JP6102902B2 - Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet - Google Patents

Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet Download PDF

Info

Publication number
JP6102902B2
JP6102902B2 JP2014258315A JP2014258315A JP6102902B2 JP 6102902 B2 JP6102902 B2 JP 6102902B2 JP 2014258315 A JP2014258315 A JP 2014258315A JP 2014258315 A JP2014258315 A JP 2014258315A JP 6102902 B2 JP6102902 B2 JP 6102902B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
cold
pickling
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258315A
Other languages
Japanese (ja)
Other versions
JP2015180766A (en
Inventor
麻衣 宮田
麻衣 宮田
弘之 増岡
弘之 増岡
善継 鈴木
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014258315A priority Critical patent/JP6102902B2/en
Priority to MX2016011337A priority patent/MX2016011337A/en
Priority to PCT/JP2015/000542 priority patent/WO2015133061A1/en
Priority to CN201580011902.8A priority patent/CN106103771B/en
Publication of JP2015180766A publication Critical patent/JP2015180766A/en
Application granted granted Critical
Publication of JP6102902B2 publication Critical patent/JP6102902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Description

本発明は、冷延鋼板、その製造方法、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a cold-rolled steel sheet, a method for producing the same, a high-strength hot-dip galvanized steel sheet, and a high-strength galvannealed steel sheet.

近年、地球環境の保護意識の高まりから、自動車のCO排出量削減に向けた燃費改善が強く求められている。これに伴い、自動車部品用材料を高強度化して自動車用部品の薄肉化を図り、車体を軽量化しようとする動きが活発となってきている。しかしながら、車体用材料となる鋼板を高強度化すると、鋼板の延性が低下する傾向にある。そこで、高強度高延性鋼板の開発が望まれている。 In recent years, with the increasing awareness of global environmental protection, there has been a strong demand for improved fuel efficiency to reduce CO 2 emissions from automobiles. Along with this, there is an active movement to increase the strength of materials for automobile parts to reduce the thickness of automobile parts and reduce the weight of the vehicle body. However, when the strength of a steel plate used as a vehicle body material is increased, the ductility of the steel plate tends to be reduced. Therefore, development of a high strength and high ductility steel sheet is desired.

鋼板を高強度化するために、Si、Mn、Cr等の固溶強化元素を鋼板に含有させる場合がある。特にCrは他元素と比較して少ない含有量で鋼板を高強度化させる。このため、Crは鋼板の材質強化に効果的である。   In order to increase the strength of the steel sheet, a solid solution strengthening element such as Si, Mn, or Cr may be included in the steel sheet. In particular, Cr increases the strength of the steel sheet with a smaller content than other elements. For this reason, Cr is effective in strengthening the material of the steel plate.

しかし、上記Cr等はFeよりも酸化しやすい易酸化性元素である。これらの固溶強化元素を多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造する場合、以下の問題がある。   However, Cr and the like are easily oxidizable elements that are easier to oxidize than Fe. When manufacturing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet that use a high-strength steel sheet containing a large amount of these solid solution strengthening elements as a base material, there are the following problems.

溶融亜鉛めっき鋼板を製造する場合、非酸化性雰囲気中あるいは還元雰囲気中、600〜900℃程度の温度で鋼板の加熱焼鈍を行い、次いで、溶融亜鉛めっき処理を行う。しかし、鋼中の易酸化性元素は、一般的に用いられる非酸化性雰囲気中あるいは還元雰囲気中でも選択酸化されるため、加熱焼鈍の際にこれらの元素は表面に濃化し酸化物を形成する。この酸化物はめっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせる。つまり、鋼中の易酸化性元素濃度の増加とともに濡れ性が急激に低下し不めっきが多発する。また、不めっきを生じない場合でも、鋼板とめっきの間に酸化物が存在すると、めっき密着性が劣化する。   When manufacturing a hot-dip galvanized steel sheet, the steel sheet is heat-annealed at a temperature of about 600 to 900 ° C. in a non-oxidizing atmosphere or a reducing atmosphere, and then hot-dip galvanized. However, since easily oxidizable elements in steel are selectively oxidized in a generally used non-oxidizing atmosphere or reducing atmosphere, these elements are concentrated on the surface to form oxides during heat annealing. This oxide reduces wettability with molten zinc during the plating process and causes non-plating. That is, as the concentration of the easily oxidizable element in the steel increases, the wettability rapidly decreases and non-plating frequently occurs. Further, even when non-plating does not occur, if there is an oxide between the steel plate and the plating, the plating adhesion deteriorates.

この問題に対し、特許文献1には溶融亜鉛との濡れ性を改善する方法が提案されている。具体的に、特許文献1には、あらかじめ酸化性雰囲気中で鋼板を加熱し、所定以上の酸化速度にて表面にFe酸化膜を急速に生成させることで鋼板表面での添加元素の酸化を阻止し、その後Fe酸化膜を還元焼鈍する方法が記載されている。しかしながら、特許文献1に記載の技術では、鋼板の酸化量が多い場合、炉内ロールに酸化鉄が付着し鋼板に押し疵が発生するという問題が生じる。   For this problem, Patent Document 1 proposes a method for improving the wettability with molten zinc. Specifically, in Patent Document 1, the steel sheet is heated in an oxidizing atmosphere in advance, and the oxidation of additive elements on the steel sheet surface is prevented by rapidly generating an Fe oxide film on the surface at an oxidation rate higher than a predetermined value. Then, a method of reducing annealing the Fe oxide film is described. However, in the technique described in Patent Document 1, when the amount of oxidation of the steel sheet is large, there arises a problem that iron oxide adheres to the in-furnace roll and the steel sheet is pressed.

また、特許文献2では、焼鈍後の鋼板を酸洗することで表面の酸化物を除去し、その後、酸洗後の鋼板を再び焼鈍し、溶融亜鉛めっきを行う方法が提案されている。しかしながら、特許文献2に記載の技術では、酸に不溶な酸化物を除去できないため、酸に不溶な酸化物が形成される鋼板のめっき外観は改善されない。酸に不溶な酸化物が形成される鋼板として、Crを含む鋼板が知られている。   Further, Patent Document 2 proposes a method in which the surface oxide is removed by pickling the steel plate after annealing, and then the steel plate after pickling is annealed again and hot dip galvanized. However, the technique described in Patent Document 2 cannot remove an acid-insoluble oxide, and thus does not improve the plating appearance of a steel sheet on which an acid-insoluble oxide is formed. As a steel plate on which an acid-insoluble oxide is formed, a steel plate containing Cr is known.

また、特許文献3では、焼鈍後に塩酸酸洗を施すことで、焼鈍により形成されたCr酸化層を除去することにより冷延鋼板の化成処理性を改善する方法が提案されている。しかしながら、表層部におけるCr濃度の平均値が1.0質量%以下の条件では、表層のCr濃度低減が十分ではなく、溶融亜鉛めっきでは密着性が劣る。   Moreover, in patent document 3, the method of improving the chemical conversion property of a cold-rolled steel sheet is proposed by removing the Cr oxide layer formed by annealing by performing hydrochloric acid pickling after annealing. However, under the condition that the average value of the Cr concentration in the surface layer portion is 1.0% by mass or less, the Cr concentration in the surface layer is not sufficiently reduced, and the hot dip galvanizing has poor adhesion.

特許第2587724号公報Japanese Patent No. 2587724 特許第3956550号公報Japanese Patent No. 3957550 特開2010−138458号公報JP 2010-138458 A

本発明は、かかる事情に鑑み、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造するための冷延鋼板に関し、Crを含有する冷延鋼板でありながら、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の表面外観およびめっき密着性を良好にする技術を提供するものである。   In view of such circumstances, the present invention relates to a cold-rolled steel sheet for producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet. The present invention provides a technique for improving the surface appearance and plating adhesion of a plated steel sheet.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、以下の事実を見出した。   As a result of intensive studies to solve the above problems, the present inventors have found the following facts.

焼鈍後の冷延鋼板には表面にCr酸化物が形成され、表面直下の冷延鋼板内部にはCr濃度が低い領域が形成される。ここで、冷延鋼板表面のCr酸化物を除去することができれば、冷延鋼板表面はCr濃度が低くなっているため、再度、焼鈍しても冷延鋼板表面へCrがほとんど供給されず、Cr酸化物の形成が抑制される。しかしながら、前述したように、Cr酸化物は酸に不溶であるため、表面のCr酸化物を除去する手段が必要である。ここで、Cr酸化物自体は酸に不溶である。しかし、鋼板の表層自体を強酸等で溶解除去することにより、地鉄表層部と共にCr酸化物を除去することができる。この時、鋼板の酸洗減量を適切に制御することができれば、冷延鋼板表面直下の低Cr濃度領域を残存させ、かつ、表面のCr酸化物を除去することが可能である。一方で、鋼板の表層を溶解除去するために強酸を使用した場合、鋼板表面にわずかに鉄系酸化物が形成される。この鉄系酸化物は量がわずかであるため、めっき外観にはほとんど影響を与えないが、溶融亜鉛めっき鋼板のめっき密着性に影響することが分かった。具体的には、鉄系酸化物が形成された鋼板に溶融亜鉛めっきを施した場合、鋼板加工の条件が厳しくなるとめっきが剥離する場合があることが分かった。このため、特に、合金化を行わない溶融亜鉛めっき鋼板においては、鋼板の表層を強酸で除去後に、再酸洗を行って鉄系酸化物を除去することで、めっき密着性を向上可能であることが分かった。また、上記再酸洗には、再酸洗前の酸洗に用いる酸とは異なる、非酸化性の酸を用いると効果的であることも分かった。   A Cr oxide is formed on the surface of the cold-rolled steel sheet after annealing, and a region having a low Cr concentration is formed inside the cold-rolled steel sheet immediately below the surface. Here, if the Cr oxide on the surface of the cold-rolled steel sheet can be removed, since the Cr concentration on the surface of the cold-rolled steel sheet is low, Cr is hardly supplied to the surface of the cold-rolled steel sheet even after annealing again. Formation of Cr oxide is suppressed. However, as described above, since Cr oxide is insoluble in acid, a means for removing Cr oxide on the surface is necessary. Here, the Cr oxide itself is insoluble in acid. However, by dissolving and removing the surface layer of the steel plate with a strong acid or the like, the Cr oxide can be removed together with the surface layer portion. At this time, if the pickling reduction amount of the steel sheet can be appropriately controlled, it is possible to leave the low Cr concentration region immediately below the surface of the cold-rolled steel sheet and to remove the Cr oxide on the surface. On the other hand, when a strong acid is used to dissolve and remove the surface layer of the steel sheet, iron-based oxides are slightly formed on the steel sheet surface. Since the amount of this iron-based oxide is small, it has been found that it has little effect on the plating appearance, but affects the plating adhesion of the hot-dip galvanized steel sheet. Specifically, when hot dip galvanizing is applied to a steel sheet on which an iron-based oxide is formed, it has been found that the plating may be peeled off when the conditions for processing the steel sheet become severe. For this reason, in particular, in hot-dip galvanized steel sheets that are not alloyed, it is possible to improve the plating adhesion by removing the iron-based oxides by removing the iron oxide after removing the surface layer of the steel sheet with a strong acid. I understood that. It has also been found that it is effective to use a non-oxidizing acid that is different from the acid used for the pickling before the re-pickling for the re-pickling.

本発明は、以上の知見に基づいてなされたものであり、以下の特徴を備えている。   The present invention has been made based on the above findings and has the following features.

(1)高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造に用いる冷延鋼板であって、質量%でC:0.040%以上0.500%以下、Si:1.00%以下、Mn:2.00%以上3.80%以下、P:0.010%以下、S:0.010%以下、Al:0.100%以下、N:0.0100%以下、Cr:0.3%以上1.00%以下を含有し、残部がFeおよび不可避的不純物からなり、表面から厚み方向に0.5μm以内におけるCr濃度が0.20%以下で、かつ、Mn濃度が1.8%以下であることを特徴とする冷延鋼板。   (1) A cold-rolled steel sheet used for production of a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet, wherein C: 0.040% or more and 0.500% or less, Si: 1.00% by mass % Or less, Mn: 2.00% or more and 3.80% or less, P: 0.010% or less, S: 0.010% or less, Al: 0.100% or less, N: 0.0100% or less, Cr: 0.3% or more and 1.00% or less, the balance is made of Fe and inevitable impurities, the Cr concentration within 0.5 μm in the thickness direction from the surface is 0.20% or less, and the Mn concentration is 1 Cold-rolled steel sheet characterized by being 8% or less.

(2)さらに、質量%で、Mo:0.01以上0.50以下、Nb:0.010%以上0.100%以下、B:0.0001%以上0.0050%以下及びTi:0.010%以上0.100%以下のうちから選ばれる少なくとも1種の元素を含有することを特徴とする(1)に記載の冷延鋼板。   (2) Further, in terms of mass%, Mo: 0.01 to 0.50, Nb: 0.010% to 0.100%, B: 0.0001% to 0.0050% and Ti: 0.00. The cold-rolled steel sheet according to (1), containing at least one element selected from 010% to 0.100%.

(3)さらに、質量%で、Cu:1.00%以下、V:0.500%以下、Ni:0.50%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.005%以下のうちから選ばれる少なくとも1種の元素を含有することを特徴とする(1)または(2)に記載の冷延鋼板。   (3) Further, by mass%, Cu: 1.00% or less, V: 0.500% or less, Ni: 0.50% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca The cold-rolled steel sheet according to (1) or (2), which contains at least one element selected from: 0.0100% or less and REM: 0.005% or less.

(4)(1)〜(3)のいずれかに記載の冷延鋼板を製造する方法であって、水素濃度が3.0〜25.0vol%、露点が−40〜−10℃の雰囲気の700〜900℃の温度域で、請求項1〜3に記載の成分組成を有する鋼板を20〜600秒保持する加熱工程と、該保持後の鋼板を冷却する冷却工程と、該冷却後の鋼板表面を、酸洗減量がFe換算で4.0〜20.0g/mとなる条件で酸洗除去する酸洗工程とを有することを特徴とする冷延鋼板の製造方法。 (4) A method for producing the cold-rolled steel sheet according to any one of (1) to (3), wherein the hydrogen concentration is 3.0 to 25.0 vol%, and the dew point is -40 to -10 ° C. The heating process which hold | maintains the steel plate which has the component composition of Claims 1-3 in the temperature range of 700-900 degreeC for 20-600 second, the cooling process which cools the steel plate after this holding | maintenance, and the steel plate after this cooling A method for producing a cold-rolled steel sheet, comprising: a pickling step for pickling and removing the surface under conditions where the pickling loss is 4.0 to 20.0 g / m 2 in terms of Fe.

(5)前記酸洗工程で使用する酸は、硝酸、塩酸、弗酸及び硫酸から選ばれる少なくとも1種であることを特徴とする(4)に記載の冷延鋼板の製造方法。   (5) The method for producing a cold-rolled steel sheet according to (4), wherein the acid used in the pickling step is at least one selected from nitric acid, hydrochloric acid, hydrofluoric acid, and sulfuric acid.

(6)前記酸洗工程で使用する酸洗液は、硝酸及び塩酸を含み、硝酸濃度が50g/L超え200g/L以下であり、硝酸濃度に対する塩酸濃度の比(HCl/HNO)が0.01〜1.00であるか、又は前記酸洗工程で使用する酸洗液は、硝酸及び弗酸を含み、硝酸濃度が50g/L超え200g/L以下であり、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01〜1.00のいずれかであることを特徴とする(4)又は(5)に記載の冷延鋼板の製造方法。 (6) The pickling solution used in the pickling step includes nitric acid and hydrochloric acid, the nitric acid concentration is more than 50 g / L and not more than 200 g / L, and the ratio of the hydrochloric acid concentration to the nitric acid concentration (HCl / HNO 3 ) is 0. The pickling solution used in the pickling step contains nitric acid and hydrofluoric acid, the nitric acid concentration is more than 50 g / L and not more than 200 g / L, and the hydrofluoric acid concentration relative to the nitric acid concentration The ratio (HF / HNO 3 ) is 0.01 to 1.00, the method for producing a cold-rolled steel sheet according to (4) or (5).

(7)前記酸洗工程の後に、前記酸洗工程に用いる酸とは異なる非酸化性の酸で、鋼板表面を再酸洗する再酸洗工程をさらに有することを特徴とする(6)に記載の冷延鋼板の製造方法。   (7) The method according to (6), further comprising a re-pickling step of re-pickling the steel sheet surface with a non-oxidizing acid different from the acid used in the pickling step after the pickling step. The manufacturing method of the cold-rolled steel sheet of description.

(8)上記(1)〜(3)のいずれかに記載の冷延鋼板又は上記(4)〜(7)のいずれかに記載の製造方法で製造した冷延鋼板に、溶融亜鉛めっき処理を施してなる高強度溶融亜鉛めっき鋼板。   (8) Hot-dip galvanizing treatment is applied to the cold-rolled steel sheet according to any one of (1) to (3) above or the cold-rolled steel sheet manufactured by the manufacturing method according to any one of (4) to (7) above. High strength hot-dip galvanized steel sheet.

(9)上記(8)に記載の高強度溶融亜鉛めっき鋼板に、溶融亜鉛めっき処理を施し、その後、合金化処理を施してなる高強度合金化溶融亜鉛めっき鋼板。   (9) A high-strength galvanized steel sheet obtained by subjecting the high-strength hot-dip galvanized steel sheet according to (8) to a hot-dip galvanizing process and then an alloying process.

本発明の冷延鋼板は、Crを含む鋼板でありながら、表面外観とめっき密着性に優れる。この冷延鋼板を用いて製造してなる高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板を、自動車構造部材等の自動車用部品に適用すれば、車体軽量化による燃費改善を図ることができる。   Although the cold-rolled steel sheet of the present invention is a steel sheet containing Cr, the surface appearance and plating adhesion are excellent. Applying high-strength hot-dip galvanized steel sheets and high-strength alloyed hot-dip galvanized steel sheets manufactured using this cold-rolled steel sheet to automotive parts such as automotive structural members will improve fuel efficiency by reducing the weight of the vehicle body. Can do.

CrおよびMnの濃度の測定の1例を示す図である。It is a figure which shows one example of the measurement of the density | concentration of Cr and Mn.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

先ず、本発明の冷延鋼板の成分組成について説明する。なお、以下の成分組成の説明において「%」は「質量%」を意味する。   First, the component composition of the cold-rolled steel sheet of the present invention will be described. In the following description of the component composition, “%” means “mass%”.

本発明の冷延鋼板は、質量%でC:0.040%以上0.500%以下、Si:1.00%以下、Mn:2.00%以上3.80%以下、P:0.010%以下、S:0.010%以下、Al:0.100%以下、N:0.0100%以下、Cr:0.3%以上1.00%以下を含有する。   The cold-rolled steel sheet of the present invention is C: 0.040% or more and 0.500% or less, Si: 1.00% or less, Mn: 2.00% or more and 3.80% or less, P: 0.010 by mass%. %: S: 0.010% or less, Al: 0.100% or less, N: 0.0100% or less, Cr: 0.3% or more and 1.00% or less.

C:0.040%以上0.500%以下
Cはオーステナイト生成元素であり、焼鈍板組織を複合化し、強度と延性の向上に寄与する元素である。上記効果を得るためには、Cの含有量を0.04%以上にする必要がある。C含有量が0.50%を超えると、溶接部および熱影響部の硬化が著しく、溶接部の機械的特性が劣化する。即ち、C含有量が0.50%を超えると、スポット溶接性、アーク溶接性等が低下する。自動車用部品は溶接により他の部品と接合される場合が多いため、自動車用部品は良好な溶接性を有することが求められる。したがって、Cの含有量は0.50%以下とする。
C: 0.040% or more and 0.500% or less C is an austenite generating element, which is an element that combines an annealed plate structure and contributes to improvement in strength and ductility. In order to acquire the said effect, it is necessary to make content of C 0.04% or more. When the C content exceeds 0.50%, the welded part and the heat-affected zone are markedly cured, and the mechanical properties of the welded part deteriorate. That is, when the C content exceeds 0.50%, spot weldability, arc weldability, and the like deteriorate. Since automobile parts are often joined to other parts by welding, automobile parts are required to have good weldability. Therefore, the C content is 0.50% or less.

Si:1.00%以下
Siはフェライト生成元素であり、焼鈍板のフェライトの固溶強化および加工硬化能の向上に寄与する。しかしながら、Siの含有量が過剰になると、焼鈍中に冷延鋼板表面に酸化物が形成し、冷延鋼板のめっき性が劣化する。したがって、Siの含有量は1.00%以下とする。
Si: 1.00% or less Si is a ferrite-forming element and contributes to solid solution strengthening and work hardening ability of the ferrite of the annealed plate. However, when the Si content is excessive, an oxide is formed on the surface of the cold-rolled steel sheet during annealing, and the plateability of the cold-rolled steel sheet is deteriorated. Therefore, the Si content is 1.00% or less.

Mn:2.00%以上3.80%以下
Mnは、オーステナイト生成元素であり、焼鈍板の強度確保に寄与する元素である。この効果を得るためには、Mnの含有量を2.00%以上にすることが必要である。一方、Mnの含有量が3.80%を超えると、焼鈍中に鋼板表面で多量の酸化物が形成し、めっき外観が劣化する。したがって、Mnの含有量は3.80%以下とする。
Mn: 2.00% or more and 3.80% or less Mn is an austenite generating element and an element contributing to securing the strength of the annealed plate. In order to acquire this effect, it is necessary to make Mn content 2.00% or more. On the other hand, if the Mn content exceeds 3.80%, a large amount of oxide is formed on the steel sheet surface during annealing, and the plating appearance deteriorates. Therefore, the Mn content is 3.80% or less.

Cr:0.3%以上1.00%以下
Crは、オーステナイト生成元素であり、焼鈍板の強度確保に寄与する元素である。Crの含有量が0.3%未満になると、冷延鋼板の強度を確保することが難しい。一方、Crの含有量が1.00%を超えると、本発明をもってしても冷延鋼板表面に形成したCr酸化物を除去しきれないため、めっき外観が劣化する。したがって、Crの含有量は1.00%以下とする。
Cr: 0.3% or more and 1.00% or less Cr is an austenite generating element and an element contributing to securing the strength of the annealed plate. If the Cr content is less than 0.3%, it is difficult to ensure the strength of the cold-rolled steel sheet. On the other hand, if the Cr content exceeds 1.00%, the appearance of plating deteriorates because Cr oxide formed on the surface of the cold-rolled steel sheet cannot be removed even with the present invention. Therefore, the Cr content is 1.00% or less.

P:0.010%以下
Pは、鋼の強化に有効な元素である。この効果を得るためにはPの含有量は0.001%以上が好ましい。また、Pの含有量が0.010%を超えると、粒界偏析により脆化が起き、耐衝撃性が劣化する。したがって、Pを含有する場合、Pの含有量は0.010%以下とする。
P: 0.010% or less P is an element effective for strengthening steel. In order to obtain this effect, the P content is preferably 0.001% or more. On the other hand, when the P content exceeds 0.010%, embrittlement occurs due to grain boundary segregation, and impact resistance deteriorates. Therefore, when it contains P, content of P shall be 0.010% or less.

S:0.010%以下
Sは、MnSなどの介在物となって、耐衝撃性を劣化させたり、溶接部のメタルフローに沿った割れの原因となったりする。このため、Sの含有量は極力低い方がよい。しかし、Sを完全に含まないように冷延鋼板を製造することは、製造コスト等の観点から困難である。そこで、Sを含有する場合、Sの含有量は0.010%以下とする。
S: 0.010% or less S becomes inclusions such as MnS, and deteriorates impact resistance or causes cracks along the metal flow of the welded portion. For this reason, the S content is preferably as low as possible. However, it is difficult to manufacture a cold-rolled steel sheet so as not to completely contain S from the viewpoint of manufacturing cost and the like. Then, when it contains S, content of S shall be 0.010% or less.

Al:0.100%以下
Alを過剰に含有すると、酸化物系介在物の増加による表面性状や成形性の劣化を招く。また、Alの過剰な含有は、製造コストを増加させる。そこで、Alを含有する場合、Alの含有量は0.100%以下とする。好ましくは0.050%以下である。
Al: 0.100% or less When Al is excessively contained, surface properties and moldability are deteriorated due to an increase in oxide inclusions. Moreover, the excessive content of Al increases the manufacturing cost. Therefore, when Al is contained, the Al content is 0.100% or less. Preferably it is 0.050% or less.

N:0.0100%以下
Nは、鋼の耐時効性を最も大きく劣化させる元素である。Nの含有量は少ないほど好ましい。Nの含有量が0.0100%を超えると耐時効性の劣化が顕著となる。したがって、Nの含有量は0.0100%以下とする。
N: 0.0100% or less N is an element that greatly deteriorates the aging resistance of steel. The smaller the N content, the better. When the content of N exceeds 0.0100%, deterioration of aging resistance becomes remarkable. Therefore, the N content is 0.0100% or less.

また、本発明の冷延鋼板は、さらに、質量%で、Mo:0.01以上0.50以下、Nb:0.010%以上0.100%以下、B:0.0003%以上0.0050%以下及びTi:0.010%以上0.100%以下のうちから選ばれる少なくとも1種の元素を含有してもよい。   Further, the cold-rolled steel sheet of the present invention is further mass%, Mo: 0.01 to 0.50, Nb: 0.010% to 0.100%, B: 0.0003% to 0.0050. % Or less and Ti: at least one element selected from 0.010% or more and 0.100% or less may be contained.

Mo:0.01%以上0.50%以下
Moは、オーステナイト生成元素であり、焼鈍板の強度確保に寄与する。Moの含有量が0.01%未満では上記強度確保の効果を得ることが難しい。また、Moは高価であるため、その含有量の増加は、コストアップにつながる。したがって、Moを含有する場合、Moの含有量は、0.01%以上0.50%以下とする。
Mo: 0.01% or more and 0.50% or less Mo is an austenite-generating element and contributes to securing the strength of the annealed plate. If the Mo content is less than 0.01%, it is difficult to obtain the effect of securing the strength. Moreover, since Mo is expensive, the increase in the content leads to an increase in cost. Therefore, when it contains Mo, content of Mo shall be 0.01% or more and 0.50% or less.

Nb:0.010%以上0.100%以下
Nbは固溶強化または析出強化により強度向上に寄与する元素である。この効果はNbの含有量を0.010%以上にすることで得られる。一方、Nbの含有量が0.100%を超えると鋼板の延性が低下する。即ち、鋼板の加工性が劣化する。したがって、Nbを含有する場合、Nbは0.010%以上0.100%以下とする。
Nb: 0.010% or more and 0.100% or less Nb is an element that contributes to strength improvement by solid solution strengthening or precipitation strengthening. This effect can be obtained by setting the Nb content to 0.010% or more. On the other hand, when the Nb content exceeds 0.100%, the ductility of the steel sheet is lowered. That is, the workability of the steel sheet is deteriorated. Therefore, when Nb is contained, Nb is made 0.010% or more and 0.100% or less.

B:0.0001%以上0.0050%以下
Bは焼入れ性を高め、鋼板の強度向上に寄与する元素である。この効果はBの含有量を0.0001%以上にすることで得られる。一方、Bを過剰に含有すると、鋼板の延性が低下し、その結果、鋼板の加工性が劣化する。また、Bの過剰な含有は、コストアップの原因となる。したがって、Bを含有する場合、Bの含有量は0.0001%以上0.0050%以下とする。
B: 0.0001% or more and 0.0050% or less B is an element that enhances hardenability and contributes to improving the strength of the steel sheet. This effect can be obtained by setting the B content to 0.0001% or more. On the other hand, when B is contained excessively, the ductility of the steel sheet is lowered, and as a result, the workability of the steel sheet is deteriorated. Further, excessive inclusion of B causes an increase in cost. Therefore, when it contains B, content of B shall be 0.0001% or more and 0.0050% or less.

Ti:0.010%以上0.100%以下
Tiは鋼板中でCまたはNと微細炭化物や微細窒化物を形成することにより、鋼板の強度向上に寄与する元素である。この効果を得るためにはTiの含有量を0.010%以上にすることが必要である。一方、Tiの含有量が0.100%を超えるとこの効果が飽和する。したがって、Tiを含有する場合、Tiの含有量は0.010%以上0.100%以下とする。
Ti: 0.010% or more and 0.100% or less Ti is an element that contributes to improving the strength of the steel sheet by forming fine carbide or fine nitride with C or N in the steel sheet. In order to obtain this effect, the Ti content needs to be 0.010% or more. On the other hand, this effect is saturated when the Ti content exceeds 0.100%. Therefore, when Ti is contained, the content of Ti is set to 0.010% or more and 0.100% or less.

また、本発明の冷延鋼板は、さらに、質量%で、Cu:1.00%以下、V:0.500%以下、Ni:0.50%以下、Sb:0.10%以下、Sn:0.01%以下、Ca:0.0100%以下、REM:0.005%以下のうちから選ばれる少なくとも1種の元素を含有してもよい。   Further, the cold-rolled steel sheet of the present invention is further, in mass%, Cu: 1.00% or less, V: 0.500% or less, Ni: 0.50% or less, Sb: 0.10% or less, Sn: It may contain at least one element selected from 0.01% or less, Ca: 0.0100% or less, and REM: 0.005% or less.

Cu:1.00%以下、V:0.500%以下、Ni:0.50%以下
Cu、V、Niは鋼の強化に有効な元素である。本発明で規定した範囲内であれば、鋼の強化のために、本発明の冷延鋼板はこれらの元素を含有できる。しかしながら、Cuの含有量が1.00%、Vの含有量が0.500%、Niの含有量が0.50%を超えると、著しい強度上昇により、鋼板の延性が低下する場合がある。また、これらの元素の過剰な含有は、コストアップの要因にもなる。したがって、これらの元素を含有する場合、その量をそれぞれCuは1.00%以下、Vは0.500%以下、Niは0.50%以下とする。
Cu: 1.00% or less, V: 0.500% or less, Ni: 0.50% or less Cu, V, and Ni are elements effective for strengthening steel. If it is in the range prescribed | regulated by this invention, the cold-rolled steel plate of this invention can contain these elements for reinforcement | strengthening of steel. However, if the Cu content is 1.00%, the V content is 0.500%, and the Ni content exceeds 0.50%, the ductility of the steel sheet may decrease due to a significant increase in strength. Further, excessive inclusion of these elements also causes an increase in cost. Therefore, when these elements are contained, the amounts of Cu are 1.00% or less, V is 0.500% or less, and Ni is 0.50% or less, respectively.

Sb:0.10%以下、Sn:0.10%以下
SbおよびSnは鋼板表層付近の窒化を抑制する作用がある。この効果はこれらの元素の含有量が0.10%を超えると飽和する。したがって、Sbを含有する場合、Sbの含有量は0.10%以下とし、Snを含有する場合、Snの含有量は0.10%以下とする。
Sb: 0.10% or less, Sn: 0.10% or less Sb and Sn have the effect of suppressing nitriding in the vicinity of the steel sheet surface layer. This effect is saturated when the content of these elements exceeds 0.10%. Therefore, when Sb is contained, the Sb content is 0.10% or less, and when Sn is contained, the Sn content is 0.10% or less.

Ca:0.0100%以下、REM:0.005%以下
Caは、MnSなど硫化物の形状制御によって、鋼板の延性を向上させる。その効果は、Caの含有量が0.0100%を超えると飽和する。また、REMは硫化物系介在物の形態を制御し、鋼板の加工性の向上に寄与する。しかし、REMの含有量が0.005%を超えると、介在物量が増加し、加工性が劣化する。したがって、Caを含有する場合、Caの含有量は0.0100%以下とし、REMを含有する場合、REMの含有量は0.005%以下とする。
Ca: 0.0100% or less, REM: 0.005% or less Ca improves the ductility of the steel sheet by shape control of sulfides such as MnS. The effect is saturated when the Ca content exceeds 0.0100%. Moreover, REM controls the form of sulfide inclusions and contributes to the improvement of the workability of the steel sheet. However, when the content of REM exceeds 0.005%, the amount of inclusions increases and the workability deteriorates. Therefore, when Ca is contained, the Ca content is 0.0100% or less, and when REM is contained, the REM content is 0.005% or less.

本発明の冷延鋼板において、上記成分以外の残部はFeおよび不可避的不純物である。   In the cold-rolled steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities.

上記の成分組成を有する本発明の冷延鋼板は、鋼板表面から厚み方向に0.5μm以内のCr濃度が0.20%以下であり、Mnの濃度が1.8%以下である。ここで、「%」は「質量%」を意味する。   In the cold-rolled steel sheet of the present invention having the above component composition, the Cr concentration within 0.5 μm in the thickness direction from the steel sheet surface is 0.20% or less, and the Mn concentration is 1.8% or less. Here, “%” means “mass%”.

鋼板表面から厚み方向に0.5μm以内におけるCr濃度が0.20%以下
冷延鋼板の鋼板表面直下にCr濃度が低い領域が存在する場合、焼鈍時における鋼板表面でのCr酸化物形成が抑制される。その結果、表面外観に優れた高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板を得ることができる。一方、鋼板表面直下のCr濃度が高い場合、焼鈍時に鋼板表面でCr酸化物が形成され、不めっきを生じる。
Cr concentration within 0.5 μm in the thickness direction from the steel sheet surface is 0.20% or less. When there is a region with low Cr concentration directly under the steel sheet surface of the cold rolled steel sheet, formation of Cr oxide on the steel sheet surface during annealing is suppressed. Is done. As a result, a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet with excellent surface appearance can be obtained. On the other hand, when the Cr concentration directly under the steel sheet surface is high, Cr oxide is formed on the steel sheet surface during annealing, resulting in non-plating.

鋼板表面から厚み方向に0.5μm以内のCr濃度が0.20%を超えると、鋼板表面に上記Cr酸化物を形成しやすく、めっき外観が劣化し、めっき密着性も低下する。このため、鋼板表面から厚み方向に0.5μm以内におけるCr濃度を0.20%以下とする。   When the Cr concentration within 0.5 μm in the thickness direction from the steel sheet surface exceeds 0.20%, the Cr oxide is likely to be formed on the steel sheet surface, the plating appearance deteriorates, and the plating adhesion also decreases. For this reason, the Cr concentration within 0.5 μm in the thickness direction from the steel sheet surface is set to 0.20% or less.

ここで、鋼板表面直下のCr濃度測定にはグロー放電発光分析(GDS)を用いる。GDSで鋼板表面から深さ方向(鋼板の厚み方向)のCr強度を測定し、鋼板表面から0.5μm以内のCr強度の平均値をCr濃度とする。また、0.5μmを超える深さでのCr強度の測定も行い、Cr強度が一定となった領域の最も浅い位置から深さ0.5μmまでの強度の平均値をバルクのCr濃度とする。GDSで測定された元素強度は元素濃度に比例することから、GDSから算出したバルクのCr濃度と、鋼板表面から深さ0.5μmまでのCr濃度との比から、鋼板表面の実Cr濃度を計算することができる。   Here, glow discharge emission analysis (GDS) is used for the Cr concentration measurement immediately below the steel sheet surface. The Cr strength in the depth direction (thickness direction of the steel plate) is measured from the steel plate surface by GDS, and the average value of the Cr strength within 0.5 μm from the steel plate surface is defined as the Cr concentration. Further, the Cr intensity is measured at a depth exceeding 0.5 μm, and the average value of the intensity from the shallowest position in the region where the Cr intensity is constant to the depth of 0.5 μm is defined as the bulk Cr concentration. Since the element strength measured by GDS is proportional to the element concentration, the actual Cr concentration on the steel sheet surface is calculated from the ratio between the bulk Cr concentration calculated from GDS and the Cr concentration from the steel sheet surface to a depth of 0.5 μm. Can be calculated.

鋼板表面から0.5μm以内におけるMn濃度が1.8%以下
MnもCrと同様に鋼板表面に酸化物を形成し、めっき表面外観を劣化させる。Cr同様、鋼板表面直下にMn濃度が低い領域が存在すると、焼鈍時における鋼板表面でのMn酸化物形成が抑制される。
The Mn concentration within 0.5 μm from the steel sheet surface is 1.8% or less. Mn also forms an oxide on the steel sheet surface in the same manner as Cr and deteriorates the appearance of the plating surface. Similar to Cr, if there is a region with a low Mn concentration directly under the steel sheet surface, the formation of Mn oxide on the steel sheet surface during annealing is suppressed.

鋼板表面から厚み方向に0.5μm以内のMn濃度が1.8%を超えると、冷延鋼板に溶融亜鉛めっきを施す際に、鋼板表面にMn酸化物を形成しやすくなる。鋼板表面のMn酸化物はめっき外観を劣化させ、めっき密着性を低下させる。このため、鋼板表面から0.5μm以内におけるMn濃度は1.8%以下とする。Mnの濃度もCrと同様にGDSを用いて測定する。   When the Mn concentration within 0.5 μm in the thickness direction from the steel sheet surface exceeds 1.8%, Mn oxide is easily formed on the steel sheet surface when hot-dip galvanizing is performed on the cold-rolled steel sheet. The Mn oxide on the surface of the steel sheet deteriorates the plating appearance and lowers the plating adhesion. For this reason, the Mn concentration within 0.5 μm from the steel sheet surface is set to 1.8% or less. The concentration of Mn is also measured using GDS in the same manner as Cr.

続いて、本発明の冷延鋼板の製造方法について説明する。   Then, the manufacturing method of the cold rolled sheet steel of this invention is demonstrated.

本発明の冷延鋼板の製造にあたっては、上記成分組成を有する鋼板を用いる。この鋼板の製造工程は特に指定しない。上記の成分組成を有する鋼を、公知の方法により溶製した後、分塊または連続鋳造を経てスラブとし、熱間圧延して熱延板とした後、酸洗を施し表面の酸化スケールを除去する。さらに、必要に応じて冷間圧延を施す。   In manufacturing the cold-rolled steel sheet of the present invention, a steel sheet having the above component composition is used. The manufacturing process of this steel plate is not specified. After steel having the above composition is melted by a known method, it is made into a slab through slabs or continuous casting, hot rolled into a hot-rolled sheet, and then pickled to remove the oxidized scale on the surface. To do. Further, cold rolling is performed as necessary.

本発明の冷延鋼板は、上記鋼板を加熱する加熱工程と、該加熱工程後の鋼板を冷却する冷却工程と、該冷却工程後の鋼板を酸洗する酸洗工程を経て製造される。以下、各工程について説明する。   The cold-rolled steel sheet of the present invention is manufactured through a heating process for heating the steel sheet, a cooling process for cooling the steel sheet after the heating process, and a pickling process for pickling the steel sheet after the cooling process. Hereinafter, each step will be described.

加熱工程
加熱工程とは、水素濃度が3.0〜25.0vol%、露点が−40〜−10℃の雰囲気の700〜900℃の温度域で、上記成分組成を有する鋼板を20〜600秒保持する工程である。
Heating step The heating step is a temperature range of 700 to 900 ° C. in an atmosphere having a hydrogen concentration of 3.0 to 25.0 vol% and a dew point of −40 to −10 ° C., and a steel plate having the above component composition for 20 to 600 seconds. It is the process of holding.

この加熱工程では、Feが酸化しない加熱条件で上記鋼板を加熱する。この加熱により、CrおよびMnが鋼板表面で酸化物が形成されるとともに、鋼板表面直下にCrおよびMnの濃度が低い領域が形成される。   In this heating step, the steel sheet is heated under heating conditions that do not oxidize Fe. By this heating, oxides of Cr and Mn are formed on the surface of the steel sheet, and a region having a low concentration of Cr and Mn is formed immediately below the surface of the steel sheet.

加熱の際の雰囲気中のH濃度は、Feの酸化を抑制するのに十分な濃度が必要である。そこで、本発明では上記水素濃度を3.0vol%以上とする。また、H濃度が25.0vol%を超えるとコストアップにつながる。そこで、H濃度は25.0vol%以下とする。なお、雰囲気中のH以外の成分はNおよび不可避的不純物である。 The H 2 concentration in the atmosphere during heating needs to be sufficient to suppress the oxidation of Fe. Therefore, in the present invention, the hydrogen concentration is set to 3.0 vol% or more. In addition, if the H 2 concentration exceeds 25.0 vol%, the cost increases. Therefore, the H 2 concentration is set to 25.0 vol% or less. Components other than H 2 in the atmosphere are N 2 and unavoidable impurities.

加熱の際の雰囲気の露点が−40℃未満となると、鋼板表面におけるCr酸化物およびMn酸化物の形成が抑制される。また、上記露点が−10℃を超えると水分による加熱炉へのダメージが顕著となり補修コストがかかる。したがって、上記露点は−40℃以上−10℃以下とする。   When the dew point of the atmosphere during heating is less than −40 ° C., formation of Cr oxide and Mn oxide on the steel sheet surface is suppressed. On the other hand, if the dew point exceeds −10 ° C., damage to the heating furnace due to moisture becomes remarkable, and repair costs are increased. Therefore, the dew point is set to -40 ° C or higher and -10 ° C or lower.

加熱の際の鋼板温度が700℃未満では、鋼板表面でCr酸化物およびMn酸化物が形成されない。また、上記鋼板温度が900℃を超えると加熱コストがかかる。したがって、加熱工程では、700℃以上900℃以下における所定の温度または温度域で鋼板を加熱する。   When the steel plate temperature during heating is less than 700 ° C., Cr oxide and Mn oxide are not formed on the steel plate surface. Moreover, when the said steel plate temperature exceeds 900 degreeC, heating cost will start. Therefore, in the heating step, the steel sheet is heated at a predetermined temperature or temperature range of 700 ° C. or higher and 900 ° C. or lower.

上記温度又は温度域で鋼板を保持する時間である保持時間が20秒未満では表面に十分なCr酸化物およびMn酸化物が形成されない。上記保持時間が600秒超えでは過度のCr酸化物形成により酸洗効率が低下し、製造効率が低下する。したがって、保持時間は20秒以上600秒以下とする。   When the holding time, which is the time for holding the steel sheet at the above temperature or temperature range, is less than 20 seconds, sufficient Cr oxide and Mn oxide are not formed on the surface. When the holding time exceeds 600 seconds, the pickling efficiency decreases due to excessive Cr oxide formation, and the manufacturing efficiency decreases. Therefore, the holding time is 20 seconds or more and 600 seconds or less.

冷却工程
冷却工程とは、該保持後の鋼板を冷却する工程である。冷却停止温度は特に限定されないが、一般的には600〜300℃である。冷却は水冷、空冷のいずれでもよい。また、冷却時間、冷却速度等は適宜設定すればよい。
Cooling process A cooling process is a process of cooling the steel plate after this holding | maintenance. The cooling stop temperature is not particularly limited, but is generally 600 to 300 ° C. Cooling may be either water cooling or air cooling. Moreover, what is necessary is just to set cooling time, a cooling rate, etc. suitably.

酸洗工程
酸洗工程とは、冷却工程後の鋼板表面を、酸洗減量がFe換算で4.0〜20.0g/mとなる条件で酸洗除去する工程である。
Pickling Step The pickling step is a step of pickling and removing the steel sheet surface after the cooling step under the condition that the pickling loss is 4.0 to 20.0 g / m 2 in terms of Fe.

前述したように、鋼板表面に形成したCr酸化物を除去するためには、強酸洗して鋼板表面近傍ごと酸化物を除去する必要がある。この時、酸洗減量がFe換算で4.0g/m未満であると、鋼板表面にCr酸化物が残存する。一方、酸洗減量が20.0g/mを超えると、表面直下のCrおよびMn濃度が低い領域まで除去されてしまう。したがって酸洗減量はFe換算で4.0g/m以上20.0g/m以下とする。 As described above, in order to remove the Cr oxide formed on the steel plate surface, it is necessary to remove the oxide in the vicinity of the steel plate surface by strong pickling. At this time, if the pickling weight loss is less than 4.0 g / m 2 in terms of Fe, Cr oxide remains on the steel sheet surface. On the other hand, if the pickling weight loss exceeds 20.0 g / m 2 , the region where the Cr and Mn concentrations just below the surface are low is removed. Accordingly, the pickling weight loss is 4.0 g / m 2 or more and 20.0 g / m 2 or less in terms of Fe.

強酸洗に用いることができる酸としては、強酸化性の酸である硝酸を用いることができる。また、前述の酸洗減量を満足することができれば塩酸や弗酸、硫酸等でもよく、酸の種類は特に問わない。また、上記酸に酸洗促進剤を添加したり、電解処理を併用したりして鋼板表面の溶解を促進することも有効である。   As an acid that can be used for strong pickling, nitric acid, which is a strong oxidizing acid, can be used. Further, hydrochloric acid, hydrofluoric acid, sulfuric acid, or the like may be used as long as the above-described pickling weight loss can be satisfied, and the type of acid is not particularly limited. It is also effective to promote the dissolution of the steel sheet surface by adding a pickling accelerator to the acid or using an electrolytic treatment in combination.

鋼板を強酸洗すると鋼板表面にFe系の酸化物が形成する。この酸化物は溶融亜鉛めっき工程において不めっきを生じさせる。本発明においては、できるだけ、Fe系酸化物の形成を抑制することが好ましい。そのためには、酸洗液は、硝酸及び塩酸を含み、硝酸濃度が50g/L超え200g/L以下であり、硝酸濃度に対する塩酸濃度の比(HCl/HNO)が0.01〜1.00であるか、又は酸洗液は、硝酸及び弗酸を含み、硝酸濃度が50g/L超え200g/L以下であり、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01〜1.00のいずれかであることが好ましい。 When the steel plate is washed with a strong acid, Fe-based oxides are formed on the surface of the steel plate. This oxide causes non-plating in the hot dip galvanizing process. In the present invention, it is preferable to suppress the formation of Fe-based oxide as much as possible. For this purpose, the pickling solution contains nitric acid and hydrochloric acid, the nitric acid concentration is more than 50 g / L and not more than 200 g / L, and the ratio of the hydrochloric acid concentration to the nitric acid concentration (HCl / HNO 3 ) is 0.01 to 1.00. Or the pickling solution contains nitric acid and hydrofluoric acid, the nitric acid concentration exceeds 50 g / L and is 200 g / L or less, and the ratio of the hydrofluoric acid concentration to the nitric acid concentration (HF / HNO 3 ) is 0.01 to It is preferably any one of 1.00.

再酸洗工程
再酸洗工程とは、酸洗工程の後に、前記酸洗工程に用いる酸とは異なる非酸化性の酸で、鋼板表面を再酸洗する工程である。再酸洗工程は任意に行われる工程であり、本工程を行うことにはめっき密着性を向上させる効果がある。
Re-pickling step The re-pickling step is a step of re-pickling the steel sheet surface with a non-oxidizing acid different from the acid used in the pickling step after the pickling step. The re-pickling step is an optional step, and performing this step has an effect of improving plating adhesion.

非酸化性の酸としては、例えば、塩酸、希硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸が挙げられる。塩酸を用いる場合には、塩酸濃度を0.1〜50g/Lとして、また、硫酸を用いる場合には、硫酸濃度を0.1〜150g/Lとして用いるのが好ましく、また、塩酸と硫酸を混合した酸を再酸洗に用いる場合は、塩酸濃度を0.1〜20g/L、硫酸濃度を0.1〜60g/Lとして混合した酸を用いるのが好ましい。また、いずれの再酸洗液を用いる場合でも、再酸洗液の温度を20〜70℃とすることが好ましい。また、再酸洗の処理時間は1〜30秒として行うのが好ましい。なお、再酸洗に用いる酸は、鋼板表面の鉄系酸化物を溶解する目的であるので、酸に難溶性のSiOを鋼板下地(地鉄)ごと溶解させる目的の酸洗工程で用いる酸とは異なる酸とする。また、「異なる酸」とは、酸洗工程で使用できない酸のみを意味するのではなく、酸洗工程で使用可能な酸の中で実際の酸洗工程で使用しなかった酸も含む。 Examples of the non-oxidizing acid include hydrochloric acid, dilute sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, oxalic acid, and acids obtained by mixing two or more of these. When hydrochloric acid is used, the hydrochloric acid concentration is preferably 0.1 to 50 g / L, and when sulfuric acid is used, the sulfuric acid concentration is preferably 0.1 to 150 g / L. When the mixed acid is used for re-acid pickling, it is preferable to use a mixed acid with a hydrochloric acid concentration of 0.1 to 20 g / L and a sulfuric acid concentration of 0.1 to 60 g / L. Moreover, even when using any re-pickling liquid, it is preferable that the temperature of a re-pickling liquid shall be 20-70 degreeC. Moreover, it is preferable to perform the processing time of re-acid picking as 1 to 30 seconds. Incidentally, the acid used in the re-pickling, since the purpose of dissolving the iron oxides of the steel sheet surface, the acid used for the purpose of pickling step of dissolving each SiO 2 the steel base of sparingly soluble (the base steel) to the acid Different acid. The “different acid” does not mean only acids that cannot be used in the pickling process, but also includes acids that are not used in the actual pickling process among the acids that can be used in the pickling process.

以上のようにして得られた本発明の冷延鋼板は、必要に応じて脱脂などの処理を施された後、焼鈍処理および溶融亜鉛めっき処理が施される。この焼鈍処理および溶融亜鉛めっき処理については、特に規定されず、通常公知の工程でよい。加えて溶融亜鉛めっき後に合金化処理を施す場合は、合金化処理後に形状矯正のために調質圧延を実施してもよい。   The cold-rolled steel sheet of the present invention obtained as described above is subjected to a treatment such as degreasing as necessary, followed by an annealing treatment and a hot dip galvanizing treatment. The annealing process and the hot dip galvanizing process are not particularly defined and may be a generally known process. In addition, when the alloying treatment is performed after the hot dip galvanizing, temper rolling may be performed for shape correction after the alloying treatment.

表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを1200℃に加熱後、1.6〜4.5mmの各板厚まで熱間圧延を行い、巻き取りを行った。次いで、得られた熱延板を酸洗し、冷間圧延を施した。その後、雰囲気調整が可能な炉において表2または表3に示す熱処理条件にて熱処理(加熱工程)を行い、熱処理後450℃まで鋼板を冷却し、続いて、表2、3に示す酸洗処理条件にて酸洗処理、又は表4に示す条件にて酸洗処理及び再酸洗処理を行い、冷延鋼板を得た。引き続き、連続溶融亜鉛めっきラインにより焼鈍および溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。また、このめっき処理後、一部については合金化処理を施し、合金化溶融亜鉛めっき鋼板を得た。   Steel having the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method. After the obtained slab was heated to 1200 ° C., it was hot-rolled to a thickness of 1.6 to 4.5 mm and wound up. Next, the obtained hot-rolled sheet was pickled and cold-rolled. Thereafter, heat treatment (heating process) is performed in a furnace capable of adjusting the atmosphere under the heat treatment conditions shown in Table 2 or Table 3. After the heat treatment, the steel sheet is cooled to 450 ° C., and subsequently pickling treatment shown in Tables 2 and 3 Pickling treatment was performed under the conditions, or pickling treatment and re- pickling treatment were performed under the conditions shown in Table 4 to obtain a cold-rolled steel sheet. Subsequently, annealing and hot dip galvanizing treatment were performed on a continuous hot dip galvanizing line to obtain a hot dip galvanized steel sheet. Moreover, after this plating process, a part was alloyed and the alloyed hot-dip galvanized steel plate was obtained.

Figure 0006102902
Figure 0006102902

上記冷延鋼板から採取したサンプルについて、GDS分析を行い、表面から0.5μmまでのCrおよびMnの濃度を測定した。図1に測定の1例を示した。   The sample collected from the cold-rolled steel sheet was subjected to GDS analysis, and the Cr and Mn concentrations from the surface to 0.5 μm were measured. FIG. 1 shows an example of measurement.

また、溶融亜鉛めっき鋼板(GI)および合金化溶融亜鉛めっき鋼板(GA)について、表面外観とめっき密着性を調査した。   In addition, the surface appearance and plating adhesion of the hot dip galvanized steel sheet (GI) and the alloyed hot dip galvanized steel sheet (GA) were investigated.

<表面外観>
不めっきやピンホールなどの外観不良の有無を目視にて判断し、外観不良がない場合には「良好(表中の○)」、外観不良がわずかにあるが概ね良好である場合には「概ね良好(表中の△)」、外観不良がある場合には「不良(表中の×)」と判定した。表面外観が良好および概ね良好を合格とした。
<Surface appearance>
Judging by visual inspection for appearance defects such as non-plating and pinholes, if there is no appearance defect, it is “Good (○ in the table)”. When there was an appearance defect in general “good (Δ)”, it was judged as “bad (× in the table)”. A surface appearance of good and almost good was regarded as acceptable.

<めっき密着性>
合金化溶融亜鉛めっき鋼板のめっき密着性は、耐パウダリング性を評価することで評価した。具体的には、合金化溶融亜鉛めっき鋼板にセロハンテープを貼り、テープ面を90度曲げ、曲げ戻しをし、加工部の内側(圧縮加工側)に、曲げ加工部と平行に巾24mmのセロハンテープを押し当てて引き離し、セロハンテープの長さ40mmの部分に付着した亜鉛量を、蛍光X線によるZnカウント数として測定した。下記基準に照らしてランク1および2のものを「特に良好(表中の○)」、ランク3および4のものを「良好(表中の△)」、5以上のものを「不良(表中の×)」として評価した。ランク1〜4のものを合格とした。
蛍光X線カウント数 ランク
0以上〜2000未満 :1 (良)
2000以上〜5000未満 :2
5000以上〜8000未満 :3
8000以上〜10000未満 :4
10000以上 :5 (劣)
合金化していない溶融亜鉛めっき鋼板については、ボールインパクト試験を行い、加工部をセロハンテープ剥離し、めっき層剥離の有無を目視判定することでめっき密着性を評価した。なお、ボールインパクト試験は、ボール質量1.8kg、落下高さ100cmで、インパクト部の直径を3/4インチと3/8インチで行った。
◎:3/4インチ、3/8インチで共にめっき層の剥離なし
○:3/4インチでめっき層の剥離なし、3/8インチでわずかにめっき層が剥離
×:3/4インチ、3/8インチで共にめっき層が剥離
<Plating adhesion>
The plating adhesion of the galvannealed steel sheet was evaluated by evaluating the powdering resistance. Specifically, cellophane tape is applied to the alloyed hot-dip galvanized steel sheet, the tape surface is bent 90 degrees, bent back, and the cellophane with a width of 24 mm is parallel to the bent portion on the inner side (compressed side) of the processed portion. The tape was pressed and pulled away, and the amount of zinc adhering to the 40 mm long portion of the cellophane tape was measured as the Zn count by fluorescent X-rays. Based on the criteria below, those with ranks 1 and 2 are “particularly good (◯ in the table)”, those with ranks 3 and 4 are “good (Δ in the table)”, and those with 5 or more are “bad” (in the table) X) ”. Ranks 1-4 were accepted.
X-ray fluorescence count Rank 0 or more and less than 2000: 1 (good)
2000 or more and less than 5000: 2
5000 or more and less than 8000: 3
8000 or more and less than 10,000: 4
10,000 or more: 5 (poor)
About the hot-dip galvanized steel sheet which is not alloyed, the ball impact test was performed, the processed part was peeled off with cellophane tape, and the plating adhesion was evaluated by visually judging the presence or absence of peeling of the plating layer. In the ball impact test, the ball mass was 1.8 kg, the drop height was 100 cm, and the diameter of the impact part was 3/4 inch and 3/8 inch.
A: No peeling of the plating layer at 3/4 inch and 3/8 inch. ○: No peeling of the plating layer at 3/4 inch. Slight peeling of the plating layer at 3/8 inch. X: 3/4 inch, 3 / 8 inches, both plating layers are peeled off

Figure 0006102902
Figure 0006102902

Figure 0006102902
Figure 0006102902

Figure 0006102902
Figure 0006102902

以上の評価について、得られた結果を表2〜表4に示した。表2および3によれば、本発明例の冷延鋼板を用いて製造した溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板は、いずれも表面外観およびめっき密着性に優れている。一方、比較例では表面外観またはめっき密着性のいずれかが劣っている。また、表4によれば、再酸洗を行った発明例は、めっき密着性が、再酸洗を行わない発明例よりも優れる。   The results obtained for the above evaluations are shown in Tables 2 to 4. According to Tables 2 and 3, both the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet produced using the cold-rolled steel sheet of the present invention are excellent in surface appearance and plating adhesion. On the other hand, either the surface appearance or the plating adhesion is inferior in the comparative example. Moreover, according to Table 4, the invention example which performed re-pickling is more excellent in plating adhesiveness than the invention example which does not perform re-pickling.

Claims (9)

高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造に用いる冷延鋼板であって、
質量%でC:0.040%以上0.500%以下、Si:1.00%以下、Mn:2.00%以上3.80%以下、P:0.010%以下、S:0.010%以下、Al:0.100%以下、N:0.0100%以下、Cr:0.3%以上1.00%以下、Nb:0.010%以上0.100%以下を含有し、残部がFeおよび不可避的不純物からなり、
表面から厚み方向に0.5μm以内におけるCr濃度が0.20%以下で、かつ、Mn濃度が1.8%以下であることを特徴とする冷延鋼板。
A cold-rolled steel sheet used for manufacturing high-strength hot-dip galvanized steel sheets and high-strength alloyed hot-dip galvanized steel sheets,
C: 0.040% to 0.500%, Si: 1.00% or less, Mn: 2.00% to 3.80%, P: 0.010% or less, S: 0.010 by mass% %: Al: 0.100% or less, N: 0.0100% or less, Cr: 0.3% or more and 1.00% or less, Nb: 0.010% or more and 0.100% or less , the balance being Consisting of Fe and inevitable impurities,
A cold-rolled steel sheet, characterized in that the Cr concentration within 0.5 μm in the thickness direction from the surface is 0.20% or less and the Mn concentration is 1.8% or less.
さらに、質量%で、Mo:0.01%以上0.50%以下、B:0.0001%以上0.0050%以下及びTi:0.010%以上0.100%以下のうちから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1に記載の冷延鋼板。 Further, at least selected from Mo: 0.01% or more and 0.50% or less , B : 0.0001% or more and 0.0050% or less, and Ti: 0.010% or more and 0.100% or less. The cold-rolled steel sheet according to claim 1, comprising one element. さらに、質量%で、Cu:1.00%以下、V:0.500%以下、Ni:0.50%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.005%以下のうちから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1または2に記載の冷延鋼板。   Further, in terms of mass%, Cu: 1.00% or less, V: 0.500% or less, Ni: 0.50% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0. The cold-rolled steel sheet according to claim 1 or 2, comprising at least one element selected from 0100% or less and REM: 0.005% or less. 請求項1〜3のいずれかに記載の冷延鋼板を製造する方法であって、
水素濃度が3.0〜25.0vol%、露点が−40〜−10℃の雰囲気の700〜900℃の温度域で、請求項1〜3に記載の成分組成を有する鋼板を20〜600秒保持する加熱工程と、
該保持後の鋼板を冷却する冷却工程と、
該冷却後の鋼板表面を、酸洗減量がFe換算で4.0〜20.0g/mとなる条件で酸洗除去する酸洗工程とを有することを特徴とする冷延鋼板の製造方法。
A method for producing the cold-rolled steel sheet according to any one of claims 1 to 3,
A steel sheet having the component composition according to claim 1 in a temperature range of 700 to 900 ° C in an atmosphere having a hydrogen concentration of 3.0 to 25.0 vol% and a dew point of -40 to -10 ° C for 20 to 600 seconds. Holding heating process;
A cooling step for cooling the steel plate after the holding;
A method for producing a cold-rolled steel sheet, comprising: pickling and removing the surface of the steel sheet after cooling under the condition that the pickling loss is 4.0 to 20.0 g / m 2 in terms of Fe. .
前記酸洗工程で使用する酸は、硝酸、塩酸、弗酸及び硫酸から選ばれる少なくとも1種であることを特徴とする請求項4に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 4, wherein the acid used in the pickling step is at least one selected from nitric acid, hydrochloric acid, hydrofluoric acid, and sulfuric acid. 前記酸洗工程で使用する酸洗液は、硝酸及び塩酸を含み、硝酸濃度が50g/L超え200g/L以下であり、硝酸濃度に対する塩酸濃度の比(HCl/HNO)が0.01〜1.00であるか、
又は前記酸洗工程で使用する酸洗液は、硝酸及び弗酸を含み、硝酸濃度が50g/L超え200g/L以下であり、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01〜1.00のいずれかであることを特徴とする請求項4又は5に記載の冷延鋼板の製造方法。
The pickling solution used in the pickling step contains nitric acid and hydrochloric acid, the nitric acid concentration is more than 50 g / L and not more than 200 g / L, and the ratio of the hydrochloric acid concentration to the nitric acid concentration (HCl / HNO 3 ) is 0.01 to 1.00 or
Alternatively, the pickling solution used in the pickling step contains nitric acid and hydrofluoric acid, the nitric acid concentration is more than 50 g / L and not more than 200 g / L, and the ratio of the hydrofluoric acid concentration to the nitric acid concentration (HF / HNO 3 ) is 0. The method for producing a cold-rolled steel sheet according to claim 4 or 5, wherein the method is any one of .01 to 1.00.
前記酸洗工程の後に、前記酸洗工程に用いる酸とは異なる非酸化性の酸で、鋼板表面を再酸洗する再酸洗工程をさらに有することを特徴とする請求項6に記載の冷延鋼板の製造方法。   7. The cooling according to claim 6, further comprising a re-pickling step of re-pickling the steel sheet surface with a non-oxidizing acid different from the acid used in the pickling step after the pickling step. A method for producing rolled steel sheets. 請求項1〜3のいずれかに記載の冷延鋼板又は請求項4〜7のいずれかに記載の製造方法で製造した冷延鋼板に、溶融亜鉛めっき処理を施してなる高強度溶融亜鉛めっき鋼板。   A high-strength hot-dip galvanized steel sheet obtained by subjecting the cold-rolled steel sheet according to any one of claims 1 to 3 or the cold-rolled steel sheet produced by the manufacturing method according to any one of claims 4 to 7 to a hot dip galvanizing treatment. . 請求項8に記載の高強度溶融亜鉛めっき鋼板に合金化処理を施してなる高強度合金化溶融亜鉛めっき鋼板。   A high-strength galvannealed steel sheet obtained by subjecting the high-strength galvanized steel sheet according to claim 8 to an alloying treatment.
JP2014258315A 2014-03-05 2014-12-22 Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet Active JP6102902B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014258315A JP6102902B2 (en) 2014-03-05 2014-12-22 Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet
MX2016011337A MX2016011337A (en) 2014-03-05 2015-02-06 Cold-rolled steel sheet, method for producing same, high-strength hot-dipped galvanized steel sheet, and high-strength alloyed hot-dipped galvanized steel sheet.
PCT/JP2015/000542 WO2015133061A1 (en) 2014-03-05 2015-02-06 Cold-rolled steel sheet, method for producing same, high-strength hot-dipped galvanized steel sheet, and high-strength alloyed hot-dipped galvanized steel sheet
CN201580011902.8A CN106103771B (en) 2014-03-05 2015-02-06 Cold-rolled steel sheet, its manufacturing method, high strength hot dip galvanized steel sheet and high-strength galvannealed sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014042444 2014-03-05
JP2014042444 2014-03-05
JP2014258315A JP6102902B2 (en) 2014-03-05 2014-12-22 Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2015180766A JP2015180766A (en) 2015-10-15
JP6102902B2 true JP6102902B2 (en) 2017-03-29

Family

ID=54054882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258315A Active JP6102902B2 (en) 2014-03-05 2014-12-22 Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet

Country Status (4)

Country Link
JP (1) JP6102902B2 (en)
CN (1) CN106103771B (en)
MX (1) MX2016011337A (en)
WO (1) WO2015133061A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382049B1 (en) * 2015-11-26 2023-05-10 JFE Steel Corporation Method for manufacturing cold-rolled steel sheet for high-strength hot-dip galvanized steel sheet, method for manufacturing high-strength hot-dip galvanized steel sheet
KR101736620B1 (en) * 2015-12-15 2017-05-17 주식회사 포스코 Ultra-high strength steel sheet having excellent phosphatability and hole expansibility, and method for manufacturing the same
KR101736619B1 (en) 2015-12-15 2017-05-17 주식회사 포스코 Ultra-high strength steel sheet having excellent phosphatability and bendability, and method for manufacturing the same
KR101967959B1 (en) 2016-12-19 2019-04-10 주식회사 포스코 Ultra-high strength steel sheet having excellent bendability and mathod for manufacturing same
JP6673290B2 (en) * 2017-05-19 2020-03-25 Jfeスチール株式会社 Manufacturing method of high strength galvanized steel sheet
WO2019092467A1 (en) * 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
CN109097705B (en) * 2018-09-26 2020-05-26 武汉钢铁有限公司 800 MPa-grade cold-rolled hot-galvanized dual-phase steel and production method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162901B2 (en) * 1993-06-25 2001-05-08 川崎製鉄株式会社 Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2001140021A (en) * 1999-11-18 2001-05-22 Kawasaki Steel Corp Method of manufacturing high strength galvanized steel sheet and galvanized steel sheet excellent in coating stickiness
JP2003277902A (en) * 2002-03-19 2003-10-02 Jfe Steel Kk Method for producing high strength galvanized steel sheet excellent in plated adhesion
JP3997931B2 (en) * 2003-03-04 2007-10-24 Jfeスチール株式会社 Method for producing high-tensile hot-dip galvanized steel sheet
JP4958383B2 (en) * 2003-06-18 2012-06-20 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP5672747B2 (en) * 2009-03-31 2015-02-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5636727B2 (en) * 2010-04-27 2014-12-10 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP5729211B2 (en) * 2010-08-31 2015-06-03 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method, cold rolled steel sheet and automobile member
CN104040010B (en) * 2012-01-13 2016-06-15 新日铁住金株式会社 The manufacture method of cold-rolled steel sheet and cold-rolled steel sheet
JP2013241636A (en) * 2012-05-18 2013-12-05 Jfe Steel Corp Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet

Also Published As

Publication number Publication date
JP2015180766A (en) 2015-10-15
CN106103771B (en) 2019-01-11
WO2015133061A1 (en) 2015-09-11
CN106103771A (en) 2016-11-09
MX2016011337A (en) 2016-11-08

Similar Documents

Publication Publication Date Title
JP6102902B2 (en) Cold-rolled steel sheet, manufacturing method thereof, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet
JP6086162B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6711464B2 (en) High-strength galvanized steel sheet manufacturing method and high-strength member manufacturing method
JP6094649B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
US11814695B2 (en) Method for manufacturing high-strength galvanized steel sheet and high-strength galvanized steel sheet
WO2019189841A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP2011153367A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
US11408047B2 (en) Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method
JP5978826B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent surface stability
JP5516380B2 (en) Cold-rolled steel sheet for resistance welding and method for producing the same
JP6673290B2 (en) Manufacturing method of high strength galvanized steel sheet
JP5332957B2 (en) Cold-rolled steel sheet for resistance welding and method for producing the same
WO2019188235A1 (en) Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250