JP6102585B2 - 赤外線イメージセンサ - Google Patents

赤外線イメージセンサ Download PDF

Info

Publication number
JP6102585B2
JP6102585B2 JP2013143682A JP2013143682A JP6102585B2 JP 6102585 B2 JP6102585 B2 JP 6102585B2 JP 2013143682 A JP2013143682 A JP 2013143682A JP 2013143682 A JP2013143682 A JP 2013143682A JP 6102585 B2 JP6102585 B2 JP 6102585B2
Authority
JP
Japan
Prior art keywords
circuit
resistor
infrared
sensor
infrared sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013143682A
Other languages
English (en)
Other versions
JP2015019151A (ja
Inventor
康夫 松宮
康夫 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013143682A priority Critical patent/JP6102585B2/ja
Publication of JP2015019151A publication Critical patent/JP2015019151A/ja
Application granted granted Critical
Publication of JP6102585B2 publication Critical patent/JP6102585B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、赤外線イメージセンサに関する。
被写体から放射される赤外線を検知する赤外線センサをそれぞれ有する複数の画素を2次元アレイ状に配置することより形成された赤外線イメージセンサが知られている。赤外線センサとして、ボロメータ型及び熱電対型などの熱型赤外線センサと、量子型赤外線センサとがある。量子型赤外線センサとして、量子井戸型赤外線センサ(QWIP、Quantum Well Infrared Photodetector)及び量子ドット型赤外線センサ(QDIP、Quantum Dot Infrared Photodetector)などが知られている。量子型赤外線センサは、冷却して使用されるため、冷却型赤外線センサとも称される。
一般に、赤外線センサは、動作温度が変化することにより出力特性が変化する。動作温度の変化による赤外線センサの出力特性の変化を補償するための種々の方法が知られている。例えば、赤外線センサと、赤外線センサと同一の構造を有する温度補償素子とを近接して画素ごとに配置し、赤外線センサ及び温度補償素子の検出信号の差を演算することにより画素の温度変化の影響を補償する方法が知られている。
特開2006−314025号公報 特開2001−304973号公報
赤外線イメージセンサは複数の画素を有するので、画素ごとに動作温度が異なるおそれがある。例えば、強い光が照射された画素は、画素に照射される熱量も増加するため、光が照射されていない画素よりも温度が高くなる。強い光が照射されることにより、周囲の画素よりも温度が上昇した画素に配置される赤外線センサの出力特性は、他の画素に配置される赤外線センサの出力特性と異なることになる。周囲の温度よりも上昇した画素に配置される赤外線センサの出力特性が他の画素に配置される赤外線センサの出力特性と異なることにより、赤外線イメージセンサは、予期しない画像が撮像されるおそれがある。
例えば、QWIP素子を赤外線センサとして使用する場合、QWIP素子は温度の上昇に伴い暗電流が増加する特性を有するため、強い光が照射された画素に隣接する画素の温度が上昇することにより、隣接する画素に位置するQWIP素子の暗電流が増加する。隣接する画素に配置されるQWIP素子の暗電流が増加することにより、撮像された画像は被写体の形像よりも輪郭が膨らんだ形像となる。
撮像された画像が被写体の形像よりも輪郭が膨らんだ形像となることを防止するために、比較的熱容量の大きな均熱板を画素に張り合わせるなどして、画素間に温度差が生じないような構成が採用されている。しかしながら、熱容量の大きな均熱板を画素に張り合わせるなどして構成部材を追加した構造を採用すると、冷却機構で冷却される部材が増加する。冷却機構で冷却される部材が増加すると、冷却される部材の熱容量が大きくなり、冷却機構及び赤外線イメージセンサ全体大きさが大型化するおそれがある。
また、温度変化による赤外線センサの出力特性の変化を画素ごとに補償するための演算回路を赤外線イメージセンサに搭載することが考えられる。しかしながら、温度変化による赤外線センサの出力特性の変化を画素ごとに補償するための演算回路は回路規模が大きくなり、演算回路からの熱量を冷却するために冷却構造が更に大型化するおそれがある。
本発明は、動作温度の変動による赤外線センサの出力特性を変動を画素ごとに補正する補正回路を簡便な構造で実現する赤外線イメージセンサを提供することを目的とする。
一実施形態では、赤外線イメージセンサは、アレイ状に配置された複数の画素ごとに配置される動作回路を有し、動作回路は、赤外線を検知する赤外線センサと、赤外線センサが検知した光に応じた検知信号を出力する駆動回路と、補正回路とを有する。補正回路は、第1抵抗と、第1抵抗に直列接続され且つ第1抵抗と温度特性が相違する第2抵抗とを有すると共に、赤外線センサに熱的に接続され、第1抵抗及び第2抵抗の温度変化による抵抗値の変化に応じて検知信号を補正する。
赤外線イメージセンサは、赤外線センサに熱的に接続され且つ温度特性が相違する第1抵抗及び第2抵抗の温度変化による抵抗値の変化に応じて検知信号を補正するので、動作温度の変動による赤外線センサの出力特性を変動が簡便な構造で実現される。
関連する赤外線イメージセンサの回路ブロック図である。 (a)は図1に示す赤外線イメージセンサの部分平面図であり、(b)は(a)のA−A´線に沿う断面図であり、(c)は(a)に示す赤外線イメージセンサの動作回路の回路ブロック図ある。 (a)は図2(c)に示す動作回路の暗電流と動作温度との関係の一例を示す図であり、(b)は暗電流が一定の大きさのときの動作温度とバイアス電圧との関係の一例を示す図である。 動作回路の一例の回路ブロック図である。 (a)は抵抗値の温度依存特性の一例を示す図であり、(b)は抵抗値の温度依存特性の他の例を示す図であり、(c)は抵抗値の温度依存特性の更に他の例を示す図である。 (a)は赤外線イメージセンサの一例の断面図であり、(b)は(a)のB−B´線に沿う断面図である。 図6(a)に示す赤外線イメージセンサの動作回路の回路ブロック図である。 (a)は赤外線イメージセンサの他の例の部分平面図であり、(b)は(a)のC−C´線に沿う断面図であり、(c)は(b)の部分拡大図である。 図8(a)に示す赤外線イメージセンサの動作回路の回路ブロック図である。
まず、本発明に関連する赤外線イメージセンサに説明する。
図1(a)は関連する赤外線イメージセンサの回路ブロック図である。
赤外線イメージセンサ100は、センサアレイ101と、周辺回路部102と、冷却機構103とを有する。センサアレイ101と、周辺回路部102とは同一の基板104に搭載される。
センサアレイ101には、複数のゲート線111と複数の出力線112が格子状に配置されている。複数のゲート線111及び複数の出力線112の交差位置それぞれに、画素が配置されている。
センサアレイ101に配置される画素の大きさは、40〔μm〕×40〔μm〕であり、センサアレイ101には、256×256の画素が配置される。画素にはそれぞれ、図2を参照して説明される動作回路110が配置される。
周辺回路部102には、垂直走査シフトレジスタ121と、水平走査シフトレジスタ122と、出力選択回路123と、増幅器124と、出力端子125と、制御部126とが配置される。
垂直走査シフトレジスタ121は、センサアレイ101に配置される複数の画素それぞれの動作回路110を行ごとに順次選択する。水平走査シフトレジスタ122は、センサアレイ101に配置される複数の画素それぞれの動作回路110を列ごとに順次選択し、選択信号を出力選択回路123に出力する。出力選択回路123は、入力された選択信号で選択された列であり且つ垂直走査シフトレジスタ121で選択された行に位置する画素の動作回路110の出力信号を出力する。増幅器124は、出力選択回路123から出力された出力信号を増幅し、出力端子125を介して制御演算部201に出力する。制御演算部201に出力された出力信号はタイミング調整等の処理がされ、出力信号に対応する画像がモニタ202に表示される。
制御部126は、複数の画素それぞれの動作回路110、垂直走査シフトレジスタ121及び水平走査シフトレジスタ122の動作を制御する。
冷却機構103は、1段式のスターリングクーラなどで形成され、センサアレイ101及び周辺回路部102を搭載する基板104を80〔K〕程度の温度に冷却する。
図2(a)は赤外線イメージセンサ100の部分平面図であり、図2(b)は図2(a)のA−A´線に沿う断面図であり、図2(c)は動作回路110の回路ブロック図である。
センサアレイ101には、アレイ状に配置される複数の画素ごとに動作回路110が配置される。動作回路110は、QWIP素子10と、Inを含むバンプ30を介してQWIP素子10と接続される駆動回路20とを有する。動作回路110は、DI(Direct Injection)型駆動回路とも称される。
QWIP素子10は、電源線、接地線及び種々の信号配線を含む共通配線41と共にGaAs基板105上に形成される。QWIP素子10は、1III−V族系の化合物半導体を積層して形成される多重量子井戸層を有する。QWIP素子10は、受光面11に特定の波長の光を受光すると、抵抗値RQWIPが低下する特性を有する素子である。QWIP素子10の一端はバンプ30を介して駆動回路20に接続され、他端は共通配線41及びバンプ31を介して接地される。QWIP素子10が特定の波長の光を受光したとき、QWIP素子10の抵抗値RQWIPが低下し、駆動回路20から流れる電流の大きさが大きくなる。QWIP素子10は、シリコン基板上に形成される読み出し回路チップ(ROIC、Read Out Integrate Circuit)106上にバンプ30及び31を介して搭載される。
駆動回路20は、スイッチング素子21と、キャパシタ22と、充電スイッチ23と、検知信号出力素子24と、定電流源25とを有する。駆動回路20は、読み出し回路チップ106に、周辺回路部102と共に形成される。
スイッチング素子21は、MOSトランジスタであり、ゲートが共通配線41を介して制御部126に接続され、ソースがQWIP素子10の一端にバンプ30を介して接続され、ドレインがキャパシタ22の一端に接続される。スイッチング素子21がオンして、ソース―ドレイン間が導通しているとき、キャパシタ22に充電されている電荷はスイッチング素子21及びQWIP素子10を介して放電される。
キャパシタ22は、トランジスタのゲート容量又は半導体基板上に形成されるMIM(金属−絶縁体−金属)構造により形成され、一端がスイッチング素子21のドレインに接続され、他端は接地される。キャパシタ22は、スイッチング素子21がオフし且つ充電スイッチ23がオンしているときに電源電圧VRSTから充電され、スイッチング素子21がオンし且つ充電スイッチ23がオフしているときにQWIP素子10を介して放電される。
充電スイッチ23は、MOSトランジスタで形成され、一端が電源電圧VRSTに接続され、他端がキャパシタ22の一端に接続される。充電スイッチ23は、スイッチング素子21がオンしているときにオフし、スイッチング素子21がオフしているときにオンするように制御部126により制御される。
検知信号出力素子24は、MOSトランジスタで形成され、ゲートがキャパシタ22の一端に接続され、ソースが電源電圧に接続され、ドレインが定電流源25の一端に接続される。定電流源25は、一端が検知信号出力素子24のドレインに接続され、他端が接地される。検知信号出力素子24のドレインは、駆動回路20の出力端子である。
検知信号出力素子24は、ゲートに接続されるキャパシタ22の電荷量により決定されるゲート電圧により、ソース―ドレイン間の抵抗値が変化する。検知信号出力素子24のソース―ドレイン間の抵抗値に応じて、検知信号出力素子24のドレイン電圧は変動するので、検知信号出力素子24のドレインから、QWIP素子10が検知した光に応じた検出信号が出力される。
動作回路110は、充電スイッチ23をオンしてキャパシタ22を充電した後に充電スイッチ23をオフし、所定の期間に亘ってスイッチング素子21をオンしてQWIP素子10を介してキャパシタ22を放電する。所定の期間が経過した後に、出力端子VOUTの電圧が読み出される。所定の期間が経過した後の出力端子VOUTの電圧は、所定の期間内にQWIP素子10を介して流れる電流の積分量に応じた電圧である。
図3(a)は、図2(c)に示す動作回路110の暗電流と動作温度との関係を示す図である。図3(a)において、横軸は動作回路110の動作温度T〔K〕であり、縦軸は暗電流Id〔A〕である。図3(a)はスイッチング素子21のゲートに印加されるバイアス電圧VGを0.7〔V〕、1.2〔V〕、1.7〔V〕及び2.2〔V〕としたときの暗電流Idの温度変化を示す。
QWIP素子10は、特定の波長の光を受光しないときにでも熱励起放出される電子に起因して暗電流Idが生じる。図3(a)に示すように、動作回路110の暗電流Idの大きさは、スイッチング素子21のゲートに印加されるバイアス電圧VGにかかわらず、動作温度が上昇するに従って増加する。例えば、バイアス電圧が0.7〔V〕である場合、動作温度が70〔K〕であるとき、暗電流Idの大きさは1.0×10-10〔A〕程度であるが、動作温度が120〔K〕であるとき、暗電流Idの大きさは1.0×10-6〔A〕程度に増加する。また、バイアス電圧VGが2.2〔V〕である場合、動作温度が70〔K〕であるとき、暗電流Idの大きさは1.0×10-7〔A〕程度であるが、動作温度が120〔K〕であるとき、暗電流Idの大きさは1.0×10-4〔A〕程度に増加する。
QWIP素子10の抵抗値RQWIPが低下することによる電流の変化量の大きさは、暗電流Idの大きさと比較すると、同等程度か又は小さいものである。暗電流Idの大きさが大きく変動すると、QWIP素子10の抵抗値RQWIPが低下することによる電流の変化量を検出することが難しくなる。
図3(b)は、暗電流Idが一定の大きさのときの動作回路110の動作温度Tとスイッチング素子21のゲートに印加されるバイアス電圧VGとの関係を示す図である。図3(b)は、暗電流Idの大きさが2.0×10-6〔A〕のときの動作温度Tとバイアス電圧VGとの関係を示す図である。
暗電流Idを一定の大きさに維持させるとき、バイアス電圧VGは、動作温度Tが上昇するに従って減少するように制御されることになる。動作温度Tが上昇するに従ってバイアス電圧VGを減少するように制御する制御回路を制御部126に搭載することにより、バイアス電圧VGを制御することは可能であるが、制御部126の回路規模が大きくなり発熱量が増加するため、好ましくない。
そこで、制御部126の回路規模を増加させることなく、動作温度Tの上昇に伴いバイアス電圧VGを減少させるために、温度特性が相違する2つの抵抗を使用することが見出された。すなわち、温度上昇に伴う抵抗値の変化量が互いに相違する2つの抵抗を有する補正回路により補正することにより、動作温度Tの上昇に伴いバイアス電圧VGを減少させることが可能になる。
図4は温度特性が相違する2つの抵抗を使用する動作回路の一例の回路ブロック図である。
動作回路1は、補正回路50を有することが、図2(c)を参照して説明した動作回路110と相違する。
補正回路50は、第1抵抗51と第2抵抗52とを有する。第1抵抗51及び第2抵抗52はそれぞれ、QWIP素子10に熱的に接続される。例えば、第1抵抗51及び第2抵抗52は、QWIP素子10に近接して配置されることにより、熱的に接続される。また、第1抵抗51及び第2抵抗52は、QWIP素子10に金属等の熱伝導率が高い材料を介して接続されることにより、熱的に接続される。
第1抵抗51の一端は制御部126に接続され、第1抵抗51の他端は第2抵抗52の一端及びスイッチング素子21のゲートに接続され、第2抵抗52の他端は制御部126に接続される。第1抵抗51の一端には、第1バイアス電圧VG1が印加され、第2抵抗52の一端には、第1バイアス電圧VG1よりも低い電圧である第2バイアス電圧VG2が印加される。第1抵抗51の抵抗値はR1であり、第2抵抗52の抵抗値はR2である。
式(1)は、バイアス電圧VGと、第1バイアス電圧VG1、第2バイアス電圧VG2、抵抗値R1及びR2との関係を示す式である。
Figure 0006102585
ここで、第1抵抗51の抵抗値R1が温度上昇に従って増加する割合が第2抵抗の抵抗値R2が増加する割合よりも大きいとき、動作温度が上昇するに従ってスイッチング素子21のゲートに印加されるバイアス電圧VGは低下する。
図5(a)〜(c)は、動作温度が上昇するに従ってスイッチング素子21のゲートに印加されるバイアス電圧VGを低下させる抵抗値R1及びR2の組み合わせを概略的に示す図である。図5(a)は第1の組み合わせを示す図であり、図5(b)は第2の組み合わせを示す図であり、図5(c)は第3の組み合わせを示す図である。
動作温度Tが上昇するに従ってバイアス電圧VGを低下させる第1の組み合わせは、第1抵抗51の抵抗値R1が温度上昇に従って増加する一方、第2抵抗の抵抗値R2は温度上昇にかかわらず変動しないものである。この場合、第1抵抗51の材料としてAl及びCu等の純金属が採用され、第2抵抗52の材料としてCu−Ni合金及びBi−Cr合金が採用される。
動作温度Tが上昇するに従ってバイアス電圧VGを低下させる第2の組み合わせは、第1抵抗51の抵抗値R1は温度上昇にかかわらず変動しない一方、第2抵抗の抵抗値R2が温度上昇に従って減少するものである。この場合、第1抵抗51の材料としてCu−Ni合金及びBi−Cr合金が採用され、第2抵抗52の材料として80〔K〕程度の温度で温度上昇に伴って抵抗率が低下するポリシリコン等の半導体材料が採用される。
動作温度Tが上昇するに従ってバイアス電圧VGを低下させる第3の組み合わせは、第1抵抗51の抵抗値R1が温度上昇に増加する割合よりも、第2抵抗の抵抗値R2が温度上昇に従って増加する割合が小さいものである。この場合、第1抵抗51の材料として金属材料が採用され、第2抵抗52の材料として第1抵抗51の材料よりも温度上昇に伴う抵抗率の上昇が小さい金属が採用される。一例では、第1抵抗51の材料としてAlが採用されると、第2抵抗52の材料としてCuが採用される。
図6(a)は赤外線イメージセンサの一例の断面図であり、図6(b)は図6(a)のB−B´線に沿う断面図であり、図7は図6(a)に示す赤外線イメージセンサの動作回路の回路ブロック図である。図6(b)において、破線は第1抵抗51を示し、一点鎖線は第2抵抗52を示す。
赤外線イメージセンサ2は、動作回路110の代わりに動作回路3を有することが赤外線イメージセンサ100と相違する。動作回路3は、図4を参照して説明した補正回路50を有することが動作回路110と相違する。
第1抵抗51及び第2抵抗52は、バンプ30を介してQWIP素子10と対向する位置に近接して配置されることにより、QWIP素子10と熱的に接続される。
第1抵抗51に印加される第1バイアス電圧VG1及び第2抵抗52に印加される第2バイアス電圧VG2はそれぞれ、共通配線41及びバンプを介して読み出し回路チップ106に配置される制御部126から供給される。
赤外線イメージセンサ2では、補正回路50は読み出し回路チップ106に形成される。また、補正回路50はQWIP素子10の下方に配置され、且つ補正回路50が形成される領域の表面積は、画素及びQWIP素子10の表面積同一であり、40〔μm〕×40〔μm〕である。
第1抵抗51は、純Al薄膜であり、厚さ0.1〔nm〕、幅100〔nm〕及び長さ5600〔μm〕となるように形成される。このときの第1抵抗51の抵抗値R1は、80〔K〕で約560〔kΩ〕である。
第2抵抗52は、30%Ni−Cu合金であり、厚さ100〔nm〕、幅100〔nm〕及び長さ2400〔μm〕となるように形成される。このときの第2抵抗52の抵抗値R2は、80〔K〕で約720〔kΩ〕である。
第1バイアス電圧VG1を3〔V〕とし、第2バイアス電圧VG2を−1〔V〕とすると、バイアス電圧VGは80〔K〕で略1.25〔V〕になる。また、バイアス電圧VGの温度依存特性は約1〔V/K〕となり、一般的なQWIP素子の暗電流を一定にするのに適正な温度依存性となる。
また、上述の動作条件で動作させる場合、256×256の画素全てに配置される補正回路50の消費される電力量は0.8〔W〕程度となる。0.8〔W〕程度の電力量は、冷却機構103を形成する1段式のスターリングクーラの冷却性能よりも十分に小さいものであるので、動作回路3を画素ごとに配置した場合でも冷却機構103の冷却性能に影響を与えるおそれは低い。
図8(a)は赤外線イメージセンサの他の例の平面図であり、図8(b)は図8(a)のC−C´線に沿う断面図であり、図8(c)は図8(b)の部分拡大図であり、図9は図8(a)に示す赤外線イメージセンサの動作回路の回路ブロック図である。
赤外線イメージセンサ4は、動作回路3の代わりに動作回路5を有することが図6及び7を参照して説明した赤外線イメージセンサ2と相違する。動作回路5は、補正回路50が読み出し回路チップ106ではなく、QWIP部12にQWIP素子10と共に形成されていることが動作回路3と相違する。
第1抵抗51及び第2抵抗52は、QWIP部12の内部でQWIP素子10に近接して配置されることにより、QWIP素子10と熱的に接続される。
QWIP部12では、QWIP素子10の一端は、第1コンタクト13、内部配線15及びバンプ30を介してスイッチング素子21のソースに接続される。QWIP素子10の他端は、第2コンタクト14、共通配線及びバンプ31を介してスイッチング素子21のソースに接続される。
QWIP部12では、補正回路50の第1抵抗51及び第2抵抗52の一端は、バンプ32及び内部配線55を介してスイッチング素子21のゲートに接続される。また、補正回路50の第1抵抗51の他端は内部配線53及び共通配線41及びバンプを介して制御部126に接続され、補正回路50の第2抵抗52の他端は内部配線54及び共通配線41及びバンプを介して制御部126に接続される。
赤外線イメージセンサ2及び4では、温度特性が互いに相違する第1抵抗51及び第2抵抗52を直列に接続し、温度変化に伴って変化する第1抵抗51及び第2抵抗52の間の電位がスイッチング素子21のゲートに印加される。QWIP素子10を流れる暗電流Idが温度変化にかかわらず一定になるように、第1抵抗51抵抗値R1及び第2抵抗52の抵抗値R2を設定することにより、赤外線イメージセンサ2及び4は、温度変化の影響を補償することができる。
また、赤外線イメージセンサ2及び4では、温度特性が互いに相違する第1抵抗51及び第2抵抗52を有する補正回路50は画素ごとに配置されるので、画素ごとに温度変化に応じた補正が実行される。
また、補正回路50は、第1抵抗51及び第2抵抗52で形成され、温度変化に応じた演算処理を実行する演算部を要しないので、補正回路50を配置することによる熱量の増加を最小限に抑えることができる。
また、赤外線イメージセンサ2では、補正回路50は、QWIP素子10の下方に位置し且つQWIP素子10と同一の表面積を有するように形成されているので、補正回路50を配置することにより画素領域が増加することはない。補正回路50を配置することにより画素領域が増加することはないので、補正回路50を配置することによって赤外線イメージセンサの感度が低下することはない。赤外線イメージセンサ4では、補正回路50はQWIP素子10と同一の表面積を有するが、補正回路50の表面積はQWIP素子10の表面積よりも小さくしてもよい。
また、赤外線イメージセンサ4では、補正回路50がQWIP素子10と共にQWIP部12に形成されているので、補正回路50は、QWIP素子10の温度変化をより反映した補正が可能になる。
赤外線イメージセンサ2及び4では、補正回路50はスイッチング素子21のゲートに印加されるバイアス電圧VGを減少させることにより、暗電流Idを一定に維持している。しかしながら、補正回路が、スイッチング素子21のゲートではなくスイッチング素子21のバックゲートを変動させることによりスイッチング素子21のしきい値を変動させることにより、電流Idを一定に維持するような構成を採用してもよい。
また、赤外線イメージセンサ2及び4では、QWIP素子10が赤外線センサとして使用されているが、QDIP素子又は熱型赤外線センサを赤外線センサとして使用してもよい。熱型赤外線センサが赤外線センサとして使用される場合、赤外線センサを駆動する駆動回路は、トランジスタのみで形成するなどより簡便な構成としてもよい。
また、赤外線イメージセンサ4では、補正回路はQWIP素子に流れる暗電流を補正しているが、補正回路は、暗電流だけではなく温度特性に応じた赤外線センサの他の出力特性を補正するように機能するような構成を採用してもよい。
1、3、5、110 動作回路
2、4、100 赤外線イメージセンサ
10 QWIP素子(赤外線センサ)
20 駆動回路
21 スイッチング素子
22 キャパシタ(積分回路)
50 補正回路
51 第1抵抗
52 第2抵抗

Claims (6)

  1. アレイ状に配置された複数の画素ごとに配置される動作回路を有する赤外線イメージセンサであって、
    前記動作回路は、
    赤外線を検知する赤外線センサと、
    前記赤外線センサが検知した光に応じた検知信号を出力する駆動回路と、
    第1抵抗と、前記第1抵抗に直列接続され且つ前記第1抵抗と温度特性が相違する第2抵抗とを有する補正回路であって、前記赤外線センサに熱的に接続され、前記第1抵抗及び前記第2抵抗の温度変化による抵抗値の変化に応じて前記検知信号を補正する補正回路と、
    を有することを特徴とする赤外線イメージセンサ。
  2. 前記動作回路を冷却する冷却機構を更に有し、
    前記赤外線センサは、冷却型赤外線センサである、請求項1に記載の赤外線イメージセンサ。
  3. 前記補正回路は、前記赤外線センサを流れる暗電流の大きさを補正する、請求項1又は2に記載の赤外線イメージセンサ。
  4. 前記駆動回路は、前記赤外線センサの検知した光を示す信号を積分する積分回路と、前記赤外線センサと前記積分回路との接続をオンオフするスイッチング素子とを有し、
    前記補正回路は、前記スイッチング素子を介して前記赤外線センサに流れる暗電流の大きさを制御する、請求項3に記載の赤外線イメージセンサ。
  5. 前記補正回路は、前記赤外線センサが形成される基板と同一の基板上に形成される、請求項1〜4の何れか一項に記載の赤外線イメージセンサ。
  6. 前記赤外線センサを搭載し、且つ前記駆動回路及び前記補正回路が形成される読み出し回路チップを更に有し、
    前記補正回路は、前記赤外線センサの下方に位置し、前記補正回路が配置される領域の表面積は、前記赤外線センサの表面積以下である、請求項1〜4の何れか一項に記載の赤外線イメージセンサ。
JP2013143682A 2013-07-09 2013-07-09 赤外線イメージセンサ Expired - Fee Related JP6102585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143682A JP6102585B2 (ja) 2013-07-09 2013-07-09 赤外線イメージセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143682A JP6102585B2 (ja) 2013-07-09 2013-07-09 赤外線イメージセンサ

Publications (2)

Publication Number Publication Date
JP2015019151A JP2015019151A (ja) 2015-01-29
JP6102585B2 true JP6102585B2 (ja) 2017-03-29

Family

ID=52439803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143682A Expired - Fee Related JP6102585B2 (ja) 2013-07-09 2013-07-09 赤外線イメージセンサ

Country Status (1)

Country Link
JP (1) JP6102585B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11956416B2 (en) 2021-07-30 2024-04-09 SK Hynix Inc. Image sensing device and method of operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782153B2 (ja) * 2016-12-02 2020-11-11 セイコーNpc株式会社 赤外線センサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160185A (ja) * 1992-11-25 1994-06-07 Matsushita Electric Works Ltd 赤外線検出素子
JP2004061283A (ja) * 2002-07-29 2004-02-26 Ishizuka Electronics Corp 赤外線センサ及びこれを用いた物体の大きさと表面温度の判定装置
JP5899793B2 (ja) * 2011-10-21 2016-04-06 富士通株式会社 半導体集積回路、赤外線撮像装置及び読み出し方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11956416B2 (en) 2021-07-30 2024-04-09 SK Hynix Inc. Image sensing device and method of operating the same

Also Published As

Publication number Publication date
JP2015019151A (ja) 2015-01-29

Similar Documents

Publication Publication Date Title
JP3866069B2 (ja) 赤外線固体撮像装置
JP5127278B2 (ja) 熱型赤外線固体撮像素子及び赤外線カメラ
US10197448B2 (en) Low cost and high performance bolometer circuitry and methods
US8431900B2 (en) Infrared solid-state imaging device
TWI618231B (zh) 紅外偵測器陣列之緩衝式直接注射像素
JP5530277B2 (ja) 固体撮像装置およびその駆動方法
WO2007139788A1 (en) Image sensor with built-in thermometer for global black level calibration and temperature-dependent color correction
KR20140016946A (ko) 적외선 이미지 센서 및 신호 판독 방법
JP6102585B2 (ja) 赤外線イメージセンサ
JP2008268155A (ja) 熱型赤外線固体撮像素子
US9222838B2 (en) Detection device, sensor device, and electronic device
US8581199B2 (en) Solid state imaging device
US10734422B2 (en) Semiconductor apparatus having a reset transistor for resetting a potential in a semiconductor region
CN104981905A (zh) 成像传感器阵列中的异常时钟频率检测
JP2020028093A (ja) 光電変換装置及び撮像システム
JP2009074898A (ja) ボロメータ型非冷却赤外線センサおよびその駆動方法
US7122798B2 (en) Infrared image sensor
JP3974902B2 (ja) 熱型赤外線検出素子
JP4153861B2 (ja) 赤外線センサ
US9404963B2 (en) Apparatus and method for inspecting infrared solid-state image sensor
JP2009168611A (ja) 赤外線固体撮像素子
US20210190366A1 (en) Infrared imaging element and air conditioner equipped with same
US20140246714A1 (en) Image sensor having thin dark shield
JP4071122B2 (ja) 熱型赤外線固体撮像素子
JP2014163863A (ja) X線画像検出装置およびその破損検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees