JP6103198B2 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
JP6103198B2
JP6103198B2 JP2013024981A JP2013024981A JP6103198B2 JP 6103198 B2 JP6103198 B2 JP 6103198B2 JP 2013024981 A JP2013024981 A JP 2013024981A JP 2013024981 A JP2013024981 A JP 2013024981A JP 6103198 B2 JP6103198 B2 JP 6103198B2
Authority
JP
Japan
Prior art keywords
fluid
opening
fluid side
sectional area
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013024981A
Other languages
Japanese (ja)
Other versions
JP2014152896A (en
Inventor
朋弘 穐田
朋弘 穐田
伊藤 良泰
良泰 伊藤
尚紀 柴田
尚紀 柴田
貞彦 若葉
貞彦 若葉
恭子 久和
恭子 久和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013024981A priority Critical patent/JP6103198B2/en
Priority to PCT/JP2014/000364 priority patent/WO2014125774A1/en
Publication of JP2014152896A publication Critical patent/JP2014152896A/en
Application granted granted Critical
Publication of JP6103198B2 publication Critical patent/JP6103198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug

Description

本発明は、流体の流量及び温度を制御する弁装置に関する。   The present invention relates to a valve device for controlling the flow rate and temperature of a fluid.

本出願人は、特許文献1において混合水栓から湯水の吐出及び停止を行う水栓装置を提案している。特許文献1記載の水栓装置は、湯水を吐出する混合水栓と、湯水の温度及び流量を調節する水栓本体と、人体を検知する人体検知手段とを備えている。この水栓装置では、混合水栓と水栓本体とが湯水供給配管により接続され、水栓本体には給湯配管及び給水配管が接続され、給湯配管の管路途中に給湯側電磁弁が設けられ、給水配管の管路途中に給水側電磁弁が設けられている。   The present applicant has proposed a faucet device that discharges and stops hot water from a mixed faucet in Patent Document 1. The faucet device described in Patent Document 1 includes a mixing faucet that discharges hot water, a faucet body that adjusts the temperature and flow rate of hot water, and a human body detection means that detects a human body. In this faucet device, a mixing faucet and a faucet body are connected by a hot water supply pipe, a hot water supply pipe and a water supply pipe are connected to the faucet body, and a hot water supply side solenoid valve is provided in the middle of the hot water supply pipe. The water supply side solenoid valve is provided in the middle of the pipe of the water supply pipe.

上記水栓装置は、さらに、制御手段を備えており、前記人体検知手段からの情報に基づいて給湯側電磁弁及び給水側電磁弁の開閉動作が前記制御手段で制御される。給湯側電磁弁及び給水側電磁弁の開閉によって、給湯配管からの水栓本体への給湯及び給水配管からの水栓本体への給水がそれぞれ行われ、この水栓本体に湯水供給配管により接続された混合水栓からの湯水の吐出とその停止が行われる。   The water faucet device further includes control means, and the control means controls the opening and closing operations of the hot water supply side electromagnetic valve and the water supply side electromagnetic valve based on information from the human body detection means. The hot water supply side solenoid valve and the water supply side solenoid valve are opened and closed to supply hot water from the hot water supply pipe to the faucet body and from the water supply pipe to the faucet body, respectively. The hot water is discharged from the mixing tap and stopped.

特開2010−265701号公報JP 2010-265701 A

特許文献1記載の水栓装置は、給湯配管に給湯側電磁弁が設けられ、給水配管に給水側電磁弁が設けられているので、それぞれの電磁弁の開閉によって、給湯配管からの水栓本体への給湯の流量と給水配管からの水栓本体への給水の流量を調整することができる。このように、上記水栓装置では、給湯配管からの水栓本体への給湯の流量と給水配管からの水栓本体への給水の流量とを独立して調整できるので、混合水栓から吐出される湯水の温度や流量を調整することができる。   In the faucet device described in Patent Document 1, a hot water supply side solenoid valve is provided in the hot water supply pipe, and a water supply side solenoid valve is provided in the water supply pipe. It is possible to adjust the flow rate of hot water supplied to the water and the flow rate of water supplied from the water supply pipe to the faucet body. Thus, in the water faucet device, the flow rate of hot water from the hot water supply pipe to the faucet body and the flow rate of water supply from the water supply pipe to the faucet body can be adjusted independently, so that the water is discharged from the mixing faucet You can adjust the temperature and flow rate of hot water.

その一方で上記水栓装置は、給湯配管及び給水配管の両方に電磁弁を有していることから、部品点数が多く、コスト高という課題がある。また、給湯配管と給水配管のそれぞれに電磁弁を有して水栓装置が構成されることから、水栓装置の小型化が難しいという課題もある。   On the other hand, since the water faucet device has electromagnetic valves in both the hot water supply pipe and the water supply pipe, there is a problem that the number of parts is large and the cost is high. In addition, since the faucet device is configured by having an electromagnetic valve in each of the hot water supply pipe and the water supply pipe, there is a problem that it is difficult to reduce the size of the faucet device.

本発明は、以上のとおりの事情に鑑みてなされたものであり、混合水栓から吐出される湯水の温度や流量を調整することができ、しかも水栓装置の低コスト化及び小型化が可能な弁装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and can adjust the temperature and flow rate of hot water discharged from the mixing faucet, and can reduce the cost and size of the faucet device. It is an object to provide a simple valve device.

上記の課題を解決するために、本発明の弁装置は、筒状の外筒と、この外筒に周方向に回転可能に内装される円筒状の内筒とを備え、外筒は、第1流体が流入する第1流体側流入口と、第2流体が流入する第2流体側流入口と、第1流体と第2流体との混合流体が流出する混合流体側流出口とを有し、第1流体側流入口と第2流体側流入口は、外筒の側壁部に、軸方向に互いに離れて設けられ、内筒は、側壁部に、第1流体側流入口に対応する第1流体側開口と、第2流体側流入口に対応する第2流体側開口とを有し、内筒の周方向の回転によって、第1流体側流入口と第1流体側開口とが重なって第1流体側流路が形成されるとともに、第2流体側流入口と第2流体側開口とが重なって第2流体側流路が形成され、第1流体側流路の断面積と第2流体側流路の断面積はそれぞれ、内筒の周方向の回転に従って変化し、第1流体側流路の断面積と第2流体側流路の断面積が変化する内筒の回転の範囲内において、第1流体側流路の断面積と第2流体側流路の断面積との合計が一定に、又は第1流体側流路の断面積と第2流体側流路の断面積との断面積比率が一定に形成され、内筒は、第1流体側開口と第2流体側開口とからなる組を複数有し、第1流体側開口と第2流体側開口の開口断面積が組毎に異なることを特徴とする。 In order to solve the above problems, a valve device of the present invention includes a cylindrical outer cylinder and a cylindrical inner cylinder that is rotatably mounted in the outer cylinder in a circumferential direction. A first fluid side inlet into which one fluid flows; a second fluid side inlet into which the second fluid flows; and a mixed fluid side outlet from which a mixed fluid of the first fluid and the second fluid flows out. The first fluid side inlet and the second fluid side inlet are axially separated from each other in the side wall portion of the outer cylinder, and the inner cylinder corresponds to the first fluid side inlet corresponding to the first fluid side inlet. 1 fluid side opening and the 2nd fluid side opening corresponding to the 2nd fluid side inflow port, and the 1st fluid side inflow port and the 1st fluid side opening overlap by rotation of the peripheral direction of an inner cylinder A first fluid side channel is formed, and the second fluid side inlet and the second fluid side opening overlap to form a second fluid side channel, and a cross-sectional area of the first fluid side channel The cross-sectional area of the second fluid-side flow path changes according to the rotation of the inner cylinder in the circumferential direction, and the rotation of the inner cylinder changes in the cross-sectional area of the first fluid-side flow path and the cross-sectional area of the second fluid-side flow path. Within the range, the sum of the sectional area of the first fluid side channel and the sectional area of the second fluid side channel is constant, or the sectional area of the first fluid side channel and the sectional area of the second fluid side channel. The inner cylinder has a plurality of sets of first fluid side openings and second fluid side openings, and the opening cross sectional area of the first fluid side opening and the second fluid side opening is formed. Is different for each group .

この弁装置においては、内筒は、さらに軸方向にも移動可能に形成されていることが好ましい。 In this valve device, the inner cylinder is preferably formed so as to be movable in the axial direction.

本発明の弁装置によれば、混合水栓から吐出される湯水の温度や流量を調整することができる。しかも水栓装置の低コスト化及び小型化も可能である。   According to the valve device of the present invention, the temperature and flow rate of hot water discharged from the mixing faucet can be adjusted. Moreover, the cost and size of the faucet device can be reduced.

本発明の弁装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the valve apparatus of this invention. 図1の弁装置の内筒の回転動作を説明するための弁装置の断面図である。It is sectional drawing of the valve apparatus for demonstrating rotation operation of the inner cylinder of the valve apparatus of FIG. 第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との合計が一定であることを説明するための模式図である。It is a schematic diagram for demonstrating that the sum total of the opening cross-sectional area of the opening part of 1st fluid side opening and the opening cross-sectional area of the opening part of 2nd fluid side opening is constant. 図1の弁装置とは別の実施形態である弁装置の内筒を周方向に展開した模式図である。It is the schematic diagram which expand | deployed the inner cylinder of the valve apparatus which is embodiment different from the valve apparatus of FIG. 1 in the circumferential direction. 図4の内筒の回転動作を説明するための弁装置の断面図である。It is sectional drawing of the valve apparatus for demonstrating rotation operation of the inner cylinder of FIG. 第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との断面積比率が一定であることを説明するための模式図である。It is a schematic diagram for demonstrating that the cross-sectional area ratio of the opening cross-sectional area of the opening part of 1st fluid side opening and the opening cross-sectional area of the opening part of 2nd fluid side opening is constant. 図1の弁装置の内筒に、第1流体側開口と第2流体側開口とからなる組をさらに二組追加した内筒を周方向に展開した模式図である。FIG. 2 is a schematic diagram in which an inner cylinder in which two sets of a group including a first fluid side opening and a second fluid side opening are further added to the inner cylinder of the valve device in FIG. 1 is developed in the circumferential direction.

本発明の弁装置を図面に沿って説明する。図1は本発明の弁装置の一実施形態を示す断面図である。   The valve device of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the valve device of the present invention.

弁装置1は、図1に示されるように、円筒状の外筒2と、この外筒2に周方向に回転可能に内装される円筒状の内筒10とを備え、外筒2と内筒10が筒状のケーシング7に水密に収納されている。   As shown in FIG. 1, the valve device 1 includes a cylindrical outer cylinder 2 and a cylindrical inner cylinder 10 that is rotatably mounted in the outer cylinder 2 in the circumferential direction. A cylinder 10 is stored in a cylindrical casing 7 in a watertight manner.

外筒2は、弁装置本体として構成される。外筒2は、第1流体(例えば、水)が流入する第1流体側流入口3と、第2流体(例えば、湯)が流入する第2流体側流入口4と、第1流体と第2流体との混合流体(例えば、湯水混合流体)が流出する混合流体側流出口5とを有する。これら第1流体側流入口3と第2流体側流入口4は、外筒2の主体を構成する円筒状の側壁部6に、軸方向に互いに離れて設けられている。「軸方向に互いに離れて設けられている」とは、第1流体側流入口3と第2流体側流入口4の両方が側壁部6の周方向の一の位置において軸方向にずれて設けられていることのみを意図しない。第1流体側流入口3と第2流体側流入口4それぞれが側壁部6の周方向の異なる位置において軸方向にずれて設けられていることも含むことを意図する。図1の弁装置1では、第2流体側流入口4は側壁部6の第1流体側流入口3の周方向180°の位置に設けられており、第1流体側流入口3と第2流体側流入口4それぞれが側壁部6の周方向の異なる位置に設けられている。第1流体側流入口3は、紙面において側壁部6の上側部分に形成され、第2流体側流入口4は、側壁部6の下側部分に形成されている。このように、第1流体側流入口3と第2流体側流入口4は、外筒2の側壁部6に軸方向に互いに離れて設けられている。   The outer cylinder 2 is configured as a valve device body. The outer cylinder 2 includes a first fluid side inlet 3 into which a first fluid (for example, water) flows, a second fluid side inlet 4 into which a second fluid (for example, hot water) flows, a first fluid, and a first fluid. It has a mixed fluid side outlet 5 from which a mixed fluid with two fluids (for example, a hot and cold mixed fluid) flows out. The first fluid side inlet 3 and the second fluid side inlet 4 are provided on the cylindrical side wall 6 constituting the main body of the outer cylinder 2 so as to be separated from each other in the axial direction. “Axis direction is provided apart from each other” means that both the first fluid side inflow port 3 and the second fluid side inflow port 4 are shifted in the axial direction at one circumferential position of the side wall portion 6. It is not only intended to be. It is intended to include that each of the first fluid side inlet 3 and the second fluid side inlet 4 is offset in the axial direction at different positions in the circumferential direction of the side wall 6. In the valve device 1 of FIG. 1, the second fluid side inlet 4 is provided at a position 180 ° in the circumferential direction of the first fluid side inlet 3 of the side wall portion 6. Each of the fluid side inlets 4 is provided at a different position in the circumferential direction of the side wall 6. The first fluid side inlet 3 is formed in the upper part of the side wall 6 in the drawing, and the second fluid side inlet 4 is formed in the lower part of the side wall 6. Thus, the first fluid side inlet 3 and the second fluid side inlet 4 are provided in the side wall portion 6 of the outer cylinder 2 so as to be separated from each other in the axial direction.

第1流体側流入口3と第2流体側流入口4はともに側壁部6に内外に貫通する開口部として形成されている。側壁部6の軸方向一端部が開口しており、この開口部分に混合流体側流出口5が形成されている。   Both the first fluid side inflow port 3 and the second fluid side inflow port 4 are formed as openings through the side wall portion 6 inward and outward. The axial direction one end part of the side wall part 6 is opening, and the mixed fluid side outflow port 5 is formed in this opening part.

ケーシング7は、外筒2の第1流体側流入口3に対応した開口40と、外筒2の第2流体側流入口4に対応した開口41を有する。ケーシング7は、第1流体を供給する第1流体供給配管が接続可能に形成されており、第1流体を開口40に供給する。また、第2流体を供給する第2流体供給配管が接続可能に形成されており、第2流体を開口41に供給する。さらにまた、ケーシング7は、外筒2の混合流体側流出口5に対応した開口42も有しており、また混合流体供給配管が接続可能に形成され、開口42から混合流体供給配管に混合流体を供給する。第1流体は、第1流体供給配管を通じて第1流体側流入口3から外筒2内の内筒10に導入される。第2流体は、第2流体供給配管を通じて第2流体側流入口4から外筒2内の内筒10に導入される。内筒10に導入された流体は、混合流体として混合流体側流出口5から吐出され、混合流体供給配管を通じて所望の箇所に供給される。   The casing 7 has an opening 40 corresponding to the first fluid side inlet 3 of the outer cylinder 2 and an opening 41 corresponding to the second fluid side inlet 4 of the outer cylinder 2. The casing 7 is formed so as to be connectable to a first fluid supply pipe that supplies a first fluid, and supplies the first fluid to the opening 40. A second fluid supply pipe for supplying the second fluid is formed so as to be connectable, and supplies the second fluid to the opening 41. Further, the casing 7 also has an opening 42 corresponding to the mixed fluid side outlet 5 of the outer cylinder 2, and is formed so that a mixed fluid supply pipe can be connected to the mixed fluid supply pipe from the opening 42. Supply. The first fluid is introduced from the first fluid side inlet 3 into the inner cylinder 10 in the outer cylinder 2 through the first fluid supply pipe. The second fluid is introduced from the second fluid side inlet 4 to the inner cylinder 10 in the outer cylinder 2 through the second fluid supply pipe. The fluid introduced into the inner cylinder 10 is discharged from the mixed fluid side outlet 5 as a mixed fluid, and is supplied to a desired location through the mixed fluid supply pipe.

内筒10は、弁体として構成される。内筒10は、内筒10の主体を構成する円筒状の側壁部11に、第1流体側流入口3に対応する第1流体側開口12と、第2流体側流入口4に対応する第2流体側開口13とを有する。「第1流体側流入口3に対応する第1流体側開口12」とは、内筒10の周方向の回転によって第1流体側流入口3に重なる第1流体側開口12を意図する。また、「第2流体側流入口4に対応する第2流体側開口13」とは、内筒10の周方向の回転によって第2流体側流入口4に重なる第2流体側開口13を意図する。このため、第1流体側開口12と第2流体側開口13は、第1流体側流入口3と第2流体側流入口4と同様、内筒10の側壁部11に軸方向にずれて設けられている。   The inner cylinder 10 is configured as a valve body. The inner cylinder 10 has a cylindrical side wall portion 11 constituting the main body of the inner cylinder 10, a first fluid side opening 12 corresponding to the first fluid side inlet 3, and a second fluid side inlet 4 corresponding to the second fluid side inlet 4. 2 fluid side opening 13. The “first fluid side opening 12 corresponding to the first fluid side inlet 3” intends the first fluid side opening 12 that overlaps the first fluid side inlet 3 by the rotation of the inner cylinder 10 in the circumferential direction. Further, the “second fluid side opening 13 corresponding to the second fluid side inlet 4” intends the second fluid side opening 13 that overlaps the second fluid side inlet 4 by the rotation of the inner cylinder 10 in the circumferential direction. . Therefore, the first fluid side opening 12 and the second fluid side opening 13 are provided on the side wall portion 11 of the inner cylinder 10 so as to be shifted in the axial direction, similarly to the first fluid side inlet 3 and the second fluid side inlet 4. It has been.

内筒10の側壁部11の内部には第1流体及び第2流体が流通する内部流路16が形成されている。この内部流路16は、内筒10の側壁部11の軸方向一端部に形成されている開口17を介して外筒2の混合流体側流出口5に連通している。したがって、内筒10内に導入された流体は、内部流路16を通じて外筒2の混合流体側流出口5から吐出することができる。   An internal channel 16 through which the first fluid and the second fluid circulate is formed inside the side wall 11 of the inner cylinder 10. The internal flow path 16 communicates with the mixed fluid side outlet 5 of the outer cylinder 2 through an opening 17 formed at one axial end of the side wall 11 of the inner cylinder 10. Therefore, the fluid introduced into the inner cylinder 10 can be discharged from the mixed fluid side outlet 5 of the outer cylinder 2 through the internal channel 16.

内筒10の軸方向他端部には、側壁部11の中心軸と一致するように回転軸18が形成されている。回転軸18は、ステッピングモータなどのモータに連結可能とされ、モータの回転駆動によって内筒10を周方向に回転させることができる。   A rotating shaft 18 is formed at the other axial end of the inner cylinder 10 so as to coincide with the central axis of the side wall portion 11. The rotating shaft 18 can be connected to a motor such as a stepping motor, and can rotate the inner cylinder 10 in the circumferential direction by rotational driving of the motor.

内筒10の周方向の回転によって、第1流体側流入口3と第1流体側開口12とが重なり第1流体側流路14が形成される。また、第2流体側流入口4と第2流体側開口13とが重なり第2流体側流路15が形成される。   Due to the rotation of the inner cylinder 10 in the circumferential direction, the first fluid side inlet 3 and the first fluid side opening 12 are overlapped to form a first fluid side flow path 14. Further, the second fluid side inlet 4 and the second fluid side opening 13 are overlapped to form a second fluid side flow path 15.

第1流体側流路14の断面積と第2流体側流路15の断面積はそれぞれ、内筒10の周方向の回転に従って変化する。すなわち、内筒10の周方向の回転に従って第1流体側流入口3に対する第1流体側開口12の重なり度合いが変わり、第1流体側開口12の開口度が変わる。第1流体側開口12の開口部分の開口断面積(周面方向の断面積)が第1流体側流路14の断面積に相当する。ここで、「第1流体側開口12の開口部分」とは、第1流体側流入口3に対して第1流体側開口12が重なっている部分を意図する。第2流体側流路15の断面積の変化についても同様である。内筒10の周方向の回転に従って第2流体側流入口4に対する第2流体側開口13の重なり度合いが変わり、第2流体側開口13の開口度が変わる。第2流体側開口13の開口部分の開口断面積が第2流体側流路15の断面積に相当する。ここで、「第2流体側開口13の開口部分」とは、第2流体側流入口4に対して第2流体側開口13が重なっている部分を意図する。   The cross-sectional area of the first fluid-side flow path 14 and the cross-sectional area of the second fluid-side flow path 15 change according to the rotation of the inner cylinder 10 in the circumferential direction. That is, as the inner cylinder 10 rotates in the circumferential direction, the degree of overlap of the first fluid side opening 12 with respect to the first fluid side inlet 3 changes, and the degree of opening of the first fluid side opening 12 changes. The opening cross-sectional area (the cross-sectional area in the circumferential direction) of the opening portion of the first fluid-side opening 12 corresponds to the cross-sectional area of the first fluid-side flow path 14. Here, the “opening portion of the first fluid side opening 12” intends a portion where the first fluid side opening 12 overlaps the first fluid side inlet 3. The same applies to the change in the cross-sectional area of the second fluid side channel 15. As the inner cylinder 10 rotates in the circumferential direction, the degree of overlap of the second fluid side opening 13 with the second fluid side inlet 4 changes, and the degree of opening of the second fluid side opening 13 changes. The opening sectional area of the opening portion of the second fluid side opening 13 corresponds to the sectional area of the second fluid side channel 15. Here, the “opening portion of the second fluid side opening 13” intends a portion where the second fluid side opening 13 overlaps the second fluid side inlet 4.

弁装置1は、第1流体側流路14の断面積と第2流体側流路15の断面積が変化する内筒10の回転の範囲内において、第1流体側流路14の断面積と第2流体側流路15の断面積との合計が一定となる関係を有して形成されている。   The valve device 1 has a cross-sectional area of the first fluid-side channel 14 within a range of rotation of the inner cylinder 10 in which a cross-sectional area of the first fluid-side channel 14 and a cross-sectional area of the second fluid-side channel 15 change. The second fluid side channel 15 is formed so as to have a constant total cross-sectional area.

このような弁装置の一例を挙げると、第1流体側開口12と第2流体側開口13はともに、同一の形状で同一の大きさの開口を有している。ここで、「大きさ」とは、開口断面積を指す(以下、同じ)。これら第1流体側開口12と第2流体側開口13の大きさはそれぞれ、対応する第1流体側流入口3と第2流体側流入口4の開口の大きさよりも小さい。さらに、第1流体側開口12と第2流体側開口13は内筒10の側壁部の所定の位置に形成されている。   As an example of such a valve device, both the first fluid side opening 12 and the second fluid side opening 13 have the same shape and the same size. Here, “size” refers to an opening cross-sectional area (hereinafter the same). The sizes of the first fluid side opening 12 and the second fluid side opening 13 are smaller than the sizes of the corresponding first fluid side inlet 3 and second fluid side inlet 4, respectively. Further, the first fluid side opening 12 and the second fluid side opening 13 are formed at predetermined positions on the side wall portion of the inner cylinder 10.

図1の弁装置1では、第1流体側開口12と第2流体側開口13はともに、略三角形状で同一の大きさの開口を有している。これら第1流体側開口12と第2流体側開口13の大きさは、対応する第1流体側流入口3と第2流体側流入口4の開口の大きさよりも小さくなっている。第1流体側開口12は、内筒10の回転によって略三角形状の開口の頂部が最先に第1流体側流入口3に重なるように形成されている。第2流体側開口13も、内筒10の回転によって略三角形状の開口の頂部が最先に第2流体側流入口4に重なるように形成されている。こうすることで、後述する図2(a)の状態から内筒10の回転を開始した際、小流量の流体が内筒10に導入され、混合流体側流出口5から小流量の流体を吐出することができる。したがって、大流量の流体の急激な吐出を抑えることができる。   In the valve device 1 of FIG. 1, both the first fluid side opening 12 and the second fluid side opening 13 are substantially triangular and have openings of the same size. The sizes of the first fluid side opening 12 and the second fluid side opening 13 are smaller than the sizes of the corresponding first fluid side inlet 3 and second fluid side inlet 4. The first fluid side opening 12 is formed such that the top of the substantially triangular opening overlaps the first fluid side inlet 3 first by the rotation of the inner cylinder 10. The second fluid side opening 13 is also formed so that the top of the substantially triangular opening overlaps the second fluid side inlet 4 first by the rotation of the inner cylinder 10. In this way, when the inner cylinder 10 starts to rotate from the state of FIG. 2A described later, a small flow rate fluid is introduced into the inner cylinder 10 and a small flow rate fluid is discharged from the mixed fluid side outlet 5. can do. Therefore, rapid discharge of a large flow rate of fluid can be suppressed.

第1流体側開口12と第2流体側開口13は、第1流体側開口12の開口度が全開(又は全閉)となる位置にあるときに、第2流体側開口13の開口度が全閉(又は全開)となる位置に形成される。さらに、第1流体側開口12の全開(又は全閉)の開口度が内筒10の回転に従って減少(又は増加)し、第2流体側開口13の全閉(又は全開)の開口度が内筒10の回転に従って増加(又は減少)する位置に形成される。つまり、第1流体側開口12が第1流体側流入口3と整合する位置に配置されているとき、第2流体側開口13は、第2流体側流入口4と整合する位置から第1流体側開口12の周方向の長さの分だけ内筒10の回転方向とは逆の回転方向にずれて配置されている。   When the first fluid side opening 12 and the second fluid side opening 13 are in a position where the opening degree of the first fluid side opening 12 is fully open (or fully closed), the opening degree of the second fluid side opening 13 is fully open. It is formed at a position that is closed (or fully open). Furthermore, the fully open (or fully closed) opening degree of the first fluid side opening 12 decreases (or increases) as the inner cylinder 10 rotates, and the fully closed (or fully open) opening degree of the second fluid side opening 13 increases. It is formed at a position that increases (or decreases) as the cylinder 10 rotates. That is, when the first fluid side opening 12 is disposed at a position aligned with the first fluid side inlet 3, the second fluid side opening 13 is moved from the position aligned with the second fluid side inlet 4 to the first fluid. The side opening 12 is arranged so as to deviate in the rotation direction opposite to the rotation direction of the inner cylinder 10 by the length in the circumferential direction.

この弁装置1の内筒10の回転動作を図2に基づいて説明する。なお、図1に示した実施形態と同じ部分には同一の符号を付し、その説明を省略する。   The rotation operation of the inner cylinder 10 of the valve device 1 will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as embodiment shown in FIG. 1, and the description is abbreviate | omitted.

図2の上段は、図1の弁装置1のA−A線断面図であり、内筒10を順次回転させている。下段は、図1の弁装置1のB−B線断面図であり、内筒10を順次回転させている。   2 is a cross-sectional view taken along line AA of the valve device 1 of FIG. 1, and the inner cylinder 10 is sequentially rotated. The lower stage is a cross-sectional view taken along the line BB of the valve device 1 of FIG. 1 and sequentially rotates the inner cylinder 10.

図2(a)は、第1流体側流入口3と第1流体側開口12が重なっていない状態であり、また、第2流体側流入口4と第2流体側開口13が重なっていない状態を示す。つまり、第1流体側開口12の開口度と第2流体側開口13の開口度がともに全閉の状態である。図2(a)の状態では、第1流体と第2流体はともに内筒10内に導入されない。図2(a)の状態から内筒10を周方向(矢印で示す方向)に回転させていくと、第1流体側開口12の開口度が内筒10の回転に従って増加する。   FIG. 2A shows a state where the first fluid side inlet 3 and the first fluid side opening 12 do not overlap, and a state where the second fluid side inlet 4 and the second fluid side opening 13 do not overlap. Indicates. That is, both the opening degree of the first fluid side opening 12 and the opening degree of the second fluid side opening 13 are in a fully closed state. In the state of FIG. 2A, neither the first fluid nor the second fluid is introduced into the inner cylinder 10. When the inner cylinder 10 is rotated in the circumferential direction (direction indicated by an arrow) from the state of FIG. 2A, the opening degree of the first fluid side opening 12 increases as the inner cylinder 10 rotates.

図2(b)は、内筒10の回転によって第1流体側開口12の開口度が全開となった状態を示す。一方、第2流体側開口13の開口度は、依然として全閉した状態である。図2(b)の状態では、第1流体のみが内筒10内に導入され、内筒10の内部流路16に流通し、外筒2の混合流体側流出口から吐出される。図2(b)の状態から内筒10をさらに周方向に回転させていくと、第1流体側開口12の全開の開口度が内筒10の回転に従って減少する。一方、第2流体側開口13の全閉の開口度は、内筒10の回転に従って増加する。   FIG. 2B shows a state in which the opening degree of the first fluid side opening 12 is fully opened by the rotation of the inner cylinder 10. On the other hand, the opening degree of the second fluid side opening 13 is still fully closed. In the state of FIG. 2B, only the first fluid is introduced into the inner cylinder 10, flows into the internal flow path 16 of the inner cylinder 10, and is discharged from the mixed fluid side outlet of the outer cylinder 2. When the inner cylinder 10 is further rotated in the circumferential direction from the state of FIG. 2 (b), the fully open degree of the first fluid side opening 12 decreases as the inner cylinder 10 rotates. On the other hand, the fully closed opening degree of the second fluid side opening 13 increases as the inner cylinder 10 rotates.

図2(c)は、内筒10の回転によって、第1流体側開口12の開口度が半分になった状態を示す。このとき、第2流体側開口13の開口度も半分になっている。図2(c)の状態では、第1流体と第2流体が内筒10内に導入され、内筒10の内部流路16に流通し、混合流体として外筒2の混合流体側流出口から吐出される。図2(c)の状態から内筒10をさらに周方向に回転させていくと、第1流体側開口12の開口度は内筒10の回転に従ってさらに減少し、全閉の状態となる。一方、第2流体側開口13の開口度は内筒10の回転に従ってさらに増加し、全開の状態となる。   FIG. 2C shows a state in which the opening degree of the first fluid side opening 12 is halved by the rotation of the inner cylinder 10. At this time, the opening degree of the second fluid side opening 13 is also halved. In the state of FIG. 2 (c), the first fluid and the second fluid are introduced into the inner cylinder 10, circulates in the internal flow path 16 of the inner cylinder 10, and is supplied from the mixed fluid side outlet of the outer cylinder 2 as a mixed fluid. Discharged. When the inner cylinder 10 is further rotated in the circumferential direction from the state of FIG. 2C, the opening degree of the first fluid side opening 12 is further reduced as the inner cylinder 10 is rotated, and is in a fully closed state. On the other hand, the opening degree of the second fluid side opening 13 further increases as the inner cylinder 10 rotates, and becomes fully open.

図2(d)は、内筒10の回転によって、第1流体側開口12の開口度が全閉になり、第2流体側開口13の開口度が全開になった状態を示す。図2(d)の状態では、第2流体のみが内筒10内に導入され、内筒10の内部流路16に流通し、外筒2の混合流体側流出口から吐出される。   FIG. 2D shows a state in which the opening degree of the first fluid side opening 12 is fully closed and the opening degree of the second fluid side opening 13 is fully opened by the rotation of the inner cylinder 10. In the state of FIG. 2 (d), only the second fluid is introduced into the inner cylinder 10, flows into the internal flow path 16 of the inner cylinder 10, and is discharged from the mixed fluid side outlet of the outer cylinder 2.

図2(b)の状態から図2(d)の状態に至るまで、第1流体側開口12の開口度と第2流体側開口13の開口度はともに内筒10の回転に従って変化する。第1流体側開口12と第2流体側開口13はともに、略三角形状で同一の大きさの開口を有し、略三角形状の開口の頂部が同様な位置に配置されている。このため、図2(b)の状態から図2(d)の状態に至るまでの内筒10の回転の範囲内では、第1流体側開口12の開口部分の開口断面積と第2流体側開口13の開口部分の開口断面積との合計が一定となっている。   From the state of FIG. 2B to the state of FIG. 2D, both the opening degree of the first fluid side opening 12 and the opening degree of the second fluid side opening 13 change according to the rotation of the inner cylinder 10. Both the first fluid side opening 12 and the second fluid side opening 13 are substantially triangular and have the same size, and the tops of the substantially triangular openings are arranged at similar positions. Therefore, within the range of rotation of the inner cylinder 10 from the state of FIG. 2B to the state of FIG. 2D, the opening cross-sectional area of the opening portion of the first fluid side opening 12 and the second fluid side The total of the opening cross-sectional area of the opening portion of the opening 13 is constant.

図3は、第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との合計が一定であることを説明するための模式図である。   FIG. 3 is a schematic diagram for explaining that the sum of the opening sectional area of the opening portion of the first fluid side opening and the opening sectional area of the opening portion of the second fluid side opening is constant.

図3(a)は、図2(b)の状態の弁装置1をケーシング7の開口40から見た外筒2の模式図である。この図は、第1流体側開口12の開口度が全開となった状態を示している。   FIG. 3A is a schematic diagram of the outer cylinder 2 when the valve device 1 in the state of FIG. 2B is viewed from the opening 40 of the casing 7. This figure shows a state in which the opening degree of the first fluid side opening 12 is fully open.

図3(b)は、上段の図が、図2(c)の状態の弁装置1をケーシング7の開口40から見た外筒2の模式図であり、下段の図が、図2(c)の状態の弁装置1をケーシング7の開口41から見た外筒2の模式図である。この図は、第1流体側開口12の開口度が半分になった状態を示している。また、第2流体側開口13の開口度も半分になった状態を示している。この図において、第1流体側開口12の開口部分の開口断面積と第2流体側開口13の開口部分の開口断面積との合計は、図3(a)の第1流体側開口12の開口部分の開口断面積と等しい。   3B is a schematic diagram of the outer cylinder 2 when the valve device 1 in the state of FIG. 2C is viewed from the opening 40 of the casing 7, and the lower diagram is FIG. FIG. 4 is a schematic view of the outer cylinder 2 when the valve device 1 in the state of) is viewed from the opening 41 of the casing 7. This figure shows a state in which the opening degree of the first fluid side opening 12 is halved. Further, the opening degree of the second fluid side opening 13 is also halved. In this figure, the sum of the opening cross-sectional area of the opening portion of the first fluid-side opening 12 and the opening cross-sectional area of the opening portion of the second fluid-side opening 13 is the opening of the first fluid-side opening 12 in FIG. It is equal to the opening cross-sectional area of the part.

図3(c)は、図2(c)の状態の弁装置1をケーシング7の開口41から見た外筒2の模式図である。この図は、第2流体側開口13の開口度が全開となった状態を示している。この図の第2流体側開口13の開口部分の開口断面積は、図3(a)の第1流体側開口12の開口部分の開口断面積と等しく、また、図3(b)の第1流体側開口12の開口部分の開口断面積と第2流体側開口13の開口部分の開口断面積との合計とも等しい。   FIG. 3C is a schematic view of the outer cylinder 2 when the valve device 1 in the state of FIG. 2C is viewed from the opening 41 of the casing 7. This figure shows a state in which the opening degree of the second fluid side opening 13 is fully open. The opening cross-sectional area of the opening portion of the second fluid side opening 13 in this figure is equal to the opening cross-sectional area of the opening portion of the first fluid side opening 12 of FIG. 3A, and the first cross section of FIG. The sum of the opening sectional area of the opening portion of the fluid side opening 12 and the opening sectional area of the opening portion of the second fluid side opening 13 is also equal.

このように第1流体側開口12の開口度と第2流体側開口13の開口度が変化する内筒10の回転の範囲内では、第1流体側開口12の開口部分の開口断面積と第2流体側開口13の開口部分の開口断面積との合計が一定となっている。   Thus, within the range of rotation of the inner cylinder 10 in which the opening degree of the first fluid side opening 12 and the opening degree of the second fluid side opening 13 change, the opening cross-sectional area of the opening portion of the first fluid side opening 12 and the first The total of the opening cross-sectional area of the opening portion of the two fluid side opening 13 is constant.

第1流体側開口12の開口部分の開口断面積は第1流体側流路14の断面積に相当し、第2流体側開口13の開口部分の開口断面積は第2流体側流路15の断面積に相当する。このため、弁装置1は、第1流体側流路14の断面積と第2流体側流路15の断面積が変化する内筒10の回転の範囲内において、第1流体側流路14の断面積と第2流体側流路15の断面積との合計が一定となっている。   The opening sectional area of the opening portion of the first fluid side opening 12 corresponds to the sectional area of the first fluid side channel 14, and the opening sectional area of the opening portion of the second fluid side opening 13 is the second fluid side channel 15. Corresponds to the cross-sectional area. For this reason, the valve device 1 includes the first fluid side channel 14 within the range of rotation of the inner cylinder 10 in which the sectional area of the first fluid side channel 14 and the sectional area of the second fluid side channel 15 change. The sum of the cross-sectional area and the cross-sectional area of the second fluid side channel 15 is constant.

このような弁装置は、第1流体側流路の断面積と第2流体側流路の断面積が変化する内筒の回転の範囲内において、第1流体と第2流体の混合比が異なる流量の一定の混合流体を混合流体側流出口から吐出することができる。したがって、例えば、第1流体として水(又は湯)、第2流体として湯(又は水)を採用した場合には、内筒を所定の範囲内で回転させることで温度の異なる一定量の湯水を吐出することができる。このため、背景技術で説明した水栓装置では湯配管及び給水配管の両方に電磁弁を有しているが、本発明の弁装置を用いることによって、電磁弁を一つ減らすことができる。これによって、混合水栓から吐出される湯水の温度を調整することができ、水栓装置の低コスト化及び小型化を図ることができる。   In such a valve device, the mixing ratio of the first fluid and the second fluid is different within the range of rotation of the inner cylinder in which the cross-sectional area of the first fluid-side channel and the cross-sectional area of the second fluid-side channel change. A mixed fluid having a constant flow rate can be discharged from the mixed fluid side outlet. Therefore, for example, when water (or hot water) is adopted as the first fluid and hot water (or water) is adopted as the second fluid, a certain amount of hot water having different temperatures can be obtained by rotating the inner cylinder within a predetermined range. It can be discharged. For this reason, although the faucet device described in the background art has electromagnetic valves in both the hot water pipe and the water supply pipe, the number of electromagnetic valves can be reduced by using the valve device of the present invention. Thereby, the temperature of the hot water discharged from the mixing faucet can be adjusted, and the cost and size of the faucet device can be reduced.

上記の弁装置は、第1流体側流路の断面積と第2流体側流路の断面積が変化する内筒の回転の範囲内において、第1流体側流路の断面積と第2流体側流路の断面積との合計が一定となる関係を有して形成されている。   In the valve device described above, the cross-sectional area of the first fluid-side channel and the second fluid are within the range of rotation of the inner cylinder in which the cross-sectional area of the first fluid-side channel and the cross-sectional area of the second fluid-side channel change. It is formed so as to have a constant relationship with the total cross-sectional area of the side channel.

本発明は、第1流体側流路の断面積と第2流体側流路の断面積との断面積比率が一定となる関係を有して形成されている弁装置も提供する。   The present invention also provides a valve device that is formed so that the cross-sectional area ratio between the cross-sectional area of the first fluid-side channel and the cross-sectional area of the second fluid-side channel is constant.

このような弁装置の一例と挙げると、第1流体側開口と第2流体側開口は、周方向長さが同一で軸方向長さも同一の同一形状の開口、または周方向長さが同一で軸方向長さが異なる軸方向に引き伸ばした相似形状の開口を有する。これら第1流体側開口と第2流体側開口は、第1流体と第2流体の混合比に応じた断面積比率を有する。これら第1流体側開口と第2流体側開口の大きさは、対応する第1流体側流入口と第2流体側流入口の開口の大きさよりも小さい。さらに、これら第1流体側開口と第2流体側開口は内筒の側壁部の所定の位置に配置される。   As an example of such a valve device, the first fluid side opening and the second fluid side opening have the same circumferential length and the same axial length, or the same circumferential length. An opening having a similar shape and extending in the axial direction has a different axial length. The first fluid side opening and the second fluid side opening have a cross-sectional area ratio corresponding to the mixing ratio of the first fluid and the second fluid. The sizes of the first fluid side opening and the second fluid side opening are smaller than the sizes of the corresponding first fluid side inlet and second fluid side inlet. Further, the first fluid side opening and the second fluid side opening are disposed at predetermined positions on the side wall portion of the inner cylinder.

以下、この弁装置について説明する。内筒以外の構成は上記の弁装置の構成と同じなので説明を省略する。   Hereinafter, this valve device will be described. Since the configuration other than the inner cylinder is the same as the configuration of the valve device described above, the description thereof is omitted.

図4は、図1の弁装置とは別の実施形態である弁装置の内筒を周方向に展開した模式図である。この図には、第1流体側流入口に対応する第1流体側開口と、第2流体側流入口に対応する第2流体側開口を付している。図4では、図1−図3に示した実施形態と同じ部分には同一の符号を付し、その説明を省略する。   FIG. 4 is a schematic view in which an inner cylinder of a valve device which is an embodiment different from the valve device of FIG. 1 is developed in the circumferential direction. This figure includes a first fluid side opening corresponding to the first fluid side inlet and a second fluid side opening corresponding to the second fluid side inlet. 4, the same parts as those in the embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.

内筒20の第1流体側開口22と第2流体側開口23はともに、周方向長さが同一で略三角形状の開口を有している。この開口は、軸方向に対称な形状である。すなわち、紙面において上下対称な形状となっている。第2流体側開口23は、その開口の軸方向長さが第1流体側開口22よりも長くなっており、第2流体側開口23の大きさは第1流体側開口22の大きさよりも大きい。これら第1流体側開口22と第2流体側開口23の大きさは、対応する第1流体側流入口3と第2流体側流入口4の開口の大きさよりも小さい。第1流体側開口22は、内筒20の回転によって略三角形状の開口の頂部が最先に外筒の第1流体側流入口に重なるように形成されている。第2流体側開口23も、内筒20の回転によって略三角形状の開口の頂部が最先に外筒の第2流体側流入口に重なるように形成されている。こうすることで、後述する図5(a)の状態から内筒20の回転を開始した際、小流量の流体が内筒20に導入され、混合流体側流出口から小流量の流体を吐出することができる。これによって、大流量の流体の急激な吐出を抑えることができる。   Both of the first fluid side opening 22 and the second fluid side opening 23 of the inner cylinder 20 have substantially the same triangular length and a substantially triangular opening. This opening has a symmetrical shape in the axial direction. That is, it has a vertically symmetrical shape on the paper surface. The second fluid side opening 23 has an axial length longer than that of the first fluid side opening 22, and the size of the second fluid side opening 23 is larger than the size of the first fluid side opening 22. . The sizes of the first fluid side opening 22 and the second fluid side opening 23 are smaller than the sizes of the corresponding first fluid side inlet 3 and second fluid side inlet 4. The first fluid side opening 22 is formed such that the top of the substantially triangular opening overlaps the first fluid side inlet of the outer cylinder first by the rotation of the inner cylinder 20. The second fluid side opening 23 is also formed such that the top of the substantially triangular opening overlaps the second fluid side inlet of the outer cylinder first by the rotation of the inner cylinder 20. By doing so, when the rotation of the inner cylinder 20 is started from the state of FIG. 5A described later, a small flow rate fluid is introduced into the inner cylinder 20 and a small flow rate fluid is discharged from the mixed fluid side outlet. be able to. As a result, rapid discharge of a large flow rate of fluid can be suppressed.

第1流体側開口22と第2流体側開口23は、第1流体側開口22の開口度が全閉(又は全開)となる位置にあるときに、第2流体側開口23の開口度も全閉(又は全開)となる位置に形成される。さらに、第1流体側開口22の全閉(又は全開)の開口度が内筒20の回転に従って増加(又は減少)し、第2流体側開口23の全閉(又は全開)の開口度も内筒20の回転に従って増加(又は減少)する位置に形成される。つまり、外筒の側壁部の周方向での、第1流体側流入口3と第2流体側流入口4の相互の位置関係と同じ位置関係となるように、第1流体側開口22と第2流体側開口23は側壁部11に互いに周方向にずれて形成される。この実施形態は、第2流体側流入口4が外筒の側壁部の第1流体側流入口3の周方向180°の位置に形成されている例であり、第2流体側開口23は側壁部11の第1流体側開口22の周方向180°の位置に形成される。   When the first fluid side opening 22 and the second fluid side opening 23 are in a position where the opening degree of the first fluid side opening 22 is fully closed (or fully open), the opening degree of the second fluid side opening 23 is also fully open. It is formed at a position that is closed (or fully open). Further, the fully closed (or fully open) opening degree of the first fluid side opening 22 increases (or decreases) as the inner cylinder 20 rotates, and the fully closed (or fully open) opening degree of the second fluid side opening 23 also increases. It is formed at a position that increases (or decreases) as the cylinder 20 rotates. That is, the first fluid side opening 22 and the second fluid side inlet 22 are arranged so as to have the same positional relationship as the mutual positional relationship between the first fluid side inlet 3 and the second fluid side inlet 4 in the circumferential direction of the side wall portion of the outer cylinder. The two fluid side openings 23 are formed in the side wall portion 11 so as to be shifted from each other in the circumferential direction. This embodiment is an example in which the second fluid side inlet 4 is formed at a position 180 ° in the circumferential direction of the first fluid side inlet 3 of the side wall portion of the outer cylinder, and the second fluid side opening 23 is a side wall. The first fluid side opening 22 of the portion 11 is formed at a position 180 ° in the circumferential direction.

この弁装置の内筒の回転動作を図5に基づいて説明する。   The rotation operation of the inner cylinder of this valve device will be described with reference to FIG.

図5の上段は、図1の弁装置のA−A線断面図であるが、図4の内筒20を適用した弁装置50であり、内筒20を順次回転させている。下段も、図1の弁装置のB−B線断面図であるが、図4の内筒20を適用した弁装置50であり、内筒20を順次回転させている。なお、図1−図4に示した実施形態と同じ部分には同一の符号を付し、その説明を省略する。   5 is a cross-sectional view taken along line AA of the valve device of FIG. 1, and is a valve device 50 to which the inner cylinder 20 of FIG. 4 is applied, and the inner cylinder 20 is rotated sequentially. The lower stage is also a cross-sectional view taken along the line BB of the valve device of FIG. 1, but is a valve device 50 to which the inner cylinder 20 of FIG. 4 is applied, and the inner cylinder 20 is rotated sequentially. In addition, the same code | symbol is attached | subjected to the same part as embodiment shown in FIGS. 1-4, and the description is abbreviate | omitted.

図5(a)は、第1流体側流入口3と第1流体側開口22が重なっていない状態であり、また、第2流体側流入口4と第2流体側開口23が重なっていない状態を示す。つまり、第1流体側開口22の開口度と第2流体側開口23の開口度がともに全閉の状態である。図5(a)の状態では、第1流体と第2流体はともに内筒20内に導入されない。図5(a)の状態から内筒20を周方向(矢印で示す方向)に回転させていくと、第1流体側開口22の開口度が内筒20の回転に従って増加する。第2流体側開口23の開口度も、内筒20の回転に従って増加する。   FIG. 5A shows a state where the first fluid side inlet 3 and the first fluid side opening 22 do not overlap, and a state where the second fluid side inlet 4 and the second fluid side opening 23 do not overlap. Indicates. That is, the opening degree of the first fluid side opening 22 and the opening degree of the second fluid side opening 23 are both in a fully closed state. In the state of FIG. 5A, neither the first fluid nor the second fluid is introduced into the inner cylinder 20. When the inner cylinder 20 is rotated in the circumferential direction (direction indicated by the arrow) from the state of FIG. 5A, the opening degree of the first fluid side opening 22 increases as the inner cylinder 20 rotates. The opening degree of the second fluid side opening 23 also increases as the inner cylinder 20 rotates.

図5(b)は、内筒20の回転によって、第1流体側開口22の開口度が全開状態の1/3程度になった状態を示す。このとき、第2流体側開口23の開口度も全開状態の1/3程度になっている。図5(b)の状態では、第1流体と第2流体が内筒20内に導入され、内筒20の内部流路16に流通し、混合流体として外筒2の混合流体側流出口から吐出される。図5(b)の状態から内筒20をさらに周方向に回転させていくと、第1流体側開口22の開口度は内筒20の回転に従ってさらに増加し、全開の状態となる。第2流体側開口23の開口度も内筒20の回転に従ってさらに増加し、全開の状態となる。   FIG. 5B shows a state in which the opening degree of the first fluid side opening 22 is about 1/3 of the fully opened state by the rotation of the inner cylinder 20. At this time, the opening degree of the second fluid side opening 23 is also about 1/3 of the fully opened state. In the state of FIG. 5B, the first fluid and the second fluid are introduced into the inner cylinder 20, circulates in the internal flow path 16 of the inner cylinder 20, and flows from the mixed fluid side outlet of the outer cylinder 2 as a mixed fluid. Discharged. When the inner cylinder 20 is further rotated in the circumferential direction from the state of FIG. 5B, the degree of opening of the first fluid side opening 22 further increases with the rotation of the inner cylinder 20 and is in a fully opened state. The opening degree of the second fluid side opening 23 further increases as the inner cylinder 20 rotates, and is in a fully opened state.

図5(c)は、内筒20の回転によって、第1流体側開口22の開口度と第2流体側開口23の開口度がともに全開になった状態を示す。図5(c)の状態も図5(b)の状態と同様に、混合流体側流出口から混合流体が吐出されるが、図5(c)の状態の方が吐出される混合流体の流量は多い。図5(c)の状態から内筒20をさらに周方向に回転させていくと、第1流体側開口22の開口度は内筒20の回転に従って減少し、全閉の状態となる。第2流体側開口23の開口度も内筒20の回転に従って減少し、全閉の状態となる。   FIG. 5C shows a state in which the opening degree of the first fluid side opening 22 and the opening degree of the second fluid side opening 23 are both fully opened by the rotation of the inner cylinder 20. In the state of FIG. 5C, the mixed fluid is discharged from the mixed fluid side outlet as in the state of FIG. 5B. However, the flow rate of the mixed fluid discharged in the state of FIG. There are many. When the inner cylinder 20 is further rotated in the circumferential direction from the state of FIG. 5C, the opening degree of the first fluid side opening 22 decreases with the rotation of the inner cylinder 20, and becomes a fully closed state. The opening degree of the second fluid side opening 23 also decreases with the rotation of the inner cylinder 20 and becomes a fully closed state.

図5(d)は、内筒20の回転によって、第1流体側開口22の開口度と第2流体側開口23の開口度がともに全閉になった状態を示す。この状態では、第1流体と第2流体はともに内筒20内に導入されない。   FIG. 5D shows a state where the opening degree of the first fluid side opening 22 and the opening degree of the second fluid side opening 23 are both fully closed by the rotation of the inner cylinder 20. In this state, neither the first fluid nor the second fluid is introduced into the inner cylinder 20.

図5(a)の状態から図5(d)の状態に至るまで、第1流体側開口22の開口度と第2流体側開口23の開口度はともに内筒20の回転に従って変化する。第1流体側開口22と第2流体側開口23はそれぞれ、周方向長さが同一で軸方向に対称な形状の開口を有し、しかも大きさの異なる開口を有する。このため、図5(a)の状態から図5(d)の状態に至るまでの内筒20の回転の範囲内では、第1流体側開口22の開口部分の開口断面積と第2流体側開口23の開口部分の開口断面積との断面積比率が一定となっている。   From the state of FIG. 5A to the state of FIG. 5D, both the opening degree of the first fluid side opening 22 and the opening degree of the second fluid side opening 23 change according to the rotation of the inner cylinder 20. Each of the first fluid side opening 22 and the second fluid side opening 23 has openings having the same circumferential length and symmetrical shapes in the axial direction, and having different sizes. Therefore, within the range of rotation of the inner cylinder 20 from the state of FIG. 5A to the state of FIG. 5D, the opening cross-sectional area of the opening portion of the first fluid side opening 22 and the second fluid side The ratio of the cross-sectional area to the opening cross-sectional area of the opening portion of the opening 23 is constant.

図6は、第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との断面積比率が一定であることを説明するための模式図である。   FIG. 6 is a schematic diagram for explaining that the cross-sectional area ratio between the opening cross-sectional area of the opening portion of the first fluid-side opening and the opening cross-sectional area of the opening portion of the second fluid-side opening is constant.

図6(a)は、上段の図が、図5(b)の状態の弁装置50をケーシング7の開口40から見た外筒2の模式図であり、下段の図が、図5(b)の状態の弁装置50をケーシング7の開口41から見た外筒2の模式図である。この図は、第1流体側開口22の開口度が全開状態の1/3程度になった状態を示している。また、第2流体側開口13の開口度も全開状態の1/3程度になった状態を示している。   6A is a schematic diagram of the outer cylinder 2 when the valve device 50 in the state of FIG. 5B is viewed from the opening 40 of the casing 7, and the lower diagram is FIG. 5B. FIG. 6 is a schematic view of the outer cylinder 2 when the valve device 50 in the state of) is viewed from the opening 41 of the casing 7. This figure shows a state where the opening degree of the first fluid side opening 22 is about 1/3 of the fully opened state. Moreover, the opening degree of the 2nd fluid side opening 13 has also shown the state which became about 1/3 of the full open state.

図6(b)は、上段の図が、図5(c)の状態の弁装置50をケーシング7の開口40から見た外筒2の模式図であり、下段の図が、図5(c)の状態の弁装置50をケーシング7の開口41から見た外筒2の模式図である。この図は、第1流体側開口22の開口度が全開になった状態を示している。また、第2流体側開口23の開口度も全開になった状態を示している。この図において、第1流体側開口22の開口部分の開口断面積と第2流体側開口23の開口部分の開口断面積との断面積比率は、図6(a)の第1流体側開口22の開口部分の開口断面積と第2流体側開口23の開口部分の開口断面積との断面積比率と等しい。   6B is a schematic diagram of the outer cylinder 2 when the valve device 50 in the state of FIG. 5C is viewed from the opening 40 of the casing 7, and the lower diagram is FIG. 5C. FIG. 6 is a schematic view of the outer cylinder 2 when the valve device 50 in the state of) is viewed from the opening 41 of the casing 7. This figure shows a state in which the opening degree of the first fluid side opening 22 is fully opened. Further, the opening degree of the second fluid side opening 23 is also shown in a fully opened state. In this figure, the cross-sectional area ratio between the opening cross-sectional area of the opening portion of the first fluid-side opening 22 and the opening cross-sectional area of the opening portion of the second fluid-side opening 23 is the first fluid-side opening 22 in FIG. Is equal to the cross-sectional area ratio of the opening cross-sectional area of the opening portion of the second fluid side opening 23 and the opening cross-sectional area of the opening portion of the second fluid side opening 23.

このように第1流体側開口22の開口度と第2流体側開口23の開口度が変化する内筒20の回転の範囲内では、第1流体側開口22の開口部分の開口断面積と第2流体側開口23の開口部分の開口断面積との断面積比率が一定となっている。   Thus, within the range of rotation of the inner cylinder 20 in which the opening degree of the first fluid side opening 22 and the opening degree of the second fluid side opening 23 change, the opening cross-sectional area of the opening part of the first fluid side opening 22 and the first The cross-sectional area ratio with the opening cross-sectional area of the opening part of the 2 fluid side opening 23 is constant.

第1流体側開口22の開口部分の開口断面積は第1流体側流路14の断面積に相当し、第2流体側開口23の開口部分の開口断面積は第2流体側流路15の断面積に相当する。このため、弁装置50は、第1流体側流路14の断面積と第2流体側流路15の断面積が変化する内筒20の回転の範囲内において、第1流体側流路14の断面積と第2流体側流路15の断面積との断面積比率が一定となっている。   The opening sectional area of the opening portion of the first fluid side opening 22 corresponds to the sectional area of the first fluid side channel 14, and the opening sectional area of the opening portion of the second fluid side opening 23 is the second fluid side channel 15. Corresponds to the cross-sectional area. For this reason, the valve device 50 includes the first fluid-side channel 14 within the range of rotation of the inner cylinder 20 in which the sectional area of the first fluid-side channel 14 and the sectional area of the second fluid-side channel 15 change. The cross-sectional area ratio between the cross-sectional area and the cross-sectional area of the second fluid side channel 15 is constant.

このような弁装置は、第1流体側流路の断面積と第2流体側流路の断面積が変化する内筒の回転の範囲内において、第1流体と第2流体の混合比が一定であり、流量の異なる混合流体を混合流体側流出口から吐出することができる。したがって、例えば、第1流体として水(又は湯)、第2流体として湯(又は水)を採用した場合には、内筒を所定の範囲内で回転させることで、温度が一定で流量の異なる湯水を吐出することができる。このため、背景技術で説明した水栓装置では湯配管及び給水配管の両方に電磁弁を有しているが、本発明の弁装置を用いることによって、電磁弁を一つ減らすことができる。これによって、混合水栓から吐出される湯水の流量を調整することができ、水栓装置の低コスト化及び小型化を図ることができる。   In such a valve device, the mixing ratio of the first fluid and the second fluid is constant within the range of rotation of the inner cylinder in which the sectional area of the first fluid side channel and the sectional area of the second fluid side channel change. The mixed fluids having different flow rates can be discharged from the mixed fluid side outlet. Therefore, for example, when water (or hot water) is adopted as the first fluid and hot water (or water) is adopted as the second fluid, the temperature is constant and the flow rate is different by rotating the inner cylinder within a predetermined range. Hot water can be discharged. For this reason, although the faucet device described in the background art has electromagnetic valves in both the hot water pipe and the water supply pipe, the number of electromagnetic valves can be reduced by using the valve device of the present invention. Thereby, the flow rate of the hot water discharged from the mixing faucet can be adjusted, and the cost and size of the faucet device can be reduced.

上記実施形態では、内筒の第1流体側開口と第2流体側開口はともに略三角形の形状の開口を有しているが、これに限定されず、各々同一又は別異に、かまぼこ状、矩形状、楕円状、三角形状、十字状又はこれらを組み合わせた形状等の開口とすることができる。   In the above embodiment, both the first fluid side opening and the second fluid side opening of the inner cylinder have substantially triangular shaped openings, but are not limited to this, and each is the same or different, The opening may have a rectangular shape, an elliptical shape, a triangular shape, a cross shape, or a combination thereof.

また、上記実施形態の弁装置はいずれも第1流体側開口と第2流体側開口とからなる組を一組有しているが、複数有していてもよい。この場合、第1流体側開口と第2流体側開口の開口断面積が組毎に異なることが好ましい。これによって、各組の開口断面積に応じた流量で混合流体の流量や第1流体と第2流体との混合比を変えることができ、混合流体の段階的な流量調整や混合比の調整を行うことができる。   Moreover, although all the valve apparatuses of the said embodiment have one set which consists of a 1st fluid side opening and a 2nd fluid side opening, you may have more than one. In this case, it is preferable that the opening cross-sectional areas of the first fluid side opening and the second fluid side opening are different for each group. As a result, the flow rate of the mixed fluid and the mixing ratio of the first fluid and the second fluid can be changed at a flow rate corresponding to the opening cross-sectional area of each set, and the stepwise flow rate adjustment of the mixed fluid and the adjustment of the mixing ratio can be performed. It can be carried out.

図7は、図1の弁装置の内筒に、第1流体側開口と第2流体側開口とからなる組をさらに二組追加した内筒を周方向に展開した模式図である。この図には、第1流体側流入口に対応する第1流体側開口と、第2流体側流入口に対応する第2流体側開口を付している。図7では、図1−図6に示した実施形態と同じ部分には同一の符号を付し、その説明を省略する。   FIG. 7 is a schematic diagram in which an inner cylinder in which two sets of a first fluid side opening and a second fluid side opening are further added to the inner cylinder of the valve device of FIG. 1 is developed in the circumferential direction. This figure includes a first fluid side opening corresponding to the first fluid side inlet and a second fluid side opening corresponding to the second fluid side inlet. In FIG. 7, the same parts as those in the embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof is omitted.

この図の内筒30は、第1流体側開口12と第2流体側開口13とからなる組に加え、さらに、第1流体側開口32と第2流体側開口33とからなる組と、第1流体側開口52と第2流体側開口53とからなる組とを有している。   The inner cylinder 30 in this figure includes, in addition to the set of the first fluid side opening 12 and the second fluid side opening 13, a set of the first fluid side opening 32 and the second fluid side opening 33, The first fluid side opening 52 and the second fluid side opening 53 are included.

第1流体側開口32と第2流体側開口33はともに、略三角形状で同一の大きさの開口を有している。これら第1流体側開口32と第2流体側開口33の大きさは、第1流体側開口12と第2流体側開口13の大きさよりも大きく、対応する第1流体側流入口3と第2流体側流入口4の開口の大きさよりも小さくなっている。第1流体側開口32は、内筒30の回転によって略三角形状の開口の頂部が最先に第1流体側流入口3に重なるように形成されている。第2流体側開口33も、内筒30の回転によって略三角形状の開口の頂部が最先に第2流体側流入口4に重なるように形成されている。こうすることで、混合流体側流出口から大流量の流体が急激に吐出されることを抑えることができる。   Both the first fluid side opening 32 and the second fluid side opening 33 are substantially triangular and have openings of the same size. The sizes of the first fluid side opening 32 and the second fluid side opening 33 are larger than the sizes of the first fluid side opening 12 and the second fluid side opening 13, and the corresponding first fluid side inlet 3 and second fluid side opening 3 are the same. It is smaller than the size of the opening of the fluid side inlet 4. The first fluid side opening 32 is formed such that the top of the substantially triangular opening overlaps the first fluid side inlet 3 first by the rotation of the inner cylinder 30. The second fluid side opening 33 is also formed so that the top of the substantially triangular opening overlaps the second fluid side inlet 4 first by the rotation of the inner cylinder 30. By carrying out like this, it can suppress that the fluid of a large flow volume is rapidly discharged from the mixed fluid side outflow port.

第1流体側開口52と第2流体側開口53はともに、2つの台形を軸方向に対称に組み合わせ、かつ、この組み合わせた図形の内筒30の周方向一端部に半円を組み合わせた形状の開口を有している。第1流体側開口52と第2流体側開口53はともに、同一形状で同一の大きさの開口を有している。これら第1流体側開口52と第2流体側開口53の大きさは、第1流体側開口32と第2流体側開口33の大きさよりも大きく、対応する第1流体側流入口3と第2流体側流入口4の開口の大きさよりも小さくなっている。第1流体側開口52は、内筒30の回転によって、半円状に形成された部分が最先に第1流体側流入口3に重なるように形成されている。第2流体側開口53も、内筒30の回転によって、半円状に形成された部分が最先に第2流体側流入口4に重なるように形成されている。こうすることで、混合流体側流出口から大流量の流体が急激に吐出されることを抑えることができる。   Each of the first fluid side opening 52 and the second fluid side opening 53 has a shape in which two trapezoids are combined symmetrically in the axial direction, and a semicircle is combined at one end in the circumferential direction of the inner cylinder 30 of the combined figure. Has an opening. Both the first fluid side opening 52 and the second fluid side opening 53 have the same shape and the same size. The sizes of the first fluid side opening 52 and the second fluid side opening 53 are larger than the sizes of the first fluid side opening 32 and the second fluid side opening 33, and the corresponding first fluid side inlet 3 and second fluid side opening 3 are the same. It is smaller than the size of the opening of the fluid side inlet 4. The first fluid side opening 52 is formed so that the semicircular part overlaps the first fluid side inlet 3 first by the rotation of the inner cylinder 30. The second fluid side opening 53 is also formed such that the semicircular portion overlaps the second fluid side inlet 4 first by the rotation of the inner cylinder 30. By carrying out like this, it can suppress that the fluid of a large flow volume is rapidly discharged from the mixed fluid side outflow port.

第1流体側開口12,32,52と第2流体側開口13,33,53とからなる組は、組毎に、側壁部11に周方向にずれて形成されている。側壁部11の周方向での、各組における第1流体側開口と第2流体側開口の相互の位置関係は、各組ともに同じである。   A set of the first fluid side openings 12, 32, 52 and the second fluid side openings 13, 33, 53 is formed in the side wall portion 11 so as to be shifted in the circumferential direction for each set. The mutual positional relationship between the first fluid side opening and the second fluid side opening in each group in the circumferential direction of the side wall 11 is the same for each group.

内筒30を有する弁装置は、各組の第1流体側開口の開口度と第2流体側開口の開口度が変化する内筒30の回転の範囲内において、各組の第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との合計が一定となっている。このため、各組の第1流体側流路の断面積と第2流体側流路の断面積が変化する内筒の回転の範囲内において、第1流体と第2流体の混合比が異なる流量の一定の混合流体を混合流体側流出口から吐出することができる。更に、第1流体側開口と第2流体側開口とからなる組は、組毎に開口の大きさが異なっているので、各組の開口断面積に応じた、例えば「大」「中」「小」の流量で混合流体を吐出することができる。したがって、本実施形態の弁装置は、開口断面積に応じた流量で第1流体と第2流体の混合比を変えることが可能となり、各組間で混合流体の段階的な流量調整が可能となる。   The valve device having the inner cylinder 30 has the first fluid side opening of each set within the range of rotation of the inner cylinder 30 in which the opening degree of the first fluid side opening and the opening degree of the second fluid side opening of each group change. The sum of the opening cross-sectional area of the opening portion and the opening cross-sectional area of the opening portion of the second fluid side opening is constant. For this reason, the flow rates in which the mixing ratios of the first fluid and the second fluid are different within the range of rotation of the inner cylinder in which the cross-sectional area of the first fluid-side channel and the cross-sectional area of the second fluid-side channel of each set change. A certain fluid mixture can be discharged from the fluid mixture side outlet. Furthermore, since the sets of the first fluid side opening and the second fluid side opening have different opening sizes for each set, for example, “large” “medium” “ The mixed fluid can be discharged at a small flow rate. Therefore, the valve device of the present embodiment can change the mixing ratio of the first fluid and the second fluid at a flow rate corresponding to the opening cross-sectional area, and can adjust the flow rate of the mixed fluid in stages between each set. Become.

上記実施形態では、第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との合計が一定であり組毎に開口断面積が異なる組を図1の弁装置の内筒に二組追加しているが、これに限定されない。第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との断面積比率が一定であり組毎に開口断面積が異なる組を図4の内筒に追加することもできる。この場合、開口断面積比率に応じた混合比で第1流体と第2流体との混合流体の流量を変えることが可能となり、各組間で混合流体の段階的な混合比の調整が可能となる。また、第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との断面積比率が一定となる組と、第1流体側開口の開口部分の開口断面積と第2流体側開口の開口部分の開口断面積との合計が一定となる組とを組み合わせた構成でもよい。さらにまた、第1流体側開口と第2流体側開口とからなる組が二組もしくは四組以上有した内筒とすることもできる。いずれの場合も、各組の開口断面積に応じた流量で混合流体の流量や第1流体と第2流体との混合比を変えることができ、混合流体の段階的な流量調整や混合比の調整を行うことができる。   In the above embodiment, a set in which the sum of the opening cross-sectional area of the opening portion of the first fluid side opening and the opening cross-sectional area of the opening portion of the second fluid side opening is constant and the opening cross-sectional area is different for each set is shown in FIG. Two sets are added to the inner cylinder of the valve device, but the present invention is not limited to this. A set in which the cross-sectional area ratio between the opening cross-sectional area of the opening portion of the first fluid-side opening and the opening cross-sectional area of the opening portion of the second fluid-side opening is constant and the opening cross-sectional area differs for each set is shown in FIG. It can also be added. In this case, it is possible to change the flow rate of the mixed fluid of the first fluid and the second fluid at a mixing ratio according to the opening cross-sectional area ratio, and it is possible to adjust the mixing ratio of the mixed fluid step by step between each set. Become. In addition, a set in which the ratio of the cross-sectional area between the opening cross-sectional area of the opening portion of the first fluid-side opening and the opening cross-sectional area of the opening portion of the second fluid-side opening is constant, and the opening break of the opening portion of the first fluid-side opening A combination of a combination in which the sum of the area and the opening cross-sectional area of the opening portion of the second fluid side opening is constant may be used. Furthermore, an inner cylinder having two sets or four sets or more of the first fluid side opening and the second fluid side opening may be used. In either case, the flow rate of the mixed fluid and the mixing ratio of the first fluid and the second fluid can be changed at a flow rate corresponding to the opening cross-sectional area of each set. Adjustments can be made.

上記実施形態の弁装置は、周方向に内筒が回転可能に構成されているが、さらに軸方向にも内筒が移動可能に構成することができる。この場合、第1流体側開口と第2流体側開口とからなる組を軸方向に増やすことができ、混合流体の混合比を調整する流量の選択肢を増やすことができる。また、混合流体の流量を調整する混合比の選択肢を増やすことができる。軸方向の移動量を多くすればするほど流量を細かく設定することができ、第1流体と第2流体との混合比の調整及び、混合流体の流量調整の両方をアナログ的に調整することが可能となる。   Although the inner cylinder is configured to be rotatable in the circumferential direction, the valve device according to the above embodiment can be configured to be movable in the axial direction. In this case, the number of pairs of the first fluid side opening and the second fluid side opening can be increased in the axial direction, and the flow rate options for adjusting the mixing ratio of the mixed fluid can be increased. Moreover, the choice of the mixing ratio which adjusts the flow volume of mixed fluid can be increased. The larger the amount of movement in the axial direction, the finer the flow rate can be set, and both the adjustment of the mixing ratio of the first fluid and the second fluid and the adjustment of the flow rate of the mixed fluid can be adjusted in an analog manner. It becomes possible.

内筒の軸方向の移動は、例えば、ネジ機構等が採用される。ネジ機構は、内筒の周方向の回転を軸方向の動きに変える機構である。例えば、内筒の回転軸をネジ軸とすることで、内筒を周方向に回転させながら軸方向へも移動させることができる。   For example, a screw mechanism or the like is employed for the axial movement of the inner cylinder. The screw mechanism is a mechanism that changes the circumferential rotation of the inner cylinder into an axial movement. For example, by using the rotating shaft of the inner cylinder as a screw shaft, the inner cylinder can be moved in the axial direction while rotating in the circumferential direction.

以上、実施形態に基づき本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。例えば、第1流体及び第2流体として水及び湯以外の組み合わせ以外に、他の異なる2種の流体を用いてもよい。また、上記した弁装置は水栓装置に適用可能であるが、このような水栓装置は洗面化粧台をはじめ、流し台などの様々な水回り装置に組み込むことができる。   While the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, two different kinds of fluids may be used as the first fluid and the second fluid in addition to combinations other than water and hot water. The valve device described above can be applied to a faucet device, but such a faucet device can be incorporated in various watering devices such as a vanity and a sink.

1,50 弁装置
2 外筒
3 第1流体側流入口
4 第2流体側流入口
5 混合流体側流出口
6 側壁部
10,20,30 内筒
11 側壁部
12,22,32,52 第1流体側開口
13,23,33,53 第2流体側開口
14 第1流体側流路
15 第2流体側流路
1, 50 Valve device 2 Outer cylinder 3 First fluid side inlet 4 Second fluid side inlet 5 Mixed fluid side outlet 6 Side wall 10, 20, 30 Inner cylinder 11 Side wall 12, 22, 32, 52 First Fluid side openings 13, 23, 33, 53 Second fluid side opening 14 First fluid side channel 15 Second fluid side channel

Claims (2)

筒状の外筒と、この外筒に周方向に回転可能に内装される円筒状の内筒とを備え、
前記外筒は、第1流体が流入する第1流体側流入口と、第2流体が流入する第2流体側流入口と、前記第1流体と前記第2流体との混合流体が流出する混合流体側流出口とを有し、前記第1流体側流入口と前記第2流体側流入口は、前記外筒の側壁部に、軸方向に互いに離れて設けられ、
前記内筒は、側壁部に、前記第1流体側流入口に対応する第1流体側開口と、前記第2流体側流入口に対応する第2流体側開口とを有し、
前記内筒の周方向の回転によって、前記第1流体側流入口と前記第1流体側開口とが重なって第1流体側流路が形成されるとともに、前記第2流体側流入口と前記第2流体側開口とが重なって第2流体側流路が形成され、
前記第1流体側流路の断面積と前記第2流体側流路の断面積はそれぞれ、前記内筒の周方向の回転に従って変化し、前記第1流体側流路の断面積と前記第2流体側流路の断面積が変化する前記内筒の回転の範囲内において、前記第1流体側流路の断面積と前記第2流体側流路の断面積との合計が一定に、又は前記第1流体側流路の断面積と前記第2流体側流路の断面積との断面積比率が一定に形成され
前記内筒は、前記第1流体側開口と前記第2流体側開口とからなる組を複数有し、前記第1流体側開口と前記第2流体側開口の開口断面積が組毎に異なることを特徴とする弁装置。
A cylindrical outer cylinder, and a cylindrical inner cylinder that is rotatably mounted in the outer cylinder in the circumferential direction,
The outer cylinder includes a first fluid side inlet into which the first fluid flows, a second fluid side inlet into which the second fluid flows, and a mixed fluid of the first fluid and the second fluid flowing out. A fluid side outlet, and the first fluid side inlet and the second fluid side inlet are provided apart from each other in the axial direction on a side wall portion of the outer cylinder,
The inner cylinder has a first fluid side opening corresponding to the first fluid side inlet and a second fluid side opening corresponding to the second fluid side inlet on the side wall,
The rotation of the inner cylinder in the circumferential direction causes the first fluid side inlet and the first fluid side opening to overlap to form a first fluid side flow path, and the second fluid side inlet and the first fluid side inlet. The second fluid side flow path is formed by overlapping the two fluid side openings,
The cross-sectional area of the first fluid-side channel and the cross-sectional area of the second fluid-side channel change according to the rotation of the inner cylinder in the circumferential direction, respectively, and the cross-sectional area of the first fluid-side channel and the second The total of the cross-sectional area of the first fluid-side flow path and the cross-sectional area of the second fluid-side flow path is constant within the range of rotation of the inner cylinder in which the cross-sectional area of the fluid-side flow path changes, or The cross-sectional area ratio between the cross-sectional area of the first fluid-side channel and the cross-sectional area of the second fluid-side channel is formed constant ,
The inner cylinder has a plurality of sets each including the first fluid side opening and the second fluid side opening, and an opening cross-sectional area of the first fluid side opening and the second fluid side opening is different for each set. A valve device characterized by.
前記内筒は、さらに軸方向にも移動可能に形成されていることを特徴とする請求項1に記載の弁装置。 The valve device according to claim 1, wherein the inner cylinder is further formed to be movable in the axial direction .
JP2013024981A 2013-02-12 2013-02-12 Valve device Expired - Fee Related JP6103198B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013024981A JP6103198B2 (en) 2013-02-12 2013-02-12 Valve device
PCT/JP2014/000364 WO2014125774A1 (en) 2013-02-12 2014-01-24 Valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024981A JP6103198B2 (en) 2013-02-12 2013-02-12 Valve device

Publications (2)

Publication Number Publication Date
JP2014152896A JP2014152896A (en) 2014-08-25
JP6103198B2 true JP6103198B2 (en) 2017-03-29

Family

ID=51353790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024981A Expired - Fee Related JP6103198B2 (en) 2013-02-12 2013-02-12 Valve device

Country Status (2)

Country Link
JP (1) JP6103198B2 (en)
WO (1) WO2014125774A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684546B1 (en) * 2015-06-11 2016-12-08 현대자동차 주식회사 Engine system having coolant control valve
DE102015213871B3 (en) * 2015-07-22 2016-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mixing device and method for mixing media
KR101856716B1 (en) * 2016-07-19 2018-05-14 부산대학교 산학협력단 Flow control valve
JP6104443B1 (en) * 2016-08-26 2017-03-29 伸和コントロールズ株式会社 Three-way valve for flow control and temperature control device using the same
KR200485859Y1 (en) * 2016-12-23 2018-03-08 김상헌 Switching valve for cold water and cleaned water
CN110462266A (en) * 2017-03-30 2019-11-15 盛美半导体设备(上海)有限公司 Exhaust apparatus
CN109386336A (en) * 2017-08-08 2019-02-26 罗灿 Adjustable turnover type plug valve
JP6747697B2 (en) * 2018-10-29 2020-08-26 伸郎 池永 External combustion rotary engine
DE102019103610A1 (en) * 2019-02-13 2020-08-13 Grohe Ag Valve for a flush-mounted body of a sanitary fitting with a volume control part and a temperature control part
JP7003205B2 (en) * 2020-10-23 2022-01-20 三菱電機株式会社 Water heater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167381U (en) * 1982-05-04 1983-11-08 コ−シン・ラシン株式会社 Orifice tube in flow regulating valve
JP2945088B2 (en) * 1990-07-06 1999-09-06 光陽産業株式会社 Thermal power controller
JP3881798B2 (en) * 1998-12-15 2007-02-14 株式会社テージーケー Mixing valve
JP5523083B2 (en) * 2009-12-21 2014-06-18 大電株式会社 Mixing valve device

Also Published As

Publication number Publication date
WO2014125774A1 (en) 2014-08-21
JP2014152896A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6103198B2 (en) Valve device
JP2009545028A5 (en)
EA200702501A1 (en) CONTROL VALVE
JP2008057666A (en) Mixing valve
US10119621B2 (en) Valve having a diverting cartridge with integral pressure balance
WO2017163997A1 (en) Hot and cold water mixing faucet
TWI439625B (en) Insertion for single-grip mixing faucet with increased comfort angle range
JP2007100894A (en) Hot-water/water mixing valve
JP6210372B2 (en) Valve device
CN102734491B (en) Upper portion of conversion valve
JP4640105B2 (en) Hot water mixing valve
JP2015129536A (en) Mixing faucet
JP5523083B2 (en) Mixing valve device
JP2003042313A (en) Rotary sleeve valve
JP2017180792A (en) Cylinder type valve device
KR101277080B1 (en) Faucet for controlling cold water and hot water and displacement
KR101009486B1 (en) Faucet for cold water and hot water
TW202032046A (en) Hot and cold water mixing faucet
JP6474025B2 (en) Valve unit and faucet device
US3269413A (en) Mixing valve for lavatories
KR101928063B1 (en) Cylindrical Rotary Gate Valve
JP4109551B2 (en) Flow rate adjusting valve and hot water supply device using the same
JP4556834B2 (en) Hot water mixing valve
JP2022049230A (en) Ball valve
JP2003042312A (en) Rotary flow control valve

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R151 Written notification of patent or utility model registration

Ref document number: 6103198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees