H2、CO、CO2、CH4を主成分とするガスへの改質を目的とするものである。特許文献1における実施例でもメタンを含まないガスを用いており、メタン改質を目的としていないことは明らかである。
If a Ni-based methane reforming catalyst is used semi-permanently without a desulfurization process, and CH 4 contained in the product gas can be reformed to H 2 and CO, liquid fuel synthesis by the catalyst and chemical raw materials and coal gasification combined power generation (IGCC and IGFC) efficiency can be improved and costs can be greatly reduced.
However, Patent Document 1 and Patent Document 2 aim at reforming to gas containing H 2 , CO, CO 2 , and CH 4 as main components by reacting tar generated as a by-product during gasification with water vapor using a catalyst. Is. It is clear that the example in Patent Document 1 also uses a gas not containing methane and is not intended for methane reforming.

本発明は、こうした現状を鑑みてなされたものであって、Ni系メタン改質触媒またはNi金属を用い、原料成分に由来する被毒成分を除去することなく、ガス化直後の高温を維持したまま900℃以上で、未反応のガス化剤の一部である水蒸気を用い、メタン改質を安定に長時間行うことが可能であり、しかも如何なるガス化炉にも簡便に適用できる方法を提供することを目的とするものである。   The present invention has been made in view of the current situation, and uses a Ni-based methane reforming catalyst or Ni metal to maintain a high temperature immediately after gasification without removing poisoning components derived from raw material components. Providing a method that can perform methane reforming stably for a long time using steam that is part of an unreacted gasifying agent at 900 ° C. or higher, and can be easily applied to any gasification furnace It is intended to do.

これらの課題を解決するため、本発明においては、Ni系メタン改質触媒及びNi金属を使用する方法に工夫をこらすことにより、未反応のガス化剤の一部である水蒸気を用い、CH4等常温でガス状の炭化水素のメタン改質を安定に長時間行うことを可能としたものであって、以下の発明が提供される。
[1]バイオマスや石炭等の固体有機物をガス化剤によりガス化して生成されるガスの中のメタンをメタン改質触媒の存在下に水蒸気と反応させて改質する方法であって、
ガス化炉内又はガス化炉後段のメタン改質設備内に、気体透過性のシート状又は板状のNi系メタン改質触媒を配置し、900℃以上に加熱することを特徴とするメタン改質方法。
[2]前記メタン改質触媒が、1枚又は2枚以上を重ねた網状のNi金属である[1]に記載のメタン改質方法。
[3]前記網状のNi金属を、ロール状に加工して用いることを特徴とする[1]又は[2]に記載のメタン改質方法。
[4]バイオマスや石炭等の固体有機物をガス化剤によりガス化させるガス化炉内に配置して生成ガス中のメタンを水蒸気と反応させて改質するメタン改質触媒であって、気体透過性のシート状又は板状であることを特徴とするメタン改質触媒。
[5]バイオマスや石炭等の固体有機物をガス化剤によりガス化させるガス化炉後段のメタン改質設備内に配置して生成ガス中のメタンを水蒸気と反応させて改質するメタン改質触媒であって、気体透過性のシート状又は板状であることを特徴とするメタン改質触媒。
[6]網状のNi金属からなることを特徴とする[4]又は[5]に記載のメタン改質触媒。
[7]ロール状に加工されていることを特徴とする[4]〜[6]のいずれかに記載のメタン改質触媒。
[8]バイオマスや石炭等の固体有機物をガス化剤によりガス化するガス化炉であって、ガス化炉内に請求項4〜7のいずれかに記載されたNi系メタン改質触媒が設置されていることを特徴とするガス化炉。
[9]噴流床型ガス化炉であることを特徴とする[8]に記載のガス化炉。
In order to solve these problems, in the present invention, by devising a method of using a Ni-based methane reforming catalyst and Ni metal, steam that is part of an unreacted gasifying agent is used, and CH 4 The present invention provides the following invention, which makes it possible to stably perform methane reforming of gaseous hydrocarbons at a normal temperature for a long time.
[1] A method of reforming methane in a gas produced by gasifying solid organic matter such as biomass or coal with a gasifying agent by reacting with steam in the presence of a methane reforming catalyst,
A gas permeable sheet-like or plate-like Ni-based methane reforming catalyst is placed in the methane reforming facility in the gasification furnace or in the latter stage of the gasification furnace, and is heated to 900 ° C. or more. Quality method.
[2] The methane reforming method according to [1], wherein the methane reforming catalyst is a net-like Ni metal in which one sheet or two or more sheets are stacked.
[3] The methane reforming method according to [1] or [2], wherein the net-like Ni metal is processed into a roll shape.
[4] A methane reforming catalyst that is disposed in a gasification furnace that gasifies solid organic matter such as biomass and coal with a gasifying agent and reforms methane in the product gas by reacting with water vapor, and gas permeation A methane reforming catalyst characterized by having a sheet-like or plate-like shape.
[5] A methane reforming catalyst that is disposed in a methane reforming facility at the latter stage of a gasification furnace that gasifies solid organic matter such as biomass or coal with a gasifying agent, and reforms by reacting methane in the generated gas with steam. A methane reforming catalyst having a gas permeable sheet shape or plate shape.
[6] The methane reforming catalyst according to [4] or [5], which is made of a reticulated Ni metal.
[7] The methane reforming catalyst according to any one of [4] to [6], which is processed into a roll shape.
[8] A gasification furnace for gasifying solid organic matter such as biomass and coal with a gasifying agent, wherein the Ni-based methane reforming catalyst according to any one of claims 4 to 7 is installed in the gasification furnace Gasification furnace characterized by being made.
[9] The gasification furnace according to [8], which is a spouted bed type gasification furnace.

本発明によれば、Ni系メタン改質触媒またはNi金属を、気体透過性のシート状又は板状の部材として、ガス化炉内に設置またはガス化炉後段に設置することにより、900℃以上で、長時間安定にメタンなどの炭化水素を水蒸気改質することが可能であり、ガス化炉内の生成ガスにH2Sが含まれていても、900℃以上ではNiSとNiが平衡状態になり、長時間安定にメタンなど常温でガス状の炭化水素を水蒸気改質する効果を有するものである。また、メタン改質触媒としてNi金属を用いることができ、特に、Ni金網を用いることにより、Niとガスが良く接触し、水蒸気改質効果が改善される。平面状のNi金網を重ねると、ガスがNiと接触する回数はNi金網の枚数と同じであるが、さらに、ロール状のNi金網をガス流に対し縦に置くと、ガスがNiと接触する回数はNi金網に使われているNi針金の本数と同じになり、格段に増加するためと考えられる。さらにまた、ロール状に加工する事により、ガス化時に副生する固体残渣がNi金網を閉塞することなく滑らかに流れ、長時間安定にガス化できる。 According to the present invention, the Ni-based methane reforming catalyst or Ni metal is installed as a gas-permeable sheet-like or plate-like member in the gasification furnace or in the latter stage of the gasification furnace, so that the temperature is 900 ° C. or higher. Thus, hydrocarbons such as methane can be steam reformed stably for a long time, and even if H 2 S is contained in the gas produced in the gasifier, NiS and Ni are in an equilibrium state at 900 ° C. or higher. It has the effect of steam reforming gaseous hydrocarbons such as methane at room temperature stably for a long time. In addition, Ni metal can be used as the methane reforming catalyst. In particular, by using a Ni wire mesh, Ni and gas are in good contact with each other, and the steam reforming effect is improved. When a planar Ni wire mesh is stacked, the number of times the gas contacts with Ni is the same as the number of Ni wire meshes. However, when a rolled Ni wire mesh is placed vertically with respect to the gas flow, the gas contacts with Ni. The number of times is the same as the number of Ni wires used in the Ni wire mesh, which is considered to increase significantly. Furthermore, by processing into a roll shape, the solid residue produced as a by-product during gasification flows smoothly without clogging the Ni wire mesh, and can be stably gasified for a long time.

バイオマスのガス化温度は通常900〜1000℃であり、ガス化炉から出た直後のガス温度は800℃程度以上である。メタン改質触媒の温度を900℃以上に保ち、メタン改質を行うためには、Ni系メタン改質触媒をガス化炉内に設置することが望ましいが、加熱装置を有するNi系メタン改質設備をガス化炉後段に設置することにより、Ni系メタン改質触媒温度を900℃以上に保ち、H2Sが含まれていても、長時間安定にメタンを水蒸気改質することができる。 The gasification temperature of biomass is usually 900 to 1000 ° C, and the gas temperature immediately after leaving the gasification furnace is about 800 ° C or more. In order to maintain the temperature of the methane reforming catalyst at 900 ° C. or more and perform methane reforming, it is desirable to install the Ni-based methane reforming catalyst in the gasification furnace, but the Ni-based methane reforming having a heating device By installing the equipment at the latter stage of the gasification furnace, the temperature of the Ni-based methane reforming catalyst can be maintained at 900 ° C. or higher, and even when H 2 S is contained, methane can be steam reformed stably for a long time.

平面状のNi金網を8枚重ねた、ガス化炉に挿入する前の状態の写真Photo of the state before inserting into a gasification furnace with 8 sheets of planar Ni wire mesh ロール状に加工したNi金網を示す写真Photograph showing Ni wire mesh processed into a roll ロール状に加工したNi金網を複数本束ねた、ガス化炉内に挿入する前の状態の写真Photo of the state before inserting into a gasification furnace, bundled multiple Ni wire meshes processed into a roll

本発明は、バイオマスや石炭等の固体有機物をガス化剤によりガス化して生成されるガスの中のメタンを、メタン改質触媒の存在下に水蒸気と反応させて改質する方法であって、ガス化炉内又はガス化炉後段のメタン改質設備内に、気体透過性のシート状又は板状のNi系メタン改質触媒を配置し、900℃以上に加熱することを特徴とするものである。   The present invention is a method for reforming methane in a gas generated by gasifying a solid organic substance such as biomass or coal with a gasifying agent by reacting with steam in the presence of a methane reforming catalyst, A gas-permeable sheet-like or plate-like Ni-based methane reforming catalyst is disposed in the gasification furnace or in the methane reforming facility at the latter stage of the gasification furnace, and is heated to 900 ° C. or more. is there.

本発明においては、Ni系メタン改質触媒を、気体透過性のシート状又は板状の部材として、ガス化炉内またはガス化炉後段のメタン改質設備内に設置することにより、900℃以上で、長時間安定にメタンを水蒸気改質でき、ガス化炉内の生成ガスにH2Sが含まれていても、900℃以上ではNiSとNiが平衡状態になるために、Ni系メタン改質触媒が失活することなく、水蒸気改質する効果が持続するものである。 In the present invention, the Ni-based methane reforming catalyst is installed as a gas-permeable sheet-like or plate-like member in the gasification furnace or in the methane reforming equipment at the latter stage of the gasification furnace, so that the temperature is 900 ° C or higher. Therefore, methane can be steam reformed stably for a long time, and even if H 2 S is contained in the gas generated in the gasifier, NiS and Ni are in an equilibrium state at 900 ° C. or higher. The effect of steam reforming is maintained without the quality catalyst being deactivated.

本発明において、900℃以上でNiSとNiが平衡状態になることを利用しているため、H2S濃度によらず、Ni系メタン改質触媒が本質的に失活することが無く、高価なNi系触媒を用いても、ランニングコストを低減可能である。また、取出や再生等、付属的な作業を必要とせず、運転も簡便になる。 In the present invention, since NiS and Ni are in equilibrium at 900 ° C. or higher, the Ni-based methane reforming catalyst is not essentially deactivated regardless of the H 2 S concentration, and is expensive. Even if a Ni-based catalyst is used, the running cost can be reduced. Also, no additional work such as removal or regeneration is required, and operation is simplified.

本発明において、気体透過性のシート状又は板状の部材としては、特に限定されないが、本発明によれば、Ni系メタン改質触媒としてNi金属を用いることができ、その場合には、加工の点から、網状とすることが好ましい。
そして、とくに、網状のNi金網を用いることにより、Niとガスが良く接触し、メタン改質効果が改善される。
In the present invention, the gas-permeable sheet-shaped or plate-shaped member is not particularly limited, but according to the present invention, Ni metal can be used as the Ni-based methane reforming catalyst. From this point, it is preferable to use a mesh.
In particular, by using a reticulated Ni wire mesh, Ni and gas are in good contact, and the methane reforming effect is improved.

また、平面状のNi金網を重ねると、ガスがNiと接触する回数はNi金網の枚数と同じであるが、さらに、ロール状のNi金網をガス流に対し縦に置くと、ガスがNiと接触する回数はNi金網に使われているNi針金の本数と同じになり、格段に増加するためと考えられる。さらにまた、ロール状に加工する事により、ガス化時に副生する固体残渣がNi金網を閉塞することなく滑らかに流れ、長時間安定にガス化できることができる。   In addition, when the planar Ni wire mesh is stacked, the number of times the gas contacts with Ni is the same as the number of Ni wire meshes. Further, when a roll-shaped Ni wire mesh is placed vertically with respect to the gas flow, the gas becomes Ni and The number of times of contact is the same as the number of Ni wires used in the Ni wire mesh, which is considered to increase significantly. Furthermore, by processing into a roll shape, the solid residue produced as a by-product during gasification flows smoothly without clogging the Ni wire mesh, and can be stably gasified for a long time.

本発明においては、バイオマス、ごみ、下水汚泥、及び石炭等の固体有機物を、ガス化炉に供給するとともに、ガス化炉の下部よりガス化剤を導入し、ガス化炉内に供給された固体有機物を熱分解させる。ガス化剤としては、水蒸気、酸素あるいは空気などが用いられる。
ガス化炉内で生成したガス化ガスは、ガス化炉上部より取り出される。取り出されたガス化ガスは可燃ガスであり、燃料電池やガスエンジンによる発電、液体燃料の原料や化学品原料などに利用される。
In the present invention, solid organic substances such as biomass, garbage, sewage sludge, and coal are supplied to the gasification furnace, a gasifying agent is introduced from the lower part of the gasification furnace, and the solids supplied into the gasification furnace Thermally decompose organic matter. As the gasifying agent, water vapor, oxygen, air, or the like is used.
The gasification gas generated in the gasification furnace is taken out from the upper part of the gasification furnace. The extracted gasified gas is a combustible gas, and is used for power generation by a fuel cell or a gas engine, a raw material for liquid fuel, a raw material for chemical products, or the like.

本発明において用いるガス化炉は、固定床型ガス化炉、ロータリーキルン、流動床型ガス化炉、或いは噴流床型ガス炉のいずれでもよいが、炉内に、ガス化剤をガス化炉底部から上部へ流すことにより固体有機物を浮遊旋回させるための大きな空間を有している噴流床型ガス化炉を用いるのが好ましく、本発明の、気体透過性のシート状又は板状のNi系メタン改質触媒を、ガス化炉内に配置することができる。
また、他のガス化炉の場合は、炉内に大きな空間を有しないため、ガス化炉後段のメタン改質設備内に、本発明の気体透過性のシート状又は板状のNi系メタン改質触媒が配置される。しかし、他のガス化炉においても、隔壁等によりメタン改質触媒を設置する為の空間を設けることにより、本発明の、気体透過性のシート状又は板状のNi系メタン改質触媒を、ガス化炉内に配置することができる。
The gasification furnace used in the present invention may be any of a fixed bed type gasification furnace, a rotary kiln, a fluidized bed type gasification furnace, or a spouted bed type gas furnace, but the gasifying agent is introduced into the furnace from the bottom of the gasification furnace. It is preferable to use a spouted bed type gasification furnace having a large space for floating and swirling the solid organic matter by flowing upward, and the gas-permeable sheet-like or plate-like Ni-based methane modified according to the present invention is used. A quality catalyst can be placed in the gasifier.
In the case of other gasification furnaces, since there is no large space in the furnace, the gas-permeable sheet-like or plate-like Ni-based methane reformer of the present invention is installed in the methane reforming equipment at the latter stage of the gasification furnace. A quality catalyst is arranged. However, also in other gasification furnaces, by providing a space for installing the methane reforming catalyst by a partition wall or the like, the gas-permeable sheet-like or plate-like Ni-based methane reforming catalyst of the present invention, It can be placed in a gasifier.

以下、本発明を実験例に基づいて説明するが、本発明はこの実験例に限定されるものではない。   Hereinafter, although this invention is demonstrated based on an experiment example, this invention is not limited to this experiment example.

1.市販のメタン改質触媒へのH2Sの影響
市販のメタン改質触媒(クラリアント触媒株式会社製FCR-4-02)を噴流床型ガス化炉内に設置し、CH4+H2+H2O+H2S混合ガス(H2S濃度170ppm)(dry、N2free)を流した場合のガス組成(約4時間経過後、定常状態の値)を表1に示す。

Figure 0006103628
1. Effect of H 2 S on commercially available methane reforming catalyst A commercially available methane reforming catalyst (FCR-4-02 manufactured by Clariant Catalyst Co., Ltd.) was installed in a spouted bed gasifier and CH 4 + H 2 + H 2 O + H Table 1 shows the gas composition (steady state value after about 4 hours) when a 2 S mixed gas (H 2 S concentration: 170 ppm) (dry, N 2 free) is flowed.
Figure 0006103628

メタンの水蒸気改質反応(下記の式(1))と、水蒸気シフト反応(下記の式(2))が生じた。
CH4+H2O→CO+3H2 (1)
CO+H2O→CO2+H2 (2)
CO濃度がCO2濃度より常に高かったので、メタンの水蒸気改質反応が主であった。ただし、H2Sを含まない場合、CH4濃度は0.1%以下になるので、H2Sによりメタン改質効果は低くなったと考えられる。
A steam reforming reaction of methane (the following formula (1)) and a steam shift reaction (the following formula (2)) occurred.
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
Since the CO concentration was always higher than the CO 2 concentration, the steam reforming reaction of methane was the main. However, when H 2 S is not included, the CH 4 concentration is 0.1% or less, so it is considered that the methane reforming effect is lowered by H 2 S.

同触媒を通常の使用温度650〜700℃で、H2S(濃度170ppm)を含む混合ガスを流すと、約1時間で水蒸気改質効果を失う(失活する)。しかし、合計約12時間以上経過してもメタン改質効果を示した。
メタン水蒸気改質後のガス中に含まれるHS濃度は約120ppmであった。供給したガス中のH2S濃度は170ppmだが、CH4の水蒸気改質により全ガス量が増加するので(上記式(1)参照)、相対的に濃度が低下する。ガス量増加を考慮すると、ほぼ全量のH2Sが処理後のガスに含まれた。触媒をガス化炉内に設置し、900℃以上に加熱することで、NiとSの反応が平衡に達し(下記の式(3))、長時間安定にメタン改質効果を保つ事ができたと考えられる。

Figure 0006103628
If a mixed gas containing H 2 S (concentration 170 ppm) is flowed through the catalyst at a normal use temperature of 650 to 700 ° C., the steam reforming effect is lost (deactivated) in about 1 hour. However, the methane reforming effect was exhibited even after a total of about 12 hours or more.
The concentration of H 2 S contained in the gas after methane steam reforming was about 120 ppm. Although the H 2 S concentration in the supplied gas is 170 ppm, the total gas amount is increased by steam reforming of CH 4 (see the above formula (1)), so the concentration is relatively lowered. Considering the increase in gas amount, almost the entire amount of H 2 S was contained in the treated gas. By installing the catalyst in a gasification furnace and heating it to 900 ° C or higher, the reaction between Ni and S reaches equilibrium (the following formula (3)), and the methane reforming effect can be maintained stably for a long time. It is thought.
Figure 0006103628

2.平面状Ni金網のメタン改質効果
図1に示すとおり、平面状のNi金網を8枚重ね炉内に設置し、H2Sを含まない模擬ガス(CO+CO2+CH4+H2+H2O混合ガス)(dry、N2free)を流した場合には、900℃でメタン改質効果を僅かに示した(表2)。
ガス量を減らしガス流速を下げることが必要だったので、Ni金属によるメタンの水蒸気改質にはガスとNi金網が効果的に接触することが必要であることが判った。
2. Effect of methane reforming of planar Ni wire mesh As shown in Fig. 1, 8 planar Ni wire meshes are installed in a stacking furnace, and a simulated gas not containing H 2 S (CO + CO 2 + CH 4 + H 2 + H 2 O mixed gas) ) (dry, N 2 free), the methane reforming effect was slightly shown at 900 ° C. (Table 2).
Since it was necessary to reduce the gas amount and the gas flow rate, it was found that the gas and the Ni wire mesh must be in effective contact for steam reforming of methane with Ni metal.

Figure 0006103628
Figure 0006103628

3.ロール状Ni金網のメタン改質効果
ガスとNiの接触を良くするため、Ni金網を、図2に示すとおり、ロール状に加工し、該ロール状Ni金網42本を、図3に示すように束ねた。
該束ねたロール状Ni金網をガス流に対し縦になるように設置し、H2Sを含まない模擬ガス(CO+CO2+CH4+H2+H2O混合ガス)(dry、N2free)を流した場合のガス組成を表3に示す。
900℃でメタンの水蒸気改質効果が顕著であった。ガス流速は6cm/sである。

Figure 0006103628
3. Methane reforming effect of rolled Ni wire mesh In order to improve the contact between gas and Ni, the Ni wire mesh is processed into a roll shape as shown in FIG. 2, and the 42 rolled Ni wire meshes as shown in FIG. Bundled.
The bundled rolled Ni wire mesh is installed so as to be vertical to the gas flow, and a simulated gas not containing H 2 S (CO + CO 2 + CH 4 + H 2 + H 2 O mixed gas) (dry, N 2 free) flows. Table 3 shows the gas composition in this case.
The steam reforming effect of methane was remarkable at 900 ° C. The gas flow rate is 6 cm / s.
Figure 0006103628

4.ロール状Ni金網へのH2Sの影響
ロール状Ni金網に、CH4+H2+H2O+H2S混合ガス(H2S濃度170ppm)を流した場合のガス組成(約3〜4時間経過後、定常状態の値)を表4に示す。
メタンの水蒸気改質反応(下記の式(1))と、水蒸気シフト反応(下記の式(2))が生じた。
CH4+H2O→CO+3H2 (1)
CO+H2O→CO2+H2 (2)
CO濃度がCO2濃度より常に高かったので、メタンの水蒸気改質反応が主であった。
温度が上昇するとメタンの水蒸気改質反応はより促進された。これは、温度が上昇すると、NiSがより分解されるためだと考えられる。
4). Effect of H 2 S on Rolled Ni Wire Mesh Gas composition when CH 4 + H 2 + H 2 O + H 2 S mixed gas (H 2 S concentration 170 ppm) is passed through rolled Ni wire mesh (after about 3-4 hours) Table 4 shows steady state values).
A steam reforming reaction of methane (the following formula (1)) and a steam shift reaction (the following formula (2)) occurred.
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
Since the CO concentration was always higher than the CO 2 concentration, the steam reforming reaction of methane was the main.
As the temperature increased, the steam reforming reaction of methane was promoted more. This is considered to be because NiS is further decomposed when the temperature rises.

Figure 0006103628
Figure 0006103628

5.バイオマス生成ガスをロール状Ni金網に流した場合
スギ木部を900℃でガス化して生成したガスをロール状Ni金網に通した場合と通さない場合の生成ガス組成を表5に示す。
メタンは水蒸気改質された。ロール状に加工することで、固体残渣による閉塞は生じず、安定に長時間ガス化できた。
5. When Biomass Production Gas is Flowed through Rolled Ni Wire Mesh Table 5 shows the composition of the produced gas when gas produced by gasifying the cedar wood part at 900 ° C. is passed through the rolled Ni wire mesh.
Methane was steam reformed. By processing into a roll, clogging with solid residue did not occur, and gasification could be stably performed for a long time.

Figure 0006103628
Figure 0006103628

Claims (4)

バイオマスや石炭等の固体有機物をガス化剤によりガス化して生成されるガスの中のメタンをメタン改質触媒の存在下に水蒸気と反応させて改質する方法であって、
ガス化炉内又はガス化炉後段のメタン改質設備内に、ロール状に加工された網状のニッケル金属からなるNi系メタン改質触媒を配置し、900℃以上に加熱することを特徴とするメタン改質方法。
A method of reforming methane in a gas produced by gasifying solid organic matter such as biomass or coal with a gasifying agent by reacting with steam in the presence of a methane reforming catalyst,
A Ni-based methane reforming catalyst made of reticulated nickel metal processed into a roll is disposed in the methane reforming facility in the gasification furnace or in the latter stage of the gasification furnace, and heated to 900 ° C. or more. Methane reforming method.
バイオマスや石炭等の固体有機物をガス化剤によりガス化させるガス化炉内に配置して生成ガス中のメタンを水蒸気と反応させて改質するNi系メタン改質触媒であって、ロール状に加工された網状のニッケル金属からなることを特徴とするNi系メタン改質触媒。 The solid organic matter such as biomass or coal comprising methane in the product gas and disposed in the gasification furnace to gasify reacted with steam in Ni-based methane reforming catalyst reforming gasification agent, in the form of a roll A Ni-based methane reforming catalyst comprising a processed reticulated nickel metal . バイオマスや石炭等の固体有機物をガス化剤によりガス化させるガス化炉後段のメタン改質設備内に配置して生成ガス中のメタンを水蒸気と反応させて改質するNi系メタン改質触媒であって、ロール状に加工された網状のニッケル金属からなることを特徴とするNi系メタン改質触媒。 A Ni-based methane reforming catalyst that is placed in a methane reforming facility at the latter stage of a gasification furnace that gasifies solid organic matter such as biomass and coal with a gasifying agent and reforms by reacting methane in the product gas with steam. A Ni-based methane reforming catalyst comprising a reticulated nickel metal processed into a roll . バイオマスや石炭等の固体有機物をガス化剤によりガス化する噴流床型ガス化炉であって、ガス化炉内に請求項2に記載されたNi系メタン改質触媒が設置されていることを特徴とするガス化炉。 The solid organic materials such as biomass or coal a entrained flow gasification furnace for gasifying the gasifying agent, the Ni-based methane reforming catalyst according to claim 2 in the gasification furnace is installed A gasifier characterized by
JP2012257440A 2012-11-26 2012-11-26 Methane reforming method and methane reforming catalyst used therefor Expired - Fee Related JP6103628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257440A JP6103628B2 (en) 2012-11-26 2012-11-26 Methane reforming method and methane reforming catalyst used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257440A JP6103628B2 (en) 2012-11-26 2012-11-26 Methane reforming method and methane reforming catalyst used therefor

Publications (2)

Publication Number Publication Date
JP2014105120A JP2014105120A (en) 2014-06-09
JP6103628B2 true JP6103628B2 (en) 2017-03-29

Family

ID=51026921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257440A Expired - Fee Related JP6103628B2 (en) 2012-11-26 2012-11-26 Methane reforming method and methane reforming catalyst used therefor

Country Status (1)

Country Link
JP (1) JP6103628B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176594B (en) * 2015-10-23 2017-10-03 北京京诚泽宇能源环保工程技术有限公司 Device and method for preparing reducing gas by lignite gasification
CN115155599B (en) * 2022-04-11 2023-07-25 浙江氢邦科技有限公司 Ni-in@SiO coated 2 -Al 2 O 3 Hollow mesoporous nano catalyst as well as preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333202A (en) * 1976-09-09 1978-03-29 Toyota Motor Corp Apparatus for reforming hydrocarbons
JPS60161302A (en) * 1984-01-26 1985-08-23 Kobe Steel Ltd Reforming method of hydrocarbon
JP4938920B2 (en) * 2000-02-29 2012-05-23 三菱重工業株式会社 Biomass gasification furnace and biomass gasification system
JP4085160B2 (en) * 2003-08-27 2008-05-14 独立行政法人産業技術総合研究所 Gasification method using self-catalysis of biomass
JP2006063290A (en) * 2004-08-30 2006-03-09 Ebara Corp System and method for utilizing polymer hydrocarbon
EP2190950B1 (en) * 2007-07-20 2016-09-07 UPM-Kymmene Oyj Method and apparatus for producing liquid biofuel from solid biomass
WO2010092819A1 (en) * 2009-02-12 2010-08-19 有限会社市川事務所 Method for producing ethanol

Also Published As

Publication number Publication date
JP2014105120A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
Ge et al. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal
US7691182B1 (en) Process for hydrogen production via integrated processing of landfill gas and biomass
Sikarwar et al. Progress in in-situ CO2-sorption for enhanced hydrogen production
US9856426B2 (en) Combined processes for utilizing synthesis gas with low CO2 emission and high energy output
US20070283812A1 (en) System and method for removing sulfur from fuel gas streams
CN102812110B (en) Method of reforming gasification gas
US20110185634A1 (en) Device and Method for the Electrothermal-Chemical Gasification of Biomass
JP2012528925A (en) Gasifier with integrated fuel cell power generation system
Mohamed et al. Advanced Ni tar reforming catalysts resistant to syngas impurities: Current knowledge, research gaps and future prospects
Chein et al. H2S effect on dry reforming of biogas for syngas production
Bhaskar et al. Thermochemical route for biohydrogen production
Kumar Clean hydrogen production methods
Budzianowski Negative net CO2 emissions from oxy-decarbonization of biogas to H2
Sun et al. Solar–wind–bio ecosystem for biomass cascade utilization with multigeneration of formic acid, hydrogen, and graphene
JP2014240472A (en) Method and apparatus for coal/biomass co-gasification by improved three-column type circulated fluidized bed
WO2011021944A1 (en) Combined processes for utilizing synthesis gas at low co2 emission and high energy output
Albertazzi et al. Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas
Twigg et al. Hydrogen production from fossil fuel and biomass feedstocks
RU2515967C2 (en) Method of obtaining hydrogen-rich gas mixture
JP5384087B2 (en) Woody biomass gas reforming system
Verma et al. Overview of biogas reforming technologies for hydrogen production: advantages and challenges
JP6103628B2 (en) Methane reforming method and methane reforming catalyst used therefor
Liu et al. Sorption enhanced steam hydrogasification of coal for synthesis gas production with in-situ CO2 removal and self-sustained hydrogen supply
Bretado et al. Hydrogen production by absorption enhanced water gas shift (AEWGS)
Navarro et al. Renewable syngas production via dry reforming of methane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6103628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees