JP6101246B2 - Hot water system - Google Patents

Hot water system Download PDF

Info

Publication number
JP6101246B2
JP6101246B2 JP2014262792A JP2014262792A JP6101246B2 JP 6101246 B2 JP6101246 B2 JP 6101246B2 JP 2014262792 A JP2014262792 A JP 2014262792A JP 2014262792 A JP2014262792 A JP 2014262792A JP 6101246 B2 JP6101246 B2 JP 6101246B2
Authority
JP
Japan
Prior art keywords
flow rate
water
hot water
magnet
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014262792A
Other languages
Japanese (ja)
Other versions
JP2016121855A (en
Inventor
悠也 宮崎
悠也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2014262792A priority Critical patent/JP6101246B2/en
Publication of JP2016121855A publication Critical patent/JP2016121855A/en
Application granted granted Critical
Publication of JP6101246B2 publication Critical patent/JP6101246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control For Baths (AREA)

Description

本発明は、給湯システムに関する。特に、本発明は、マグネットポンプにより熱交換器に水を送水する運転が行われる給湯システムに関する。   The present invention relates to a hot water supply system. In particular, the present invention relates to a hot water supply system in which an operation of feeding water to a heat exchanger by a magnet pump is performed.

従来、バーナで加熱される熱交換器と、熱交換器に接続された入水管路及び出湯管路と、熱交換器に水を送水するポンプと、熱交換器に送水される水の流量を検出する水量センサとを備えた給湯システムが知られている。例えば、即湯給湯システムにおいては、給湯運転が行われていないときにポンプを作動させて入水管路、熱交換器、及び出湯管路で循環路を形成して水を循環させ、管路内の水が所定温度となるように循環保温運転が行われている。また、貯湯式給湯システムでも、貯湯槽と熱交換器とを入水管路となる戻り管及び出湯管路となる往き管で接続して循環路を形成し、同様に、ポンプを作動させて貯湯槽と熱交換器との間で貯湯水を循環させ、貯湯水の温度が所定温度に維持されるように循環保温運転が行われている。さらに、風呂の追焚き回路を有する追焚き給湯システムでは、浴槽と熱交換器とを入水管路である戻り管及び出湯管路である往き管で接続して循環路を形成し、ポンプを作動させて浴槽と熱交換器との間で浴槽水を循環させ、浴槽水の温度が所定温度となるように追焚き循環運転が行われている。   Conventionally, a heat exchanger heated by a burner, a water inlet and outlet pipe connected to the heat exchanger, a pump for feeding water to the heat exchanger, and a flow rate of water sent to the heat exchanger There is known a hot water supply system including a water amount sensor for detection. For example, in an instant hot water supply system, when a hot water supply operation is not performed, a pump is operated to form a circulation path with a water inlet line, a heat exchanger, and a hot water outlet line to circulate water. The circulating heat insulation operation is performed so that the water of the water reaches a predetermined temperature. Also, in the hot water storage hot water supply system, a hot water storage tank and a heat exchanger are connected by a return pipe as a water inlet pipe and an outgoing pipe as a hot water outlet to form a circulation path. Similarly, a hot water storage system is operated by operating a pump. Circulating and warming operation is performed so that the hot water is circulated between the tank and the heat exchanger, and the temperature of the hot water is maintained at a predetermined temperature. Furthermore, in a reheating hot water supply system having a reheating circuit for a bath, a tub and a heat exchanger are connected by a return pipe that is a water inlet pipe and a forward pipe that is a hot water outlet to form a circulation path and operate a pump. Thus, the bathtub water is circulated between the bathtub and the heat exchanger, and the circulation operation is performed so that the temperature of the bathtub water becomes a predetermined temperature.

これらの給湯システムでは、水量センサで検出される流量に基づき運転中のバーナの燃焼量が制御されているが、管路の詰まりやポンプ故障等が生じると送水不良が発生する。そのため、運転が正常終了する前に水量センサで検出される流量が所定流量未満になると、送水不良が生じたと判定して、運転を強制的にエラー停止させている(例えば、特許文献1)。   In these hot water supply systems, the combustion amount of the burner during operation is controlled based on the flow rate detected by the water amount sensor. However, when a pipe line is clogged or a pump malfunctions, water supply failure occurs. For this reason, when the flow rate detected by the water amount sensor becomes less than the predetermined flow rate before the operation ends normally, it is determined that a water supply failure has occurred and the operation is forcibly stopped by an error (for example, Patent Document 1).

特開2004−353981号公報Japanese Patent Application Laid-Open No. 2004-353981

ところで、上記給湯システムのポンプとして、水漏れの少ないマグネットポンプが使用される場合がある。この種のマグネットポンプは、駆動源であるモータに接続された駆動用マグネットと、管路の一部を構成するケーシング内に、駆動用マグネットと隔壁を介して対向配置された従動用マグネットと、従動用マグネットに取り付けられたインペラとを有している。従って、マグネットポンプに通電してモータを駆動すると、磁気吸引力により駆動用マグネットと従動用マグネットとが回転し、それに伴ってインペラが回転することにより、送水が行われる。   By the way, a magnet pump with little water leakage may be used as a pump of the hot water supply system. This type of magnet pump includes a driving magnet connected to a motor as a driving source, a driven magnet disposed opposite to the driving magnet and a partition wall in a casing constituting a part of the pipe line, And an impeller attached to the driven magnet. Accordingly, when the magnet pump is energized and the motor is driven, the driving magnet and the driven magnet are rotated by the magnetic attractive force, and the impeller is rotated accordingly, thereby supplying water.

しかしながら、電源の瞬停(瞬間的な停電や瞬間的に大きな電圧降下)が生じた場合、モータの停止によって駆動用マグネットの回転は直ちに停止するが、従動用マグネットは管路内の水流によって緩やかに回転した状態となる。そのため、駆動用マグネットと従動用マグネットのマグネットカップリングが外れ、ポンプが脱調状態となる。そして、電源が瞬停から回復してポンプへの通電が再開されると、駆動用マグネットは高速で回転しはじめるが、従動用マグネットは低速で回転しているため、両マグネットの回転速度には大きな差が生じる。その結果、従動用マグネットが駆動用マグネットに固定されず、水流が停止すると、駆動用マグネットのみが回転し、送水が停止する。従って、上記のような瞬停による脱調が生じると、管路の詰りやポンプ故障等は生じていないにも関わらず、水量センサで検出される流量が所定流量未満となって、強制的に運転がエラー停止されてしまうという問題がある。   However, in the event of a momentary power interruption (instantaneous power failure or momentary large voltage drop), the rotation of the drive magnet stops immediately due to the motor stopping, but the driven magnet is moderated by the water flow in the pipeline. It will be in the state rotated to. Therefore, the magnet coupling between the driving magnet and the driven magnet is removed, and the pump is out of step. When the power supply recovers from the momentary power interruption and energization of the pump is resumed, the drive magnet starts to rotate at a high speed, but the driven magnet rotates at a low speed. A big difference occurs. As a result, when the driven magnet is not fixed to the driving magnet and the water flow stops, only the driving magnet rotates and water supply stops. Therefore, when a step-out due to a momentary power interruption as described above occurs, the flow rate detected by the water amount sensor becomes less than the predetermined flow rate, even though there is no clogging of the pipeline or pump failure, etc. There is a problem that the operation is stopped due to an error.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、マグネットポンプを作動させることにより熱交換器に送水する運転が行われる給湯システムにおいて、瞬停による不要なエラー停止を防止することにある。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to stop unnecessary errors due to momentary power failure in a hot water supply system in which water is supplied to a heat exchanger by operating a magnet pump. Is to prevent.

本発明は、
熱交換器を有する給湯器と、
熱交換器に水を送水するマグネットポンプと、
熱交換器に送水される水の流量を検出する水量検出部と、
水量検出部で検出される流量に基づいて送水不良を判定する制御部と、を備え、
制御部は、マグネットポンプを作動させて熱交換器に水を送水する運転中、水量検出部で検出される流量が所定の脱調判定流量未満となった場合、一時的にマグネットポンプへの通電を停止させた後、マグネットポンプへの通電を再開させ
水量検出部で検出される流量が脱調判定流量より高い所定の第1判定流量未満を所定の第1判定時間継続した場合、管路の詰り等の経年劣化による送水不良が生じたと判定する給湯システムである。
The present invention
A water heater having a heat exchanger;
A magnet pump that delivers water to the heat exchanger;
A water amount detection unit for detecting a flow rate of water sent to the heat exchanger;
A control unit for determining a water supply failure based on the flow rate detected by the water amount detection unit,
During the operation of operating the magnet pump to supply water to the heat exchanger, the control unit temporarily energizes the magnet pump when the flow rate detected by the water volume detection unit is less than the predetermined step-out determination flow rate. After stopping, the energization to the magnet pump is resumed ,
If the flow rate detected by the water amount detecting unit is a first determination than the flow rate higher predetermined from out-of-step detection flow continues a predetermined first determination time, it determined that water failure has occurred due to aging, such as clogging of the conduit It is a hot water supply system.

上記給湯システムによれば、マグネットポンプを作動させる運転中に、水量検出部で検出される流量が所定の脱調判定流量未満になると、直ちに送水不良と判定するのでなく、一時的にマグネットポンプへの通電を停止させるから、通電の停止中に従動用マグネットの回転速度が低下すれば、瞬停によりマグネットポンプのマグネットカップリングが外れて脱調が生じている場合、従動用マグネットを停止している駆動用マグネットに再度、固定することができる。そして、管路の詰りやポンプ故障等が生じていなければ、マグネットポンプへの通電を再開させることにより流量は回復するから、不要なエラー停止を回避して、運転を継続させることができる。   According to the hot water supply system described above, if the flow rate detected by the water amount detection unit becomes less than the predetermined step-out determination flow rate during the operation of operating the magnet pump, it is not determined immediately that the water supply is defective, but temporarily to the magnet pump. If the rotational speed of the follower magnet decreases during the energization stop, if the magnet coupling of the magnet pump is disengaged due to momentary power failure, the follower magnet is stopped. It can be fixed again to the drive magnet. If the pipeline is not clogged, the pump is not broken, etc., the flow rate is recovered by resuming energization of the magnet pump, so that unnecessary error stop can be avoided and the operation can be continued.

そして、瞬停によりマグネットポンプの脱調が生じている場合、送水が行われないから、短時間内に流量が大きく低下する。一方、経年劣化による管路の詰りやマグネットポンプの送水能力の低下が生じている場合、脱調が生じている場合よりも流量の低下は少ない。また、上記のような経年劣化の要因によって送水不良が生じている場合、一旦低下した流量は回復し難いから、低下した流量での送水は一定時間継続する。従って、マグネットポンプの脱調による流量の低下を判断する脱調判定流量よりも高い第1判定流量未満の流量が、所定の第1判定時間継続していれば、経年劣化の要因により送水不良が生じていると判定できる。 And when the magnetic pump is out of step due to momentary power interruption, water flow is not performed, so the flow rate is greatly reduced within a short time. On the other hand, when the pipeline is clogged due to deterioration over time or the water feeding capacity of the magnet pump is reduced, the flow rate is less reduced than when the step-out occurs. In addition, when water supply failure occurs due to the above-described factors of aging deterioration, since the flow rate once reduced is difficult to recover, water supply at the reduced flow rate continues for a certain time. Accordingly, if a flow rate less than the first determination flow rate that is higher than the step-out determination flow rate for determining a decrease in the flow rate due to the step-out of the magnet pump continues for the predetermined first determination time, water supply failure may occur due to aged deterioration factors. It can be determined that it has occurred.

上記給湯システムにおいて、好ましくは、
制御部は、マグネットポンプへの通電の停止及び再開が行われても、水量検出部で検出される流量が脱調判定流量未満である場合、マグネットポンプの故障が生じたと判定する。
In the above hot water supply system, preferably,
The control unit determines that the magnet pump has failed if the flow rate detected by the water amount detection unit is less than the step-out determination flow rate even when the energization of the magnet pump is stopped and restarted.

上記給湯システムによれば、マグネットポンプへの通電及び再開が行われても、水量検出部で検出される流量が脱調判定流量未満であれば、マグネットポンプの故障と判定するから、確実に給湯器の停止等の対処を行うことができる。   According to the hot water supply system described above, even if the magnet pump is energized and restarted, if the flow rate detected by the water amount detection unit is less than the out-of-step determination flow rate, it is determined that the magnet pump has failed. It is possible to take measures such as stopping the vessel.

以上のように本発明の給湯システムによれば、マグネットポンプを作動させる運転中に瞬停によるマグネットポンプの脱調が生じて流量が低下しても、マグネットポンプを脱調から復帰させることができる。これにより、不要なエラー停止を防止でき、マグネットポンプを作動させて熱交換器に水を送水する循環保温運転や追焚き循環運転等の循環運転を円滑に行うことができる。   As described above, according to the hot water supply system of the present invention, the magnet pump can be recovered from the step-out even if the flow rate decreases due to the step-out of the magnet pump caused by momentary power failure during the operation of operating the magnet pump. . Thereby, an unnecessary error stop can be prevented, and circulation operations such as a circulation heat insulation operation and an additional circulation operation in which the magnet pump is operated to supply water to the heat exchanger can be smoothly performed.

図1は、本発明の実施の形態に係る給湯システムの一例を示す概略模式図である。FIG. 1 is a schematic diagram illustrating an example of a hot water supply system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る給湯システムにおいて循環保温運転中に送水不良を判定する制御動作の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a control operation for determining a poor water supply during the circulating heat insulation operation in the hot water supply system according to the embodiment of the present invention.

図1は、本発明を適用した即湯給湯システムの概略模式図である。図1に示すように、本実施の形態の即湯給湯システムは、温水利用先に設けられた混合水栓P1に対して速やかに湯水を供給可能な即湯機能を備えており、熱交換器21に供給される水をバーナ22からのガスの燃焼排ガスにより加熱し湯水を生成する給湯器11と、熱交換器21に水を供給する入水管路12と、熱交換器21から混合水栓P1に湯水を出湯する出湯管路13と、水供給源Kから混合水栓P1に水を導く出水管路14と、熱交換器21をバイパスして入水管路12と出湯管路13とを接続するバイパス管路15と、熱交換器21から出湯された湯水を混合水栓P1をバイパスして、入水管路12へ導くための循環管路16とが設けられている。   FIG. 1 is a schematic diagram of an instant hot water supply system to which the present invention is applied. As shown in FIG. 1, the instant hot water supply system of the present embodiment has an immediate hot water function capable of quickly supplying hot water to a mixing tap P1 provided at a hot water usage destination, and a heat exchanger. The water supplied to 21 is heated by the combustion exhaust gas of the gas from the burner 22 to generate hot water, the water inlet pipe 12 for supplying water to the heat exchanger 21, and the mixed faucet from the heat exchanger 21. A hot water supply line 13 for discharging hot water to P1, a water discharge line 14 for introducing water from the water supply source K to the mixing faucet P1, a water intake line 12 and a hot water supply line 13 bypassing the heat exchanger 21 A bypass line 15 to be connected and a circulation line 16 for guiding hot water discharged from the heat exchanger 21 to the water inlet line 12 by bypassing the mixing tap P1 are provided.

入水管路12には、上流側から順に、入水管路12を流れる水の流量を検出する水量センサ(水量検出部)24と、出湯管路13に対して熱交換器21から出湯する湯水とバイパス管路15から供給される水との混合割合を調整可能な水量分配弁26と、入水管路12内の水温を検知する入水温度センサ27とが設けられており、出湯管路13には、出湯管路13内の湯水の温度を検出する出湯温度センサ30が設けられている。   The water inlet pipe 12 includes, in order from the upstream side, a water quantity sensor (water quantity detection unit) 24 that detects the flow rate of water flowing through the water inlet pipe 12, and hot water discharged from the heat exchanger 21 with respect to the hot water outlet pipe 13. A water distribution valve 26 capable of adjusting the mixing ratio with the water supplied from the bypass pipe 15 and a water inlet temperature sensor 27 for detecting the water temperature in the water inlet pipe 12 are provided. A hot water temperature sensor 30 for detecting the temperature of the hot water in the hot water pipe 13 is provided.

循環管路16は、一端が、入水管路12とバイパス管路15との接続部よりも上流側で入水管路12と接続され、他端が、出湯管路13とバイパス管路15の接続部よりも下流側で出湯管路13と接続されている。また、循環管路16には、循環保温運転時に作動する循環用ポンプであるディスクタイプのマグネットポンプ31と、入水管路12から循環管路16に水が流入するのを防止する逆止弁32とが設けられている。なお、循環管路16は、出湯管路13と出水管路14とを接続するように設けられてもよい
図示しないが、本実施の形態のマグネットポンプ31は、モータ軸に固定された駆動用マグネットを有する駆動室と、インペラ軸に固定された従動用マグネット及び従動用マグネットに取付られたインペラを有するインペラ室とが隔壁を介して配設されている。従って、磁気吸引力により従動用マグネットが駆動用マグネットに固定された状態でモータが回転すると、インペラが回転して、配管の一部を構成するインペラ室内の水が下流側に送水される。
One end of the circulation pipe 16 is connected to the water inlet pipe 12 on the upstream side of the connection portion between the water inlet pipe 12 and the bypass pipe 15, and the other end is connected to the hot water outlet pipe 13 and the bypass pipe 15. The hot water outlet 13 is connected to the downstream side of the section. In addition, the circulation pipe 16 has a disk-type magnet pump 31 that is a circulation pump that operates at the time of the circulation heat insulation operation, and a check valve 32 that prevents water from flowing into the circulation pipe 16 from the water inlet pipe 12. And are provided. The circulation pipe 16 may be provided so as to connect the tap water pipe 13 and the drain pipe 14. Although not shown, the magnet pump 31 of the present embodiment is for driving fixed to the motor shaft. A drive chamber having a magnet and an impeller chamber having a driven magnet fixed to the impeller shaft and an impeller attached to the driven magnet are disposed via a partition wall. Therefore, when the motor rotates while the driven magnet is fixed to the driving magnet by the magnetic attractive force, the impeller rotates and water in the impeller chamber constituting a part of the piping is sent downstream.

給湯器11内には、バーナ22へのガスの供給量を調節するガス調整弁ユニット23と、給湯システム全体の運転を制御する制御ユニット(制御部)Cが設けられている。ガス調整弁ユニット23、水量センサ24、水量分配弁26、入水温度センサ27、出湯温度センサ30、マグネットポンプ31はそれぞれ、電気配線を通じて制御ユニットCに接続されている。また、図示しないが、制御ユニットCには、給湯システムの動作を指示するための操作端末が電気配線を通じて接続されている。   In the water heater 11, a gas regulating valve unit 23 that adjusts the amount of gas supplied to the burner 22 and a control unit (control unit) C that controls the operation of the entire hot water system are provided. The gas regulating valve unit 23, the water amount sensor 24, the water amount distribution valve 26, the incoming water temperature sensor 27, the hot water temperature sensor 30, and the magnet pump 31 are each connected to the control unit C through electrical wiring. Although not shown, an operation terminal for instructing the operation of the hot water supply system is connected to the control unit C through electric wiring.

制御ユニットCは、マイクロコンピュータからなり、CPU、ROM、RAM、タイマなどを備え、混合水栓P1の湯出口から所定温度の湯水を出湯する給湯運転、及び給湯運転が行われていないときに、管路内の水を保温する循環保温運転を実行する。また、図示しないが、制御ユニットCは、回路構成として、混合水栓P1が開栓されると、出湯温度センサ30で検出される出湯温度が給湯設定温度となるようにバーナ22の燃焼量を制御する給湯運転制御部と、給湯運転が行われていないときに、マグネットポンプ31を作動させて管路内に水を循環させながら、出湯温度センサ30で検出される出湯温度が保温設定温度となるようにバーナ22の燃焼量を制御する循環保温運転制御部と、マグネットポンプ31の作動を制御するポンプ制御部と、ガス調整弁ユニット23を比例制御してバーナ22へのガス量を制御するガス量制御部と、水量分配弁26の開度を調整して熱交換器21への流量を制御する流量制御部と、循環保温運転中、水量センサ24で検出される流量に基づき、マグネットポンプ31の脱調や、管路の詰り等による送水不良を判定する送水不良判定部と、送水不良を判定する判定流量や判定時間、流量、入水温度、給湯設定温度、及び燃焼量の対応関係のデータテーブルや各種運転プログラムなどが格納されたデータ格納部とを備えている。   The control unit C comprises a microcomputer, and includes a CPU, a ROM, a RAM, a timer, and the like. When the hot water supply operation for discharging hot water at a predetermined temperature from the hot water outlet of the mixing tap P1 and the hot water supply operation are not performed, Executes a circulating heat insulation operation that keeps the water in the pipeline warm. Although not shown in the drawing, the control unit C controls the combustion amount of the burner 22 so that the tapping temperature detected by the tapping temperature sensor 30 becomes the hot water supply set temperature when the mixing tap P1 is opened as a circuit configuration. The hot water supply operation control unit to be controlled and the hot water temperature detected by the hot water temperature sensor 30 while the magnet pump 31 is operated and water is circulated in the pipe line when the hot water supply operation is not performed are In order to control the amount of gas to the burner 22, the circulation heat insulation operation control unit that controls the combustion amount of the burner 22, the pump control unit that controls the operation of the magnet pump 31, and the gas regulating valve unit 23 are proportionally controlled. Based on the gas amount control unit, the flow rate control unit that adjusts the opening of the water amount distribution valve 26 to control the flow rate to the heat exchanger 21, and the flow rate detected by the water amount sensor 24 during the circulating heat insulation operation. Correspondence relationship between water supply failure determination unit for determining water supply failure due to step-out of pump 31, clogged pipe, etc., determination flow rate and determination time for determining water supply failure, flow rate, incoming water temperature, hot water supply set temperature, and combustion amount And a data storage unit storing various operation programs.

本実施の形態の給湯システムで給湯運転が実行される場合、使用者が混合水栓P1を開栓して、水量センサ24で検出される流量が所定の最低作動水量(例えば、2.7L/min)以上になると、制御ユニットCは、ガス調整弁ユニット23でバーナ22へ供給されるガス量を点火ガス量に調整して、バーナ22を点火する。そして、水量センサ24で検出される流量、入水温度センサ27で検出される入水温度、及び給湯設定温度に基づいて、出湯温度センサ30で検出される出湯温度が給湯設定温度となるように水量分配弁26の開度を調整するとともに、ガス調整弁ユニット23でバーナ22へのガス量を比例制御する。なお、混合水栓P1の閉栓等により水量センサ24で検出される流量が最低作動水量未満になると、バーナ22が消火される。   When the hot water supply operation is executed in the hot water supply system of the present embodiment, the user opens the mixed water tap P1, and the flow rate detected by the water amount sensor 24 is a predetermined minimum working water amount (for example, 2.7 L / min)), the control unit C ignites the burner 22 by adjusting the gas amount supplied to the burner 22 by the gas regulating valve unit 23 to the ignition gas amount. Then, based on the flow rate detected by the water amount sensor 24, the incoming water temperature detected by the incoming water temperature sensor 27, and the hot water supply set temperature, the amount of water distributed so that the hot water temperature detected by the hot water temperature sensor 30 becomes the hot water supply set temperature. While adjusting the opening degree of the valve 26, the gas regulating valve unit 23 proportionally controls the gas amount to the burner 22. When the flow rate detected by the water amount sensor 24 is less than the minimum working water amount due to the closing of the mixed water tap P1, the burner 22 is extinguished.

次に、本実施の形態の給湯システムでマグネットポンプ31を作動させる循環保温運転が実行される場合に送水不良を判定する制御動作について、図2のフローチャートに従って説明する。なお、本実施の形態の給湯システムでは、給湯運転が実行されていない状態で、出湯温度センサ30で検出される出湯管路13内の湯水の温度が所定の保温開始温度(例えば、40℃)以下になると、循環保温運転が開始され、出湯管路13内の湯水の温度が所定の保温設定温度(例えば、60℃)以上になると、循環保温運転が停止するように設定されている。   Next, a control operation for determining a water supply failure when the circulating heat insulation operation for operating the magnet pump 31 is executed in the hot water supply system of the present embodiment will be described with reference to the flowchart of FIG. In the hot water supply system according to the present embodiment, the temperature of the hot water in the hot water discharge pipe 13 detected by the hot water temperature sensor 30 is a predetermined heat retention start temperature (for example, 40 ° C.) in a state where the hot water supply operation is not executed. When the temperature becomes below, the circulating heat insulation operation is started, and when the temperature of the hot water in the hot water discharge line 13 becomes equal to or higher than a predetermined heat insulation setting temperature (for example, 60 ° C.), the circulation heat insulation operation is set to stop.

給湯運転が実行されていない状態で、循環保温運転が開始すると、制御ユニットCは、マグネットポンプ31に通電して、所定の回転数でモータを回転させる(ステップST1)。すると、熱交換器21内の水が、出湯管路13、循環管路16、及び入水管路12を通って、熱交換器21に帰還する循環路が形成される。   When the circulation heat insulation operation is started in a state where the hot water supply operation is not executed, the control unit C energizes the magnet pump 31 and rotates the motor at a predetermined rotation speed (step ST1). Then, a circulation path is formed in which water in the heat exchanger 21 returns to the heat exchanger 21 through the hot water discharge line 13, the circulation line 16, and the incoming water line 12.

水量センサ24で検出される流量が最低作動水量(例えば、2.7L/min)以上になると、給湯運転と同様に、点火処理を実行し、バーナ22を点火させる。そして、水量センサ24で検出される流量、入水温度センサ27で検出される入水温度、及び保温設定温度に基づいて、出湯温度センサ30で検出される出湯温度が所定の保温設定温度となるように、水量分配弁26の開度を調整するとともに、ガス調整弁ユニット23でバーナ22へのガス量を比例制御する(ステップST2)。これにより、管路内の水が加熱されるから、混合水栓P1が開栓されると、出湯管路13を通じて出湯先に速やかに湯水が供給される。   When the flow rate detected by the water amount sensor 24 becomes equal to or higher than the minimum working water amount (for example, 2.7 L / min), the ignition process is executed and the burner 22 is ignited as in the hot water supply operation. Then, based on the flow rate detected by the water amount sensor 24, the incoming water temperature detected by the incoming water temperature sensor 27, and the heat retention set temperature, the hot water temperature detected by the hot water temperature sensor 30 becomes a predetermined heat retention set temperature. The opening of the water distribution valve 26 is adjusted, and the gas amount to the burner 22 is proportionally controlled by the gas adjustment valve unit 23 (step ST2). As a result, the water in the pipe is heated, so when the mixing faucet P1 is opened, hot water is quickly supplied to the hot water outlet through the hot water pipe 13.

循環保温運転中、本実施の形態の給湯システムでは、脱調、及び管路の詰り等の経年劣化の要因による送水不良やマグネットポンプ31の故障が判定される。   During the circulating heat insulation operation, in the hot water supply system of the present embodiment, it is determined whether there is a water supply failure or a failure of the magnet pump 31 due to factors of aging such as step-out and clogging of pipes.

まず、経年劣化の要因による流量の低下を検出するため、所定の第1判定流量(例えば、6L/min)未満の流量が、所定の第1判定時間(例えば、10秒間)継続するかどうかが判定される(ステップST3)。経年劣化により管路の詰り等が進行した場合、所定回転数でマグネットポンプ31を作動させても流量が低下するものの、瞬停により脱調が生じた場合よりも、流量の低下は少なく、また低下した流量は一定時間継続する。このため、第1判定流量には、脱調による送水不良を判定するときの脱調判定流量よりも高い流量が設定され、第1判定時間は、脱調判定時間よりも長い時間が設定される。   First, in order to detect a decrease in the flow rate due to a cause of aging deterioration, it is determined whether or not a flow rate lower than a predetermined first determination flow rate (for example, 6 L / min) continues for a predetermined first determination time (for example, 10 seconds). Determination is made (step ST3). When the clogging of the pipeline progresses due to aging deterioration, the flow rate decreases even if the magnet pump 31 is operated at a predetermined rotational speed, but the flow rate decreases less than when the step-out occurs due to momentary power failure. The reduced flow rate continues for a certain time. Therefore, the first determination flow rate is set to a flow rate higher than the step-out determination flow rate when determining poor water supply due to step-out, and the first determination time is set to a time longer than the step-out determination time. .

循環保温運転中、第1判定流量未満の流量が第1判定時間継続しない場合(ステップST3で、No)、水量センサ24で検出される流量がモニタされ、所定の脱調判定流量(例えば、0.5L/min)未満の流量が所定の脱調判定時間(例えば、2秒間)継続するかどうかが判定される(ステップST4)。すなわち、瞬停によってマグネットポンプ31の脱調が生じた場合、駆動用マグネットと従動用マグネットとのマグネットカップリングが外れた状態となるから、駆動用マグネットが回転していても、送水が行われず、脱調前に比べて流量が大きく低下する。従って、短時間でも脱調判定流量未満の流量が検出された場合、マグネットポンプ31の脱調が生じた可能性が考えられる。   If the flow rate less than the first determination flow rate does not continue for the first determination time during the circulation heat insulation operation (No in step ST3), the flow rate detected by the water amount sensor 24 is monitored and a predetermined step-out determination flow rate (for example, 0 .5L / min) is determined whether or not the flow rate continues for a predetermined step-out determination time (for example, 2 seconds) (step ST4). In other words, when the magnetic pump 31 loses its power due to a momentary power failure, the magnet coupling between the driving magnet and the driven magnet is disengaged, so that even if the driving magnet rotates, no water is supplied. The flow rate is greatly reduced compared to before the step-out. Therefore, if a flow rate lower than the step-out determination flow rate is detected even in a short time, it is possible that the step-out of the magnet pump 31 has occurred.

上記脱調判定において、水量センサ24で検出される流量が脱調判定流量未満を脱調判定時間継続した場合(ステップST4で、Yes)、制御ユニットCは、送水不良回数の履歴に「1」を加算して、送水不良回数を更新し(ステップST5)、送水不良回数が所定回数(例えば、2回)でなければ(ステップST6で、No)、マグネットポンプ31への通電を一時的に所定の停止時間(例えば、10秒間)停止させる(ステップST7〜ST8)。これにより、瞬停から電源が回復して駆動用マグネットのみが高速で回転している場合、駆動用マグネットの回転が停止するから、流量が低下して従動用マグネットの回転速度が低下すると、駆動用マグネットと従動用マグネットの回転速度の差が小さくなり、磁気吸引力により従動用マグネットを駆動用マグネットに再度、固定できる。なお、マグネットポンプ31への通電の停止時間は、循環保温運転時の流量や管路の大きさ等に応じて適宜設定される。   In the step-out determination, when the flow rate detected by the water amount sensor 24 is less than the step-out determination flow rate and the step-out determination time continues (Yes in step ST4), the control unit C indicates “1” in the history of the number of water supply failures. Is added to update the number of water supply failures (step ST5). If the number of water supply failures is not a predetermined number (for example, 2 times) (No in step ST6), the energization to the magnet pump 31 is temporarily predetermined. Is stopped (for example, 10 seconds) (steps ST7 to ST8). As a result, when the power supply recovers from the momentary power failure and only the driving magnet rotates at a high speed, the driving magnet stops rotating, so if the flow rate decreases and the rotational speed of the driven magnet decreases, The difference in rotational speed between the driving magnet and the driven magnet is reduced, and the driven magnet can be fixed to the driving magnet again by the magnetic attractive force. In addition, the stop time of energization to the magnet pump 31 is appropriately set according to the flow rate, the size of the pipeline, and the like during the circulating heat insulation operation.

マグネットポンプ31への通電の停止時間が経過すると(ステップST8で、Yes)、制御ユニットCは、マグネットポンプ31への通電を再開する(ステップST9)。そして、流量が低下してバーナ22が消火されているため、上記と同様に、流量が最低作動水量以上に回復すれば点火処理を行い、循環保温運転中、水量センサ24で検出される流量が第1判定流量未満を第1判定時間継続するかどうか、及び脱調判定流量未満を脱調判定時間継続するかどうかを判定する(ステップST2〜ST4)。   When the stop time of energization to the magnet pump 31 has elapsed (Yes in step ST8), the control unit C resumes energization to the magnet pump 31 (step ST9). Since the burner 22 is extinguished because the flow rate is reduced, the flow rate detected by the water amount sensor 24 during the circulating heat insulation operation is performed when the flow rate is restored to the minimum working water amount or more, as described above. It is determined whether or not the first determination flow rate is continued for the first determination time, and whether or not the step-out determination flow rate is continued for the step-out determination time (steps ST2 to ST4).

マグネットポンプ31への一時的な通電の停止及び再開後、水量センサ24で検出される流量が第1判定流量未満を第1判定時間継続せず、且つ脱調判定流量未満を脱調判定時間継続しなければ(ステップST3及びST4で、No)、経年劣化の要因による送水不良も生じておらず、またマグネットポンプ31への一時的な通電の停止及び再開によってマグネットポンプ31が脱調から復帰したと考えられるから、送水不良回数を確認し、送水不良回数が記憶されていれば、送水不良回数を「0」に戻す(ステップST10及びST11)。これにより、次回の循環保温運転時に水量センサ24で検出される流量が脱調判定流量未満に低下した場合、再度、マグネットポンプ31への一時的な通電の停止及び再開が行われるから、直ちにエラー停止が行われるのを防止できる。   After temporarily stopping and resuming energization of the magnet pump 31, the flow rate detected by the water volume sensor 24 does not continue below the first determination flow for the first determination time, and continues below the step-out determination flow for less than the step-out determination flow. If not (No in Steps ST3 and ST4), there is no water supply failure due to the cause of aged deterioration, and the magnet pump 31 has recovered from the step-out by temporarily stopping and resuming energization of the magnet pump 31. Therefore, the number of water feeding failures is confirmed, and if the number of water feeding failures is stored, the number of water feeding failures is returned to “0” (steps ST10 and ST11). As a result, if the flow rate detected by the water volume sensor 24 during the next circulating heat insulation operation falls below the step-out determination flow rate, temporary energization of the magnet pump 31 is again stopped and restarted, and an error immediately occurs. Stopping can be prevented.

一方、マグネットポンプ31への一時的な通電の停止及び再開後、水量センサ24で検出される流量が第1判定流量未満を第1判定時間継続しないが、再度、水量センサ24で検出される流量が脱調判定流量未満を脱調判定時間継続すると(ステップST3で、No、ステップST4で、Yes)、マグネットポンプ31への一時的な通電の停止及び再開によっても送水状態が復帰しなかったと判断できる。このため、送水不良回数の履歴が所定回数(例えば、2回)となった場合(ステップST6で、Yes)、マグネットポンプ31に故障が生じたと判定してマグネットポンプ31への通電を停止させて、循環保温運転をエラー停止させる(ステップST12及びST13)。   On the other hand, after temporarily stopping and resuming energization of the magnet pump 31, the flow rate detected by the water amount sensor 24 does not continue below the first determination flow rate for the first determination time, but again the flow rate detected by the water amount sensor 24. If the step-out determination time is continued for less than the step-out determination flow rate (No in step ST3, Yes in step ST4), it is determined that the water supply state has not returned even by temporarily stopping and resuming energization of the magnet pump 31. it can. For this reason, when the history of the number of water supply failures becomes a predetermined number of times (for example, twice) (Yes in step ST6), it is determined that a failure has occurred in the magnet pump 31, and the energization to the magnet pump 31 is stopped. Then, the circulating heat insulation operation is stopped by error (steps ST12 and ST13).

循環保温運転中、水量センサ24で検出される流量が徐々に低下して第1判定流量未満を第1判定時間継続する場合(ステップST3で、Yes)、経年劣化による管路の詰り等の虞があるから、図示しない操作端末等からエラー警告が報知される(ステップST14)。そして、水量センサ24で検出される流量がさらに低下して脱調判定流量よりは高いが第1判定流量よりは低い第2判定流量(例えば、4L/min)未満を第2判定時間(例えば、10秒間)継続する場合、熱交換器21に十分な流量で水が送水されず、マグネットポンプ31に負荷がかかり過ぎる不具合があるとして、マグネットポンプ31への通電を停止させて、循環保温運転をエラー停止させる(ステップST16及びST17)。これにより、経年劣化による管路の詰り等で上記不具合が生じることを防止できる。   If the flow rate detected by the water amount sensor 24 gradually decreases during the circulation heat insulation operation and continues below the first determination flow rate for the first determination time (Yes in step ST3), there is a risk of clogging of the pipeline due to deterioration over time. Therefore, an error warning is notified from an operation terminal (not shown) or the like (step ST14). Then, the flow rate detected by the water amount sensor 24 is further reduced to be less than the second determination flow rate (for example, 4 L / min) that is higher than the step-out determination flow rate but lower than the first determination flow rate (for example, 4 L / min). 10 seconds), if the water is not supplied to the heat exchanger 21 at a sufficient flow rate and the magnet pump 31 is overloaded, the energization of the magnet pump 31 is stopped and the circulation heat insulation operation is performed. The error is stopped (steps ST16 and ST17). Thereby, it can prevent that the said malfunction arises by the clogging of the pipe line by aged deterioration, etc.

以上詳細に説明したように、本実施の形態の給湯システムによれば、マグネットポンプ31を作動させて熱交換器21に水を循環させる循環保温運転中、水量センサ24で検出される流量が脱調判定流量未満になると、一時的にマグネットポンプ31への通電を停止させるから、瞬停によりマグネットポンプ31の脱調が生じている場合には、駆動用マグネットの回転停止により、駆動用マグネットと従動用マグネットの回転速度の差が小さくなり、従動用マグネットを駆動用マグネットに再度、固定できる。そして、一時的に通電を停止させた後、通電を再開させることにより、マグネットポンプ31を脱調から復帰させることができる。これにより、循環保温運転をエラー停止させることなく、継続させることができる。そして、上記給湯システムによれば、エラー停止させることなく、マグネットポンプ31を脱調から復帰させることができるから、使用者は、給湯システムをリセットする必要もない。これにより、使い勝手を向上できる。   As described in detail above, according to the hot water supply system of the present embodiment, the flow rate detected by the water amount sensor 24 is removed during the circulation heat insulation operation in which the magnet pump 31 is operated to circulate water through the heat exchanger 21. Since the energization to the magnet pump 31 is temporarily stopped when the flow rate is less than the adjustment determination flow rate, when the step-out of the magnet pump 31 occurs due to momentary power interruption, the rotation of the drive magnet causes the drive magnet to The difference in rotational speed of the driven magnet is reduced, and the driven magnet can be fixed to the driving magnet again. And after stopping electricity supply temporarily, the magnet pump 31 can be returned from a step-out by restarting electricity supply. Thereby, the circulation heat insulation operation can be continued without stopping the error. And according to the said hot-water supply system, since the magnet pump 31 can be returned from step-out without stopping an error, the user does not need to reset the hot-water supply system. Thereby, usability can be improved.

また、上記実施の形態の給湯システムによれば、マグネットポンプ31への通電の停止及び再開を行っても、水量センサ24で検出される流量が脱調判定流量未満となった場合、マグネットポンプ31の故障と判定して、循環保温運転をエラー停止させるから、熱交換器21に送水されない状態で循環保温運転が継続されるのを確実に防止できる。   Further, according to the hot water supply system of the above-described embodiment, when the flow rate detected by the water amount sensor 24 is less than the step-out determination flow rate even when the energization of the magnet pump 31 is stopped and restarted, the magnet pump 31. Therefore, it is possible to reliably prevent the circulating and warming operation from being continued in a state where water is not supplied to the heat exchanger 21.

さらに、上記実施の形態の給湯システムによれば、瞬停による脱調判定とは別に、水量センサ24で検出される流量が脱調判定流量よりも高い第1判定流量未満を第1判定時間継続する場合、管路の詰り等の経年劣化による送水不良と判定するから、脱調による送水不良と区別して判定できる。これにより、マグネットポンプ31を作動させる循環保温運転を行いながら、経年劣化による送水不良と瞬停による送水不良を判定できるから、一層、利便性の高い給湯システムを提供することができる。
(その他の実施の形態)
(1)上記実施の形態では、即湯給湯システムにおける循環保温運転について説明したが、マグネットポンプを作動させて熱交換器に水を送水する運転であれば、本発明を適用することができる。また、上記実施の形態では即湯給湯システムについて説明したが、既述した貯湯槽を有する貯湯式給湯システムや追焚き循環路を有する追焚き給湯システム等のマグネットポンプを作動させる運転が行われる給湯システムに本発明を適用することができる。
(2)上記実施の形態では、マグネットポンプへの通電の停止及び再開は1回のみ行っているが、複数回行ってもよい。
(3)上記実施の形態では、経年劣化による送水不良を判定するために第1及び第2判定流量が設定されているが、1段階の第1判定流量のみが設定されてもよい。
(4)上記実施の形態では、脱調判定流量未満の流量が脱調判定時間継続するかどうかから脱調判定を行っているが、脱調判定時間の経過を待つことなく、マグネットポンプへの通電を停止させてもよい。
Furthermore, according to the hot water supply system of the above embodiment, apart from the out-of-step determination due to momentary power failure, the flow rate detected by the water sensor 24 is lower than the first determination flow rate that is higher than the out-of-step determination flow rate for the first determination time. In this case, since it is determined that the water supply is poor due to aging deterioration such as clogging of the pipeline, it can be determined separately from the water supply failure due to step-out. Thereby, it is possible to determine a water supply failure due to aged deterioration and a water supply failure due to a momentary power failure while performing a circulating heat insulation operation for operating the magnet pump 31. Therefore, it is possible to provide a more convenient hot water supply system.
(Other embodiments)
(1) In the above embodiment, the circulating heat insulation operation in the instant hot water supply system has been described. However, the present invention can be applied to any operation that operates a magnet pump to feed water to a heat exchanger. In the above-described embodiment, the hot water supply system has been described. However, the hot water supply system that operates the magnet pump such as the hot water storage type hot water supply system having the hot water storage tank and the reheating water supply system having the recirculation circuit as described above is performed. The present invention can be applied to a system.
(2) In the above embodiment, the energization of the magnet pump is stopped and restarted only once, but may be performed a plurality of times.
(3) In the above embodiment, the first and second determination flow rates are set in order to determine water supply failure due to aging deterioration, but only the first determination flow rate in one stage may be set.
(4) In the above embodiment, the step-out determination is performed based on whether the flow rate less than the step-out determination flow continues for the step-out determination time, but without waiting for the step-out determination time to elapse, The energization may be stopped.

11 給湯器
24 水量センサ(水量検出部)
31 マグネットポンプ
12 入水管路
13 出湯管路
21 熱交換器
31 マグネットポンプ
C 制御ユニット(制御部)
11 Water heater 24 Water sensor (Water detector)
31 Magnet pump 12 Inlet pipe 13 Hot water outlet 21 Heat exchanger 31 Magnet pump C Control unit (control unit)

Claims (2)

熱交換器を有する給湯器と、
熱交換器に水を送水するマグネットポンプと、
熱交換器に送水される水の流量を検出する水量検出部と、
水量検出部で検出される流量に基づいて送水不良を判定する制御部と、を備え、
制御部は、マグネットポンプを作動させて熱交換器に水を送水する運転中、水量検出部で検出される流量が所定の脱調判定流量未満となった場合、一時的にマグネットポンプへの通電を停止させた後、マグネットポンプへの通電を再開させ
水量検出部で検出される流量が脱調判定流量より高い所定の第1判定流量未満を所定の第1判定時間継続した場合、管路の詰り等の経年劣化による送水不良が生じたと判定する給湯システム。
A water heater having a heat exchanger;
A magnet pump that delivers water to the heat exchanger;
A water amount detection unit for detecting a flow rate of water sent to the heat exchanger;
A control unit for determining a water supply failure based on the flow rate detected by the water amount detection unit,
During the operation of operating the magnet pump to supply water to the heat exchanger, the control unit temporarily energizes the magnet pump when the flow rate detected by the water volume detection unit is less than the predetermined step-out determination flow rate. After stopping, the energization to the magnet pump is resumed ,
If the flow rate detected by the water amount detecting unit is a first determination than the flow rate higher predetermined from out-of-step detection flow continues a predetermined first determination time, it determined that water failure has occurred due to aging, such as clogging of the conduit Hot water system.
請求項1に記載の給湯システムにおいて、
制御部は、マグネットポンプへの通電の停止及び再開が行われても、水量検出部で検出される流量が脱調判定流量未満である場合、マグネットポンプの故障が生じたと判定する給湯システム。
The hot water supply system according to claim 1 ,
The controller is a hot water supply system that determines that a failure of the magnet pump has occurred when the flow rate detected by the water amount detection unit is less than the step-out determination flow rate even when the energization of the magnet pump is stopped and restarted.
JP2014262792A 2014-12-25 2014-12-25 Hot water system Active JP6101246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262792A JP6101246B2 (en) 2014-12-25 2014-12-25 Hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262792A JP6101246B2 (en) 2014-12-25 2014-12-25 Hot water system

Publications (2)

Publication Number Publication Date
JP2016121855A JP2016121855A (en) 2016-07-07
JP6101246B2 true JP6101246B2 (en) 2017-03-22

Family

ID=56328857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262792A Active JP6101246B2 (en) 2014-12-25 2014-12-25 Hot water system

Country Status (1)

Country Link
JP (1) JP6101246B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103139B (en) * 2017-04-27 2020-03-17 中国水利水电科学研究院 Operation scheduling control method for water delivery system of cascade pump station
CN115143647B (en) * 2022-07-08 2024-03-15 宁波方太厨具有限公司 Fault diagnosis method, system, equipment, medium and water heater of gas water heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185233A (en) * 1993-12-28 1995-07-25 Nippondenso Co Ltd Apparatus for circulating water
JP2003113792A (en) * 2001-10-03 2003-04-18 Nidec Shibaura Corp Pump and water heater using pump
JP2004037045A (en) * 2002-07-08 2004-02-05 Matsushita Electric Ind Co Ltd Forced circulation type bath heater with clogging detecting function

Also Published As

Publication number Publication date
JP2016121855A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US20150354832A1 (en) Hot water supply apparatus
JP6101246B2 (en) Hot water system
CN110671824A (en) Zero cold water control system and method
KR101482847B1 (en) Hot water supply system
JP5678812B2 (en) Hot water storage water heater
JP6390903B2 (en) Hot water storage hot water system
JP5162263B2 (en) Cogeneration system
JP2015094546A (en) Hot water storage type water heater
JP2014001880A (en) Storage water heater
JP2009019844A (en) Hot water utilizing system
JP6214212B2 (en) Hot water system
JP2011247487A (en) Water heater
JP2012154512A (en) Mixing valve control apparatus
JP2011185519A (en) Hot water storage type water heater
JP6513553B2 (en) Water heater
JP5061153B2 (en) Hot water storage hot water supply system and cogeneration system
JP4994291B2 (en) Heat source machine
JP7277719B2 (en) Control method for storage hot water supply device
JP2009264707A (en) Hot water supply system
JP4041035B2 (en) Hot water circulation heat source machine
JP5589610B2 (en) Hot water system
JP6138549B2 (en) Liquid feeding device and heat source device
JP2018031545A (en) Hot water/water mixing hot water supply device
JP2011153790A (en) Heat pump type water heater
JP6924406B2 (en) Hot water storage and hot water supply device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170224

R150 Certificate of patent or registration of utility model

Ref document number: 6101246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250